-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_igam_tinyimagenet2cifar_upresize.py
487 lines (405 loc) · 28.7 KB
/
train_igam_tinyimagenet2cifar_upresize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
"""Trains a model, saving checkpoints and tensorboard summaries along
the way."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import os
import shutil
from timeit import default_timer as timer
import tensorflow as tf
import numpy as np
import sys
from model_new import Model, ModelTinyImagnet, ModelTinyImagenetSourceExtendedLogits, IgamConvDiscriminatorModel
from model_original_cifar_challenge import ModelExtendedLogits
import cifar10_input
import cifar100_input
import pdb
from tqdm import tqdm
import subprocess
import time
from numba import cuda
import config_igam_tinyimagenet2cifar10_upresize
def get_path_dir(data_dir, dataset, **_):
path = os.path.join(data_dir, dataset)
if os.path.islink(path):
path = os.readlink(path)
return path
def train(tf_seed, np_seed, train_steps, only_finetune, finetune_train_steps, out_steps, summary_steps, checkpoint_steps, step_size_schedule,
weight_decay, momentum, train_batch_size, epsilon, replay_m, model_dir, source_model_dir, dataset,
beta, gamma, disc_update_steps, adv_update_steps_per_iter, disc_layers, disc_base_channels, steps_before_adv_opt, adv_encoder_type, enc_output_activation,
sep_opt_version, grad_image_ratio, final_grad_image_ratio, num_grad_image_ratios, normalize_zero_mean, eval_adv_attack, same_optimizer, only_fully_connected, disc_avg_pool_hw,
finetuned_source_model_dir, train_finetune_source_model, finetune_img_random_pert, img_random_pert, model_suffix, source_task, **kwargs):
tf.set_random_seed(tf_seed)
np.random.seed(np_seed)
model_dir = model_dir + 'IGAM-%sto%s_b%dupresize_beta_%.3f_gamma_%.3f_disc_update_steps%d_l%dbc%d' % (source_task, dataset, train_batch_size, beta, gamma, disc_update_steps, disc_layers, disc_base_channels) # TODO Replace with not defaults
if disc_avg_pool_hw:
model_dir = model_dir + 'avgpool'
if img_random_pert:
model_dir = model_dir + '_imgpert'
if steps_before_adv_opt != 0:
model_dir = model_dir + '_advdelay%d' % (steps_before_adv_opt)
if train_steps != 80000:
model_dir = model_dir + '_%dsteps' % (train_steps)
if same_optimizer == False:
model_dir = model_dir + '_adamDopt'
if tf_seed != 451760341:
model_dir = model_dir + '_tf_seed%d' % (tf_seed)
if np_seed != 216105420:
model_dir = model_dir + '_np_seed%d' % (np_seed)
model_dir = model_dir + model_suffix
# Setting up the data and the model
data_path = get_path_dir(dataset=dataset, **kwargs)
if dataset == 'cifar10':
raw_data = cifar10_input.CIFAR10Data(data_path)
else:
raw_data = cifar100_input.CIFAR100Data(data_path)
global_step = tf.train.get_or_create_global_step()
increment_global_step_op = tf.assign(global_step, global_step+1)
reset_global_step_op = tf.assign(global_step, 0)
full_source_model_x_input = tf.placeholder(tf.float32, shape = [None, 32, 32, 3])
upresized_full_source_model_x_input = tf.image.resize_images(full_source_model_x_input, size=[64, 64])
if dataset == 'cifar10':
source_model = ModelTinyImagenetSourceExtendedLogits(mode='train', dataset=source_task, target_task_class_num=10, train_batch_size=train_batch_size, input_tensor=upresized_full_source_model_x_input)
elif dataset == 'cifar100':
source_model = ModelTinyImagenetSourceExtendedLogits(mode='train', dataset=source_task, target_task_class_num=100, train_batch_size=train_batch_size, input_tensor=upresized_full_source_model_x_input)
model = Model(mode='train', dataset=dataset, train_batch_size=train_batch_size, normalize_zero_mean=normalize_zero_mean)
