forked from NikolasEnt/Vehicle-Detection-and-Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaneline.py
571 lines (523 loc) · 20.9 KB
/
laneline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import cv2
import glob
import pickle
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import mean_squared_error
x_cor = 9 #Number of corners to find
y_cor = 6
# Prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((y_cor*x_cor,3), np.float32)
objp[:,:2] = np.mgrid[0:x_cor, 0:y_cor].T.reshape(-1,2)
def camera_cal():
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('camera_cal/calibration*.jpg') # Make a list of paths to calibration images
# Step through the list and search for chessboard corners
corners_not_found = [] #Calibration images in which opencv failed to find corners
for idx, fname in enumerate(images):
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Conver to grayscale
ret, corners = cv2.findChessboardCorners(gray, (x_cor,y_cor), None) # Find the chessboard corners
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
else:
corners_not_found.append(fname)
print 'Corners were found on', str(len(imgpoints)), 'out of', str(len(images)), 'it is', str(len(imgpoints)*100.0/len(images)),'% of calibration images'
img_size = (img.shape[1], img.shape[0])
# Do camera calibration given object points and image points
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size,None,None)
return mtx, dist
mtx, dist = camera_cal()
def undistort(img):
return cv2.undistort(img, mtx, dist, None, mtx)
def eq_Hist(img): # Histogram normalization
img[:, :, 0] = cv2.equalizeHist(img[:, :, 0])
img[:, :, 1] = cv2.equalizeHist(img[:, :, 1])
img[:, :, 2] = cv2.equalizeHist(img[:, :, 2])
return img
# Sobel
def sobel_img(img, thresh_min = 25, thresh_max = 255, sobel_kernel = 11):
sobelx = np.absolute(cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel))
sobely = np.absolute(cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel))
scaled_sobelx = np.uint16(255*sobelx/np.max(sobelx))
scaled_sobely = np.uint16(255*sobely/np.max(sobely))
sobel_sum = scaled_sobelx+0.2*scaled_sobely
scaled_sobel_sum = np.uint8(255*sobel_sum/np.max(sobel_sum))
sum_binary = np.zeros_like(scaled_sobel_sum)
sum_binary[(scaled_sobel_sum >= thresh_min) & (scaled_sobel_sum <= thresh_max)] = 1
return sum_binary
# Solbel magnitude
def sobel_mag_img(img, thresh_min = 25, thresh_max = 255, sobel_kernel = 11):
sobelx = np.absolute(cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel))
sobely = np.absolute(cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel))
gradmag = np.sqrt(sobelx**2 + sobely**2)
scaled_gradmag = np.uint8(255*gradmag/np.max(gradmag))
gradmag_binary = np.zeros_like(scaled_gradmag)
gradmag_binary[(scaled_gradmag >= thresh_min) & (scaled_gradmag <= thresh_max)] = 1
return gradmag_binary
# Sobel direction
def sobel_dir_img(img, thresh_min = 0.0, thresh_max = 1.5, sobel_kernel = 11):
