-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_cifar100c.py
194 lines (153 loc) · 8.67 KB
/
eval_cifar100c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import os
import utils
# import apex.amp as amp
import numpy as np
import torch
import torch.utils.data as td
import time
import data
import models
from utils import rob_acc
import glob
import json
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--dataset', default='cifar100', choices=['cifar100'], type=str)
parser.add_argument('--model', default='resnet18', choices=['resnet18', 'cnn', 'fc', 'linear', 'lenet'], type=str)
parser.add_argument('--set', default='test', type=str, choices=['train', 'test'])
# parser.add_argument('--model_path', default='2020-03-19 23:51:05 dataset=cifar100 model=resnet18 eps=8.0 attack=pgd attack_init=zero fgsm_alpha=1.25 epochs=30 pgd_train_n_iters=7 grad_align_cos_lambda=0.0 seed=1 epoch=30',
# type=str, help='model name')
parser.add_argument('--model_dir', default='models/c10rn18_eps8_atkpgd7_ep60_nogradalign_gradsparse02_4x4_normch_NLgrad',
type=str, help='model dir name')
# parser.add_argument('--model_filename', default='c10rn18_eps8_atkpgd7_ep60_nogradalign_gradsparse02_4x4_normch_NLgrad_epoch60.pth',
# type=str, help='model filename')
parser.add_argument('--model_filename', default=None,
type=str, help='model filename')
parser.add_argument('--eval_results_filename', default='corruption_eval_results.txt',
type=str, help='evaluation result output filename')
parser.add_argument('--eval_json_results_filename', default='corruption_eval_results.json',
type=str, help='evaluation result output filename')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--eps', default=8, type=float)
# parser.add_argument('--n_eval', default=256, type=int, help='#examples to evaluate on')
parser.add_argument('--n_eval', default=-1, type=int, help='#examples to evaluate on')
parser.add_argument('--n_layers', default=1, type=int, help='#layers on each conv layer (for model in [fc, cnn])')
parser.add_argument('--n_filters_cnn', default=16, type=int, help='#filters on each conv layer (for model==cnn)')
parser.add_argument('--n_hidden_fc', default=1024, type=int, help='#filters on each conv layer (for model==fc)')
# parser.add_argument('--batch_size_eval', default=1024, type=int, help='batch size for evaluation')
parser.add_argument('--batch_size_eval', default=256, type=int, help='batch size for evaluation')
parser.add_argument('--half_prec', action='store_true', help='eval in half precision')
parser.add_argument('--early_stopped_model', action='store_true', help='eval the best model according to pgd_acc evaluated every k iters (typically, k=200)')
# CIFAR-100-C
parser.add_argument('--severity', default='all', choices=['1', '2', '3', '4', '5', 'all'], type=str)
parser.add_argument('--corruption', default='all', type=str, help='type of image corruption')
return parser.parse_args()
data_paths = {
'brightness': "./data/CIFAR-100-C/brightness.npy",
'contrast': "./data/CIFAR-100-C/contrast.npy",
'defocus_blur': "./data/CIFAR-100-C/defocus_blur.npy",
'elastic_transform': "./data/CIFAR-100-C/elastic_transform.npy",
'fog': "./data/CIFAR-100-C/fog.npy",
'frost': "./data/CIFAR-100-C/frost.npy",
'gaussian_blur': "./data/CIFAR-100-C/gaussian_blur.npy",
'gaussian_noise': "./data/CIFAR-100-C/gaussian_noise.npy",
'glass_blur': "./data/CIFAR-100-C/glass_blur.npy",
'impulse_noise': "./data/CIFAR-100-C/impulse_noise.npy",
'jpeg_compression': "./data/CIFAR-100-C/jpeg_compression.npy",
'motion_blur': "./data/CIFAR-100-C/motion_blur.npy",
'pixelate': "./data/CIFAR-100-C/pixelate.npy",
'saturate': "./data/CIFAR-100-C/saturate.npy",
'shot_noise': "./data/CIFAR-100-C/shot_noise.npy",
'snow': "./data/CIFAR-100-C/snow.npy",
'spatter': "./data/CIFAR-100-C/spatter.npy",
'speckle_noise': "./data/CIFAR-100-C/speckle_noise.npy",
'zoom_blur': "./data/CIFAR-100-C/zoom_blur.npy"
}
label_path = "./data/CIFAR-100-C/labels.npy"
args = get_args()
eps = args.eps
half_prec = args.half_prec # for more reliable evaluations: keep in the single precision
print_stats = False
n_eval = args.n_eval
n_cls = 2 if 'binary' in args.dataset else 100