# Setting up the optimizers
boundaries = [int(sss[0]) for sss in step_size_schedule][1:]
values = [sss[1] for sss in step_size_schedule]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), boundaries, values)
c_optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
finetune_optimizer = tf.train.AdamOptimizer(learning_rate = 0.001)
if same_optimizer:
d_optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
else:
print("Using ADAM opt for DISC model")
d_optimizer = tf.train.AdamOptimizer(learning_rate = 0.001)
# Compute input gradient (saliency map)
input_grad = tf.gradients(model.target_softmax, model.x_input, name="gradients_ig")[0]
source_model_input_grad = tf.gradients(source_model.target_softmax, full_source_model_x_input, name="gradients_ig_source_model")[0]
# lp norm diff between input_grad & source_model_input_grad
input_grad_l2_norm_diff = tf.reduce_mean(tf.reduce_sum(tf.pow(tf.subtract(input_grad, source_model_input_grad), 2.0), keepdims=True))
# Setting up the discriminator model
labels_input_grad = tf.zeros( tf.shape(input_grad)[0] , dtype=tf.int64)
labels_source_model_input_grad = tf.ones( tf.shape(input_grad)[0] , dtype=tf.int64)
disc_model = IgamConvDiscriminatorModel(mode='train', dataset=dataset, train_batch_size=train_batch_size, image_size=32, num_conv_layers=disc_layers, base_num_channels=disc_base_channels, normalize_zero_mean=normalize_zero_mean,
x_modelgrad_input_tensor=input_grad, y_modelgrad_input_tensor=labels_input_grad, x_source_modelgrad_input_tensor=source_model_input_grad, y_source_modelgrad_input_tensor=labels_source_model_input_grad, only_fully_connected=only_fully_connected, avg_pool_hw=disc_avg_pool_hw)
t_vars = tf.trainable_variables()
C_vars = [var for var in t_vars if 'classifier' in var.name]
D_vars = [var for var in t_vars if 'discriminator' in var.name]
source_model_vars = [var for var in t_vars if ('discriminator' not in var.name and 'classifier' not in var.name and 'target_task_logit' not in var.name)]
source_model_target_logit_vars = [var for var in t_vars if 'target_task_logit' in var.name]
source_model_saver = tf.train.Saver(var_list=source_model_vars)
finetuned_source_model_vars = source_model_vars + source_model_target_logit_vars
finetuned_source_model_saver = tf.train.Saver(var_list=finetuned_source_model_vars)
# Source model finetune optimization
source_model_finetune_loss = source_model.target_task_mean_xent + weight_decay * source_model.weight_decay_loss
# Classifier: Optimizing computation
# total classifier loss: Add discriminator loss into total classifier loss
total_loss = model.mean_xent + weight_decay * model.weight_decay_loss - beta * disc_model.mean_xent + gamma * input_grad_l2_norm_diff
classification_c_loss = model.mean_xent + weight_decay * model.weight_decay_loss
adv_c_loss = - beta * disc_model.mean_xent
# Discriminator: Optimizating computation
# discriminator loss
total_d_loss = disc_model.mean_xent + weight_decay * disc_model.weight_decay_loss
# Finetune source_model
source_model_new_weights = source_model_target_logit_vars
finetune_min_step = finetune_optimizer.minimize(source_model_finetune_loss, var_list=source_model_new_weights)
# Train classifier
final_grads = c_optimizer.compute_gradients(total_loss, var_list=C_vars)
no_pert_grad = [(tf.zeros_like(v), v) if 'perturbation' in v.name else (g, v) for g, v in final_grads]
c_min_step = c_optimizer.apply_gradients(no_pert_grad)
classification_final_grads = c_optimizer.compute_gradients(classification_c_loss, var_list=C_vars)
classification_no_pert_grad = [(tf.zeros_like(v), v) if 'perturbation' in v.name else (g, v) for g, v in classification_final_grads]
