-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
276 lines (228 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from __future__ import division
from __future__ import print_function
import time
import os
import argparse
import numpy as np
import torch
from tqdm import tqdm
import wandb
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from utils import load_data, accuracy, compute_weighted_adj
from utils import log_values, load_dataset, save_dataset
from tensorboard_logger import Logger as TbLogger
from models import GCN
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_loss, model, epoch):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, str(epoch))
elif score < self.best_score - self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, str(epoch))
self.counter = 0
def save_checkpoint(self, val_loss, model, model_name):
'''Saves model when validation loss decrease.'''
if self.verbose:
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), 'pretrained/checkpoint.pt')
self.val_loss_min = val_loss
def train(model, train_features, train_labels, train_adj):
model.train()
optimizer.zero_grad()
train_output, _ = model(train_features, train_adj)
# loss when softmax is used
loss_train = nn.NLLLoss()(train_output, train_labels.squeeze(1))
acc_train = accuracy(train_output, train_labels)
loss_train.backward()
optimizer.step()
return loss_train, acc_train
def eval(model, val_features, val_labels, val_adj):
model.eval()
val_output, _ = model(val_features, val_adj)
loss_val = nn.NLLLoss()(val_output, val_labels.squeeze(1))
acc_val = accuracy(val_output, val_labels)
return loss_val, acc_val
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
# parser.add_argument('--fastmode', action='store_true', default=False,
# help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=1000,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.0005,
help='Initial learning rate.')
# parser.add_argument('--weight_decay', type=float, default=0.000001,
# help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden_dim', type=int, default=128,
help='Number of hidden units.')
parser.add_argument('--num_hid_layers', type=int, default=2,
help='Number of hidden layers.')
parser.add_argument('--es_patience', type=int, default=100,
help='early stopping buffer to check for metric improvement')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--no_tensorboard', action='store_true',
help='Disable logging TensorBoard files')
parser.add_argument('--run_name', default='run',
help='Name to identify the run')
parser.add_argument('--log_dir', default='logs',
help='Directory to write TensorBoard information to')
# parser.add_argument('--dataset_size', type=int, default=100,
# help='total numnber of instances in training set')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Load OP data
# load created dataset from path
train_dataset = load_dataset(filename='/nfs/team/mlo/aswamy/code/learn_comb_opt_op/data/op/op_k_sols_dist100_trainN10000_seed1111.pkl')
val_dataset = load_dataset(filename='/nfs/team/mlo/aswamy/code/learn_comb_opt_op/data/op/op_k_sols_dist100_valN10000_seed2222.pkl')
# taking only limited samples for trainnig and validation
train_dataset = train_dataset[0:10000]
val_dataset = val_dataset[0:5000]
# disable sync
# os.environ['WANDB_MODE'] = 'dryrun'
# initialize wandb
wandb.init(project='gcn_node_classification_after_tuning')
# load all arguments to config to save as hyperparameters
wandb.config.update(args)
# Optionally configure tensorboard
args.run_name = "{}_{}".format(args.run_name, time.strftime("%Y%m%dT%H%M%S"))
tb_logger = None
if not args.no_tensorboard:
tb_logger = TbLogger(os.path.join(args.log_dir, args.run_name))
# model
model = GCN(input_dim=train_dataset[0].x.shape[1],
num_hid_layers=args.num_hid_layers,
hidden_dim=args.hidden_dim,
num_class=2,
dropout=args.dropout)
# optimizer
# optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
optimizer = optim.SGD(model.parameters(), lr=args.lr)
# save pytorch model and track all of the gradients and optionally parameters
wandb.watch(model, log='all') # "gradients", "parameters", "all", or None.
