-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
444 lines (287 loc) · 11.2 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# netmem: Network Measures using Matrices <img src="man/figures/logo.png" align="right" width="180px"/>
<!-- badges: start -->
[![CRAN status](https://www.r-pkg.org/badges/version/netmem)](https://CRAN.R-project.org/package=netmem)
[![r-universe status badge](https://anespinosa.r-universe.dev/badges/netmem)](https://anespinosa.r-universe.dev/netmem)
[![](https://img.shields.io/badge/devel%20version-1.0--3-red.svg)](https://github.com/https://github.com/anespinosa/netmem)
[![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://www.tidyverse.org/lifecycle/#experimental)
[![Codecov test coverage](https://codecov.io/gh/anespinosa/netmem/branch/master/graph/badge.svg)](https://codecov.io/gh/anespinosa/netmem?branch=master)
[![CodeFactor](https://www.codefactor.io/repository/github/anespinosa/netmem/badge)](https://www.codefactor.io/repository/github/anespinosa/netmem)
[![AppVeyor build status](https://ci.appveyor.com/api/projects/status/github/anespinosa/netmem?branch=master&svg=true)](https://ci.appveyor.com/project/anespinosa/netmem)
[![R-CMD-check](https://github.com/anespinosa/netmem/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/anespinosa/netmem/actions/workflows/R-CMD-check.yaml)
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
[![Github All Releases](https://img.shields.io/github/downloads/anespinosa/netmem/total.svg)]()
<!-- badges: end -->
The goal of [`netmem`](https://anespinosa.github.io/netmem/) is to make
available different measures to analyse and manipulate complex networks using
matrices.
`r emo::ji("pen")` Author/mantainer: [Alejandro
Espinosa-Rada](https://github.com/anespinosa)
`r emo::ji("school")` [Social Networks Lab ETH Zürich](https://sn.ethz.ch)
[![Follow me on Twitter](https://img.shields.io/badge/Follow me on
Twitter-9cf.svg)](https://twitter.com/aespinosarada)
The package implements different measures to analyse and manipulate complex
multilayer networks, from an ego-centric perspective, considering one-mode
networks, valued ties (i.e. *weighted* or *multiplex*) or with multiple levels.
## Citation
```{r echo=FALSE, results='asis'}
citation(package = "netmem")
```
## Functions currently available in [`netmem`](https://anespinosa.github.io/netmem/reference/index.html):
Utilities:
1. `matrix_report()`: Matrix report
2. `matrix_adjlist()`: Transform a matrix into an adjacency list
3. `matrix_projection()`: Unipartite projections
4. `matrix_to_edgelist()`: Transform a square matrix into an edge-list
5. `adj_to_matrix()`: Transform an adjacency list into a matrix
6. `cumulativeSumMatrices()`: Cumulative sum of matrices
7. `edgelist_to_matrix()`: Transform an edgelist into a matrix
8. `expand_matrix()`: Expand matrix
9. `extract_component()`: Extract components
10. `hypergraph()`: Hypergraphs
11. `perm_matrix()`: Permutation matrix
12. `perm_label()`: Permute labels of a matrix
13. `power_function()`: Power of a matrix
14. `meta_matrix()`: Meta matrix for multilevel networks
15. `minmax_overlap()`: Minimum/maximum overlap
16. `mix_matrix()`: Mixing matrix
17. `simplicial_complexes()`: Simplicial complexes
18. `structural_na()`: Structural missing data
19. `ego_net()`: Ego network
20. `zone_sample()`: Zone-2 sampling from second-mode
Ego and personal networks:
1. `eb_constraint()`: Constraint
2. `ei_index()`: Krackhardt and Stern's E-I index
3. `heterogeneity()`: Blau's and IQV index
4. `redundancy()`: Redundancy measures
Path distances:
1. `bfs_ugraph()`: Breath-first algorithm
2. `compound_relation()`: Relational composition
