This repository has been archived by the owner on Aug 14, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchromevision.py
51 lines (41 loc) · 2.11 KB
/
chromevision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import cv2
import numpy as np
import chrome_utils.model_utils as model_utils
import chrome_utils.cut_utils as cut_utils
import chrome_utils.transforms as transforms
class Chromevision():
def __init__(self, model, cutter):
self.model = model
self.cutterModel = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, trust_repo=True)
self.device = "cuda" if torch.cuda.is_available() else "cpu" # Have to define the device for later use
#Does not currently use a specific cutter because it would be be
#Harder to read and by default worse performance
def identify(self, image_path):
encoder = self.model.encoder_query
self.model.eval() #We swap to the mode we need (evaluation)
encoder.eval()
image = cv2.imread(image_path)
cuts = self.cutterModel(image)
for cut in cuts.xyxy[0].data: # Goes through the different cuts corner values
x1, y1, x2, y2 = cut[:4]
# Adding the crop to the boxes list
imageCut = image[int(y1):int(y2),int(x1):int(x2)].copy()
imageCut = cut_utils.scaleCuts(imageCut)
if imageCut is None:
continue
imageCut = transforms.evalTransform(imageCut).unsqueeze(0).to(self.device)
with torch.no_grad():
features = encoder(imageCut)
probabilities = torch.softmax(features, dim=1)
predicted_class = np.argmax(probabilities.cpu().numpy())
startPoint_rectangle = (int(x1), int(y1)) #We add the box and class to the original image
endPoint_rectangle = (int(x2), int(y2))
color_bgr = (0, 255, 0)
thickness = 2
cv2.rectangle(image, startPoint_rectangle, endPoint_rectangle, color_bgr, thickness)
org = (int(x1), int(y1) - 10)
color_bgr = (0, 0, 255)
frontScale = 0.5
cv2.putText(image, str(predicted_class), org, cv2.FONT_HERSHEY_SIMPLEX, frontScale, color_bgr, thickness)
return image