-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistill.py
249 lines (191 loc) · 8.85 KB
/
distill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import copy
import random
from collections import OrderedDict
import matplotlib.pyplot as plt
import dill
import torch
import higher
import wandb
import contflame.data.datasets as datasets
from contflame.data.utils import MultiLoader, Buffer
from torch import nn
import numpy as np
from torch.cuda.amp import autocast
from torch import autograd
from torch.utils.data import DataLoader
import models
w = 0
def print_images(imgs, trgs, mean, std):
global w
for img, trg in zip(imgs, trgs):
print(trg)
std = [std[0] for _ in range(img.size(0))] if len(std) == 1 else std
mean = [mean[0] for _ in range(img.size(0))] if len(mean) == 1 else mean
for i in range(img.size(0)):
img[i] = img[i] * std[i] + mean[i]
img = img * 255
img = img.cpu().detach().numpy()
img = np.transpose(img, (1, 2, 0))
img = np.squeeze(img)
img = img.astype(np.uint8)
plt.imsave(f'./img{w}.png', img)
w += 1
def train(model, optimizer, criterion, train_loader, config):
model.train()
correct = 0
loss_sum = 0
tot = 0
for step, (data, targets) in enumerate(train_loader):
data = data.to(config['device'])
targets = targets.to(config['device'])
optimizer.zero_grad()
with autocast():
outputs = model(data)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, dim=1)
loss_sum += loss.item() * data.size(0)
correct += preds.eq(targets).sum().item()
tot += data.size(0)
accuracy = correct / tot
loss = loss_sum / tot
return loss, accuracy
def test(model, criterion, test_loader, config):
model.eval()
correct = 0
loss_sum = 0
tot = 0
for step, (data, targets) in enumerate(test_loader):
data = data.to(config['device'])
targets = targets.to(config['device'])
with torch.no_grad() and autocast():
outputs = model(data)
loss = criterion(outputs, targets)
_, preds = torch.max(outputs, dim=1)
loss_sum += loss.item() * data.size(0)
correct += preds.eq(targets).sum().item()
tot += data.size(0)
accuracy = correct / tot
loss = loss_sum / tot
return loss, accuracy
def run(config):
run_config = config['run_config']
model_config = config['model_config']
param_config = config['param_config']
data_config = config['data_config']
log_config = config['log_config']
if log_config['wandb']:
wandb.init(project="PROJECT-NAME", name=log_config['wandb_name'])
wandb.config.update(config)
# Reproducibility
seed = run_config['seed']
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Loss
criterion = nn.CrossEntropyLoss()
# Model
net = getattr(models, model_config['arch']).Model(model_config)
net.to(run_config['device'])
# Data
Dataset = getattr(datasets, data_config['dataset'])
validset = Dataset(dset='valid', valid=data_config['valid'], transform=data_config['test_transform'])
validloader = DataLoader(validset, batch_size=param_config['batch_size'], shuffle=False, pin_memory=True, num_workers=data_config['num_workers'])
trainset = Dataset(dset='train', valid=data_config['valid'], transform=data_config['train_transform'])
trainloader = DataLoader(trainset, batch_size=param_config['batch_size'], shuffle=True, pin_memory=True, num_workers=data_config['num_workers'])
buffer = None
for t in range(model_config['n_classes']):
aux = Dataset(dset='train', valid=data_config['valid'], transform=data_config['train_transform'], classes=[t])
buffer = Buffer(aux, param_config['buffer_size']) if buffer is None else buffer + Buffer(aux, param_config['buffer_size'])
buffer, lrs = distill(net, buffer, config, criterion, trainloader)
if run_config['save'] is not None:
with open(run_config['save'], 'wb') as file:
dill.dump(OrderedDict([
('config', config),
('dataset', buffer),
('lrs', lrs),
('init', net.state_dict())
]), file)
