-
Notifications
You must be signed in to change notification settings - Fork 4
/
experiment5.txt
243 lines (211 loc) · 6.53 KB
/
experiment5.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
Experiment 5 - Winnow with MaxIterations = 20
UNIGRAMS:
python onlinelearning.py -a 2 -i 20 -f 1
+-------------------------------+
| EXPERIMENT |
+-------------------------------+
Algorithm: WINNOW
Max iterations: 20
Feature set: UNIGRAMS
+-------------------------------+
| TRAINING WEIGHTS |
+-------------------------------+
WINNOW Iteration # 0 Errors = 3210
WINNOW Iteration # 1 Errors = 3210
WINNOW Iteration # 2 Errors = 3210
WINNOW Iteration # 3 Errors = 3210
WINNOW Iteration # 4 Errors = 3210
WINNOW Iteration # 5 Errors = 3212
WINNOW Iteration # 6 Errors = 3206
WINNOW Iteration # 7 Errors = 3183
WINNOW Iteration # 8 Errors = 3184
WINNOW Iteration # 9 Errors = 3172
WINNOW Iteration # 10 Errors = 3168
WINNOW Iteration # 11 Errors = 3174
WINNOW Iteration # 12 Errors = 3156
WINNOW Iteration # 13 Errors = 3173
WINNOW Iteration # 14 Errors = 3159
WINNOW Iteration # 15 Errors = 3161
WINNOW Iteration # 16 Errors = 3163
WINNOW Iteration # 17 Errors = 3170
WINNOW Iteration # 18 Errors = 3173
WINNOW Iteration # 19 Errors = 3174
+-------------------------------+
| PERFORMANCE FOR TRAINING SET |
+-------------------------------+
MATCHES: 3210
MISMATCHES: 3188
TRUE POSITIVES: 3210
PREDICTED POSITIVES: 6398
ACTUAL POSITIVES: 3210
ACCURACY: 0.0
PRECISION: 0.501719287277
RECALL: 1.0
AVERAGE: 0.750859643639
F-SCORE: 0.668193172356
+---------------------------------+
| PERFORMANCE FOR VALIDATING SET |
+---------------------------------+
MATCHES: 1068
MISMATCHES: 1064
TRUE POSITIVES: 1068
PREDICTED POSITIVES: 2132
ACTUAL POSITIVES: 1068
ACCURACY: 0.0
PRECISION: 0.500938086304
RECALL: 1.0
AVERAGE: 0.750469043152
F-SCORE: 0.6675
+------------------------------+
| PERFORMANCE FOR TESTING SET |
+------------------------------+
MATCHES: 1053
MISMATCHES: 1079
TRUE POSITIVES: 1053
PREDICTED POSITIVES: 2132
ACTUAL POSITIVES: 1053
ACCURACY: 0.0
PRECISION: 0.493902439024
RECALL: 1.0
AVERAGE: 0.746951219512
F-SCORE: 0.661224489796
BIGRAMS:
python onlinelearning.py -a 2 -i 20 -f 2
+-------------------------------+
| EXPERIMENT |
+-------------------------------+
Algorithm: WINNOW
Max iterations: 20
Feature set: BIGRAMS
+-------------------------------+
| TRAINING WEIGHTS |
+-------------------------------+
WINNOW Iteration # 0 Errors = 3208
WINNOW Iteration # 1 Errors = 3208
WINNOW Iteration # 2 Errors = 3208
WINNOW Iteration # 3 Errors = 3208
WINNOW Iteration # 4 Errors = 3208
WINNOW Iteration # 5 Errors = 3208
WINNOW Iteration # 6 Errors = 3208
WINNOW Iteration # 7 Errors = 3208
WINNOW Iteration # 8 Errors = 3208
WINNOW Iteration # 9 Errors = 3208
WINNOW Iteration # 10 Errors = 3208
WINNOW Iteration # 11 Errors = 3208
WINNOW Iteration # 12 Errors = 3208
WINNOW Iteration # 13 Errors = 3208
WINNOW Iteration # 14 Errors = 3208
WINNOW Iteration # 15 Errors = 3208
