After using this notebook, you will know how to perform simplified database access using SQL "magic". You will connect to a Db2 database, issue SQL commands to create tables, insert data, and run queries, as well as retrieve results in a Python dataframe.
To communicate with SQL Databases from within a JupyterLab notebook, we can use the SQL "magic" provided by the ipython-sql extension. "Magic" is JupyterLab's term for special commands that start with "%". Below, we'll use the load_ext magic to load the ipython-sql extension.
%load_ext sql
Now we have access to SQL magic. With our first SQL magic command, we'll connect to a Db2 database. However, in order to do that, you'll first need to retrieve or create your credentials to access your Db2 database.
This image shows the location of your connection string if you're using Db2 on IBM Cloud. If you're using another host the format is: username:password@hostname:port/database-name
# Note the ibm_db_sa:// prefix instead of db://
# This is because JupyterLab's ipython-sql extension uses sqlalchemy (a python SQL toolkit)
# which in turn uses IBM's sqlalchemy dialect: ibm_db_sa
# substitute your Db2 credentials in the connection string below
%sql ibm_db_sa://my-username:my-password@my-hostname:my-port/my-db-name
For convenience, we can use %%sql (two %'s instead of one) at the top of a cell to indicate we want the entire cell to be treated as SQL. Let's use this to create a table and fill it with some test data for experimenting.
%%sql
CREATE TABLE INTERNATIONAL_STUDENT_TEST_SCORES (
country VARCHAR(50),
first_name VARCHAR(50),
last_name VARCHAR(50),
test_score INT
);
INSERT INTO INTERNATIONAL_STUDENT_TEST_SCORES (country, first_name, last_name, test_score)
VALUES
('United States', 'Marshall', 'Bernadot', 54),
('Ghana', 'Celinda', 'Malkin', 51),
('Ukraine', 'Guillermo', 'Furze', 53),
('Greece', 'Aharon', 'Tunnow', 48),
('Russia', 'Bail', 'Goodwin', 46),
('Poland', 'Cole', 'Winteringham', 49),
('Sweden', 'Emlyn', 'Erricker', 55),
('Russia', 'Cathee', 'Sivewright', 49),
('China', 'Barny', 'Ingerson', 57),
('Uganda', 'Sharla', 'Papaccio', 55),
('China', 'Stella', 'Youens', 51),
('Poland', 'Julio', 'Buesden', 48),
('United States', 'Tiffie', 'Cosely', 58),
('Poland', 'Auroora', 'Stiffell', 45),
('China', 'Clarita', 'Huet', 52),
('Poland', 'Shannon', 'Goulden', 45),
('Philippines', 'Emylee', 'Privost', 50),
('France', 'Madelina', 'Burk', 49),
('China', 'Saunderson', 'Root', 58),
('Indonesia', 'Bo', 'Waring', 55),
('China', 'Hollis', 'Domotor', 45),
('Russia', 'Robbie', 'Collip', 46),
('Philippines', 'Davon', 'Donisi', 46),
('China', 'Cristabel', 'Radeliffe', 48),
('China', 'Wallis', 'Bartleet', 58),
('Moldova', 'Arleen', 'Stailey', 38),
('Ireland', 'Mendel', 'Grumble', 58),
('China', 'Sallyann', 'Exley', 51),
('Mexico', 'Kain', 'Swaite', 46),
('Indonesia', 'Alonso', 'Bulteel', 45),
('Armenia', 'Anatol', 'Tankus', 51),
('Indonesia', 'Coralyn', 'Dawkins', 48),
('China', 'Deanne', 'Edwinson', 45),
('China', 'Georgiana', 'Epple', 51),
('Portugal', 'Bartlet', 'Breese', 56),
('Azerbaijan', 'Idalina', 'Lukash', 50),
('France', 'Livvie', 'Flory', 54),
('Malaysia', 'Nonie', 'Borit', 48),
('Indonesia', 'Clio', 'Mugg', 47),
('Brazil', 'Westley', 'Measor', 48),
('Philippines', 'Katrinka', 'Sibbert', 51),
('Poland', 'Valentia', 'Mounch', 50),
('Norway', 'Sheilah', 'Hedditch', 53),
('Papua New Guinea', 'Itch', 'Jubb', 50),
('Latvia', 'Stesha', 'Garnson', 53),
('Canada', 'Cristionna', 'Wadmore', 46),
('China', 'Lianna', 'Gatward', 43),
('Guatemala', 'Tanney', 'Vials', 48),