bufferloader = MultiLoader([buffer], batch_size=len(buffer))
if log_config['images']:
mean, std = data_config['test_transform'].transforms[-1].mean, data_config['test_transform'].transforms[-1].std
for x, y in bufferloader:
print_images(x, y, mean, std)
for epoch in range(param_config['epochs']):
lr = lrs[epoch] if epoch < len(lrs) else lrs[-1]
optimizer = torch.optim.SGD(net.parameters(), lr=np.log(1 + np.exp(lr)), )
buffer_loss, buffer_accuracy = train(net, optimizer, criterion, bufferloader, run_config)
test_loss, test_accuracy = test(net, criterion, validloader, run_config)
train_loss, train_accuracy = test(net, criterion, trainloader, run_config)
metrics = {f'Test loss': test_loss,
f'Test accuracy': test_accuracy,
f'Train loss': train_loss,
f'Train accuracy': train_accuracy,
f'Buffer loss': buffer_loss,
f'Buffer accuracy': buffer_accuracy,
f'Epoch': epoch}
if log_config['print']:
print(metrics)
if log_config['wandb']:
wandb.log(metrics)
def distill(model, buffer, config, criterion, train_loader):
run_config = config['run_config']
param_config = config['param_config']
log_config = config['log_config']
model.train()
eval_trainloader = copy.deepcopy(train_loader)
buff_imgs, buff_trgs = next(iter(DataLoader(buffer, batch_size=len(buffer))))
# De-comment to use random noise instead of real images. The results are simillar
# buff_imgs = torch.normal(mean=0.1307, std=0.3081, size=buff_imgs.shape)
buff_imgs, buff_trgs = buff_imgs.to(run_config['device']), buff_trgs.to(run_config['device'])
buff_imgs.requires_grad = True
buff_opt = torch.optim.SGD([buff_imgs], lr=param_config['meta_lr'],)
model_opt = torch.optim.SGD(model.parameters(), lr=1,)
lr_list = []
lr_opts = []
for _ in range(param_config['inner_steps']):
lr = torch.tensor([param_config['model_lr']], requires_grad=True, device=run_config['device'])
lr_list.append(lr)
lr_opts.append(torch.optim.SGD([lr], param_config['lr_lr'],))
for i in range(param_config['outer_steps']):
for step, (ds_imgs, ds_trgs) in enumerate(train_loader):
ds_imgs = ds_imgs.to(run_config['device'])
ds_trgs = ds_trgs.to(run_config['device'])
with higher.innerloop_ctx(model, model_opt) as (fmodel, diffopt):
acc_loss = None
for j in range(param_config['inner_steps']):
# Update the model
buff_out = fmodel(buff_imgs)
buff_loss = criterion(buff_out, buff_trgs)
buff_loss = buff_loss * torch.log(1 + torch.exp(lr_list[j]))
diffopt.step(buff_loss)
# Update the buffer (actually we just record the loss and update it outside the inner loop)
ds_out = fmodel(ds_imgs)
ds_loss = criterion(ds_out, ds_trgs)
acc_loss = acc_loss + ds_loss if acc_loss is not None else ds_loss
# Update the lrs
lr_opts[j].zero_grad()
grad, = autograd.grad(ds_loss, lr_list[j], retain_graph=True)
lr_list[j].grad = grad
lr_opts[j].step()
# Metrics (20 samples of loss and accuracy at the last inner step)
if (step + i * len(train_loader)) % int(round(len(train_loader) * param_config['outer_steps'] * 0.05)) == \
int(round(len(train_loader) * param_config['outer_steps'] * 0.05)) - 1 \
and j == param_config['inner_steps'] - 1:
lrs = {f'Learning rate {i}': np.log(1 + np.exp(lr.item())) for (i, lr) in enumerate(lr_list)}
test_loss, test_accuracy = test(fmodel, criterion, eval_trainloader, run_config)
metrics = {f'Distill train loss': test_loss, f'Distill train accuracy': test_accuracy, f'Distill step': step + i * len(train_loader)}
if log_config['wandb']:
wandb.log({**metrics, **lrs})
if log_config['print']:
print(metrics)
buff_opt.zero_grad()
acc_loss.backward()
buff_opt.step()
aux = []
buff_imgs, buff_trgs = buff_imgs.cpu(), buff_trgs.cpu()
for i in range(buff_imgs.size(0)):
aux.append([buff_imgs[i], buff_trgs[i]])
lr_list = [lr.item() for lr in lr_list]
return Buffer(aux, len(aux)), lr_list