sobelx = np.absolute(cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel))
sobely = np.absolute(cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel))
graddir = np.arctan2(sobely, sobelx)
graddir_binary = np.zeros_like(graddir)
graddir_binary[(graddir >= thresh_min) & (graddir <= thresh_max)] = 1
return graddir_binary
# Binary red channel threshold
def red_thres(img, thresh_min = 25, thresh_max = 255):
red = img[:,:,2]
red_binary = np.zeros_like(red)
red_binary[(red >= thresh_min) & (red <= thresh_max)] = 1
return red_binary
# Binary saturation channel threshold
def s_thres(img, thresh_min = 25, thresh_max = 255):
hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS)
s_channel = hls[:,:,2]
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel > thresh_min) & (s_channel <= thresh_max)] = 1
return s_binary
# Return saturation channel
def s_hls(img):
hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS)
return hls[:,:,2]
IMAGE_H = 223
IMAGE_W = 1280
# Sharpen image
def sharpen_img(img):
gb = cv2.GaussianBlur(img, (5,5), 20.0)
return cv2.addWeighted(img, 2, gb, -1, 0)
# Compute linear image transformation img*s+m
def lin_img(img,s=1.0,m=0.0):
img2=cv2.multiply(img, np.array([s]))
return cv2.add(img2, np.array([m]))
# Change image contrast; s>1 - increase
def contr_img(img, s=1.0):
m=127.0*(1.0-s)
return lin_img(img, s, m)
# Create perspective image transformation matrices
def create_M():
src = np.float32([[0, 673], [1207, 673], [0, 450], [1280, 450]])
dst = np.float32([[569, 223], [711, 223], [0, 0], [1280, 0]])
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
return M, Minv
# Main image transformation routine to get a warped image
def transform(img, M):
undist = undistort(img)
img_size = (1280, 223)
warped = cv2.warpPerspective(undist, M, img_size)
warped = sharpen_img(warped)
warped = contr_img(warped, 1.1)
return warped
# Show original and warped image side by side
def show_warped(img, M):
f, (plot1, plot2) = plt.subplots(1, 2, figsize=(9, 3))
plot1.imshow(cv2.cvtColor(undistort(img), cv2.COLOR_BGR2RGB))
plot1.set_title('Undistorted', fontsize=20)
plot2.imshow(cv2.cvtColor(transform(img, M), cv2.COLOR_BGR2RGB))
plot2.set_title('Warped', fontsize=20)
# Show one image
def show_img(img):
if len(img.shape)==3:
plt.figure()
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
plt.figure()
plt.imshow(img, cmap='gray')
M, Minv = create_M()
#Calculate coefficients of polynom in y+h coordinates, i.e. f(y) -> f(y+h)
def pol_shift(pol, h):
pol_ord = len(pol)-1 # Determinate degree of the polynomial
if pol_ord == 3:
pol0 = pol[0]
pol1 = pol[1] + 3.0*pol[0]*h
pol2 = pol[2] + 3.0*pol[0]*h*h + 2.0*pol[1]*h
pol3 = pol[3] + pol[0]*h*h*h + pol[1]*h*h + pol[2]*h
return(np.array([pol0, pol1, pol2, pol3]))
if pol_ord == 2:
pol0 = pol[0]
pol1 = pol[1] + 2.0*pol[0]*h
pol2 = pol[2] + pol[0]*h*h+pol[1]*h
return(np.array([pol0, pol1, pol2]))
if pol_ord == 1:
pol0 = pol[0]