c_classification_min_step = c_optimizer.apply_gradients(classification_no_pert_grad)
# discriminator opt step
d_min_step = d_optimizer.minimize(total_d_loss, var_list=D_vars)
# Loss gradients to the model params
logit_weights = tf.get_default_graph().get_tensor_by_name('classifier/logit/DW:0')
last_conv_weights = tf.get_default_graph().get_tensor_by_name('classifier/unit_3_4/sub2/conv2/DW:0')
first_conv_weights = tf.get_default_graph().get_tensor_by_name('classifier/input/init_conv/DW:0')
model_xent_logit_grad_norm = tf.norm(tf.gradients(model.mean_xent, logit_weights)[0], ord='euclidean')
disc_xent_logit_grad_norm = tf.norm(tf.gradients(disc_model.mean_xent, logit_weights)[0], ord='euclidean')
input_grad_l2_norm_diff_logit_grad_norm = tf.norm(tf.gradients(input_grad_l2_norm_diff, logit_weights)[0], ord='euclidean')
model_xent_last_conv_grad_norm = tf.norm(tf.gradients(model.mean_xent, last_conv_weights)[0], ord='euclidean')
disc_xent_last_conv_grad_norm = tf.norm(tf.gradients(disc_model.mean_xent, last_conv_weights)[0], ord='euclidean')
input_grad_l2_norm_diff_last_conv_grad_norm = tf.norm(tf.gradients(input_grad_l2_norm_diff, last_conv_weights)[0], ord='euclidean')
model_xent_first_conv_grad_norm = tf.norm(tf.gradients(model.mean_xent, first_conv_weights)[0], ord='euclidean')
disc_xent_first_conv_grad_norm = tf.norm(tf.gradients(disc_model.mean_xent, first_conv_weights)[0], ord='euclidean')
input_grad_l2_norm_diff_first_conv_grad_norm = tf.norm(tf.gradients(input_grad_l2_norm_diff, first_conv_weights)[0], ord='euclidean')
# Setting up the Tensorboard and checkpoint outputs
if not os.path.exists(model_dir):
os.makedirs(model_dir)
saver = tf.train.Saver(max_to_keep=1)
tf.summary.scalar('C accuracy', model.accuracy)
tf.summary.scalar('D accuracy', disc_model.accuracy)
tf.summary.scalar('C xent', model.xent / train_batch_size)
tf.summary.scalar('D xent', disc_model.xent / train_batch_size)
tf.summary.scalar('total C loss', total_loss / train_batch_size)
tf.summary.scalar('total D loss', total_d_loss / train_batch_size)
tf.summary.scalar('adv C loss', adv_c_loss / train_batch_size)
tf.summary.scalar('C cls xent loss', model.mean_xent)
tf.summary.scalar('D xent loss', disc_model.mean_xent)
# Loss gradients
tf.summary.scalar('model_xent_logit_grad_norm', model_xent_logit_grad_norm)
tf.summary.scalar('disc_xent_logit_grad_norm', disc_xent_logit_grad_norm)
tf.summary.scalar('input_grad_l2_norm_diff_logit_grad_norm', input_grad_l2_norm_diff_logit_grad_norm)
tf.summary.scalar('model_xent_last_conv_grad_norm', model_xent_last_conv_grad_norm)
tf.summary.scalar('disc_xent_last_conv_grad_norm', disc_xent_last_conv_grad_norm)
tf.summary.scalar('input_grad_l2_norm_diff_last_conv_grad_norm', input_grad_l2_norm_diff_last_conv_grad_norm)
tf.summary.scalar('model_xent_first_conv_grad_norm', model_xent_first_conv_grad_norm)
tf.summary.scalar('disc_xent_first_conv_grad_norm', disc_xent_first_conv_grad_norm)
tf.summary.scalar('input_grad_l2_norm_diff_first_conv_grad_norm', input_grad_l2_norm_diff_first_conv_grad_norm)
merged_summaries = tf.summary.merge_all()
with tf.Session() as sess:
# gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
# with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
print('important params >>> \n model dir: %s \n dataset: %s \n training batch size: %d \n' % (model_dir, dataset, train_batch_size))
# initialize data augmentation\
if dataset == 'cifar10':
data = cifar10_input.AugmentedCIFAR10Data(raw_data, sess, model)
elif dataset == 'cifar100':
data = cifar100_input.AugmentedCIFAR100Data(raw_data, sess, model)
