-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
166 lines (148 loc) · 7.88 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout,LSTM,Activation
import matplotlib.pyplot as plt
from lstm_ts_viz_class import TSViz
from matplotlib.backends.backend_tkagg import (
FigureCanvasTkAgg, NavigationToolbar2Tk)
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
import time
import matplotlib.pyplot as plt
from tkinter import *
import sys
import webbrowser
#The Datasets
import random
dat = [random.randint(0,100) for i in range(200)]
random_data=[]
for i in range(1, len(dat)):
random_data.append(dat[i] - dat[i - 1])
#airline_data = [112.0, 118.0, 132.0, 129.0, 121.0, 135.0, 148.0, 148.0, 136.0, 119.0, 104.0, 118.0, 115.0, 126.0, 141.0, 135.0, 125.0, 149.0, 170.0, 170.0, 158.0, 133.0, 114.0, 140.0, 145.0, 150.0, 178.0, 163.0, 172.0, 178.0, 199.0, 199.0, 184.0, 162.0, 146.0, 166.0, 171.0, 180.0, 193.0, 181.0, 183.0, 218.0, 230.0, 242.0, 209.0, 191.0, 172.0, 194.0, 196.0, 196.0, 236.0, 235.0, 229.0, 243.0, 264.0, 272.0, 237.0, 211.0, 180.0, 201.0, 204.0, 188.0, 235.0, 227.0, 234.0, 264.0, 302.0, 293.0, 259.0, 229.0, 203.0, 229.0, 242.0, 233.0, 267.0, 269.0, 270.0, 315.0, 364.0, 347.0, 312.0, 274.0, 237.0, 278.0, 284.0, 277.0, 317.0, 313.0, 318.0, 374.0, 413.0, 405.0, 355.0, 306.0, 271.0, 306.0, 315.0, 301.0, 356.0, 348.0, 355.0, 422.0, 465.0, 467.0, 404.0, 347.0, 305.0, 336.0, 340.0, 318.0, 362.0, 348.0, 363.0, 435.0, 491.0, 505.0, 404.0, 359.0, 310.0, 337.0, 360.0, 342.0, 406.0, 396.0, 420.0, 472.0, 548.0, 559.0, 463.0, 407.0, 362.0, 405.0, 417.0, 391.0, 419.0, 461.0, 472.0, 535.0, 622.0, 606.0, 508.0, 461.0, 390.0, 432.0, 450.0]
growth_data = [6.0, 14.0, -3.0, -8.0, 14.0, 13.0, 0.0, -12.0, -17.0, -15.0, 14.0, -3.0, 11.0, 15.0, -6.0, -10.0, 24.0, 21.0, 0.0, -12.0, -25.0, -19.0, 26.0, 5.0, 5.0, 28.0, -15.0, 9.0, 6.0, 21.0, 0.0, -15.0, -22.0, -16.0, 20.0, 5.0, 9.0, 13.0, -12.0, 2.0, 35.0, 12.0, 12.0, -33.0, -18.0, -19.0, 22.0, 2.0, 0.0, 40.0, -1.0, -6.0, 14.0, 21.0, 8.0, -35.0, -26.0, -31.0, 21.0, 3.0, -16.0, 47.0, -8.0, 7.0, 30.0, 38.0, -9.0, -34.0, -30.0, -26.0, 26.0, 13.0, -9.0, 34.0, 2.0, 1.0, 45.0, 49.0, -17.0, -35.0, -38.0, -37.0, 41.0, 6.0, -7.0, 40.0, -4.0, 5.0, 56.0, 39.0, -8.0, -50.0, -49.0, -35.0, 35.0, 9.0, -14.0, 55.0, -8.0, 7.0, 67.0, 43.0, 2.0, -63.0, -57.0, -42.0, 31.0, 4.0, -22.0, 44.0, -14.0, 15.0, 72.0, 56.0, 14.0, -101.0, -45.0, -49.0, 27.0, 23.0, -18.0, 64.0, -10.0, 24.0, 52.0, 76.0, 11.0, -96.0, -56.0, -45.0, 43.0, 12.0, -26.0, 28.0, 42.0, 11.0, 63.0, 87.0, -16.0, -98.0, -47.0, -71.0, 42.0, 18.0]
