-
Notifications
You must be signed in to change notification settings - Fork 1
/
tree_minerror.py
228 lines (194 loc) · 6.73 KB
/
tree_minerror.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
This model minimizes the training error given a maximum size for the DFA
"""
from gurobipy import *
import read_traces, DFA_utils_tree_minerror, time, tree_utils
from GLOBAL_VARS import *
def solve_tree_minerror(g_pos, q_max, G, Sigma, T, timeout, info = {}, be_quiet=True, loop_penalty = 0.01, trans_penalty = 0.1):
"""
Parameters
-------
g_pos: string
The goal for which we are training an automata to discriminate
q_max: int
The maximum number of DFA states
G: set(string)
The set of all possible goals
Sigma: set(string)
The set of all possible observations
T: list(tuple(trace, goal))
List of training data, each is an observation trace and goal.
loop_penalty: float
The penalty assigned to state occupancy in a non-absorbing (i.e. not state 1, or 2) state
trans_penalty: float
The penalty assigned for each transition
"""
assert g_pos in G, f"Error, g_pos not in G"
# creating the auxiliary tree structure
tree = tree_utils.create_tree(g_pos, G, Sigma, T)
nodes = tree_utils.get_reachable_nodes(tree)
print("nodes:", len(nodes))
print("num_positive:", tree.get_num_positive())
print("num_negative:", tree.get_num_negative())
num_pos = tree.get_num_positive()
num_neg = tree.get_num_negative()
N = num_pos + num_neg
if q_max < 0:
# Setting q_max to its maximum possible value
q_max = len(nodes)
else:
q_max = min(len(nodes), q_max)
q_max = max(q_max, 3)
assert q_max >= 3, f"At least 3 nodes are needed for a one-vs-all classification"
print("q_max: ", q_max)
# We label the q0 node with the value of the most common class
always_yes = len([1 for tau,g in T if g==g_pos])/float(len(T))
is_q0_pos = always_yes > 0.5
# initializing a MIP model and auxiliary variables
t_init = time.time()
m = Model("extensive_form")
if be_quiet:
m.Params.outputFlag = 0 # turn off output
#m.Params.method = 2 # barrier method
#m.Params.Threads = 1
q_0 = 0
Q_all = range(q_max) # odd ids are negative and even ids are positive. 0 is a special case.
# delta-variables
delta = {} # automaton transitions
for i in Q_all:
for sigma in Sigma:
for j in Q_all:
ub = 1
delta[(i,sigma,j)] = m.addVar(ub=ub, vtype=GRB.BINARY)
# automaton is deterministic
for i in Q_all:
for sigma in Sigma:
m.addConstr(sum([delta[(i,sigma,j)] for j in Q_all]) == 1)
if i == 1 or i == 2:
m.addConstr(delta[(i, sigma, i)] == 1)
# node-variables
for node in nodes:
if node.is_root():
n_vars = [(1 if i == 0 else 0) for i in Q_all]
else:
n_vars = [m.addVar(vtype=GRB.BINARY) for i in Q_all]
# Constraint, the automaton is at one state on every node
m.addConstr(sum(n_vars) == 1)
node.add_MIP_variables(n_vars)
# adding constraints
for node in nodes:
if node.is_root():
continue
parent, p_sigma = node.get_parent()
p_vars = parent.get_MIP_variables()
n_vars = node.get_MIP_variables()
for i in Q_all:
for j in Q_all:
m.addConstr(p_vars[i] + n_vars[j] - 1 <= delta[(i,p_sigma,j)])
# setting the objective function to minimize the prediction error per step
total_error = []
p = num_pos / N
new_p = max(p, 0.15) # We reweight traces by label so positive traces account for at least 15% of the error
# otherwise it often learns DFAs that always predict no.
for node in nodes:
n_vars = node.get_MIP_variables()
for j in Q_all:
if MULTILABEL:
if j == 0:
if is_q0_pos:
# positive class
total_error.append((node.get_num_negative() + loop_penalty) * n_vars[j])
else:
# negative class
total_error.append((node.get_num_positive() + loop_penalty) * n_vars[j])
elif j == 1:
total_error.append(node.get_num_positive() * n_vars[j])
elif j == 2:
total_error.append(node.get_num_negative() * n_vars[j])
elif j%2==0:
# positive class
total_error.append((node.get_num_negative() + loop_penalty) * n_vars[j])
elif j%2==1:
# negative class
total_error.append((node.get_num_positive() + loop_penalty) * n_vars[j])
else:
if j == 0:
if is_q0_pos:
# positive class
total_error.append(((1 - new_p) * N / num_neg * node.get_num_negative() + loop_penalty) * n_vars[j])
else:
# negative class
total_error.append((new_p * N / num_pos * node.get_num_positive() + loop_penalty) * n_vars[j])
elif j == 1:
total_error.append(new_p * N / num_pos * node.get_num_positive() * n_vars[j])
elif j == 2:
total_error.append((1 - new_p) * N / num_neg * node.get_num_negative() * n_vars[j])
elif j%2==0:
# positive class
total_error.append(((1 - new_p) * N / num_neg * node.get_num_negative() + loop_penalty) * n_vars[j])
elif j%2==1:
# negative class
total_error.append((new_p * N / num_pos * node.get_num_positive() + loop_penalty) * n_vars[j])
# we also have to penalize non-self-loop transitions
trans_penalizations = []
for i in Q_all:
for sigma in Sigma:
for j in Q_all:
if i == j:
continue
trans_penalizations.append(delta[(i,sigma,j)])
m.setObjective(sum(total_error) + trans_penalty * sum(trans_penalizations), GRB.MINIMIZE)
m.update()
m.Params.TimeLimit = timeout*60 - (time.time() - t_init) # discounting the time used building the model
m.optimize()
t_end = time.time()
# return the automata (q_0, q_pos, q_neg, dfa)
# NOTE: self-loops transitions are not included (the default is to self-loop)
dfa = {}
for i in Q_all:
for sigma in Sigma:
for j in Q_all:
if delta[(i,sigma,j)].x > 0.99 and i != j:
dfa[(i,sigma)] = j
DFA_utils_tree_minerror.clean_dfa(q_0, dfa, T)
if MULTILABEL:
always_returns_no = False
goal_priors = None
else:
# Check if this DFA always returns No
reachable = [False for q in Q_all]
reachable[q_0] = True
always_returns_no = not is_q0_pos
for n in range(len(Q_all)):
if not always_returns_no:
break
for q in Q_all:
if reachable[q]:
for sigma in Sigma:
if (q, sigma) in dfa:
reachable[dfa[(q, sigma)]] = True
if dfa[(q, sigma)] % 2 == 0:
always_returns_no = False
break
# updating the info
info["objective"] = m.ObjVal
info["bound"] = m.ObjBound
info["gap"] = m.MIPGap
info["is_optimal"] = (m.status == GRB.OPTIMAL)
info["num_nodes"] = m.NodeCount
info["num_vars"] = m.NumIntVars + m.NumBinVars
info["time"] = (t_end-t_init)/60
if m.SolCount > 0:
print("objective: %0.2f"%info["objective"])
print("bound: %0.2f"%info["bound"])
print("gap: %0.2f"%info["gap"])
# The prior probability of each goal in the dataset.
goal_priors = {}
for _, g in T:
if g not in goal_priors:
goal_priors[g] = 1
else:
goal_priors[g] += 1
for g in goal_priors:
goal_priors[g] /= len(T)
return q_0, dfa, is_q0_pos, always_returns_no, goal_priors