-
Notifications
You must be signed in to change notification settings - Fork 175
/
run_bgan_semi.py
executable file
·410 lines (312 loc) · 15.2 KB
/
run_bgan_semi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#!/usr/bin/env python
import os
import sys
import argparse
import json
import time
import numpy as np
from math import ceil
from PIL import Image
import tensorflow as tf
from tensorflow.contrib import slim
from bgan_util import AttributeDict
from bgan_util import print_images, MnistDataset, CelebDataset, Cifar10, SVHN, ImageNet
from bgan_semi import BDCGAN_Semi
def get_session():
if tf.get_default_session() is None:
print "Creating new session"
tf.reset_default_graph()
_SESSION = tf.InteractiveSession()
else:
print "Using old session"
_SESSION = tf.get_default_session()
return _SESSION
def get_gan_labels(lbls):
# add class 0 which is the "fake" class
if lbls is not None:
labels = np.zeros((lbls.shape[0], lbls.shape[1] + 1))
labels[:, 1:] = lbls
else:
labels = None
return labels
def get_supervised_batches(dataset, size, batch_size, class_ids):
def batchify_with_size(sampled_imgs, sampled_labels, size):
rand_idx = np.random.choice(range(sampled_imgs.shape[0]), size, replace=False)
imgs_ = sampled_imgs[rand_idx]
lbls_ = sampled_labels[rand_idx]
rand_idx = np.random.choice(range(imgs_.shape[0]), batch_size, replace=True)
imgs_ = imgs_[rand_idx]
lbls_ = lbls_[rand_idx]
return imgs_, lbls_
labeled_image_batches, lblss = [], []
num_passes = int(ceil(float(size) / batch_size))
for _ in xrange(num_passes):
for class_id in class_ids:
labeled_image_batch, lbls = dataset.next_batch(int(ceil(float(batch_size)/len(class_ids))),
class_id=class_id)
labeled_image_batches.append(labeled_image_batch)
lblss.append(lbls)
labeled_image_batches = np.concatenate(labeled_image_batches)
lblss = np.concatenate(lblss)
if size < batch_size:
labeled_image_batches, lblss = batchify_with_size(labeled_image_batches, lblss, size)
shuffle_idx = np.arange(lblss.shape[0]); np.random.shuffle(shuffle_idx)
labeled_image_batches = labeled_image_batches[shuffle_idx]
lblss = lblss[shuffle_idx]
while True:
i = np.random.randint(max(1, size/batch_size))
yield (labeled_image_batches[i*batch_size:(i+1)*batch_size],
lblss[i*batch_size:(i+1)*batch_size])
def get_test_batches(dataset, batch_size):
try:
test_imgs, test_lbls = dataset.test_imgs, dataset.test_labels
except:
test_imgs, test_lbls = dataset.get_test_set()
all_test_img_batches, all_test_lbls = [], []
test_size = test_imgs.shape[0]
i = 0
while (i+1)*batch_size <= test_size:
all_test_img_batches.append(test_imgs[i*batch_size:(i+1)*batch_size])
all_test_lbls.append(test_lbls[i*batch_size:(i+1)*batch_size])
i += 1
return all_test_img_batches, all_test_lbls
def get_test_accuracy(session, dcgan, all_test_img_batches, all_test_lbls):
# only need this function because bdcgan has a fixed batch size for *everything*
# test_size is in number of batches
all_d_probs, all_s_probs = [], []
for test_image_batch, test_lbls in zip(all_test_img_batches, all_test_lbls):
test_d_probs, test_s_probs = session.run([dcgan.test_d_probs, dcgan.test_s_probs],
feed_dict={dcgan.test_inputs: test_image_batch})
ensemble_d_probs = np.concatenate([d_probs_[:, :, None] for d_probs_ in test_d_probs], axis=-1).sum(-1)
all_d_probs.append(ensemble_d_probs)
all_s_probs.append(test_s_probs)
test_d_probs = np.concatenate(all_d_probs)
test_s_probs = np.concatenate(all_s_probs)
test_lbls = np.concatenate(all_test_lbls)
sup_acc = (100. * np.sum(np.argmax(test_s_probs, 1) == np.argmax(test_lbls, 1)))\
/ test_lbls.shape[0]
semi_sup_acc = (100. * np.sum(np.argmax(test_d_probs, 1) == np.argmax(test_lbls, 1)))\
/ test_lbls.shape[0]
print "Sup acc: %.5f" % (sup_acc)
print "Semi-sup acc: %.5f" % (semi_sup_acc)
return sup_acc, semi_sup_acc
def b_dcgan(dataset, args):
z_dim = args.z_dim
x_dim = dataset.x_dim
batch_size = args.batch_size
dataset_size = dataset.dataset_size
session = get_session()
tf.set_random_seed(args.random_seed)
dcgan = BDCGAN_Semi(x_dim, z_dim, dataset_size, batch_size=batch_size, J=args.J, J_d=args.J_d, M=args.M,
num_layers=args.num_layers,
lr=args.lr, optimizer=args.optimizer, gf_dim=args.gf_dim,
df_dim=args.df_dim, ml=(args.ml and args.J==1 and args.M==1 and args.J_d==1),
num_classes=dataset.num_classes)
print "Starting session"