# Initialize the summary writer, global variables, and our time counter.
summary_writer = tf.summary.FileWriter(model_dir + '/train', sess.graph)
eval_summary_writer = tf.summary.FileWriter(model_dir + '/eval')
sess.run(tf.global_variables_initializer())
# Restore source model
source_model_file = tf.train.latest_checkpoint(source_model_dir)
source_model_saver.restore(sess, source_model_file)
# Finetune source model here
if train_finetune_source_model:
for ii in tqdm(range(finetune_train_steps)):
x_batch, y_batch = data.train_data.get_next_batch(train_batch_size, multiple_passes=True)
if finetune_img_random_pert:
x_batch = x_batch + np.random.uniform(-epsilon, epsilon, x_batch.shape)
x_batch = np.clip(x_batch, 0, 255) # ensure valid pixel range
nat_dict = {full_source_model_x_input: x_batch, source_model.y_input: y_batch}
# Output to stdout
if ii % summary_steps == 0:
train_finetune_acc, train_finetune_loss = sess.run([source_model.target_task_accuracy, source_model_finetune_loss], feed_dict=nat_dict)
x_eval_batch, y_eval_batch = data.eval_data.get_next_batch(train_batch_size, multiple_passes=True)
if img_random_pert:
x_eval_batch = x_eval_batch + np.random.uniform(-epsilon, epsilon, x_eval_batch.shape)
x_eval_batch = np.clip(x_eval_batch, 0, 255) # ensure valid pixel range
eval_dict = {full_source_model_x_input: x_eval_batch, source_model.y_input: y_eval_batch}
val_finetune_acc, val_finetune_loss = sess.run([source_model.target_task_accuracy, source_model_finetune_loss], feed_dict=eval_dict)
print('Source Model Finetune Step {}: ({})'.format(ii, datetime.now()))
print(' training nat accuracy {:.4}% -- validation nat accuracy {:.4}%'.format(train_finetune_acc * 100,
val_finetune_acc * 100))
print(' training nat c loss: {}'.format( train_finetune_loss ))
print(' validation nat c loss: {}'.format( val_finetune_loss ))
sys.stdout.flush()
sess.run(finetune_min_step, feed_dict=nat_dict)
sess.run(increment_global_step_op)
finetuned_source_model_saver.save(sess, os.path.join(finetuned_source_model_dir, 'checkpoint'), global_step=global_step)
if only_finetune:
# full test evaluation
if dataset == 'cifar10':
raw_data = cifar10_input.CIFAR10Data(data_path, init_shuffle=False)
else:
raw_data = cifar100_input.CIFAR100Data(data_path, init_shuffle=False)
data_size = raw_data.eval_data.n
if data_size % train_batch_size == 0:
eval_steps = data_size // train_batch_size
else:
eval_steps = data_size // train_batch_size
total_num_correct = 0
for ii in tqdm(range(eval_steps)):
x_eval_batch, y_eval_batch = raw_data.eval_data.get_next_batch(train_batch_size, multiple_passes=False)
eval_dict = {full_source_model_x_input: x_eval_batch, source_model.y_input: y_eval_batch}
val_finetune_acc, num_correct = sess.run([source_model.target_task_accuracy, source_model.target_task_num_correct], feed_dict=eval_dict)
total_num_correct += num_correct
eval_acc = total_num_correct / data_size
print('Evaluated finetuned source_model on full eval cifar')
print("Full clean eval_acc: {}%".format(eval_acc*100))
# generate input gradients for tinyimagenet train and eval set
if dataset == 'cifar10':
raw_data = cifar10_input.CIFAR10Data(data_path, init_shuffle=False)
else:
raw_data = cifar100_input.CIFAR100Data(data_path, init_shuffle=False)