3. `count_geodesics()`: Count geodesic distances
4. `short_path()`: Shortest path
5. `wlocal_distances()`: Dijikstra's algorithm (one actor)
6. `wall_distances()`: Dijikstra's algorithm (all actors)
Signed networks:
1. `posneg_index()`: Positive-negative centrality
2. `struc_balance()`: Structural balance
Structural measures:
1. `gen_density()`: Generalized density
2. `gen_degree()`: Generalized degree
3. `multilevel_degree()`: Degree centrality for multilevel networks
4. `recip_coef()`: Reciprocity
5. `trans_coef()`: Transitivity
6. `trans_matrix()`: Transitivity matrix
7. `components_id()`: Components
8. `k_core()`: Generalized k-core
9. `dyadic_census()`: Dyad census
10. `multiplex_census()`: Multiplex triad census
11. `mixed_census()`: Multilevel triad and quadrilateral census
Cohesive subgroups:
1. `clique_table()`: Clique table
2. `dyad_triad_table()`: Forbidden triad table
3. `percolation_clique()`: Clique percolation
4. `q_analysis()`: Q-analysis
5. `shared_partners()`: Shared partners
Similarity measures:
1. `bonacich_norm()`: Bonacich normalization
2. `co_ocurrence()`: Co‐occurrence
3. `dist_sim_matrix()`: Structural similarities
4. `fractional_approach()`: Fractional approach
5. `jaccard()`: Jaccard similarity
Network inference:
1. `kp_reciprocity()`: Reciprocity of Katz and Powell
2. `z_arctest()`: Z test of the number of arcs
3. `triad_uman()`: Triad census analysis assuming U|MAN
4. `ind_rand_matrix()`: Independent random matrix
Geographic information:
1. `dist_geographic()`: Geographical distances
2. `spatial_cor()`: Spatial autocorrelation
Data currently available:
1. `FIFAego`: Ego FIFA
2. `FIFAex`: Outside FIFA
3. `FIFAin`: Inside FIFA
4. `krackhardt_friends`: Krackhardt friends
5. `lazega_lawfirm`: Lazega Law Firm
Additional data in [`classicnets: Classic Data of Social
Networks`](https://github.com/anespinosa/classicnets)
-----
# Quick overview of `netmem: Network Measures using Matrices`
-----
## Installation
You can install the development version from [GitHub](https://github.com/)
with:
```{r inst, eval=FALSE}
### OPTION 1
# install.packages("devtools")
devtools::install_github("anespinosa/netmem")
### OPTION 2
options(repos = c(
netmem = 'https://anespinosa.r-universe.dev',
CRAN = 'https://cloud.r-project.org'))
install.packages('netmem')
```
```{r inst2}
library(netmem)
```
-----
## Multilevel Networks
Connections between individuals are often embedded in complex structures, which
shape actors’ expectations, behaviours and outcomes over time. These structures
can themselves be interdependent and exist at different levels. Multilevel
networks are a means by which we can represent this complex system by using
nodes and edges of different types. Check [this
book](https://www.springer.com/gp/book/9783319245188) edited by Emmanuel Lazega
and Tom A.B. Snijders or [this
book](https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128)
edited by David Knoke, Mario Diani, James Hollway and Dimitris Christopoulos.
<img src="man/figures/multilevel.png"/>
For multilevel structures, we tend to collect the data in different matrices
representing the variation of ties within and between levels. Often, we describe
the connection between actors as an adjacency matrix and the relations between
levels through incidence matrices. The comfortable combination of these matrices
into a common structure would represent the multilevel network that could be
highly complex.
### Example
<div class="alert alert-info"> Let's assume that we have a multilevel network
with two adjacency matrices, one valued matrix and two incidence matrices
between them.