session.run(tf.global_variables_initializer())
print "Starting training loop"
num_train_iter = args.train_iter
if hasattr(dataset, "supervised_batches"):
# implement own data feeder if data doesnt fit in memory
supervised_batches = dataset.supervised_batches(args.N, batch_size)
else:
supervised_batches = get_supervised_batches(dataset, args.N, batch_size, range(dataset.num_classes))
test_image_batches, test_label_batches = get_test_batches(dataset, batch_size)
optimizer_dict = {"disc_semi": dcgan.d_optims_semi_adam,
"sup_d": dcgan.s_optim_adam,
"gen": dcgan.g_optims_semi_adam}
base_learning_rate = args.lr # for now we use same learning rate for Ds and Gs
lr_decay_rate = args.lr_decay
num_disc = args.J_d
for train_iter in range(num_train_iter):
if train_iter == 5000:
print "Switching to user-specified optimizer"
optimizer_dict = {"disc_semi": dcgan.d_optims_semi,
"sup_d": dcgan.s_optim,
"gen": dcgan.g_optims_semi}
learning_rate = base_learning_rate * np.exp(-lr_decay_rate *
min(1.0, (train_iter*batch_size)/float(dataset_size)))
image_batch, _ = dataset.next_batch(batch_size, class_id=None)
labeled_image_batch, labels = supervised_batches.next()
### compute disc losses
batch_z = np.random.uniform(-1, 1, [batch_size, z_dim, dcgan.num_gen])
disc_info = session.run(optimizer_dict["disc_semi"] + dcgan.d_losses,
feed_dict={dcgan.labeled_inputs: labeled_image_batch,
dcgan.labels: labels,
dcgan.inputs: image_batch,
dcgan.z: batch_z,
dcgan.d_semi_learning_rate: learning_rate})
d_losses = [d_ for d_ in disc_info if d_ is not None]
### compute generative losses
batch_z = np.random.uniform(-1, 1, [batch_size, z_dim, dcgan.num_gen])
gen_info = session.run(optimizer_dict["gen"] + dcgan.g_losses,
feed_dict={dcgan.z: batch_z,
dcgan.inputs: image_batch,
dcgan.g_learning_rate: learning_rate})
g_losses = [g_ for g_ in gen_info if g_ is not None]
### vanilla supervised loss
_, s_loss = session.run([optimizer_dict["sup_d"], dcgan.s_loss], feed_dict={dcgan.inputs: labeled_image_batch,
dcgan.lbls: labels})
if train_iter > 0 and train_iter % args.n_save == 0:
print "Iter %i" % train_iter
print "Disc losses = %s" % (", ".join(["%.2f" % dl for dl in d_losses]))
print "Gen losses = %s" % (", ".join(["%.2f" % gl for gl in g_losses]))
# get test set performance on real labels only for both GAN-based classifier and standard one
s_acc, ss_acc = get_test_accuracy(session, dcgan, test_image_batches, test_label_batches)
print "Sup classification acc: %.2f" % (s_acc)
print "Semi-sup classification acc: %.2f" % (ss_acc)
print "saving results and samples"
results = {"disc_losses": map(float, d_losses),
"gen_losses": map(float, g_losses),
"supervised_acc": float(s_acc),
"semi_supervised_acc": float(ss_acc),
"timestamp": time.time()}
with open(os.path.join(args.out_dir, 'results_%i.json' % train_iter), 'w') as fp:
json.dump(results, fp)
if args.save_samples:
for zi in xrange(dcgan.num_gen):
_imgs, _ps = [], []
for _ in range(10):
z_sampler = np.random.uniform(-1, 1, size=(batch_size, z_dim))
sampled_imgs = session.run(dcgan.gen_samplers[zi*dcgan.num_mcmc],
feed_dict={dcgan.z_sampler: z_sampler})
_imgs.append(sampled_imgs)
sampled_imgs = np.concatenate(_imgs)
print_images(sampled_imgs, "B_DCGAN_%i_%.2f" % (zi, g_losses[zi*dcgan.num_mcmc]),
train_iter, directory=args.out_dir)
print_images(image_batch, "RAW", train_iter, directory=args.out_dir)
if args.save_weights:
var_dict = {}
for var in tf.trainable_variables():
var_dict[var.name] = session.run(var.name)
np.savez_compressed(os.path.join(args.out_dir,
"weights_%i.npz" % train_iter),
**var_dict)
print "done"
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Script to run Bayesian GAN experiments')
parser.add_argument('--out_dir',
type=str,
required=True,
help="location of outputs (root location, which exists)")
parser.add_argument('--n_save',
type=int,
default=100,
help="every n_save iteration save samples and weights")
parser.add_argument('--z_dim',
type=int,
default=100,
help='dim of z for generator')
parser.add_argument('--gf_dim',
type=int,
default=64,
help='num of gen features')
parser.add_argument('--df_dim',
type=int,
default=96,
help='num of disc features')
parser.add_argument('--data_path',
type=str,
required=True,
help='path to where the datasets live')
parser.add_argument('--dataset',
type=str,
default="mnist",
help='datasate name mnist etc.')
