-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
105 lines (86 loc) · 4.21 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd
import numpy as np
from tqdm import tqdm
import os
import concurrent.futures
import multiprocessing
import time
NEGATIVE_POINTS_TRAIN = 4
NEGATIVE_POINTS_TEST = 99
BATCH_SIZE = 1024 # With 1024 process took 08:41 min, with 2048 process took 08:18 min
DEST_PATH = "data"
def process_batch(df, ids, num_movies):
batch_train = []
batch_test = []
for user_id in ids:
# Extract all the samples for each user and sort the rows by the timestamp values
df_user = df[df["userId"] == user_id].sort_values("timestamp")
# Get for each user the oldest and the latest rate
time_min = df_user["timestamp"].min()
time_max = df_user["timestamp"].max()
if time_min == time_max: # In case of a user had seen only 1 movie
time_max += 1
# Sample random idxs of movies that the user haven't seen
negative_data_idx = np.random.choice(np.setdiff1d(np.arange(num_movies), df_user["movieId"].to_numpy()),
NEGATIVE_POINTS_TEST + NEGATIVE_POINTS_TRAIN, replace=False)
# Generate the negative samples at different timestamps
negative_data = pd.DataFrame({
"userId": user_id,
"movieId": negative_data_idx,
"rating": 0.,
"timestamp": np.random.randint(time_min, time_max, size=len(negative_data_idx))
},
columns=df.columns
)
# N - 1 samples are determined to be in the training set
batch_train.append(df_user.iloc[:-1])
# Nth sample is determined to be in the testing set
batch_test.append(df_user.iloc[-1:])
# Add negative samples to training and testing sets
batch_train.append(negative_data.iloc[:NEGATIVE_POINTS_TRAIN])
batch_test.append(negative_data.iloc[NEGATIVE_POINTS_TRAIN:])
return batch_train, batch_test
if __name__ == "__main__":
np.random.seed(0)
# Import dataset from the .csv file
df = pd.read_csv("./ml-25m/ratings.csv")
# Convert the explicit data to implicit data
df["rating"] = 1.0
# Encode user and movies
user_ids = df["userId"].unique().tolist()
movie_ids = df["movieId"].unique().tolist()
user2user_encoded = {x: i for i, x in enumerate(user_ids)}
movie2movie_encoded = {x: i for i, x in enumerate(movie_ids)}
df["userId"] = df["userId"].map(user2user_encoded)
df["movieId"] = df["movieId"].map(movie2movie_encoded)
num_users = len(user_ids)
num_movies = len(movie_ids)
print("Number of users: {}, Number of Movies: {}".format(num_users, num_movies))
# Init the .csv files containing training and testing data
if not os.path.exists(DEST_PATH):
os.makedirs(DEST_PATH)
df_train = pd.DataFrame(columns=df.columns)
df_test = pd.DataFrame(columns=df.columns)
df_train.to_csv(os.path.join(DEST_PATH, "train.csv"), header=True, mode="w", index=False)
df_test.to_csv(os.path.join(DEST_PATH, "test.csv"), header=True, mode="w", index=False)
max_processes = multiprocessing.cpu_count()
# Generate training and testing sets + Add negative data points
batches_indexes = [np.arange(num_users)[i:i + BATCH_SIZE] for i in range(0, num_users, BATCH_SIZE)]
pbar = tqdm(total=len(batches_indexes))
start_t = time.perf_counter()
with concurrent.futures.ProcessPoolExecutor(max_workers=max_processes) as executor:
for result in executor.map(process_batch, [df] * len(batches_indexes), batches_indexes,
[num_movies] * len(batches_indexes)):
pd.concat(result[0], ignore_index=True).to_csv(os.path.join(DEST_PATH, "train.csv"), index=False, mode="a",
header=False)
pd.concat(result[1], ignore_index=True).to_csv(os.path.join(DEST_PATH, "test.csv"), index=False, mode="a",
header=False)
pbar.update(1)
pbar.close()
finish_t = time.perf_counter()
execution_time = finish_t - start_t
# Format elapsed time as MM:SS
minutes = int(execution_time // 60)
seconds = int(execution_time % 60)
formatted_time = f"{minutes:02}:{seconds:02}"
print("Execution time:", formatted_time)