forked from alan-turing-institute/bad-boids
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboids.py
65 lines (55 loc) · 2.08 KB
/
boids.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
A deliberately bad implementation of [Boids](http://dl.acm.org/citation.cfm?doid=37401.37406)
for use as an exercise on refactoring.
"""
from matplotlib import pyplot as plt
from matplotlib import animation
import random
import yaml
# Deliberately terrible code for teaching purposes
boids_x=[random.uniform(-450,50.0) for x in range(50)]
boids_y=[random.uniform(300.0,600.0) for x in range(50)]
boid_x_velocities=[random.uniform(0,10.0) for x in range(50)]
boid_y_velocities=[random.uniform(-20.0,20.0) for x in range(50)]
boids=(boids_x,boids_y,boid_x_velocities,boid_y_velocities)
def updateBoids(boids):
xs,ys,xvs,yvs=boids
deltaXVs=[0]*len(xs)
deltaYVs=[0]*len(xs)
# Fly towards the middle
for i in range(len(xs)):
for j in range(len(xs)):
deltaXVs[i]=deltaXVs[i]+(xs[j]-xs[i])*0.01/len(xs)
for i in range(len(xs)):
for j in range(len(xs)):
deltaYVs[i]=deltaYVs[i]+(ys[j]-ys[i])*0.01/len(xs)
# Fly away from nearby boids
for i in range(len(xs)):
for j in range(len(xs)):
if (xs[j]-xs[i])**2 + (ys[j]-ys[i])**2 < 100:
deltaXVs[i]=deltaXVs[i]+(xs[i]-xs[j])
deltaYVs[i]=deltaYVs[i]+(ys[i]-ys[j])
# Try to match speed with nearby boids
for i in range(len(xs)):
for j in range(len(xs)):
if (xs[j]-xs[i])**2 + (ys[j]-ys[i])**2 < 10000:
deltaXVs[i]=deltaXVs[i]+(xvs[j]-xvs[i])*0.125/len(xs)
deltaYVs[i]=deltaYVs[i]+(yvs[j]-yvs[i])*0.125/len(xs)
# Update velocities
for i in range(len(xs)):
xvs[i]=xvs[i]+deltaXVs[i]
yvs[i]=yvs[i]+deltaYVs[i]
# Move according to velocities
for i in range(len(xs)):
xs[i]=xs[i]+xvs[i]
ys[i]=ys[i]+yvs[i]
figure=plt.figure()
axes=plt.axes(xlim=(-500,1500), ylim=(-500,1500))
scatter=axes.scatter(boids[0],boids[1])
def ANIMATE(frame):
updateBoids(boids)
scatter.set_offsets(list(zip(boids[0],boids[1])))
anim = animation.FuncAnimation(figure, ANIMATE,
frames=50, interval=50)
if __name__ == "__main__":
plt.show()