|
6 | 6 |
|
7 | 7 | from vega import VegaInterface
|
8 | 8 |
|
9 |
| -# if __name__ == '__main__': |
10 |
| -pars = argparse.ArgumentParser( |
11 |
| - formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
12 |
| - description='Run Vega in parallel.') |
13 |
| - |
14 |
| -pars.add_argument('config', type=str, default=None, help='Config file') |
15 |
| -args = pars.parse_args() |
16 |
| - |
17 |
| -mpi_comm = MPI.COMM_WORLD |
18 |
| -cpu_rank = mpi_comm.Get_rank() |
19 |
| - |
20 |
| -def print_func(message): |
21 |
| - if cpu_rank == 0: |
22 |
| - print(message) |
23 |
| - sys.stdout.flush() |
24 |
| - mpi_comm.barrier() |
25 |
| - |
26 |
| -print_func('Initializing Vega') |
27 |
| - |
28 |
| -# Initialize Vega and get the sampling parameters |
29 |
| -vega = VegaInterface(args.config) |
30 |
| -sampling_params = vega.sample_params['limits'] |
31 |
| - |
32 |
| -print_func('Finished initializing Vega') |
33 |
| - |
34 |
| -# Check if we need the distortion |
35 |
| -use_distortion = vega.main_config['control'].getboolean('use_distortion', True) |
36 |
| -if not use_distortion: |
37 |
| - for key, data in vega.data.items(): |
38 |
| - data._distortion_mat = None |
39 |
| - test_model = vega.compute_model(vega.params, run_init=True) |
40 |
| - |
41 |
| -# Check if we need to run over a Monte Carlo mock |
42 |
| -run_montecarlo = vega.main_config['control'].getboolean('run_montecarlo', False) |
43 |
| -if run_montecarlo and vega.mc_config is not None: |
44 |
| - # Get the MC seed and forecast flag |
45 |
| - seed = vega.main_config['control'].getfloat('mc_seed', 0) |
46 |
| - forecast = vega.main_config['control'].getboolean('forecast', False) |
47 |
| - |
48 |
| - # Create the mocks |
49 |
| - vega.monte_carlo_sim(vega.mc_config['params'], seed=seed, forecast=forecast) |
50 |
| - |
51 |
| - # Set to sample the MC params |
52 |
| - sampling_params = vega.mc_config['sample']['limits'] |
53 |
| - print_func('Created Monte Carlo realization of the correlation') |
54 |
| -elif run_montecarlo: |
55 |
| - raise ValueError('You asked to run over a Monte Carlo simulation,' |
56 |
| - ' but no "[monte carlo]" section provided.') |
57 |
| - |
58 |
| -# Run sampler |
59 |
| -if not vega.run_sampler: |
60 |
| - raise ValueError('Warning: You called "run_vega_mpi.py" without asking' |
61 |
| - ' for the sampler. Add "run_sampler = True" to the "[control]" section.') |
62 |
| - |
63 |
| -if vega.sampler == 'Polychord': |
64 |
| - from vega.samplers.polychord import Polychord |
65 |
| - |
66 |
| - print_func('Running Polychord') |
67 |
| - sampler = Polychord(vega.main_config['Polychord'], sampling_params) |
68 |
| - sampler.run(vega.log_lik) |
69 |
| -elif vega.sampler == 'PocoMC': |
70 |
| - from vega.samplers.pocomc import PocoMC |
71 |
| - |
72 |
| - print_func('Running PocoMC') |
73 |
| - sampler = PocoMC(vega.main_config['PocoMC'], sampling_params) |
74 |
| - mpi_comm.barrier() |
75 |
| - sampler.run(vega.log_lik) |
76 |
| - mpi_comm.barrier() |
77 |
| - |
78 |
| - if cpu_rank == 0: |
79 |
| - sampler.write_chain() |
80 |
| - mpi_comm.barrier() |
81 |
| - |
82 |
| -print_func('Finished running sampler') |
| 9 | +if __name__ == '__main__': |
| 10 | + pars = argparse.ArgumentParser( |
| 11 | + formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
| 12 | + description='Run Vega in parallel.') |
| 13 | + |
| 14 | + pars.add_argument('config', type=str, default=None, help='Config file') |
| 15 | + args = pars.parse_args() |
| 16 | + |
| 17 | + mpi_comm = MPI.COMM_WORLD |
