-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
290 lines (256 loc) · 10.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import pandas as pd
import numpy as np
import random, json, sys, os
from flask import Flask, render_template, request, redirect, Response
from scipy.sparse.linalg import svds
from statistics import mean
import matplotlib.pyplot as pyplot
from scipy.stats.stats import pearsonr
ratings = pd.read_csv("https://raw.githubusercontent.com/andrehui09/webtech-cw/master/ratings_parsed.csv?token=AIFZFH4R3ZTOEBJD2KTC3K257AFVI")
books = pd.read_csv("https://raw.githubusercontent.com/andrehui09/webtech-cw/master/books_parsed.csv?token=AIFZFH6U2K553ULI7BE354K57AFZO")
#print(books)
users = pd.read_csv("https://raw.githubusercontent.com/andrehui09/webtech-cw/master/users_parsed.csv?token=AIFZFHYCLARBDTH6MUOVHE257AF3K")
users["username"] = users["username"].astype(str)
with open("https://raw.githubusercontent.com/andrehui09/webtech-cw/master/tags.txt?token=AIFZFHYXSBMO4BQFIBJDTY257AGNG", "r") as f:
filters = f.read().split("\n")
filters = filters[:-1]
similarBooksDict = {}
# initiate a sorted dataframe of books by rating
book_data = pd.merge(ratings, books, on="book_id")
avg = book_data.groupby("book_id")["rating"].mean()
count = book_data.groupby("book_id")["rating"].count()
ratings_mean_count = pd.DataFrame(avg)
ratings_mean_count["rating_counts"] = pd.DataFrame(count)
ratings_mean_count = ratings_mean_count[ratings_mean_count["rating"] > 4].sort_values("rating_counts", ascending = False)
# matrix factorization
r_df = ratings.pivot(index = "user_id", columns = "book_id", values = "rating").fillna(0)
r_df.head()
r = r_df.as_matrix()
user_ratings_mean = np.mean(r, axis = 1)
r_demeaned = r - user_ratings_mean.reshape(-1,1)
# U is user "features" matrix, Vt is movie "features" matrix,
# sigma is diagonal matrix of singular values (weights)
U, sigma, Vt = svds(r_demeaned, k = 50)
sigma = np.diag(sigma)
# generate all the predicted ratings for every book for each user
all_user_predicted_ratings = np.dot(np.dot(U, sigma), Vt) + user_ratings_mean.reshape(-1,1)
preds = pd.DataFrame(all_user_predicted_ratings, columns = r_df.columns)
# function to ask for recommendation
def recommend_books(predictions, user_id, books, original_ratings, num_recommendations = 5):
# check if user is part of the pre-generated recommendations matrix
if user_id in r_df.index.values.tolist():
user_row_number = user_id - 1
sorted_user_predictions = predictions.iloc[user_row_number].sort_values(ascending = False)
# get user data and merge in book info
user_data = original_ratings[original_ratings.user_id == user_id]
user_full = (user_data.merge(books, how = "left", left_on = "book_id", right_on = "book_id").sort_values(["rating"], ascending = False))
print("User {0} has already rated {1} books".format(user_id, user_full.shape[0]))
print("Recommending the highest {0} predicted ratings books not already rated".format(num_recommendations))
# recommend the highest predicted rating books that the user hasn't seen yet
recommendations = (books[~books["book_id"].isin(user_full["book_id"])].
merge(pd.DataFrame(sorted_user_predictions).reset_index(), how = "left",
left_on = "book_id",
right_on = "book_id").
rename(columns = {user_row_number: "predictions"}).
sort_values("predictions", ascending = False).