pol1 = pol[1] + pol[0]*h
return(np.array([pol0, pol1]))
# Calculate derivative for a polynom pol in a point x
def pol_d(pol, x):
pol_ord = len(pol)-1
if pol_ord == 3:
return 3.0*pol[0]*x*x+2.0*pol[1]*x+pol[2]
if pol_ord == 2:
return 2.0*pol[0]*x+pol[1]
if pol_ord == 1:
return pol[0]#*np.ones(len(np.array(x)))
# Calculate the second derivative for a polynom pol in a point x
def pol_dd(pol, x):
pol_ord = len(pol)-1
if pol_ord == 3:
return 6.0*pol[0]*x+2.0*pol[1]
if pol_ord == 2:
return 2.0*pol[0]
if pol_ord == 1:
return 0.0
# Calculate a polinomial value in a point x
def pol_calc(pol, x):
pol_f = np.poly1d(pol)
return(pol_f(x))
xm_in_px = 3.675 / 85 # Lane width (12 ft in m) is ~85 px on image
ym_in_px = 3.048 / 24 # Dashed line length (10 ft in m) is ~24 px on image
def px_to_m(px):
return xm_in_px*px
# Calculate offset from the lane center
def lane_offset(left, right):
offset = 1280/2.0-(pol_calc(left, 1.0)+ pol_calc(right, 1.0))/2.0
return px_to_m(offset)
# Calculate radius of curvature
MAX_RADIUS = 10000
def r_curv(pol, y):
if len(pol) == 2: # If the polinomial is a linear function
return MAX_RADIUS
else:
y_pol = np.linspace(0, 1, num=EQUID_POINTS)
x_pol = pol_calc(pol, y_pol)*xm_in_px
y_pol = y_pol*IMAGE_H*ym_in_px
pol = np.polyfit(y_pol, x_pol, len(pol)-1)
d_y = pol_d(pol, y)
dd_y = pol_dd(pol, y)
r = ((np.sqrt(1+d_y**2))**3)/abs(dd_y)
if r > MAX_RADIUS:
r = MAX_RADIUS
return r
def lane_curv(left, right):
l = r_curv(left, 1.0)
r = r_curv(right, 1.0)
if l < MAX_RADIUS and r < MAX_RADIUS:
return (r_curv(left, 1.0)+r_curv(right, 1.0))/2.0
else:
if l < MAX_RADIUS:
return l
if r < MAX_RADIUS:
return r
return MAX_RADIUS
#Calculate approximated equidistant to a parabola
EQUID_POINTS = 25 # Number of points to use for the equidistant approximation
def equidistant(pol, d, max_l = 1, plot = False):
y_pol = np.linspace(0, max_l, num=EQUID_POINTS)
x_pol = pol_calc(pol, y_pol)
y_pol *= IMAGE_H # Convert y coordinates bach to [0..223] scale
x_m = []
y_m = []
k_m = []
for i in range(len(x_pol)-1):
x_m.append((x_pol[i+1]-x_pol[i])/2.0+x_pol[i]) # Calculate polints position between given points
y_m.append((y_pol[i+1]-y_pol[i])/2.0+y_pol[i])
if x_pol[i+1] == x_pol[i]:
k_m.append(1e8) # A vary big number
else:
k_m.append(-(y_pol[i+1]-y_pol[i])/(x_pol[i+1]-x_pol[i])) # Slope of perpendicular lines
x_m = np.array(x_m)
y_m = np.array(y_m)
k_m = np.array(k_m)
#Calculate equidistant points
y_eq = d*np.sqrt(1.0/(1+k_m**2))
x_eq = np.zeros_like(y_eq)
if d >= 0:
for i in range(len(x_m)):
if k_m[i] < 0:
y_eq[i] = y_m[i]-abs(y_eq[i])
else:
y_eq[i] = y_m[i]+abs(y_eq[i])
x_eq[i] = (x_m[i]-k_m[i]*y_m[i])+k_m[i]*y_eq[i]
else:
for i in range(len(x_m)):
if k_m[i] < 0:
y_eq[i] = y_m[i]+abs(y_eq[i])
else:
y_eq[i] = y_m[i]-abs(y_eq[i])
x_eq[i] = (x_m[i]-k_m[i]*y_m[i])+k_m[i]*y_eq[i]
y_eq /= IMAGE_H # Convert y coordinates back to [0..1] scale
y_pol /= IMAGE_H
y_m /= IMAGE_H
pol_eq = np.polyfit(y_eq, x_eq, len(pol)-1) # Fit equidistant with a polinomial