| 18 | + cpu_rank = mpi_comm.Get_rank() |
| 19 | + |
| 20 | + def print_func(message): |
| 21 | + if cpu_rank == 0: |
| 22 | + print(message) |
| 23 | + sys.stdout.flush() |
| 24 | + mpi_comm.barrier() |
| 25 | + |
| 26 | + print_func('Initializing Vega') |
| 27 | + |
| 28 | + # Initialize Vega and get the sampling parameters |
| 29 | + vega = VegaInterface(args.config) |
| 30 | + sampling_params = vega.sample_params['limits'] |
| 31 | + |
| 32 | + print_func('Finished initializing Vega') |
| 33 | + |
| 34 | + # Check if we need the distortion |
| 35 | + use_distortion = vega.main_config['control'].getboolean('use_distortion', True) |
| 36 | + if not use_distortion: |
| 37 | + for key, data in vega.data.items(): |
| 38 | + data._distortion_mat = None |
| 39 | + test_model = vega.compute_model(vega.params, run_init=True) |
| 40 | + |
| 41 | + # Check if we need to run over a Monte Carlo mock |
| 42 | + run_montecarlo = vega.main_config['control'].getboolean('run_montecarlo', False) |
| 43 | + if run_montecarlo and vega.mc_config is not None: |
| 44 | + # Get the MC seed and forecast flag |
| 45 | + seed = vega.main_config['control'].getfloat('mc_seed', 0) |
| 46 | + forecast = vega.main_config['control'].getboolean('forecast', False) |
| 47 | + |
| 48 | + # Create the mocks |
| 49 | + vega.monte_carlo_sim(vega.mc_config['params'], seed=seed, forecast=forecast) |
| 50 | + |
| 51 | + # Set to sample the MC params |
| 52 | + sampling_params = vega.mc_config['sample']['limits'] |
| 53 | + print_func('Created Monte Carlo realization of the correlation') |
| 54 | + elif run_montecarlo: |
| 55 | + raise ValueError('You asked to run over a Monte Carlo simulation,' |
| 56 | + ' but no "[monte carlo]" section provided.') |
| 57 | + |
| 58 | + # Run sampler |
| 59 | + if not vega.run_sampler: |
| 60 | + raise ValueError('Warning: You called "run_vega_mpi.py" without asking' |
| 61 | + ' for the sampler. Add "run_sampler = True" to the "[control]" section.') |
| 62 | + |
| 63 | + if vega.sampler == 'Polychord': |
| 64 | + from vega.samplers.polychord import Polychord |
| 65 | + |
| 66 | + print_func('Running Polychord') |
| 67 | + sampler = Polychord(vega.main_config['Polychord'], sampling_params) |
| 68 | + sampler.run(vega.log_lik) |
| 69 | + |
| 70 | + elif vega.sampler == 'PocoMC': |
| 71 | + from vega.samplers.pocomc import PocoMC |
| 72 | + import pocomc |
| 73 | + from multiprocessing import Pool |
| 74 | + |
| 75 | + print_func('Running PocoMC') |
| 76 | + sampler = PocoMC(vega.main_config['PocoMC'], sampling_params) |
| 77 | + if sampler.use_mpi: |
| 78 | + assert False |
| 79 | + |
| 80 | + def log_lik(theta): |
| 81 | + params = {name: val for name, val in zip(sampler.names, theta)} |
| 82 | + return vega.log_lik(params) |
| 83 | + |
| 84 | + mpi_comm.barrier() |
| 85 | + with Pool(sampler.num_cpu) as pool: |
| 86 | + sampler.pocomc_sampler = pocomc.Sampler( |
| 87 | + sampler.prior, log_lik, |
| 88 | + pool=pool, output_dir=sampler.path, |
| 89 | + dynamic=sampler.dynamic, precondition=sampler.precondition, |
| 90 | + n_effective=sampler.n_effective, n_active=sampler.n_active, |
| 91 | + ) |
| 92 | + sampler.pocomc_sampler.run(sampler.n_total, sampler.n_evidence, save_every=sampler.save_every) |
| 93 | + |
| 94 | + # sampler.run(vega.log_lik) |
| 95 | + mpi_comm.barrier() |
| 96 | + |
| 97 | + if cpu_rank == 0: |
| 98 | + sampler.write_chain() |
| 99 | + mpi_comm.barrier() |
| 100 | + |
| 101 | + print_func('Finished running sampler') |
0 commit comments