# Train set
all_input_gradients = []
iter_steps = raw_data.train_data.n // train_batch_size
if raw_data.train_data.n % train_batch_size != 0:
iter_steps += 1
for ii in tqdm(range(iter_steps)):
x_batch, y_batch = raw_data.train_data.get_next_batch(train_batch_size, multiple_passes=False)
nat_dict = {full_source_model_x_input: x_batch, source_model.y_input: y_batch}
ig = sess.run(source_model_input_grad, feed_dict=nat_dict)
all_input_gradients.append(ig)
path = os.path.join(finetuned_source_model_dir, "{}_train_ig.npy".format(dataset))
all_input_gradients = np.concatenate(all_input_gradients, axis=0)
np.save(path, all_input_gradients[:raw_data.train_data.n])
# Eval set
if dataset == 'cifar10':
raw_data = cifar10_input.CIFAR10Data(data_path, init_shuffle=False)
else:
raw_data = cifar100_input.CIFAR100Data(data_path, init_shuffle=False)
all_input_gradients = []
iter_steps = raw_data.eval_data.n // train_batch_size
for ii in tqdm(range(iter_steps)):
x_batch, y_batch = raw_data.eval_data.get_next_batch(train_batch_size, multiple_passes=False)
nat_dict = {full_source_model_x_input: x_batch, source_model.y_input: y_batch}
ig = sess.run(source_model_input_grad, feed_dict=nat_dict)
all_input_gradients.append(ig)
path = os.path.join(finetuned_source_model_dir, "{}_eval_ig.npy".format(dataset))
all_input_gradients = np.concatenate(all_input_gradients, axis=0)
np.save(path, all_input_gradients[:raw_data.eval_data.n])
return
else:
finetuned_source_model_file = tf.train.latest_checkpoint(finetuned_source_model_dir)
finetuned_source_model_saver.restore(sess, finetuned_source_model_file)
# reset global step to 0 before running main training loop
sess.run(reset_global_step_op)
# Main training loop
for ii in tqdm(range(train_steps)):
x_batch, y_batch = data.train_data.get_next_batch(train_batch_size, multiple_passes=True)
if img_random_pert:
x_batch = x_batch + np.random.uniform(-epsilon, epsilon, x_batch.shape)
x_batch = np.clip(x_batch, 0, 255) # ensure valid pixel range
# Sample randinit input grads
nat_dict = {model.x_input: x_batch, model.y_input: y_batch, full_source_model_x_input: x_batch, source_model.y_input: y_batch}
# Output to stdout
if ii % summary_steps == 0:
train_acc, train_disc_acc, train_c_loss, train_d_loss, train_adv_c_loss, summary = sess.run([model.accuracy, disc_model.accuracy, total_loss, total_d_loss, adv_c_loss, merged_summaries], feed_dict=nat_dict)
summary_writer.add_summary(summary, global_step.eval(sess))
x_eval_batch, y_eval_batch = data.eval_data.get_next_batch(train_batch_size, multiple_passes=True)
if img_random_pert:
x_eval_batch = x_eval_batch + np.random.uniform(-epsilon, epsilon, x_eval_batch.shape)
x_eval_batch = np.clip(x_eval_batch, 0, 255) # ensure valid pixel range
eval_dict = {model.x_input: x_eval_batch, model.y_input: y_eval_batch, full_source_model_x_input: x_eval_batch, source_model.y_input: y_eval_batch}
val_acc, val_disc_acc, val_c_loss, val_d_loss, val_adv_c_loss, summary = sess.run([model.accuracy, disc_model.accuracy, total_loss, total_d_loss, adv_c_loss, merged_summaries], feed_dict=eval_dict)
eval_summary_writer.add_summary(summary, global_step.eval(sess))
print('Step {}: ({})'.format(ii, datetime.now()))
print(' training nat accuracy {:.4}% -- validation nat accuracy {:.4}%'.format(train_acc * 100,