iloc[:num_recommendations, :-1])
else:
user_books = ratings.loc[ratings["user_id"] == user_id]["book_id"].tolist()
# check if the user has rated any books yet
if len(user_books) == 0:
# if not, return highest rated books in database
book_ids = list(ratings_mean_count.index.values)[:num_recommendations]
return books.loc[books["book_id"].isin(book_ids)]
# filter ratings so that only users who have rat
# make row for new user
newr = ratings.pivot(index = "user_id", columns = "book_id", values = "rating").fillna(0)
i = 0
while newr.shape[0] > 1 and i < len(user_books):
newr = newr.loc[newr[user_books[i]] > 0]
i += 1
already_rated = newr.iloc[int(user_id) - 1].head(r_df.shape[1])
grouped_ratings = ratings.groupby("user_id")
newr.drop(int(user_id), inplace=True)
# find closely correlated users
correlation = r_df.corrwith(already_rated, axis=1)
corrs = pd.DataFrame(correlation, columns=["corr"])
closest_corr = corrs.sort_values("corr", ascending=False).head(1)
# get recommendations from the closely correlated user
recommendations = recommend_books(predictions, closest_corr.index.values[0], books, original_ratings, num_recommendations)
return recommendations
# check for similar books by comparing genres
def similarBooks(book_id, genres):
genres = genres.split("|")
genres.sort()
numBooks = books.shape[0]
b = books.copy()
i = 0
print(genres)
while numBooks > 5 and i < len(genres):
g ="|".join(genres[i:len(genres)])
print(g)
if b.loc[b["genre"].str.contains(genres[i])].shape[0] > 0:
b = b.loc[b["genre"].str.contains(g)]
numBooks = b.shape[0]
i += 1
similarBooksDict[book_id] = b["book_id"].tolist()
return 0
# get a list of books similar to any books in book_ids
def checkSimilarBooks(book_ids):
out = []
for b in similarBooksDict:
if bool(set(book_ids).intersection(similarBooksDict[b])):
out += [b]
return out
# init the flask server
app = Flask(__name__)
app._static_folder = os.path.abspath("templates/static")
@app.route("/")
def output():
return render_template("/index.html", name="Yeet")
@app.route("/login", methods = ["POST"])
def checkID():
data = request.get_json()
try:
user_id = users.loc[users["username"] == str(data["user_id"])]["user_id"].tolist()[0]
print(user_id, data["user_id"])
return "True"
except:
return "False"
@app.route("/mybooks", methods = ["POST"])
def getBooks():
data = request.get_json()
user_id = users.loc[users["username"] == str(data["user_id"])]["user_id"].tolist()[0]
number = int(data["number"])
filters = data["filters"]
b = books.copy()
for f in filters:
b = b.loc[b["genre"].str.find(f) > -1]
rating_table = ratings.loc[ratings["user_id"] == int(user_id)]
book_id = rating_table["book_id"].tolist()
rating = rating_table["rating"].tolist()
titles = []
book_ids = []
temp_ratings = []
for i in range(len(book_id)):
if book_id[i] in b["book_id"].tolist():
title = b.loc[b["book_id"] == book_id[i]]["title"].tolist()
titles += title
book_ids += [book_id[i]]
temp_ratings += [rating[i]]
if number == 0:
number = len(titles)
return {"book_id": book_ids[:number], "rating": temp_ratings[:number], "title": titles[:number]}
@app.route("/recommendations", methods = ["POST"])
def getRecommendations():
data = request.get_json()
user_id = int(users.loc[users["username"] == str(data["user_id"])]["user_id"].tolist()[0])
number = int(data["number"])
filters = data["filters"]
b = books.copy()
for f in filters:
print(f)
b = b.loc[books["genre"].str.find(f) > -1]
if number == 0:
number = 100
predictions = recommend_books(preds, user_id, b, ratings, number)
book_ids = predictions["book_id"].tolist()
book_ids += list(dict.fromkeys(checkSimilarBooks(book_ids)))
