-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeme_inference.py
279 lines (196 loc) · 8.43 KB
/
meme_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
Created on Sun Aug 27 17:55:55 2023
@author: arpan
"""
"""
Created on Thu Aug 24 16:41:13 2023
@author: arpan
"""
"""
Created on Tue Jun 6 14:29:42 2023
@author: arpan
"""
import json
from datasets import load_metric,Dataset,DatasetDict
from transformers import AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
from transformers import AutoTokenizer
import os
from transformers import GPT2Tokenizer, GPTNeoForCausalLM, GPT2LMHeadModel,T5Tokenizer, T5Model
import pandas as pd
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from tqdm import tqdm
from transformers import GPT2Tokenizer, GPTNeoForCausalLM, GPT2LMHeadModel,T5Tokenizer, T5Model
import pandas as pd
import os
from tqdm import tqdm
from copy import deepcopy
import sys
from check_t5 import T5ForConditionalGeneration
import torch
torch.cuda.empty_cache()
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import numpy as np
import json
from modeling_meme_bart_anas_third import BartForConditionalGeneration
is_cuda = torch.cuda.is_available()
device = torch.device("cuda" if is_cuda else "cpu")
print("\nDEVICE:\t",device)
data = pd.read_excel("/home/arpan_2121cs33/anas/memes/memes.xlsx")
dataset_full=[]
meme_id = data["meme_id"].values
image_caption = data["image_caption"].values
meme_caption = data["meme_caption"].values
ocr = data["ocr"].values
meme_location = data["meme_location"].values
for i in range(len(meme_caption)):
dataset_full.append({"meme_id": str(meme_id[i]),"image_caption": str(image_caption[i]),
"meme_caption": str(meme_caption[i]),"ocr": str(ocr[i]),
"meme_location": str(meme_location[i])})
def transform_single_dialogsumm_file(file):
result = {"meme_id":[],"image_caption":[],"meme_caption":[],"ocr":[],"meme_location":[]}
for i in range(len(file)):
result["meme_id"].append(file[i]["meme_id"])
result["image_caption"].append(file[i]["image_caption"])
result["meme_caption"].append(file[i]["meme_caption"])
result["ocr"].append(file[i]["ocr"])
result["meme_location"].append(file[i]["meme_location"])
return Dataset.from_dict(result)
def transform_test_file(file):
result = {"meme_id":[],"image_caption":[],"meme_caption":[],"ocr":[],"meme_location":[]}
for i in range(len(file)):
result["meme_id"].append(file[i]["meme_id"])
result["image_caption"].append(file[i]["image_caption"])
result["meme_caption"].append(file[i]["meme_caption"])
result["ocr"].append(file[i]["ocr"])
result["meme_location"].append(file[i]["meme_location"])
return Dataset.from_dict(result)
def transform_dialogsumm_to_huggingface_dataset(test):
test = transform_test_file(test)
return DatasetDict({"test":test})
model_name = "BART_LARGE_try_2_ALLTxt_inTok431024_3e-6_batchS_8ROG_ep_70"
checkpoint = "/checkpoint-134950"
model_checkpoint = "/home/arpan_2121cs33/anas/memes/"+str(model_name)+checkpoint
metric = load_metric("rouge.py")
TEST_SUMMARY_ID = 1
def collate_fn(batch):
inputs = [item['input_ids'] for item in batch]
labels = [item['labels'] for item in batch]
mask = [item['attention_mask'] for item in batch]
video_embeds = [item['video_embedd'] for item in batch]
audio_embeds = [item['audio_embedd'] for item in batch]
inputs_text = torch.nn.utils.rnn.pad_sequence([torch.tensor(lst) for lst in inputs], batch_first=True, padding_value=0)
labels_text = torch.nn.utils.rnn.pad_sequence([torch.tensor(lst) for lst in labels], batch_first=True, padding_value=0)
attention_mask = torch.nn.utils.rnn.pad_sequence([torch.tensor(lst) for lst in mask], batch_first=True, padding_value=0)
video_embeds_padded = torch.nn.utils.rnn.pad_sequence([torch.tensor(lst) for lst in video_embeds], batch_first=True, padding_value=0)
