diff --git a/commands.sh b/commands.sh index 1d11ad1..46465e1 100644 --- a/commands.sh +++ b/commands.sh @@ -23,6 +23,7 @@ conda activate autog-cpu # -------------- install other dependencies int autog-cpu environment pip install codetiming humanfriendly sentence_transformers==3.3.0 nltk==3.9.1 torchdata==0.7 torchtext==0.16.0 pip install transformers==4.44.2 +pip install llama-index llama-index-llms-bedrock # for Graphviz sudo apt-get install graphviz # for nltk data @@ -70,10 +71,13 @@ bash scripts/download.sh # - input the overall prompt+new contents into an LLM (e.g., Claud Sonet 3.5+) API or Web console to get answer. # - copy the answer (in RAW format!!!!!) and save to a file, named type.txt under the mag/ folder. -# 2. run autog, and explanation of these arguments +# 2. Option 1: run autog (manually call LLM), and explanation of these arguments # mag -> name of the --dataset argument # /data/datasets -> path of the folder that store data, .e.g, /data/datasets # autog-s -> the method to run the model # type.txt -> the name of file to save analysis results from LLM. Since we manually create this, this file is not used. # venue -> Name of the task to fit the solution python -m main.autog mag ./data/datasets/mag autog-s type.txt venue + +# 2. Option 2: run autog2 (automatically interact with LLM for single or multiple rounds) +python -m main.autog2 mag anthropic.claude-3-sonnet-20240229-v1:0 ./data/datasets autog-s venue diff --git a/main/autog2.py b/main/autog2.py index f989d14..cdf31d5 100644 --- a/main/autog2.py +++ b/main/autog2.py @@ -3,7 +3,7 @@ import typer import numpy as np from rich import traceback -from models.autog.agent import AutoG_Agent +from models.autog.agent_old import AutoG_Agent from prompts.task import get_task_description from utils.misc import seed_everything from utils.data.rdb import load_dbb_dataset_from_cfg_path_no_name diff --git a/scripts/download.sh b/scripts/download.sh index 796358b..c688bc8 100644 --- a/scripts/download.sh +++ b/scripts/download.sh @@ -1,6 +1,6 @@ ## IEEE-CIS RR Movielens Outbrain MAG AVS diginetica ESCI Stackexchange -dataset_path="/data/datasets" +dataset_path="./data/datasets" mkdir -p $dataset_path