- `A1`: Adjacency Matrix of the level 1
- `B1`: incidence Matrix between level 1 and level 2
- `A2`: Adjacency Matrix of the level 2
- `B2`: incidence Matrix between level 2 and level 3
- `A3`: Valued Matrix of the level 3 </div>
Create the data
```{r multilevel_example}
A1 <- matrix(c(
0, 1, 0, 0, 1,
1, 0, 0, 1, 1,
0, 0, 0, 1, 1,
0, 1, 1, 0, 1,
1, 1, 1, 1, 0
), byrow = TRUE, ncol = 5)
B1 <- matrix(c(
1, 0, 0,
1, 1, 0,
0, 1, 0,
0, 1, 0,
0, 1, 1
), byrow = TRUE, ncol = 3)
A2 <- matrix(c(
0, 1, 1,
1, 0, 0,
1, 0, 0
), byrow = TRUE, nrow = 3)
B2 <- matrix(c(
1, 1, 0, 0,
0, 0, 1, 0,
0, 0, 1, 1
), byrow = TRUE, ncol = 4)
A3 <- matrix(c(
0, 1, 3, 1,
1, 0, 0, 0,
3, 0, 0, 5,
1, 0, 5, 0
), byrow = TRUE, ncol = 4)
```
We will start with a report of the matrices:
```{r matrix_report}
matrix_report(A1)
matrix_report(B1)
matrix_report(A2)
matrix_report(B2)
matrix_report(A3)
```
What is the density of some of the matrices?
```{r multilevel_example2}
matrices <- list(A1, B1, A2, B2)
gen_density(matrices, multilayer = TRUE)
```
How about the degree centrality of the entire structure?
```{r multil, warning=FALSE}
multilevel_degree(A1, B1, A2, B2, complete = TRUE)
```
Besides, we can perform a *k*-core analysis of one of the levels using the
information of an incidence matrix
```{r multil2, warning=FALSE}
k_core(A1, B1, multilevel = TRUE)
```
This package also allows performing complex census for multilevel networks.
```{r multil3}
mixed_census(A2, t(B1), B2, quad = TRUE)
```
-----
### Ego measures
When we are interested in one particular actor, we could perform different
network measures. For example, actor `e` has connections with all the other
actors in the network. Therefore, we could estimate some of Ronald Burt's
measures.
```{r ego}
# First we will assign names to the matrix
rownames(A1) <- letters[1:nrow(A1)]
colnames(A1) <- letters[1:ncol(A1)]
eb_constraint(A1, ego = "e")
redundancy(A1, ego = "e")
```
Also, sometimes we might want to subset a group of actors surrounding an ego.
```{r ego2}
ego_net(A1, ego = "e")
```
-----
### One-mode network
This package expand some measures for one-mode networks, such as the generalized
degree centrality. Suppose we consider a valued matrix `A3`. If `alpha=0` then
it would only count the direct connections. But, adding the tuning parameter
`alpha=0.5` would determine the relative importance of the number of ties
compared to tie weights.
```{r onem}
gen_degree(A3, digraph = FALSE, weighted = TRUE)
```
Also, we could conduct some exploratory analysis using the normalized degree of
an incidence matrix.
```{r onem2}
gen_degree(B1, bipartite = TRUE, normalized = TRUE)
```
This package also implements some analysis of dyads.
```{r onem3}
# dyad census
dyadic_census(A1)
# Katz and Powell reciprocity
kp_reciprocity(A1)
# Z test of the number of arcs
z_arctest(A1)
```
We can also check the triad census assuming conditional uniform distribution
considering different types of dyads **(U|MAN)**
```{r onem4}
triad_uman(A1)
```
-----
### Code of conduct
Please note that this project is released with a [Contributor Code of
Conduct](https://anespinosa.github.io/netmem/CODE_OF_CONDUCT.html). By
participating in this project you agree to abide by its terms.
-----
### To-do list
```{r todo1}
# library(todor)
# todor::todor_package(c("TODO", "FIXME"))
```
-----
### Other related R packages
- [`{bipartite}`](https://github.com/biometry/bipartite)
- [`{migraph}`](https://github.com/snlab-ch/migraph)
- [`{multinet}`](https://CRAN.R-project.org/package=multinet)
- [`{muxViz}`](https://github.com/manlius/muxViz)
- [`{tnet}`](https://toreopsahl.com/tnet/)
- [`{xUCINET}`](https://www.analyzingsocialnetworksusingr.com/xucinet)