-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFilterVisualizer.py
217 lines (160 loc) · 7.76 KB
/
FilterVisualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# import python modules
from fastai.conv_learner import *
import torch
import torch.nn as nn
import numpy as np
from cv2 import resize
# import our own classes
import FeatureMapActivator
class FilterVisualizer():
'''
FilterVisualizer: is used make necessary computation to visualize the filters for selected model
'''
# global varaibles (for description of vars cehck out set_visualizer_params())
image_size = 56
upscaling_steps = 12
upscaling_factor = 1.2
lr = 1e-1
weight_decay = 1e-6
grad_steps = 20
blur = None
def __init__(self, selected_model):
'''
set CNN model
Arguments
---------
selected_model: (trochvision.model) selected vision model
'''
self.selected_model = selected_model
def set_visualizer_params(self, image_size=56, upscaling_steps=12, upscaling_factor=1.2, lr=1e-1, weight_decay=1e-6, grad_steps=20, blur=5):
'''
set other visualizer params to be used in visualizer
Arguments
---------
image_size: (int) height and width of image for generated noise image
upscaling_steps: (int) number of times that scaling is done
upscaling_factor: (float) factor which upscaling is done with
lr: (float) learning rate of optimization
weight_decay: (float) weight decay of optimization
grad_steps: (int) number of times that gradient descend implemented
blur: (int) ratio of blur applied in order to reduce high-frequency patterns
'''
self.image_size = image_size
self.upscaling_steps = upscaling_steps
self.upscaling_factor = upscaling_factor
self.lr = lr
self.weight_decay = weight_decay
self.grad_steps = grad_steps
self.blur = blur
def visualize(self, layer, filter):
'''
visualises the layer computing the grandient of feature map w.r.t input image
Arguments
---------
layer: (Sequential) selected layer from a cnn model
filter: (int) number of kernel filter used to computer feature map
'''
# set temporary image size (will be used in scaling)
image_size_ = self.image_size
# generate noise image
img = (np.random.random((self.image_size, self.image_size, 3)) * 20 + 128.)/255.
# create forward propogation hook for given layer
featuremapactivator = FeatureMapActivator.FeatureMapActivator(layer)
# scaling up image upscaling_steps times to have better feature map resolution with optimizing the scaled image each time
for i in range(self.upscaling_steps):
# create tranformer for the selected model type
_, eval_tfms = tfms_from_model(self.selected_model, image_size_)
# transforom image and makes it gradable
img_var = V(eval_tfms(img)[None], requires_grad=True)
# define Adam optimizer
optimizer = torch.optim.Adam([img_var], lr=self.lr, weight_decay=self.weight_decay)
if i > self.upscaling_steps/2:
grad_steps_ = int(self.grad_steps*1.3)
else:
grad_steps_ = self.grad_steps
# maximize average activation of choosen fature map for given filter w.r.t input image for grad_steps times
for n in range(grad_steps_):
# print(f'up step: {i} grad step: {n}')
# initialize grad
optimizer.zero_grad()
self.model(img_var)
# do forward progopogation for selected filter in the given layer to create feature map and caculate loss
loss = -featuremapactivator.featuremap[0, filter].mean()
# caculate grandient
loss.backward()
# make optimization descend
optimizer.step()
# inverse transform the optimized image
img = eval_tfms.denorm(img_var.data.numpy().transpose(0,2,3,1))[0]
self.output = img
# upscaling
# caculate new upscaled image size
image_size_ = int(self.upscaling_factor * image_size_)
# scale up image
img = cv2.resize(img, (image_size_, image_size_), interpolation = cv2.INTER_CUBIC)
# blur image to reduce high frequency patterns
if self.blur is not None: img = cv2.blur(img, (self.blur, self.blur))
# close the generated map to clear up the cache
featuremapactivator.close()
return np.clip(self.output, 0, 1)
def get_transformed_image(self, image, transform_size=224):
'''
create transformer for the selected model type, transforms the selected image then denormalize transfrom
Arguments
---------
img: (np.array) image
transform_size: (int) widith and height of what is used to transform the given image
'''
assert (isinstance(image, np.ndarray)), "type of image variable should be numpy.ndarray"
_, eval_tfms = tfms_from_model(self.selected_model, transform_size)
return eval_tfms.denorm(eval_tfms(image/255.).transpose(1,2,0))
def get_nstrongest_filters(self, image, layer, n, transform_size=224):
'''
find the n highest activated filters (feature map) for given image
Arguments
---------
image: (np.array) image
transform_size: (int) widith and height of what is used to transform the given image
layer: (Sequentail) selected layer in CNN model for feature maximization. It will only look for the filter (feature map) of that layer
n: (int) number of first n highest activated feature map
Output
------
nstrongest_filters: (int) indices of n stongest filters
mean_filters_activations: (list) mean activation values of filters
'''
assert (isinstance(image, np.ndarray)), "type of image variable should be numpy.ndarray"
# create transformer for the selected model type
_, eval_tfms = tfms_from_model(self.selected_model, transform_size)
tf_image = eval_tfms(image/255.)
# create forward propogation hook for given layer
featuremapactivator = FeatureMapActivator.FeatureMapActivator(layer)
# fit the picture to the model
self.model(V(tf_image)[None])
# sort all the feature maps based on their mean activation in descending order
mean_filters_activations = [float(featuremapactivator.featuremap[0,i].mean().data.cpu().numpy()) for i in range(featuremapactivator.featuremap.shape[1])]
nstrongest_filters = sorted(range(len(mean_filters_activations)), key=lambda i: mean_filters_activations[i])[-n:][::-1]
# close the generated map to clear up the cache
featuremapactivator.close()
return nstrongest_filters, mean_filters_activations
def generate_selected_fmaps(self, layer, filter_list):
'''
compute feature map based on noise image for given layer and selected range of filters
Arguments
---------
layer: (Sequential) selected layer of CNN model
filter_list: (list) list of selected filter (e.g., [1,2,3])
Output
------
fmap: list of calculated fmaps
name_fmap: name of the fmap filters
'''
assert (type(filter_list)==list), "filter_list must be list object"
# list to store caculated feautre maps
fmaps = []
# list to store name of the fmap filters (will use for the polting purpose)
name_fmaps = []
# calculate each feature map and add it to the list
for filter_i in filter_list:
fmaps.append(self.visualize(layer, filter_i))
name_fmaps.append(filter_i)
return fmaps, name_fmaps