if plot:
plt.plot(x_pol, y_pol, color='red', linewidth=1, label = 'Original line') #Original line
plt.plot(x_eq, y_eq, color='green', linewidth=1, label = 'Equidistant') #Equidistant
plt.plot(pol_calc(pol_eq, y_pol), y_pol, color='blue',
linewidth=1, label = 'Approximation') #Approximation
plt.legend()
for i in range(len(x_m)):
plt.plot([x_m[i],x_eq[i]], [y_m[i],y_eq[i]], color='black', linewidth=1) #Draw connection lines
plt.savefig('readme_img/equid.jpg')
return pol_eq
DEV_POL = 2 # Max mean squared error of the approximation
MSE_DEV = 1.1 # Minimum mean squared error ratio to consider higher order of the polynomial
def best_pol_ord(x, y):
pol1 = np.polyfit(y,x,1)
pred1 = pol_calc(pol1, y)
mse1 = mean_squared_error(x, pred1)
if mse1 < DEV_POL:
return pol1, mse1
pol2 = np.polyfit(y,x,2)
pred2 = pol_calc(pol2, y)
mse2 = mean_squared_error(x, pred2)
if mse2 < DEV_POL or mse1/mse2 < MSE_DEV:
return pol2, mse2
else:
pol3 = np.polyfit(y,x,3)
pred3 = pol_calc(pol3, y)
mse3 = mean_squared_error(x, pred3)
if mse2/mse3 < MSE_DEV:
return pol2, mse2
else:
return pol3, mse3
# Smooth polinomial functions of different degrees
def smooth_dif_ord(pol_p, x, y, new_ord):
x_p = pol_calc(pol_p, y)
x_new = (x+x_p)/2.0
return np.polyfit(y, x_new, new_ord)
# Calculate threashold for left line
def thres_l_calc(sens):
thres = -0.0045*sens**2+1.7581*sens-115.0
if thres < 25*(382.0-sens)/382.0+5:
thres = 25*(382.0-sens)/382.0+5
return thres
# Calculate threashold for right line
def thres_r_calc(sens):
thres = -0.0411*sens**2+9.1708*sens-430.0
if sens<210:
if thres < sens/6:
thres = sens/6
else:
if thres < 20:
thres = 20
return thres
WINDOW_SIZE = 15 # Half of the sensor span
DEV = 7 # Maximum of the point deviation from the sensor center
SPEED = 2 / IMAGE_H # Pixels shift per frame
POL_ORD = 2 # Default polinomial order
RANGE = 0.0 # Fraction of the image to skip
def find(img, left=True, p_ord=POL_ORD, pol = np.zeros(POL_ORD+1), max_n = 0):
x_pos = []
y_pos = []
max_l = img.shape[0] #number of lines in the img
for i in range(max_l-int(max_l*RANGE)):
y = max_l-i #Line number
y_01 = y / float(max_l) #y in [0..1] scale
if abs(pol[-1]) > 0: #If it not a still image or the first video frame
if y_01 >= max_n + SPEED: # If we can use pol to find center of the virtual sensor from the previous frame
cent = int(pol_calc(pol, y_01-SPEED))
if y == max_l:
if left:
cent = 605
else:
cent = 690
else: # Prolong the pol tangentially
k = pol_d(pol, max_n)
b = pol_calc(pol, max_n)-k*max_n
cent = int(k*y_01+b)
if cent > 1280-WINDOW_SIZE:
cent = 1280-WINDOW_SIZE
if cent < WINDOW_SIZE:
cent = WINDOW_SIZE
else: #If it is a still image
if len(x_pos) > 0: # If there are some points detected
cent = x_pos[-1] # Use the previous point as a senser center
else: #Initial guess on line position
if left:
cent = 605
else:
cent = 690
if left: #Subsample image
sens = 0.5*s_hls(img[max_l-1-i:max_l-i,cent-WINDOW_SIZE:cent+WINDOW_SIZE,:])\