# Train model
t_total = time.time()
# initialize the early_stopping object
early_stopping = EarlyStopping(patience=args.es_patience, verbose=True)
for epoch in range(args.epochs):
running_loss_train = 0
running_acc_train = 0
for i in tqdm(range(len(train_dataset))):
# data with labels based on approximate solutions
# features are centered to depot location
train_features = train_dataset[i].x - torch.cat([train_dataset[i].x[0][:2], torch.tensor([0.0, 0.0])], dim=0)
# convert true score into labels
train_labels = train_dataset[i].y > 0
# create weighted adj using only coordinates
train_adj = torch.from_numpy(compute_weighted_adj(train_dataset[i].x[:, :-2]))
if args.cuda:
model.cuda()
train_features = train_features.cuda()
train_adj = train_adj.cuda().type(torch.cuda.FloatTensor)
train_labels = train_labels.cuda().type(torch.cuda.LongTensor)
loss_train, acc_train = train(model, train_features, train_labels, train_adj)
running_loss_train += loss_train.item()
running_acc_train += acc_train.item()
running_loss_val = 0
running_acc_val = 0
for i in tqdm(range(len(val_dataset))):
val_features = val_dataset[i].x - torch.cat([val_dataset[i].x[0][:2], torch.tensor([0.0, 0.0])], dim=0)
val_labels = val_dataset[i].y > 0
val_adj = torch.from_numpy(compute_weighted_adj(val_dataset[i].x[:, :-2]))
if args.cuda:
model.cuda()
val_features = val_features.cuda()
val_adj = val_adj.cuda().type(torch.cuda.FloatTensor)
val_labels = val_labels.cuda().type(torch.cuda.LongTensor)
loss_val, acc_val = eval(model, val_features, val_labels, val_adj)
running_loss_val += loss_val.item()
running_acc_val += acc_val.item()
# early_stopping needs the validation loss to check if it has decresed,
# and if it has, it will make a checkpoint of the current model
early_stopping((running_loss_val / len(val_dataset)), model, epoch)
if early_stopping.early_stop:
print("Early stopping")
break
if epoch % 5 == 0:
print('Epoch: {:04d}'.format(epoch+1),
'loss_train: {:.4f}'.format(running_loss_train / len(train_dataset)),
'acc_train: {:.4f}'.format((running_acc_train / len(train_dataset) * 100)),
'loss_val: {:.4f}'.format(running_loss_val / len(val_dataset)),
'acc_val: {:.4f}'.format((running_acc_val / len(val_dataset) * 100)))
# tensorboard logging
log_values(epoch, loss_train, loss_val, acc_train, acc_val, tb_logger)
# wandb logging
wandb.log({
"train_loss": running_loss_train / len(train_dataset),
"val_loss": running_loss_val / len(val_dataset),
"train_accu": (running_acc_train / len(train_dataset)) * 100,
"val_accu": (running_acc_val / len(val_dataset)) * 100
})
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
"""
print('plotting embeddings')
import itertools
# get and plot embeddings
with torch.no_grad():
graph_list = [1, 10, 20]
for i in tqdm(graph_list):
train_adjaceny = torch.from_numpy(compute_weighted_adj(train_dataset[i].x[:, :-2]))
train_labels = list(itertools.chain(*((train_dataset[i].y>0).cpu().numpy())))
if args.cuda:
train_adjaceny = train_adjaceny.cuda().type(torch.cuda.FloatTensor)
train_features = train_dataset[i].x.cuda()
_, node_embeds = model(train_features, train_adjaceny)
save_dataset(node_embeds, "images/ins_"+str(i+1)+"embeds.pkl")
# plot tsne
import matplotlib
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
all_embeddings = node_embeds.cpu().numpy()
for perp in list([5, 10, 15, 20]):
tsne = TSNE(n_components=2, perplexity = perp, learning_rate = 10,
n_iter = 1000, random_state=5)
transform_2d = tsne.fit_transform(all_embeddings)
plt.scatter(transform_2d[0:20, 0], transform_2d[0:20,1], c=train_labels[0:20])
for i, score in enumerate(train_labels[0:20]):
plt.annotate(score,(transform_2d[:, 0][i], transform_2d[:,1][i]))
plt.title("ins_node_embeddings(perp="+str(perp)+')')
plt.xlabel('dim_1')
plt.ylabel('dim_2')
plt.savefig('images/ins'+str(i+1)+'_node_embeddings_label_binary_perp_'+str(perp))
# plt.show()
"""