-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmandelbrot_mpi.cpp
206 lines (168 loc) · 6.93 KB
/
mandelbrot_mpi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#include <iostream>
#include <complex>
#include <fstream>
#include <ctime>
#include <chrono>
#include "mpi.h"
using namespace std;
#define MAX_ITER 1000
#define N_TRIALS 7
#define SEQUENTIAL_SMALL_TIME 58.3892
#define SEQUENTIAL_MEDIUM_TIME 129.778
#define SEQUENTIAL_LARGE_TIME 567.201
void printMatrixToFile(int *T, int n, int m, char *output_image) {
ofstream image;
image.open(output_image, ios::out);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
image << j << " " << i << " " << T[i * m + j] << endl;
}
}
}
int isInMandelbrot(std::complex<double> point) {
bool isInside = true;
std::complex<double> Z = point;
int num_iter = 0;
for (int iter = 0; iter <= MAX_ITER - 1; ++iter) {
if (std::abs(Z) > 2) {
isInside = false;
num_iter = iter;
break;
}
Z = std::pow(Z, 2) + point;
}
if (isInside == true)
return 0;
return num_iter;
}
int main(int argc, char **argv) {
if (argc < 8) {
cout << "Incorrect number of parameters" << endl;
return -1;
}
char *output_image;
int real_axys_length = atoi(argv[1]);
int imaginary_axys_length = atoi(argv[2]);
double real_part_root = stod(argv[3]);
double img_part_root = stod(argv[4]);
double L = stod(argv[5]);
int task_size = atoi(argv[6]);
output_image = argv[7];
std::complex<double> root(real_part_root, img_part_root);
std::complex<double> aux_img(0.0, L / imaginary_axys_length);
std::complex<double> aux_real(L / real_axys_length, 0.0);
std::complex<double> aux_img_task(0.0, (L / imaginary_axys_length) * task_size);
int multiple = (int) imaginary_axys_length / task_size;
imaginary_axys_length = multiple * task_size;
int mpi_num_nodes, mpi_my_rank;
MPI_Status status;
chrono::high_resolution_clock::time_point t1, t2;
chrono::duration<double> diff;
double best_time;
int err = MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_num_nodes);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_my_rank);
int num_task = imaginary_axys_length / task_size;
int num_slaves = mpi_num_nodes - 1;
for (int iter = 0; iter < N_TRIALS; iter++) {
int flag = 0;
//MASTER - begin
if (mpi_my_rank == 0) {
MPI_Request requests[mpi_num_nodes];
for (int i = 1; i <= num_slaves; i++)
requests[i] = MPI_REQUEST_NULL;
int num_sent_tasks = 0;
int num_received_tasks = 0;
std::complex<double> buffer_send[2];
int *output_matrix = new int[real_axys_length * imaginary_axys_length];
std::complex<double> aux = root;
t1 = chrono::high_resolution_clock::now();
for (int dest = 1; dest < mpi_num_nodes; dest++) {
buffer_send[0] = aux;
aux = aux + aux_img_task;
buffer_send[1] = aux;
MPI_Send(&buffer_send, 2, MPI_DOUBLE_COMPLEX, dest, num_sent_tasks, MPI_COMM_WORLD);
aux = aux + aux_img_task;
num_sent_tasks = num_sent_tasks + 2;
}
bool go = true;
while (go) {
MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &flag, &status);
if (flag) {
MPI_Irecv(&output_matrix[status.MPI_TAG * (real_axys_length * task_size)], (real_axys_length * task_size), MPI_INT, status.MPI_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &requests[status.MPI_SOURCE]);
num_received_tasks++;
if (num_sent_tasks < num_task) {
buffer_send[0] = aux;
MPI_Send(buffer_send, 1, MPI_DOUBLE_COMPLEX, status.MPI_SOURCE, num_sent_tasks, MPI_COMM_WORLD);
aux = aux + aux_img_task;
num_sent_tasks++;
}
if (num_received_tasks == num_task) {
go = false;
break;
}
}
}
for (int dest = 1; dest < mpi_num_nodes; dest++) {
MPI_Send(buffer_send, 1, MPI_DOUBLE_COMPLEX, dest, 99999, MPI_COMM_WORLD);
MPI_Wait(&requests[dest], MPI_STATUS_IGNORE);
}
t2 = chrono::high_resolution_clock::now();
diff = t2 - t1;
if (iter == 0)
best_time = diff.count();
if (diff.count() < best_time)
best_time = diff.count();
if (iter == (N_TRIALS-1))
cout << task_size << " " << SEQUENTIAL_LARGE_TIME / best_time << " (" << best_time << ")" << endl;
//printMatrixToFile(output_matrix, imaginary_axys_length, real_axys_length, output_image);
}
//MASTER - end
//SLAVES - begin
else {
int task;
std::complex<double> buffer_rcv[2];
MPI_Request request;
int *buffer_send = new int[real_axys_length * task_size];
MPI_Recv(buffer_rcv, 2, MPI_DOUBLE_COMPLEX, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
std::complex<double> aux = buffer_rcv[0];
std::complex<double> root = buffer_rcv[0];
task = status.MPI_TAG;
int i,j;
for (i = 0; i < task_size; i++) {
for (j = 0; j < real_axys_length; j++) {
buffer_send[i * real_axys_length + j] = isInMandelbrot(aux);
aux += aux_real;
}
aux += aux_img;
aux = complex<double>(real(root), imag(aux));
}
MPI_Send(buffer_send, (real_axys_length * task_size), MPI_INT, 0, task, MPI_COMM_WORLD);
buffer_rcv[0] = buffer_rcv[1];
task = task+1;
while (true) {
aux = buffer_rcv[0];
root = buffer_rcv[0];
MPI_Irecv(buffer_rcv, 1, MPI_DOUBLE_COMPLEX, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &request);
for (i = 0; i < task_size; i++) {
for (j = 0; j < real_axys_length; j++) {
buffer_send[i * real_axys_length + j] = isInMandelbrot(aux);
aux += aux_real;
}
aux += aux_img;
aux = complex<double>(real(root), imag(aux));
}
MPI_Send(buffer_send, (real_axys_length * task_size), MPI_INT, 0, task, MPI_COMM_WORLD);
MPI_Test(&request, &flag, &status);
if (!flag)
MPI_Wait(&request, &status);
if (status.MPI_TAG == 99999)
break;
task = status.MPI_TAG;
}
}
//SLAVES - end
}
err = MPI_Finalize();
return 0;
}