('France', 'Alma', 'Zavittieri', 44),
('China', 'Alvira', 'Tamas', 50),
('United States', 'Shanon', 'Peres', 45),
('Sweden', 'Maisey', 'Lynas', 53),
('Indonesia', 'Kip', 'Hothersall', 46),
('China', 'Cash', 'Landis', 48),
('Panama', 'Kennith', 'Digance', 45),
('China', 'Ulberto', 'Riggeard', 48),
('Switzerland', 'Judy', 'Gilligan', 49),
('Philippines', 'Tod', 'Trevaskus', 52),
('Brazil', 'Herold', 'Heggs', 44),
('Latvia', 'Verney', 'Note', 50),
('Poland', 'Temp', 'Ribey', 50),
('China', 'Conroy', 'Egdal', 48),
('Japan', 'Gabie', 'Alessandone', 47),
('Ukraine', 'Devlen', 'Chaperlin', 54),
('France', 'Babbette', 'Turner', 51),
('Czech Republic', 'Virgil', 'Scotney', 52),
('Tajikistan', 'Zorina', 'Bedow', 49),
('China', 'Aidan', 'Rudeyeard', 50),
('Ireland', 'Saunder', 'MacLice', 48),
('France', 'Waly', 'Brunstan', 53),
('China', 'Gisele', 'Enns', 52),
('Peru', 'Mina', 'Winchester', 48),
('Japan', 'Torie', 'MacShirrie', 50),
('Russia', 'Benjamen', 'Kenford', 51),
('China', 'Etan', 'Burn', 53),
('Russia', 'Merralee', 'Chaperlin', 38),
('Indonesia', 'Lanny', 'Malam', 49),
('Canada', 'Wilhelm', 'Deeprose', 54),
('Czech Republic', 'Lari', 'Hillhouse', 48),
('China', 'Ossie', 'Woodley', 52),
('Macedonia', 'April', 'Tyer', 50),
('Vietnam', 'Madelon', 'Dansey', 53),
('Ukraine', 'Korella', 'McNamee', 52),
('Jamaica', 'Linnea', 'Cannam', 43),
('China', 'Mart', 'Coling', 52),
('Indonesia', 'Marna', 'Causbey', 47),
('China', 'Berni', 'Daintier', 55),
('Poland', 'Cynthia', 'Hassell', 49),
('Canada', 'Carma', 'Schule', 49),
('Indonesia', 'Malia', 'Blight', 48),
('China', 'Paulo', 'Seivertsen', 47),
('Niger', 'Kaylee', 'Hearley', 54),
('Japan', 'Maure', 'Jandak', 46),
('Argentina', 'Foss', 'Feavers', 45),
('Venezuela', 'Ron', 'Leggitt', 60),
('Russia', 'Flint', 'Gokes', 40),
('China', 'Linet', 'Conelly', 52),
('Philippines', 'Nikolas', 'Birtwell', 57),
('Australia', 'Eduard', 'Leipelt', 53)
You can use python variables in your SQL statements by adding a ":" prefix to your python variable names.
For example, if I have a python variable country
with a value of "Canada"
, I can use this variable in a SQL query to find all the rows of students from Canada.
country = "Canada"
%sql select * from INTERNATIONAL_STUDENT_TEST_SCORES where country = :country
You can use the normal python assignment syntax to assign the results of your queries to python variables.
For example, I have a SQL query to retrieve the distribution of test scores (i.e. how many students got each score). I can assign the result of this query to the variable test_score_distribution
using the =
operator.
test_score_distribution = %sql SELECT test_score as "Test Score", count(*) as "Frequency" from INTERNATIONAL_STUDENT_TEST_SCORES GROUP BY test_score;
test_score_distribution
You can easily convert a SQL query result to a pandas dataframe using the DataFrame()
method. Dataframe objects are much more versatile than SQL query result objects. For example, we can easily graph our test score distribution after converting to a dataframe.
dataframe = test_score_distribution.DataFrame()
%matplotlib inline
import seaborn
plot = seaborn.barplot(x='Test Score',y='Frequency', data=dataframe)
Now you know how to work with Db2 from within JupyterLab notebooks using SQL "magic"!
%%sql
-- Feel free to experiment with the data set provided in this notebook for practice:
SELECT country, first_name, last_name, test_score FROM INTERNATIONAL_STUDENT_TEST_SCORES;
Copyright © 2018 cognitiveclass.ai. This notebook and its source code are released under the terms of the MIT License.