-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathminirocket_dv.py
126 lines (80 loc) · 4.53 KB
/
minirocket_dv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Angus Dempster, Daniel F Schmidt, Geoffrey I Webb
# MiniRocket: A Very Fast (Almost) Deterministic Transform for Time Series
# Classification
# https://arxiv.org/abs/2012.08791
from numba import njit
import numpy as np
from minirocket import _PPV, _fit_dilations, _quantiles
@njit("Tuple((float32[:],float32[:,:]))(float32[:,:],int32[:],int32[:],float32[:])", fastmath = True, parallel = False, cache = True)
def _fit_biases_transform(X, dilations, num_features_per_dilation, quantiles):
num_examples, input_length = X.shape
# equivalent to:
# >>> from itertools import combinations
# >>> indices = np.array([_ for _ in combinations(np.arange(9), 3)], dtype = np.int32)
indices = np.array((
0,1,2,0,1,3,0,1,4,0,1,5,0,1,6,0,1,7,0,1,8,
0,2,3,0,2,4,0,2,5,0,2,6,0,2,7,0,2,8,0,3,4,
0,3,5,0,3,6,0,3,7,0,3,8,0,4,5,0,4,6,0,4,7,
0,4,8,0,5,6,0,5,7,0,5,8,0,6,7,0,6,8,0,7,8,
1,2,3,1,2,4,1,2,5,1,2,6,1,2,7,1,2,8,1,3,4,
1,3,5,1,3,6,1,3,7,1,3,8,1,4,5,1,4,6,1,4,7,
1,4,8,1,5,6,1,5,7,1,5,8,1,6,7,1,6,8,1,7,8,
2,3,4,2,3,5,2,3,6,2,3,7,2,3,8,2,4,5,2,4,6,
2,4,7,2,4,8,2,5,6,2,5,7,2,5,8,2,6,7,2,6,8,
2,7,8,3,4,5,3,4,6,3,4,7,3,4,8,3,5,6,3,5,7,
3,5,8,3,6,7,3,6,8,3,7,8,4,5,6,4,5,7,4,5,8,
4,6,7,4,6,8,4,7,8,5,6,7,5,6,8,5,7,8,6,7,8
), dtype = np.int32).reshape(84, 3)
num_kernels = len(indices)
num_dilations = len(dilations)
num_features = num_kernels * np.sum(num_features_per_dilation)
biases = np.zeros(num_features, dtype = np.float32)
features = np.zeros((num_examples, num_features), dtype = np.float32)
feature_index_start = 0
for dilation_index in range(num_dilations):
_padding0 = dilation_index % 2
dilation = dilations[dilation_index]
padding = ((9 - 1) * dilation) // 2
num_features_this_dilation = num_features_per_dilation[dilation_index]
for kernel_index in range(num_kernels):
feature_index_end = feature_index_start + num_features_this_dilation
_padding1 = (_padding0 + kernel_index) % 2
index_0, index_1, index_2 = indices[kernel_index]
C = np.zeros((num_examples, input_length), dtype = np.float32)
for example_index in range(num_examples):
_X = X[example_index]
A = -_X # A = alpha * X = -X
G = _X + _X + _X # G = gamma * X = 3X
C_alpha = np.zeros(input_length, dtype = np.float32)
C_alpha[:] = A
C_gamma = np.zeros((9, input_length), dtype = np.float32)
C_gamma[9 // 2] = G
start = dilation
end = input_length - padding
for gamma_index in range(9 // 2):
C_alpha[-end:] = C_alpha[-end:] + A[:end]
C_gamma[gamma_index, -end:] = G[:end]
end += dilation
for gamma_index in range(9 // 2 + 1, 9):
C_alpha[:-start] = C_alpha[:-start] + A[start:]
C_gamma[gamma_index, :-start] = G[start:]
start += dilation
C[example_index] = C_alpha + C_gamma[index_0] + C_gamma[index_1] + C_gamma[index_2]
biases[feature_index_start:feature_index_end] = np.quantile(C, quantiles[feature_index_start:feature_index_end])
for example_index in range(num_examples):
if _padding1 == 0:
for feature_count in range(num_features_this_dilation):
features[example_index, feature_index_start + feature_count] = _PPV(C[example_index], biases[feature_index_start + feature_count]).mean()
else:
for feature_count in range(num_features_this_dilation):
features[example_index, feature_index_start + feature_count] = _PPV(C[example_index][padding:-padding], biases[feature_index_start + feature_count]).mean()
feature_index_start = feature_index_end
return biases, features
def fit_transform(X, num_features = 10_000, max_dilations_per_kernel = 32):
_, input_length = X.shape
num_kernels = 84
dilations, num_features_per_dilation = _fit_dilations(input_length, num_features, max_dilations_per_kernel)
num_features_per_kernel = np.sum(num_features_per_dilation)
quantiles = _quantiles(num_kernels * num_features_per_kernel)
biases, features = _fit_biases_transform(X, dilations, num_features_per_dilation, quantiles)
return (dilations, num_features_per_dilation, biases), features