if args.severity == 'all':
severities = [i for i in range(1,6)]
else:
severities = [int(args.severity)]
if args.corruption == 'all':
corruptions = [key for key in data_paths]
else:
corruptions = [args.corruption]
# os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
np.set_printoptions(precision=4, suppress=True)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
model = models.get_model(args.model, n_cls, half_prec, data.shapes_dict[args.dataset], args.n_filters_cnn)
# model = models.get_model(args.model, n_cls, half_prec, data.shapes_dict[args.dataset], args.n_filters_cnn, args.n_hidden_fc)
model = model.cuda()
if args.model_filename is None:
for name in glob.glob(os.path.join(args.model_dir, "*.pth")):
print(name)
model_path = name
else:
model_path = os.path.join(args.model_dir, args.model_filename)
print('Evaluating model @ {}'.format(model_path))
eval_results_output = 'Evaluating model @ {}'.format(model_path)
# model_dict = torch.load('models/{}.pth'.format(args.model_path))
model_dict = torch.load(model_path)
# from training: torch.save({'last': model.state_dict(), 'best': best_state_dict}, os.path.join('models', model_name, '{}_epoch{}.pth'.format(model_name, epoch)))
if args.early_stopped_model:
model.load_state_dict(model_dict['best'])
else:
model.load_state_dict(model_dict['last'] if 'last' in model_dict else model_dict)
opt = torch.optim.SGD(model.parameters(), lr=0) # needed for backprop only
# if half_prec:
# model, opt = amp.initialize(model, opt, opt_level="O1")
utils.model_eval(model, half_prec)
# eps, pgd_alpha, pgd_alpha_rr = eps / 255, pgd_alpha / 255, pgd_alpha_rr / 255
eval_y = np.load(label_path)
eval_y = np.int64(eval_y)
results_dict = {}
# Clean evaluation
clean_eval_batches = data.get_loaders(args.dataset, args.n_eval, args.batch_size_eval, train_set=True if args.set == 'train' else False,
shuffle=False, data_augm=False)
acc_clean, loss_clean, _ = rob_acc(clean_eval_batches, model, 0, 0, opt, half_prec, 0, 1)
print('clean: acc={:.2%}, loss={:.3f}'.format(acc_clean, loss_clean))
eval_results_output += '\n clean: acc={:.2%}, loss={:.3f}'.format(acc_clean, loss_clean)
results_dict['clean'] = {"acc": acc_clean, "loss": loss_clean}
for corruption in corruptions:
print("Evaluating {} corruption".format(corruption))
eval_x = np.load(data_paths[corruption])
eval_x = np.float32(eval_x)
# eval_x = eval_x.permute(0, 3, 1, 2)
# eval_x = eval_x.reshape(-1, 3, 32, 32)
eval_x = eval_x/255
results_dict[corruption] = {}
current_corruption_errors = []
for severity in severities:
print("Evaluating #{} severity".format(severity))
# CIFAR-100-C data loading
eval_x_match_severity = eval_x[(severity-1)* 10000:severity* 10000]
eval_y_match_severity = eval_y[(severity-1)* 10000:severity* 10000]
eval_dataset = td.TensorDataset(torch.tensor(eval_x_match_severity).permute(0, 3, 1, 2), torch.tensor(eval_y_match_severity, dtype=torch.long))
eval_batches = td.DataLoader(eval_dataset, batch_size=args.batch_size_eval)
time_start = time.time()
acc_corrupt, loss_corrupt, _ = rob_acc(eval_batches, model, 0, 0, opt, half_prec, 0, 1)
print('{} corruption, # {} severity: acc={:.2%}, loss={:.3f}'.format(corruption, severity, acc_corrupt, loss_corrupt))
eval_results_output += '\n {} corruption, # {} severity: acc={:.2%}, loss={:.3f}'.format(corruption, severity, acc_corrupt, loss_corrupt)
results_dict[corruption][severity] = {"acc": acc_corrupt, "loss": loss_corrupt}
current_corruption_errors.append(acc_corrupt)
time_elapsed = time.time() - time_start
corruption_mean_error = np.mean(current_corruption_errors)
print('{} corruption, avg over all severities: acc={:.2%}'.format(corruption, corruption_mean_error))
eval_results_output += '\n {} corruption, avg over all severities: acc={:.2%}'.format(corruption, corruption_mean_error)
results_dict[corruption]['mean'] = {"acc": corruption_mean_error}
results_path = os.path.join(args.model_dir, args.eval_results_filename)
with open(results_path, 'w') as f:
f.write(eval_results_output)
output_dict_file = os.path.join(args.model_dir, args.eval_json_results_filename)
with open(output_dict_file, 'w') as f:
json.dump(results_dict, f)