val_acc * 100))
print(' training nat disc accuracy {:.4}% -- validation nat disc accuracy {:.4}%'.format(train_disc_acc * 100,
val_disc_acc * 100))
print(' training nat c loss: {}, d loss: {}, adv c loss: {}'.format( train_c_loss, train_d_loss, train_adv_c_loss))
print(' validation nat c loss: {}, d loss: {}, adv c loss: {}'.format( val_c_loss, val_d_loss, val_adv_c_loss))
sys.stdout.flush()
# Tensorboard summaries
elif ii % out_steps == 0:
nat_acc, nat_disc_acc, nat_c_loss, nat_d_loss, nat_adv_c_loss = sess.run([model.accuracy, disc_model.accuracy, total_loss, total_d_loss, adv_c_loss], feed_dict=nat_dict)
print('Step {}: ({})'.format(ii, datetime.now()))
print(' training nat accuracy {:.4}%'.format(nat_acc * 100))
print(' training nat disc accuracy {:.4}%'.format(nat_disc_acc * 100))
print(' training nat c loss: {}, d loss: {}, adv c loss: {}'.format( nat_c_loss, nat_d_loss, nat_adv_c_loss))
# Write a checkpoint
if (ii+1) % checkpoint_steps == 0:
saver.save(sess, os.path.join(model_dir, 'checkpoint'), global_step=global_step)
if sep_opt_version == 1:
if ii >= steps_before_adv_opt:
# Actual training step for Classifier
sess.run(c_min_step, feed_dict=nat_dict)
sess.run(increment_global_step_op)
if ii % disc_update_steps == 0:
# Actual training step for Discriminator
sess.run(d_min_step, feed_dict=nat_dict)
else:
# only train on classification loss
sess.run(c_classification_min_step, feed_dict=nat_dict)
sess.run(increment_global_step_op)
# # Use this to optimize classifier and discriminator at the same step
elif sep_opt_version == 2:
# Actual training step for Classifier
if ii >= steps_before_adv_opt:
if adv_update_steps_per_iter > 1:
sess.run(c_classification_min_step, feed_dict=nat_dict)
sess.run(increment_global_step_op)
for i in range(adv_update_steps_per_iter):
x_batch, y_batch = data.train_data.get_next_batch(train_batch_size, multiple_passes=True)
if img_random_pert:
x_batch = x_batch + np.random.uniform(-epsilon, epsilon, x_batch.shape)
x_batch = np.clip(x_batch, 0, 255) # ensure valid pixel range
nat_dict = {model.x_input: x_batch, model.y_input: y_batch, full_source_model_x_input: x_batch, source_model.y_input: y_batch}
sess.run(c_adv_min_step, feed_dict=nat_dict)
else:
sess.run(c_min_step, feed_dict=nat_dict)
sess.run(increment_global_step_op)
if ii % disc_update_steps == 0:
# Actual training step for Discriminator
sess.run(d_min_step, feed_dict=nat_dict)
else:
# only train on classification loss
sess.run(c_classification_min_step, feed_dict=nat_dict)
sess.run(increment_global_step_op)
elif sep_opt_version == 0:
if ii >= steps_before_adv_opt:
if ii % disc_update_steps == 0:
sess.run([c_min_step, d_min_step], feed_dict=nat_dict)
sess.run(increment_global_step_op)
else:
sess.run(c_min_step, feed_dict=nat_dict)
sess.run(increment_global_step_op)
else:
sess.run(c_classification_min_step, feed_dict=nat_dict)
sess.run(increment_global_step_op)
# full test evaluation
if dataset == 'cifar10':
raw_data = cifar10_input.CIFAR10Data(data_path, init_shuffle=False)
else:
raw_data = cifar100_input.CIFAR100Data(data_path, init_shuffle=False)
data_size = raw_data.eval_data.n
if data_size % train_batch_size == 0:
eval_steps = data_size // train_batch_size
else:
eval_steps = data_size // train_batch_size
