-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEB1histcomp.m
99 lines (50 loc) · 3.83 KB
/
EB1histcomp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function [compMatrices,compMatricesC1,compMatricesC2,compMatricesC3] = EB1histcomp
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl01\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(1).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl02\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(2).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl03\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(3).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl04\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(4).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl05\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(5).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl08\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(6).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl09\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(7).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl11\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(8).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\786Opar_NaCl12\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(9).avgV = avgV;
load('X:\AlexData11\786O\786O_parental\060907_786Opar_12\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC2(10).avgV = avgV;
dataC2(11).avgV = cat(2,dataC2.avgV); % ALL TOGETHER
compMatricesC2(1) = discriminationMatrix(dataC2); % under diag - mean comparison; above diag - Distr comp (without mean)
compMatricesC2(2) = discriminationMatrix(dataC2,struct('avgV',[2,12])); % 2 - comp the median (under), 12 - KS (without median)(above)
compMatricesC2(3) = discriminationMatrix(dataC2,struct('avgV',[10,10])); % 10 - KS (no correction) (both above & under)
compMatricesC2.avgV
%--------------------------------------------------------------------------
load('X:\AlexData11\786O\786OVHL\786OVHL30_NaCl09\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC3(1).avgV = avgV;
load('X:\AlexData11\786O\786OVHL\786OVHL30_NaCl10\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC3(2).avgV = avgV;
load('X:\AlexData11\786O\786OVHL\786OVHL30_NaCl11\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC3(3).avgV = avgV;
load('X:\AlexData11\786O\786OVHL\786OVHL30_NaCl12\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC3(4).avgV = avgV;
load('X:\AlexData11\786O\786OVHL\786OVHL30_NaCl13\point_files\config001_5p00_track_bidir_uni_dir_analysisRecord.mat');
dataC3(5).avgV = avgV;
dataC3(6).avgV = cat(2,dataC3.avgV);
compMatricesC3(1) = discriminationMatrix(dataC3); % under diag - mean comparison; above diag - Distr comp (without mean)
compMatricesC3(2) = discriminationMatrix(dataC3,struct('avgV',[2,12])); % 2 - comp the median (under), 12 - KS (without median)(above)
compMatricesC3(3) = discriminationMatrix(dataC3,struct('avgV',[10,10])); % 10 - KS (no correction) (both above & under)
compMatricesC3.avgV
%--------------------------------------------------------------------------
% data(1).avgV = dataC1(6).avgV;
data(1).avgV = dataC2(6).avgV;
data(2).avgV = dataC3(6).avgV;
% compMatrices(1) = discriminationMatrix(data); % under diag - mean comparison; above diag - Distr comp (without mean)
compMatrices(1) = discriminationMatrix(data,struct('avgV',[2,12])); % 2 - comp the median (under), 12 - KS (without median)(above)
compMatrices(2) = discriminationMatrix(data,struct('avgV',[10,10])); % 10 - KS (no correction) (both above & under)
compMatrices.avgV