+img[max_l-1-i:max_l-i,cent-WINDOW_SIZE:cent+WINDOW_SIZE,2]
else:
sens = img[max_l-1-i:max_l-i,cent-WINDOW_SIZE:cent+WINDOW_SIZE,2]
if len(sens[0,:]) < WINDOW_SIZE: #If we out of the image
break
x_max = max(sens[0,:]) #Find maximal value on the sensor
sens_mean = np.mean(sens[0,:])
# Get threshold
if left:
loc_thres = thres_l_calc(sens_mean)
loc_dev = DEV
else:
loc_thres = thres_r_calc(sens_mean)
loc_dev = DEV
if len(x_pos) == 0:
loc_dev = WINDOW_SIZE
if (x_max-sens_mean) > loc_thres and (x_max>100 or left):
if left:
x = list(reversed(sens[0,:])).index(x_max)
x = cent+WINDOW_SIZE-x
else:
x = list(sens[0,:]).index(x_max)
x = cent-WINDOW_SIZE+x
if x-1 < 569.0*y_01 or x+1 > 569.0*y_01+711 or np.nonzero(sens[0,:]) < WINDOW_SIZE: #if the sensor touchs black triangle
break # We are done
if abs(pol[-1]) < 1e-4: # If there are no polynomial provided
x_pos.append(x)
y_pos.append(y_01)
else:
if abs(x-cent) < loc_dev:#*14.206*r_curv(pol, max_l)**-0.2869:
x_pos.append(x)
y_pos.append(y_01)
if len(x_pos) > 1:
return x_pos, y_pos
else:
return [0], [0.0]
RANGE = 0.0
def get_lane(img, plot=False):
warp = transform(img, M)
img = undistort(img)
ploty = np.linspace(0, 1, num=warp.shape[0])
x2, y2 = find(warp)
x, y = find(warp, False)
right_fitx = pol_calc(best_pol_ord(x,y)[0], ploty)
left_fitx = pol_calc(best_pol_ord(x2,y2)[0], ploty)
y2 = np.int16(np.array(y2)*223.0) # Convert into [0..223] scale
y = np.int16(np.array(y)*223.0)
if plot:
for i in range(len(x)): # Plot points
cv2.circle(warp, (x[i], y[i]), 1, (255,50,255))
for i in range(len(x2)):
cv2.circle(warp, (x2[i], y2[i]), 1, (255,50,250))
show_img(warp)
plt.axis('off')
plt.plot(left_fitx, ploty*IMAGE_H, color='green', linewidth=1)
plt.plot(right_fitx, ploty*IMAGE_H, color='green', linewidth=1)
cv2.imwrite('img.jpg', warp)
return img, left_fitx, right_fitx, ploty*IMAGE_H
def draw_lane_img_p(img_path):
return cv2.imread(img_path)
def draw_lane(img, video=False):
if video:
img, left_fitx, right_fitx, ploty, left, right = get_lane_video(img)
else:
img, left_fitx, right_fitx, ploty = get_lane(img, False)
warp_zero = np.zeros((IMAGE_H,IMAGE_W)).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (img.shape[1], img.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(img, 1.0, newwarp, 0.6, 0)
if video:
# Add text information on the frame
font = cv2.FONT_HERSHEY_SIMPLEX
text_pos = 'Pos of the car: '+str(np.round(lane_offset(left, right),2))+ ' m'
radius = np.round(lane_curv(left, right),2)
if radius >= MAX_RADIUS:
radius = 'Inf'
else:
radius = str(radius)
text_rad = 'Radius: '+radius+ ' m'
cv2.putText(result,text_pos,(10,25), font, 1,(255,255,255),2)
cv2.putText(result,text_rad,(10,75), font, 1,(255,255,255),2)
return(result)
right_fit_p = np.zeros(POL_ORD+1)
left_fit_p = np.zeros(POL_ORD+1)
r_len = 0
l_len = 0
lane_w_p = 90
MIN = 60 # Minimal line separation (in px)
MAX = 95 # Maximal line separation (in px)
