-
Notifications
You must be signed in to change notification settings - Fork 0
/
Ford-Fulkerson_Algo.cpp
74 lines (60 loc) · 1.44 KB
/
Ford-Fulkerson_Algo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
//Ford-Fulkerson
//Find the Ford-Fulkerson Algorithm for Maximum Flow
#include <iostream>
#include <queue>
#include <limits.h>
#include <string.h>
using namespace std;
#define V 6
bool search(int rGraph[V][V], int s, int t, int parent[]) {
bool done[V];
memset(done, 0, sizeof(done));
queue<int> q;
q.push(s);
done[s] = true;
parent[s] = -1;
while (!q.empty()) {
int u = q.front();
q.pop();
for (int v = 0; v < V; v++) {
if (done[v] == false && rGraph[u][v] > 0) {
q.push(v);
parent[v] = u;
done[v] = true;
}
}
}
return (done[t] == true);
}
int ford_f(int graph[V][V], int s, int t) {
int u, v;
int rGraph[V][V];
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
int parent[V];
int max_flow = 0;
while (search(rGraph, s, t, parent)) {
int path_flow = INT_MAX;
for (v = t; v != s; v = parent[v]) {
u = parent[v];
path_flow = min(path_flow, rGraph[u][v]);
}
for (v = t; v != s; v = parent[v]) {
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
max_flow += path_flow;
}
return max_flow;
}
int main() {
int graph[V][V] = {{0, 8, 0, 0, 3, 0},
{0, 0, 9, 0, 0, 0},
{0, 0, 0, 0, 7, 2},
{0, 0, 0, 0, 0, 5},
{0, 0, 7, 4, 0, 0},
{0, 0, 0, 0, 0, 0}};
cout << "Maximum Flow: " << ford_f(graph, 0, 5) << endl;
}