-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathColor.lp
273 lines (248 loc) · 8.21 KB
/
Color.lp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Inspiré de Software_Foundations/lf/Basics.html
require open AL_library.Notation
require open AL_library.Bool
require open AL_library.Constructive_logic
require open AL_library.Discriminate
///////////////////////////////////////
// Definitions of type
///////////////////////////////////////
//Inductive rgb : Type :=
// | red
// | green
// | blue.
constant symbol rgb : Set
constant symbol RGB : TYPE
rule τ rgb ↪ RGB
constant symbol red : RGB
constant symbol green : RGB
constant symbol blue : RGB
// Induction principle on RGB.
symbol rgb_ind :
Πp, π (p red) → π (p green) → π (p blue) → Πc, π (p c)
//Inductive color : Type :=
// | black
// | white
// | primary (p : rgb).
constant symbol color : Set
constant symbol C : TYPE
rule τ color ↪ C
constant symbol black : C
constant symbol white : C
constant symbol primary : RGB → C
// Induction principle on C.
symbol color_ind :
Πp, π (p black) → π (p white) → (Πn, π (p (primary n))) → Πc, π (p c)
//////////////////////////////////////////
// Some functions
//////////////////////////////////////////
//Definition monochrome (c : color) : bool :=
// match c with
// | black → true
// | white → true
// | primary q → false
// end.
symbol monochrome : C → 𝔹
rule monochrome black ↪ true
with monochrome white ↪ true
with monochrome (primary _) ↪ false
//Definition isred (c : color) : bool :=
// match c with
// | black → false
// | white → false
// | primary red → true
// | primary _ → false
// end.
symbol isred : C → 𝔹
rule isred black ↪ false
with isred white ↪ false
with isred (primary red) ↪ true
with isred (primary green) ↪ false
with isred (primary blue) ↪ false
// Definition isgreen (c : color) : bool :=
// match c with
// | black => false
// | white => false
// | primary green => true
// | primary _ => false
// end.
symbol isgreen : C → 𝔹
rule isgreen black ↪ false
with isgreen white ↪ false
with isgreen (primary green) ↪ true
with isgreen (primary red) ↪ false
with isgreen (primary blue) ↪ false
// Definition isblue (c : color) : bool :=
// match c with
// | black => false
// | white => false
// | primary blue => true
// | primary _ => false
// end.
symbol isblue : C → 𝔹
rule isblue black ↪ false
with isblue white ↪ false
with isblue (primary blue) ↪ true
with isblue (primary red) ↪ false
with isblue (primary green) ↪ false
////////////////////////////////////
// A proof of : forall c, isred c = true \/ isgreen c = true \/ isblue c = true <-> monochrome c = false
////////////////////////////////////
// Theorem my_color_test :
// forall c, isred c = true \/ isgreen c =true \/ isblue c = true
// <-> monochrome c = false.
// Proof.
// split;intro myHyp.
// * induction c.
// + destruct myHyp as [Hred|Hgreen_blue].
// { discriminate Hred. }
// { destruct Hgreen_blue as [Hgreen|Hblue].
// - discriminate Hgreen.
// - discriminate Hblue.
// }
// + destruct myHyp as [Hred|Hgreen_blue].
// { discriminate Hred. }
// { destruct Hgreen_blue as [Hgreen|Hblue].
// - discriminate Hgreen.
// - discriminate Hblue.
// }
// + induction p;reflexivity.
// * induction c.
// + discriminate myHyp.
// + discriminate myHyp.
// + induction p.
// - left. reflexivity.
// - right. left. reflexivity.
// - right. right. reflexivity.
// Qed.
