-
Notifications
You must be signed in to change notification settings - Fork 1
/
vec3.h
177 lines (157 loc) · 3.9 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#ifndef VECH
#define VECH
#include <math.h>
#include <stdlib.h>
#include <iostream>
class vec3
{
public:
vec3() {}
vec3(double e0, double e1, double e2)
{
e[0] = e0;
e[1] = e1;
e[2] = e2;
}
inline double x() const { return e[0]; }
inline double y() const { return e[1]; }
inline double z() const { return e[2]; }
inline double r() const { return e[0]; }
inline double g() const { return e[1]; }
inline double b() const { return e[2]; }
inline const vec3 &operator+() const { return *this; }
inline vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
inline double operator[](int i) const { return e[i]; }
inline double &operator[](int i) { return e[i]; }
inline vec3 &operator+=(const vec3 &v2);
inline vec3 &operator-=(const vec3 &v2);
inline vec3 &operator*=(const vec3 &v2);
inline vec3 &operator/=(const vec3 &v2);
inline vec3 &operator*=(const double t);
inline vec3 &operator/=(const double t) { return *this *= 1 / t; }
inline double length() const { return sqrt(e[0] * e[0] + e[1] * e[1] + e[2] * e[2]); }
inline double length_squared() const { return e[0] * e[0] + e[1] * e[1] + e[2] * e[2]; }
inline void make_unit_vector();
double e[3];
};
inline std::istream &operator>>(std::istream &is, vec3 &t)
{
is >> t.e[0] >> t.e[1] >> t.e[2];
return is;
}
inline std::ostream &operator<<(std::ostream &os, vec3 &t)
{
os << t.e[0] << " " << t.e[1] << " " << t.e[2];
return os;
}
inline void vec3::make_unit_vector()
{
double k = 1.0 / sqrt(e[0] * e[0] + e[1] * e[1] + e[2] * e[2]);
e[0] *= k;
e[1] *= k;
e[2] *= k;
}
inline vec3 operator+(const vec3 &v1, const vec3 &v2)
{
return vec3(v1.e[0] + v2.e[0], v1.e[1] + v2.e[1], v1.e[2] + v2.e[2]);
}
inline vec3 operator-(const vec3 &v1, const vec3 &v2)
{
return vec3(v1.e[0] - v2.e[0], v1.e[1] - v2.e[1], v1.e[2] - v2.e[2]);
}
inline vec3 operator*(const vec3 &v1, const vec3 &v2)
{
return vec3(v1.e[0] * v2.e[0], v1.e[1] * v2.e[1], v1.e[2] * v2.e[2]);
}
inline vec3 operator/(const vec3 &v1, const vec3 &v2)
{
return vec3(v1.e[0] / v2.e[0], v1.e[1] / v2.e[1], v1.e[2] / v2.e[2]);
}
inline vec3 operator*(double t, const vec3 &v)
{
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator*(const vec3 &v, double t)
{
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator/(double t, const vec3 &v)
{
return vec3(t / v.e[0], t / v.e[1], t / v.e[2]);
}
inline vec3 operator/(const vec3 &v, double t)
{
return vec3(v.e[0] / t, v.e[1] / t, v.e[2] / t);
}
inline double dot(const vec3 &v1, const vec3 &v2)
{
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
inline vec3 cross(const vec3 &v1, const vec3 &v2)
{
return vec3(v1.e[1] * v2.e[2] - v1.e[2] * v2[1],
-(v1.e[0] * v2.e[2] - v1.e[2] * v2[0]),
v1.e[0] * v2.e[1] - v1.e[1] * v2[0]);
}
inline vec3 &vec3::operator+=(const vec3 &v)
{
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
inline vec3 &vec3::operator-=(const vec3 &v)
{
e[0] -= v.e[0];
e[1] -= v.e[1];
e[2] -= v.e[2];
return *this;
}
inline vec3 &vec3::operator*=(const vec3 &v)
{
e[0] *= v.e[0];
e[1] *= v.e[1];
e[2] *= v.e[2];
return *this;
}
inline vec3 &vec3::operator/=(const vec3 &v)
{
e[0] /= v.e[0];
e[1] /= v.e[1];
e[2] /= v.e[2];
return *this;
}
inline vec3 &vec3::operator*=(const double t)
{
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
inline vec3 unit_vector(vec3 v)
{
return v / v.length();
}
vec3 reflect(const vec3 &v, const vec3 &n)
{
return v - 2 * dot(v, n) * n;
}
bool refract(const vec3 &v, const vec3 &n, double ni_over_nt, vec3 &refracted)
{
vec3 uv = unit_vector(v);
double dt = dot(uv, n);
double discriminant = 1.0 - ni_over_nt * ni_over_nt * (1 - dt * dt);
if (discriminant > 0)
{
refracted = ni_over_nt * (uv - n * dt) - n * sqrt(discriminant);
return true;
}
return false;
}
double schlick(double cosine, double ref_idx)
{
double r0 = (1 - ref_idx) / (1 + ref_idx);
r0 = r0 * r0;
return r0 + (1 - r0) * pow((1 - cosine), 5);
}
#endif