MIN_POINTS = 10 #Minimal points to consider a line
MAX_N = 5 # Maximal frames without line detected to use previous frame
n_count = 0 # Frame counter
r_n = 0 # Number of frames with unsuccessful line detection
l_n = 0
def get_lane_video(img):
global right_fit_p, left_fit_p, r_len, l_len, n_count, r_n, l_n
sw = False
warp = transform(img, M)
img = undistort(img)
if l_n < MAX_N and n_count > 0:
x, y = find(warp, pol = left_fit_p, max_n = l_len)
else:
x, y = find(warp)
if len(x) > MIN_POINTS:
left_fit, mse_l = best_pol_ord(x,y)
if mse_l > DEV_POL*9 and n_count > 0:
left_fit = left_fit_p
l_n += 1
else:
l_n /= 2
else:
left_fit = left_fit_p
l_n += 1
if r_n < MAX_N and n_count > 0:
x2, y2 = find(warp, False, pol = right_fit_p, max_n = r_len)
else:
x2, y2 = find(warp, False)
if len(x2) > MIN_POINTS:
right_fit, mse_r = best_pol_ord(x2, y2)
if mse_r > DEV_POL*9 and n_count > 0:
right_fit = right_fit_p
r_n += 1
else:
r_n /= 2
else:
right_fit = right_fit_p
r_n += 1
if n_count > 0: # if not the first video frame
# Apply filter
if len(left_fit_p) == len(left_fit): # If new and prev polinomial have the same order
left_fit = pol_shift(left_fit_p, -SPEED)*(1.0-len(x)/((1.0-RANGE)*IMAGE_H))+left_fit*(len(x)/((1.0-RANGE)*IMAGE_H))
else:
left_fit = smooth_dif_ord(left_fit_p, x, y, len(left_fit)-1)
l_len = y[-1]
if len(right_fit_p) == len(right_fit):
right_fit = pol_shift(right_fit_p, -SPEED)*(1.0-len(x2)/((1.0-RANGE)*IMAGE_H))+right_fit*(len(x2)/((1.0-RANGE)*IMAGE_H))
else:
right_fit = smooth_dif_ord(right_fit_p, x2, y2, len(right_fit)-1)
r_len = y2[-1]
if len(x) > MIN_POINTS and len(x2) <= MIN_POINTS: # If we have only left line
lane_w = pol_calc(right_fit_p, 1.0)-pol_calc(left_fit_p, 1.0)
right_fit = smooth_dif_ord(right_fit_p, pol_calc(equidistant(left_fit, lane_w, max_l=l_len), y),
y, len(left_fit)-1)
r_len = l_len
r_n /=2
if len(x2) > MIN_POINTS and len(x) <= MIN_POINTS: # If we have only right line
lane_w = pol_calc(right_fit_p, 1.0)-pol_calc(left_fit_p, 1.0)
#print(lane_w)
left_fit = smooth_dif_ord(left_fit_p, pol_calc(equidistant(right_fit, -lane_w, max_l=r_len), y2),
y2, len(right_fit)-1)
l_len = r_len
l_n /=2
if (l_n < MAX_N and r_n < MAX_N):
max_y = max(RANGE, l_len, r_len)
else:
max_y = 1.0#max(RANGE, l_len, r_len)
sw = True
d1 = pol_calc(right_fit, 1.0)-pol_calc(left_fit, 1.0)
dm = pol_calc(right_fit, max_y)-pol_calc(left_fit, max_y)
if (d1 > MAX or d1 < 60 or dm < 0):
left_fit = left_fit_p
right_fit = right_fit_p
l_n += 1
r_n += 1
ploty = np.linspace(max_y, 1, num=IMAGE_H)
left_fitx = pol_calc(left_fit, ploty)
right_fitx = pol_calc(right_fit, ploty)
right_fit_p = np.copy(right_fit)
left_fit_p = np.copy(left_fit)
n_count += 1
return img, left_fitx, right_fitx, ploty*223.0, left_fit, right_fit
def init_params(ran):
global right_fit_p, left_fit_p, n_count, RANGE, MIN_POINTS
right_fit_p = np.zeros(POL_ORD+1)
left_fit_p = np.zeros(POL_ORD+1)
n_count = 0
RANGE = ran
MIN_POINTS = 25-15*ran