fall_data = [-18.0, -42.0, 71.0, 47.0, 98.0, 16.0, -87.0, -63.0, -11.0, -42.0, -28.0, 26.0, -12.0, -43.0, 45.0, 56.0, 96.0, -11.0, -76.0, -52.0, -24.0, 10.0, -64.0, 18.0, -23.0, -27.0, 49.0, 45.0, 101.0, -14.0, -56.0, -72.0, -15.0, 14.0, -44.0, 22.0, -4.0, -31.0, 42.0, 57.0, 63.0, -2.0, -43.0, -67.0, -7.0, 8.0, -55.0, 14.0, -9.0, -35.0, 35.0, 49.0, 50.0, 8.0, -39.0, -56.0, -5.0, 4.0, -40.0, 7.0, -6.0, -41.0, 37.0, 38.0, 35.0, 17.0, -49.0, -45.0, -1.0, -2.0, -34.0, 9.0, -13.0, -26.0, 26.0, 30.0, 34.0, 9.0, -38.0, -30.0, -7.0, 8.0, -47.0, 16.0, -3.0, -21.0, 31.0, 26.0, 35.0, -8.0, -21.0, -14.0, 6.0, 1.0, -40.0, 0.0, -2.0, -22.0, 19.0, 18.0, 33.0, -12.0, -12.0, -35.0, -2.0, 12.0, -13.0, -9.0, -5.0, -20.0, 16.0, 22.0, 15.0, 0.0, -21.0, -6.0, -9.0, 15.0, -28.0, -5.0, -5.0, -26.0, 19.0, 25.0, 12.0, 0.0, -21.0, -24.0, 10.0, 6.0, -15.0, -11.0, 3.0, -14.0, 15.0, 17.0, 12.0, 0.0, -13.0, -14.0, 8.0, 3.0, -14.0, -6.0]
epoc=100
mse=[]
vmse=[]
i=0
play=0
def callback(event):
webbrowser.open_new(r"http://www.github.com/amitrajitbose/lstm-time-series-viz")
def startScreen():
i=0
fig = Figure(figsize=(4, 2), dpi=100,frameon=False)
fig.add_subplot(111).plot(0)
fig.suptitle('Evaluation')
canvas =FigureCanvasTkAgg(fig, master=master)
canvas.draw()
canvas.get_tk_widget().grid(row=1,column=6,columnspan=1)
fig = Figure(figsize=(4, 2), dpi=100,frameon=False)
fig.add_subplot(111).plot(0)
fig.suptitle('Training Set')
canvas =FigureCanvasTkAgg(fig, master=master)
canvas.draw()
canvas.get_tk_widget().grid(row=2,column=1,columnspan=5)
fig = Figure(figsize=(4, 2), dpi=100,frameon=False)
fig.add_subplot(111).plot(0)
fig.suptitle('Testing Set')
canvas = FigureCanvasTkAgg(fig, master=master)
canvas.draw()
canvas.get_tk_widget().grid(row=2,column=6,columnspan=1)
Label(master, text=str('Epoch='+str(i))).grid(row=1, column=4, sticky=S)
link = Label(master, text='About', fg='blue', cursor='hand2')
link.grid(row=3, column=1, sticky=W, padx=0)
link.bind("<Button-1>", callback)
def playIt():
if(var1.get()=='Select Dataset'):
messagebox.showinfo("Error", "Select A Series To Plot")
return
elif(var1.get()=='Sine Curve'):
data = np.sin(np.linspace(-5*np.pi, 5*np.pi, 201))
elif(var1.get()=='Cosine Curve'):
data = np.cos(np.linspace(-5*np.pi, 5*np.pi, 201))
elif(var1.get()=='Increasing Sales'):
data = growth_data[:]
elif(var1.get()=='Decreasing Sales'):
data = fall_data[:]
elif(var1.get()=='Random Data'):
data = random_data[:]
play=1
try:
epoc=max(0,int(w3.get()))
except:
messagebox.showinfo("Error", "Enter A Positive Value For Epoch")
return
mse=[]
vmse=[]
maxMse=0
i=0
tt=TSViz(data,verbose=0,epoch=1,lag=w2.get(),dropout=w1.get()/100, test_size=w4.get()/100)
#print("Dropout: ",tt.dropout,"%")
tt.data_prepare()
