-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_main.py
70 lines (53 loc) · 2.67 KB
/
test_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from fastapi.testclient import TestClient
from main import app
from main import TextInput
from fastapi.encoders import jsonable_encoder
client = TestClient(app)
# Test the welcome endpoint
def test_welcome():
# Test the welcome endpoint
response = client.get("/")
assert response.status_code == 200
assert response.json() == "Welcome to our Text Classification API"
# Test the sentiment analysis endpoint for positive sentiment
def test_positive_sentiment():
with client:
# Define the request payload
# Initialize payload as a TextInput object
payload = TextInput(text="I love this product! It's amazing!")
# Convert TextInput object to JSON-serializable dictionary
payload_dict = jsonable_encoder(payload)
# Send a POST request to the sentiment analysis endpoint
response = client.post("/analyze/{text}", json=payload_dict)
# Assert that the response status code is 200 OK
assert response.status_code == 200
# Assert that the sentiment returned is positive
assert response.json()[0]['label'] == "positive"
# Test the sentiment analysis endpoint for negative sentiment
def test_negative_sentiment():
with client:
# Define the request payload
# Initialize payload as a TextInput object
payload = TextInput(text="I'm really disappointed with this service. It's terrible.")
# Convert TextInput object to JSON-serializable dictionary
payload_dict = jsonable_encoder(payload)
# Send a POST request to the sentiment analysis endpoint
response = client.post("/analyze/{text}", json=payload_dict)
# Assert that the response status code is 200 OK
assert response.status_code == 200
# Assert that the sentiment returned is positive
assert response.json()[0]['label'] == "negative"
# Test the sentiment analysis endpoint for neutral sentiment
def test_neutral_sentiment():
with client:
# Define the request payload
# Initialize payload as a TextInput object
payload = TextInput(text="This is a neutral statement.")
# Convert TextInput object to JSON-serializable dictionary
payload_dict = jsonable_encoder(payload)
# Send a POST request to the sentiment analysis endpoint
response = client.post("/analyze/{text}", json=payload_dict)
# Assert that the response status code is 200 OK
assert response.status_code == 200
# Assert that the sentiment returned is positive
assert response.json()[0]['label'] == "neutral"