titles = books.loc[books["book_id"].isin(book_ids)]["title"].tolist()
rs = []
for bid in book_ids:
temp = ratings.loc[ratings["book_id"] == bid]["rating"].tolist()
if len(temp) > 0:
thismean = mean(temp)
rs += [round(thismean, 2)]
else:
rs += [3.00]
return {"book_id": book_ids, "title": predictions["title"].tolist(), "rating": rs}
@app.route("/book", methods = ["POST"])
def getBook():
data = request.get_json()
bookid = int(data["book_id"])
user_id = users.loc[users["username"] == str(data["user_id"])]["user_id"].tolist()[0]
title = books.loc[books["book_id"] == bookid]["title"].tolist()[0]
genres = books.loc[books["book_id"] == bookid]["genre"].tolist()[0]
mean = ratings.loc[ratings["book_id"] == bookid]["rating"].mean()
rated = ratings.loc[ratings["user_id"] == user_id]
userrating = rated.loc[rated["book_id"] == bookid]["rating"].tolist()
if len(userrating) > 0:
userrating = round(userrating[0], 2)
else:
userrating = 0
return {"book_id":bookid, "title": title, "rating": mean, "genre": genres, "userrating":userrating}
@app.route("/search", methods = ["POST"])
def search():
data = request.get_json()
query = data["query"]
filters = data["filters"]
b = books.copy()
results = b.loc[b["title"].str.lower().str.find(query.lower()) > -1]
book_ids = results["book_id"].tolist()
rs = []
for bid in book_ids:
mean = ratings.loc[ratings["book_id"] == bid]["rating"].mean()
rs += [round(mean, 2)]
return {"book_id": book_ids, "title": results["title"].tolist(), "rating": rs}
@app.route("/filterlist", methods = ["POST"])
def getFilterList():
return {"filters":filters}
@app.route("/rate", methods = ["POST"])
def rate():
global ratings
data = request.json
user_id = users.loc[users["username"] == str(data["user_id"])]["user_id"].tolist()[0]
rating = int(data["rating"])
book_id = int(data["book_id"])
try:
rated = ratings.loc[ratings["user_id"] == user_id]
rIndex = rated.loc[rated["book_id"] == book_id]
ratings.at[rIndex.index.tolist()[0], "rating"] = rating
except:
newRating = pd.DataFrame([[user_id, book_id, rating]], columns = ["user_id", "book_id", "rating"])
ratings = ratings.append(newRating, ignore_index = True)
return "Success"
@app.route("/register", methods = ["POST"])
def register():
data = request.json
username = data["username"]
global users
if len(users.loc[users["username"] == username]["username"].tolist()) == 0:
user_id = int(users.shape[0]) + 1
userdata = pd.DataFrame([[user_id, username]], columns = ["user_id", "username"])
users = users.append(userdata, ignore_index = True)
return "Success"
else:
return "Fail"
@app.route("/top", methods = ["POST"])
def top():
data = request.json
n = data["number"]
titles = []
book_ids = list(ratings_mean_count.index.values)
book_ids = [int(b) for b in book_ids]
rs = ratings_mean_count["rating"].tolist()
rs = [float(round(r,2)) for r in rs]
for b in book_ids:
titles += books.loc[books["book_id"] == b]["title"].tolist()
return {"book_id": book_ids[:n], "title": titles[:n], "rating": rs[:n]}
@app.route("/newbook", methods = ["POST"])
def addBook():
global books
global ratings
data = request.json
title = data["title"]
genres = data["genres"]
rating = int(data["rating"])
user_id = users.loc[users["username"] == str(data["user_id"])]["user_id"].tolist()[0]
book_id = books.shape[0] + 1
similarBooks(book_id, genres)
newBook = pd.DataFrame([[book_id, title, genres]], columns = ["book_id", "title", "genre"])
newRating = pd.DataFrame([[user_id, book_id, rating]], columns = ["user_id", "book_id", "rating"])
books = books.append(newBook, ignore_index = True)
ratings = ratings.append(newRating, ignore_index = True)
return {}
if __name__ == "__main__":
app.run()