tt.build_model()
while (i<=epoc and play==1):
hist=tt.fit()
#Evals
fig = Figure(figsize=(4, 2), dpi=100,frameon=False)
mse.extend(hist.history['loss'])
vmse.extend(hist.history['val_loss'])
maxMse=max(maxMse,max(*mse,*vmse))
plt.xlim(0,epoc)
ax1=fig.add_subplot(111,xlim=(0,epoc),ylim=(0,maxMse+(maxMse/10))).plot(mse)
ax2=fig.add_subplot(111,xlim=(0,epoc),ylim=(0,maxMse+(maxMse/10))).plot(vmse)
fig.legend(['Train','Val'])
fig.suptitle('Evaluation')
canvas =FigureCanvasTkAgg(fig, master=master)
canvas.draw()
canvas.get_tk_widget().grid(row=1,column=6,columnspan=1)
#Train Graph
fig = Figure(figsize=(4, 2), dpi=100,frameon=False)
fig.add_subplot(111).plot(tt.predict(tt.X_train, tt.Y_train)[0])
fig.add_subplot(111).plot(tt.predict(tt.X_train, tt.Y_train)[1])
fig.legend(['Actual','Predicted'])
fig.suptitle('Training Set')
canvas =FigureCanvasTkAgg(fig, master=master)
canvas.draw()
canvas.get_tk_widget().grid(row=2,column=1,columnspan=5)
#Test Graph
fig = Figure(figsize=(4, 2), dpi=100,frameon=False)
fig.add_subplot(111).plot(tt.predict(tt.X_test, tt.Y_test)[0])
fig.add_subplot(111).plot(tt.predict(tt.X_test, tt.Y_test)[1])
fig.legend(['Actual','Predicted'])
fig.suptitle('Testing Set')
canvas = FigureCanvasTkAgg(fig, master=master)
canvas.draw()
canvas.get_tk_widget().grid(row=2,column=6,columnspan=1)
Label(master, text=str('Epoch='+str(i))).grid(row=1, column=4, sticky=S)
i=i+1
master.update()
#time.sleep(0.0001)
master = Tk()
master.title('Visualizer')
startScreen()
Label(master,text='Dropout\n(x 0.01)').grid(row=1,column=1,sticky=N)
w1 = Scale(master, from_=0, to=90)
w1.grid(row=1,column=1,sticky=W)
Label(master,text='Lag\n').grid(row=1,column=2,sticky=N)
w2 = Scale(master, from_=2, to=10)
w2.grid(row=1,column=2,sticky=W, pady=30)
Label(master,text='Max Epoch').grid(row=1,column=4,pady=50,sticky=N)
w3 = Entry(master,width=10)
w3.grid(row=1,column=4,pady=30,sticky=N)
Label(master,text='Test Ratio\n(in %)').grid(row=1,column=3,sticky=N)
w4 = Scale(master, from_=10, to=50)
w4.grid(row=1,column=3,sticky=W)
lst1 = ['Select Dataset','Sine Curve','Cosine Curve','Random Data', 'Increasing Sales', 'Decreasing Sales']
var1 = StringVar()
drop = OptionMenu(master,var1,*lst1)
var1.set('Select Dataset') #default
drop.grid(row=1, column=4, pady=30)
B = Button(text ="Start", command = playIt)
B.grid(row=1,column=5,padx=40, pady=50,sticky=N)
rst = Button(text ="Reset", command = startScreen)
rst.grid(row=1, column=5,padx=40,sticky=S, pady=65)
ex = Button(text ="Quit", command = sys.exit)
ex.grid(row=1, column=5,sticky=S,padx=40, pady=10)
#plt.plot(a)
#Label(master, text=var1).grid(row=1, sticky=W)
mainloop()