-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvManovaCore.m
206 lines (171 loc) · 6.05 KB
/
cvManovaCore.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
function D = cvManovaCore(vi, varargin)
% cross-validated MANOVA
% core implementation of the method proposed by Allefeld and Haynes (2014)
%
% cvManovaCore([], Ys, Xs, Cs, fE, permute = false, lambda = 0);
%
% Ys: cell array of per-session data matrices
% Xs: cell array of per-session design matrices
% Cs: cell array of contrast vectors or matrices
% fE: per-session error degrees of freedom
% permute: whether to compute permutation values
% lambda: regularization parameter (0–1)
%
% D = cvManovaCore(vi, ...);
%
% vi: voxels, indices into columns of Ys{:}
% D: pattern distinctness, contrasts × permutations as a row vector
%
% The function has two call syntaxes. The first form initializes internal
% (persistent) variables based on the parameters, and has to be used once
% for each data set to be analyzed. The second form performs the actual
% analysis on the specified voxels, and can be repeated for each set of
% voxels of interest. This two-step approach provides improved performance
% for searchlight analysis. To release the memory occupied by the internal
% variables, use 'clear cvManovaCore'.
%
% It is assumed that the data and design matrices have been whitened and
% possibly filtered. fE is the residual number of degrees of freedom,
% i.e. the number of scans per session minus the rank of the design matrix
% and minus further loss of dfs due to filtering.
%
% See also cvManovaSearchlight, cvManovaRegion
%
%
% This file is part of v3 of cvmanova, see
% https://github.com/allefeld/cvmanova/releases
%
% Copyright (C) 2016 Carsten Allefeld
persistent m n betas xis XXs nContrasts CCs nPerms sp fE lambda
%% initialization
if isempty(vi)
% extract arguments
Ys = varargin{1};
Xs = varargin{2};
Cs = varargin{3};
fE = varargin{4};
if numel(varargin) >= 5
permute = varargin{5};
else
permute = false;
end
if numel(varargin) >= 6
lambda = varargin{6};
else
lambda = 0;
end
m = numel(Ys);
n = cellfun(@(x) size(x, 1), Ys);
nContrasts = numel(Cs);
% check input
assert(isequal(cellfun(@(x) size(x, 1), Ys), cellfun(@(x) size(x, 1), Xs)), ...
'inconsistent number of scans between data and design!')
assert(all(diff(cellfun(@(x) size(x, 2), Ys)) == 0), ...
'inconsistent number of voxels within data!')
% check contrasts
qMin = min(cellfun(@(x) size(x, 2), Xs));
for ci = 1 : nContrasts
qC = find(all(Cs{ci} == 0, 2) == false, 1, 'last');
Cs{ci} = Cs{ci}(1 : qC, :); % trim trailing all-zero rows
assert(qC <= qMin, ...
'contrast %d exceeds the %d common regressors!', ci, qMin)
for si = 1 : m
assert(inestimability(Cs{ci}, Xs{si}) <= 1e-6, ...
'contrast %d is not estimable in session %d!', ci, si)
end
end
% estimate GLM parameters and errors, and prepare design inner products
betas = cell(m, 1);
xis = cell(m, 1);
XXs = cell(m, 1);
for si = 1 : m
betas{si} = pinv(Xs{si}) * Ys{si};
xis{si} = Ys{si} - Xs{si} * betas{si};
XXs{si} = Xs{si}' * Xs{si};
end
% prepare contrast projectors
CCs = cell(nContrasts, 1);
for ci = 1 : nContrasts
CCs{ci} = pinv(Cs{ci}') * Cs{ci}';
end
% generate sign permutations
sp = signPermutations(m);
nPerms = size(sp, 2) / 2; % the two halves are equivalent
if ~permute
nPerms = 1; % neutral permutation only
end
sp = sp(:, 1 : nPerms);
% answer initialization call by runSearchlight
D = nan(1, nContrasts * nPerms);
return
end
%% computation
% precompute per-session E
Es = cell(m, 1);
for k = 1 : m
x = xis{k}(:, vi); % weirdly, this is faster than
Es{k} = x' * x; % Es{k} = xis{k}(:, vi)' * xis{k}(:, vi);
end
clear x
% precompute inverse of per-fold summed E
iEls = cell(m, 1);
for l = 1 : m
ks = 1 : m;
ks(l) = [];
El = sum(cat(3, Es{ks}), 3);
% shrinkage regularization towards diagonal
El = (1 - lambda) * El + lambda * diag(diag(El));
iEls{l} = eye(size(El)) / El; % faster than inv
end
clear Es
p = numel(vi);
D = zeros(nContrasts, nPerms);
% for each contrast
for ci = 1 : nContrasts
% number of regressors involved in contrast
qCC = size(CCs{ci}, 1);
% precompute per-session betaDelta
betaDelta = cell(m, 1);
for k = 1 : m
betaDelta{k} = CCs{ci} * betas{k}(1 : qCC, vi);
end
% precompute per-session H
Hs = cell(m, m);
for k = 1 : m
for l = 1 : m
if l == k, continue, end
Hs{k, l} = betaDelta{k}' * XXs{l}(1 : qCC, 1 : qCC) * betaDelta{l};
end
end
clear betaDelta
% for each permutation
for pi = 1 : nPerms
% for each cross-validation fold
for l = 1 : m
ks = 1 : m;
ks(l) = [];
% sign-permuted, summed H
Hl = sum(bsxfun(@times, ...
cat(3, Hs{ks, l}), ...
reshape(sp(ks, pi) * sp(l, pi)', 1, 1, m - 1) ...
), 3);
% fold-wise D
Dl = sum(sum(Hl' .* iEls{l})); % faster than trace(Hl * iEls{l})
% bias correction (fold-specific!)
Dl = (sum(fE(ks)) - p - 1) / sum(n(ks)) * Dl;
% sum across cross-validation folds
D(ci, pi) = D(ci, pi) + Dl;
end
end
end
% mean across folds
D = D / m;
% return row vector
D = reshape(D, 1, []);
% This program is free software: you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation, either version 3 of the License, or (at your
% option) any later version. This program is distributed in the hope that
% it will be useful, but without any warranty; without even the implied
% warranty of merchantability or fitness for a particular purpose. See the
% GNU General Public License <http://www.gnu.org/licenses/> for more details.