parser.add_argument('--batch_size',
type=int,
default=64,
help="minibatch size")
parser.add_argument('--prior_std',
type=float,
default=1.0,
help="NN weight prior std.")
parser.add_argument('--num_layers',
type=int,
default=4,
help="number of layers for G and D nets")
parser.add_argument('--num_gen',
type=int,
dest="J",
default=1,
help="number of samples of z/generators")
parser.add_argument('--num_disc',
type=int,
dest="J_d",
default=1,
help="number of discrimitor weight samples")
parser.add_argument('--num_mcmc',
type=int,
dest="M",
default=1,
help="number of MCMC NN weight samples per z")
parser.add_argument('--N',
type=int,
default=128,
help="number of supervised data samples")
parser.add_argument('--train_iter',
type=int,
default=50000,
help="number of training iterations")
parser.add_argument('--wasserstein',
action="store_true",
help="wasserstein GAN")
parser.add_argument('--ml',
action="store_true",
help="if specified, disable bayesian things")
parser.add_argument('--save_samples',
action="store_true",
help="wether to save generated samples")
parser.add_argument('--save_weights',
action="store_true",
help="wether to save weights")
parser.add_argument('--random_seed',
type=int,
default=2222,
help="random seed")
parser.add_argument('--lr',
type=float,
default=0.005,
help="learning rate")
parser.add_argument('--lr_decay',
type=float,
default=3.0,
help="learning rate")
parser.add_argument('--optimizer',
type=str,
default="sgd",
help="optimizer --- 'adam' or 'sgd'")
args = parser.parse_args()
# set seeds
np.random.seed(args.random_seed)
tf.set_random_seed(args.random_seed)
if not os.path.exists(args.out_dir):
print "Creating %s" % args.out_dir
os.makedirs(args.out_dir)
args.out_dir = os.path.join(args.out_dir, "bgan_%s_%i" % (args.dataset, int(time.time())))
os.makedirs(args.out_dir)
import pprint
with open(os.path.join(args.out_dir, "hypers.txt"), "w") as hf:
hf.write("Hyper settings:\n")
hf.write("%s\n" % (pprint.pformat(args.__dict__)))
celeb_path = os.path.join(args.data_path, "celebA")
cifar_path = os.path.join(args.data_path, "cifar-10-batches-py")
svhn_path = os.path.join(args.data_path, "svhn")
mnist_path = os.path.join(args.data_path, "mnist") # can leave empty, data will self-populate
imagenet_path = os.path.join(args.data_path, args.dataset)
#imagenet_path = os.path.join(args.data_path, "imagenet")
if args.dataset == "mnist":
dataset = MnistDataset(mnist_path)
elif args.dataset == "celeb":
dataset = CelebDataset(celeb_path)
elif args.dataset == "cifar":
dataset = Cifar10(cifar_path)
elif args.dataset == "svhn":
dataset = SVHN(svhn_path)
elif "imagenet" in args.dataset:
num_classes = int(args.dataset.split("_")[-1])
dataset = ImageNet(imagenet_path, num_classes)
else:
raise RuntimeError("invalid dataset %s" % args.dataset)
### main call
b_dcgan(dataset, args)