WINNOW Iteration # 16 Errors = 3208
WINNOW Iteration # 17 Errors = 3208
WINNOW Iteration # 18 Errors = 3208
WINNOW Iteration # 19 Errors = 3208
+-------------------------------+
| PERFORMANCE FOR TRAINING SET |
+-------------------------------+
MATCHES: 3208
MISMATCHES: 3177
TRUE POSITIVES: 3208
PREDICTED POSITIVES: 6385
ACTUAL POSITIVES: 3210
ACCURACY: 0.0
PRECISION: 0.502427564605
RECALL: 0.99937694704
AVERAGE: 0.750902255823
F-SCORE: 0.668681605003
+---------------------------------+
| PERFORMANCE FOR VALIDATING SET |
+---------------------------------+
MATCHES: 1016
MISMATCHES: 1115
TRUE POSITIVES: 782
PREDICTED POSITIVES: 1612
ACTUAL POSITIVES: 1068
ACCURACY: 0.161182576342
PRECISION: 0.485111662531
RECALL: 0.732209737828
AVERAGE: 0.608660700179
F-SCORE: 0.583582089552
+------------------------------+
| PERFORMANCE FOR TESTING SET |
+------------------------------+
MATCHES: 1055
MISMATCHES: 1076
TRUE POSITIVES: 805
PREDICTED POSITIVES: 1633
ACTUAL POSITIVES: 1053
ACCURACY: 0.177291843959
PRECISION: 0.492957746479
RECALL: 0.764482431149
AVERAGE: 0.628720088814
F-SCORE: 0.59940431869
BOTH:
python onlinelearning.py -a 2 -i 20 -f 3
+-------------------------------+
| EXPERIMENT |
+-------------------------------+
Algorithm: WINNOW
Max iterations: 20
Feature set: BOTH
+-------------------------------+
| TRAINING WEIGHTS |
+-------------------------------+
WINNOW Iteration # 0 Errors = 3210
WINNOW Iteration # 1 Errors = 3210
WINNOW Iteration # 2 Errors = 3210
WINNOW Iteration # 3 Errors = 3210
WINNOW Iteration # 4 Errors = 3210
WINNOW Iteration # 5 Errors = 3210
WINNOW Iteration # 6 Errors = 3210
WINNOW Iteration # 7 Errors = 3210
WINNOW Iteration # 8 Errors = 3210
WINNOW Iteration # 9 Errors = 3210
WINNOW Iteration # 10 Errors = 3210
WINNOW Iteration # 11 Errors = 3210
WINNOW Iteration # 12 Errors = 3210
WINNOW Iteration # 13 Errors = 3210
WINNOW Iteration # 14 Errors = 3210
WINNOW Iteration # 15 Errors = 3210
WINNOW Iteration # 16 Errors = 3210
WINNOW Iteration # 17 Errors = 3210
WINNOW Iteration # 18 Errors = 3210
WINNOW Iteration # 19 Errors = 3209
+-------------------------------+
| PERFORMANCE FOR TRAINING SET |
+-------------------------------+
MATCHES: 3210
MISMATCHES: 3188
TRUE POSITIVES: 3210
PREDICTED POSITIVES: 6398
ACTUAL POSITIVES: 3210
ACCURACY: 0.0
PRECISION: 0.501719287277
RECALL: 1.0
AVERAGE: 0.750859643639
F-SCORE: 0.668193172356
+---------------------------------+
| PERFORMANCE FOR VALIDATING SET |
+---------------------------------+
MATCHES: 1068
MISMATCHES: 1064
TRUE POSITIVES: 1068
PREDICTED POSITIVES: 2132
ACTUAL POSITIVES: 1068
ACCURACY: 0.0
PRECISION: 0.500938086304
RECALL: 1.0
AVERAGE: 0.750469043152
F-SCORE: 0.6675
+------------------------------+
| PERFORMANCE FOR TESTING SET |
+------------------------------+
MATCHES: 1053
MISMATCHES: 1079
TRUE POSITIVES: 1053
PREDICTED POSITIVES: 2132
ACTUAL POSITIVES: 1053
ACCURACY: 0.0
PRECISION: 0.493902439024
RECALL: 1.0
AVERAGE: 0.746951219512
F-SCORE: 0.661224489796