///////////////////////////
// Right to left (RGB)
///////////////////////////
theorem right_to_left_rgb : Πn,
π (monochrome (primary n) = false ⊃ isred (primary n) = true ∨ isgreen (primary n) = true ∨ isblue (primary n) = true)
proof
refine rgb_ind (λz, monochrome (primary z) = false ⊃
isred (primary z) = true ∨ isgreen (primary z) = true ∨ isblue (primary z) = true) _ _ _
// Goal red
simpl
assume Hyp apply disj_intro_left //(true = true) ((false = true) ∨ (false = true))
reflexivity
// Goal green
simpl
assume Hyp apply disj_intro_right //(false = true) ((true = true) ∨ (false = true))
apply disj_intro_left // (true = true) (false = true)
reflexivity
// Goal blue
simpl
assume Hyp apply disj_intro_right //(false = true) ((false = true) ∨ (true = true))
apply disj_intro_right //(false = true) (true = true)
reflexivity
qed
///////////////////////////
// Right to left (color)
///////////////////////////
theorem right_to_left_color :
Πc, π ((monochrome c) = false ⊃ (isred c)=true ∨ (isgreen c)=true ∨ (isblue c)=true)
proof
assume c
apply color_ind (λz, (monochrome z) = false ⊃ (isred z)=true ∨ (isgreen z)=true ∨ (isblue z)=true) _ _ _ c
// Goal black
simpl assume Htruefalse
apply false_elim apply discr_f_t symmetry apply Htruefalse
// Goal white
simpl assume Htruefalse
apply false_elim apply discr_f_t symmetry apply Htruefalse
// Goal primary
assume rgb
apply right_to_left_rgb rgb
qed
///////////////////////////
// Left to right (RGB)
///////////////////////////
theorem left_to_right_rgb : Π(n:RGB),
π ((isred (primary n))=true ∨ (isgreen (primary n))=true ∨ (isblue (primary n))=true
⊃ (monochrome (primary n))=false)
proof
assume n
apply rgb_ind (λz,(isred (primary z))=true ∨ (isgreen (primary z))=true ∨ (isblue (primary z))=true
⊃ (monochrome (primary z))=false) _ _ _ n
simpl assume Hyp reflexivity
simpl assume Hyp reflexivity
simpl assume Hyp reflexivity
qed
///////////////////////////
// Left to right (color)
///////////////////////////
theorem left_to_right_color :
Πc, π ((isred c)=true ∨ (isgreen c)=true ∨ (isblue c)=true ⊃ (monochrome c) = false)
proof
assume c
apply color_ind (λz, (isred z)=true ∨ (isgreen z)=true ∨ (isblue z)=true ⊃ (monochrome z)=false) _ _ _ c
// Goal black
simpl assume Hor
apply disj_elim (false = true) ((false = true) ∨ (false = true))
// 0. π ((false = true) ∨ ((false = true) ∨ (false = true)))
apply Hor
// 1. π (false = true) → π (true = false)
assume Hfalsetrue symmetry apply Hfalsetrue
// 2. π ((false = true) ∨ (false = true)) → π (true = false)
assume Hor2 apply disj_elim (false = true) (false = true) apply Hor2
assume Hfalsetrue symmetry apply Hfalsetrue
assume Hfalsetrue symmetry apply Hfalsetrue
// Goal white
simpl assume Hor
apply disj_elim (false = true) ((false = true) ∨ (false = true))
// 0. π ((false = true) ∨ ((false = true) ∨ (false = true)))
apply Hor
// 1. π (false = true) → π (true = false)
assume Hfalsetrue symmetry apply Hfalsetrue
// 2. π ((false = true) ∨ (false = true)) → π (true = false)
assume Hor2 apply disj_elim (false = true) (false = true) apply Hor2
assume Hfalsetrue symmetry apply Hfalsetrue
assume Hfalsetrue symmetry apply Hfalsetrue
// Goal primary
assume rgb
apply left_to_right_rgb rgb
qed
///////////////////////////////////
// Version ⇔
///////////////////////////////////
theorem my_color_test :
Πc, π ((isred c = true ∨ isgreen c = true ∨ isblue c = true) ⇔ (monochrome c = false))
proof
assume c
simpl
apply conj_intro
apply left_to_right_color c
apply right_to_left_color c
qed
/////////////////////////////
// A weak version of the previous theorem
/////////////////////////////
theorem in_red_bis : Πc, π (imp (eq {bool} (isred c) true) (eq {bool} (monochrome c) false))
proof
assume c
refine color_ind (λn, imp (eq {bool} (isred n) true) (eq {bool} (monochrome n) false)) ?CB[c] ?CW[c] ?CP[c] c
// Goal : π (imp (eq (isred black) true) (eq (monochrome black) false))
simpl
assume Hred
rewrite Hred
reflexivity
// Goal : π (imp (eq (isred white) true) (eq (monochrome white) false))
simpl
assume Hred
rewrite Hred
reflexivity
// Goal : Π(n:RGB), π (imp (eq (isred (primary n)) true) (eq (monochrome (primary n)) false))
refine rgb_ind (λz, imp (eq {bool} (isred (primary z)) true) (eq {bool} (monochrome (primary z)) false)) ?CR[c] ?CG[c] ?CB[c]
simpl
assume Hred
reflexivity
//
simpl
assume Hred
reflexivity
//
simpl
assume Hred
reflexivity
qed