audio_embeds_padded = torch.nn.utils.rnn.pad_sequence([torch.tensor(lst) for lst in audio_embeds], batch_first=True, padding_value=0)
return {'input_ids': inputs_text, 'labels': labels_text, 'video_embedd': video_embeds_padded, 'audio_embedd': audio_embeds_padded, 'attention_mask': attention_mask}
max_input_length = 1024
filename_model = model_name
print(filename_model)
MODEL_PATH = "/home/arpan_2121cs33/anas/memes/Model Path/"
is_cuda = torch.cuda.is_available()
import pickle
filename_dataset="memes.xlsx"
model = BartForConditionalGeneration.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
max_target_length = 512 * 2
path = "/home/arpan_2121cs33/anas/memes"
from sklearn.model_selection import train_test_split
import random
train_size = 0.8
val_size = 0.1
test_size = 0.1
train_data, val_test_data = train_test_split(dataset_full, train_size=train_size, random_state=42)
val_data, test_data = train_test_split(val_test_data, train_size=val_size/(val_size + test_size), random_state=42)
raw_datasets = transform_dialogsumm_to_huggingface_dataset(test_data)
def preprocess_function(examples):
inputs =[]
compressed_vid = []
compressed_aud=[]
model_inputs={}
input_embedd_feat = []
for (meme_id, image_caption, ocr) in zip(examples["meme_id"],examples["image_caption"],examples["ocr"]):
inputs.append(str("bot is provided with meme's image caption:"+str(image_caption)+", bot is also provided with meme's ocr: "+str(ocr)+ " bot is also provided with meme visual embeddings and meme audio features if available, bot task is to give the detail description of the meme"))
try:
npy_fileload = torch.from_numpy(np.load('/home/arpan_2121cs33/anas/memes/meme_emb/clip_/'+str(meme_id)+"_clip_features.npy")).float()
print("Shape of loaded tensor:", npy_fileload.shape)
if npy_fileload.shape != [1, 512]:
compressed_vid.append(torch.zeros(1,512))
else:
compressed_vid.append(npy_fileload)
except Exception as e:
print(e)
compressed_vid.append(torch.zeros(1,512))
try:
npy_fileload = torch.from_numpy(np.load('/home/arpan_2121cs33/anas/memes/meme_emb/mfccs/'+str(meme_id)+".npy")).float()
print("Shape of loaded tensor:", npy_fileload.shape)
if npy_fileload.shape != [1, 216]:
compressed_aud.append(torch.zeros(1,216))
else:
compressed_aud.append(npy_fileload)
except Exception as e:
print(e)
compressed_aud.append(torch.zeros(1,216))
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
model_inputs["video_embedd"] = compressed_vid
model_inputs["audio_embedd"] = compressed_aud
print("1")
label_input =[]
for cap in examples["meme_caption"]:
label_input.append(cap)
print("2")
with tokenizer.as_target_tokenizer():
print("3")
labels = tokenizer(label_input, max_length=max_target_length, truncation=True)
print("24")
model_inputs["labels"] = labels["input_ids"]
print("5")
return model_inputs
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
batch_size = 1
args = Seq2SeqTrainingArguments(
"ROG_",
evaluation_strategy = "epoch",
learning_rate=3e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=1,
predict_with_generate=True,
save_strategy="epoch",
metric_for_best_model="eval_rouge1",
greater_is_better=True,
seed=42,
generation_max_length=max_target_length,
logging_strategy = "epoch",report_to="wandb"
)
trainer = Seq2SeqTrainer(
model,
args,
data_collator=collate_fn,
tokenizer=tokenizer,
)
import nltk
import numpy as np
out = trainer.predict(tokenized_datasets["test"],num_beams=5)
predictions, labels ,metric= out
print(metric)
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
decoded_preds = [" ".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
with open(MODEL_PATH+"memes_43.json", "a") as outfile:
outfile.write('[')
for index, item in enumerate(decoded_preds):
dictionary = {
"Generated_meme_cap": decoded_preds[index]
}
print(dictionary)
if index > 0:
outfile.write(',')
json.dump(dictionary, outfile)
outfile.write(']')