-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport_classifiers.py
executable file
·63 lines (46 loc) · 2.33 KB
/
report_classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os;
import glob;
import numpy as np;
import nibabel as nib;
import matplotlib as plt;
from nilearn.plotting import plot_glass_brain,show;
npzfiles=glob.glob('*/*/*.npz') # list of npz files (N=96)
def show_slices(slices):
""" Function to display row of image slices """
fig, axes = plt.subplots(1, len(slices))
for i, slice in enumerate(slices):
axes[i].imshow(slice.T, cmap="gray", origin="lower")
for npzfile in npzfiles:
if not npzfile.count('progress'):
#print(npzfile) # show the name (vars are always named the same)
print('loading the data'),
npzdata=np.load(npzfile) # load the npz contents
for varName in npzdata: # this is allowed to trawl npz variables???
locals()[varName]=npzdata[varName] # just set each of them as a global for now
#print(vars().keys()) # show all variable names - as said, always the same
print('determining the optimal parameters'),
acc_opt=np.max(RFE_bacc)
feat_opt=RFE_usedFeatures[np.argmax(RFE_bacc)];
coeff_opt=RFE_coeff_mean[np.argmax(RFE_bacc)];
print('setting the paths'),
currentdir=os.path.abspath(os.path.curdir);
rootdir=os.path.dirname(currentdir);
join=os.path.basename(currentdir);
atlasfile=npzfile.split('_x_')[1].split('.nii')[0]+'.nii';
#atlaspath=glob.glob(os.path.join(rootdir,join,'atlases')+'/*/'+atlasfile);
atlaspath=glob.glob(os.path.join(rootdir,join,'atlases')+'/*/'+atlasfile);
print('loading the atlas'),
atl=nib.load(atlaspath[0]);
atl_data=atl.get_data();
if npzfile.count('_plus_'):
atl_data=np.concatenate((atl_data,atl_data+atl_data.max()),axis=0);
print('filling the coefficients'),
coeff_data=np.zeros(atl_data.shape);
for t in range(len(feat_opt)):
coeff_data[np.where(atl_data==feat_opt[t])]=coeff_opt[t];
print('saving the output'),
outname=os.path.abspath(npzfile).replace('.npz','_slices.nii.gz');
outnib=nib.Nifti1Image(coeff_data, atl.affine)
nib.save(outnib, outname);
outpng=outname.replace('.nii.gz','.png')
plot_glass_brain(outnib,threshold=0.5,plot_abs=False,output_file=outpng);