total_num_correct = 0
for ii in tqdm(range(eval_steps)):
x_eval_batch, y_eval_batch = raw_data.eval_data.get_next_batch(train_batch_size, multiple_passes=False)
eval_dict = {model.x_input: x_eval_batch, model.y_input: y_eval_batch}
num_correct = sess.run(model.num_correct, feed_dict=eval_dict)
total_num_correct += num_correct
eval_acc = total_num_correct / data_size
clean_eval_file_path = os.path.join(model_dir, 'full_clean_eval_acc.txt')
with open(clean_eval_file_path, "a+") as f:
f.write("Full clean eval_acc: {}%".format(eval_acc*100))
print("Full clean eval_acc: {}%".format(eval_acc*100))
# generate input gradients for tinyimagenet train and eval set
# Train set
all_input_gradients = []
iter_steps = raw_data.train_data.n // train_batch_size
if raw_data.train_data.n % train_batch_size != 0:
iter_steps += 1
for ii in tqdm(range(iter_steps)):
x_batch, y_batch = raw_data.train_data.get_next_batch(train_batch_size, multiple_passes=False)
nat_dict = {model.x_input: x_batch, model.y_input: y_batch}
ig = sess.run(input_grad, feed_dict=nat_dict)
all_input_gradients.append(ig)
path = os.path.join(model_dir, "{}_train_ig.npy".format(dataset))
all_input_gradients = np.concatenate(all_input_gradients, axis=0)
np.save(path, all_input_gradients[:raw_data.train_data.n])
# Eval set
all_input_gradients = []
if dataset == 'cifar10':
raw_data = cifar10_input.CIFAR10Data(data_path, init_shuffle=False)
else:
raw_data = cifar100_input.CIFAR100Data(data_path, init_shuffle=False)
iter_steps = raw_data.eval_data.n // train_batch_size
for ii in tqdm(range(iter_steps)):
x_batch, y_batch = raw_data.eval_data.get_next_batch(train_batch_size, multiple_passes=False)
nat_dict = {model.x_input: x_batch, model.y_input: y_batch}
ig = sess.run(input_grad, feed_dict=nat_dict)
all_input_gradients.append(ig)
path = os.path.join(model_dir, "{}_eval_ig.npy".format(dataset))
all_input_gradients = np.concatenate(all_input_gradients, axis=0)
np.save(path, all_input_gradients[:raw_data.eval_data.n])
devices = sess.list_devices()
for d in devices:
print("sess' device names:")
print(d.name)
return model_dir
if __name__ == '__main__':
args = config_igam_tinyimagenet2cifar10_upresize.get_args()
args_dict = vars(args)
model_dir = train(**args_dict)
if args_dict['eval_adv_attack']:
cuda.select_device(0)
cuda.close()
print("{}: Evaluating on fgsm and pgd attacks".format(datetime.now()))
print("model_dir: ", model_dir)
subprocess.run("python pgd_attack.py --attack_name fgsm --save_eval_log --num_steps 1 --no-random_start --step_size 8 --model_dir {} ; python run_attack.py --attack_name fgsm --save_eval_log --model_dir {} ; python pgd_attack.py --save_eval_log --model_dir {} ; python run_attack.py --save_eval_log --model_dir {} ; python pgd_attack.py --attack_name pgds5 --save_eval_log --num_steps 5 --model_dir {} ; python run_attack.py --attack_name pgds5 --save_eval_log --num_steps 5 --model_dir {} ; python pgd_attack.py --attack_name pgds20 --save_eval_log --num_steps 20 --model_dir {} ; python run_attack.py --attack_name pgds20 --save_eval_log --num_steps 20 --model_dir {}".format(model_dir, model_dir, model_dir, model_dir, model_dir, model_dir, model_dir, model_dir), shell=True)
print("{}: Ended evaluation on fgsm and pgd attacks".format(datetime.now()))