-
Notifications
You must be signed in to change notification settings - Fork 16
/
NumberOfConnectedComponentsInAnUndirectedGraph.java
55 lines (49 loc) · 1.58 KB
/
NumberOfConnectedComponentsInAnUndirectedGraph.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph
// T: O(V + E * alpha(V)) alpha = inverse ackerman function
// S: O(V)
public class NumberOfConnectedComponentsInAnUndirectedGraph {
private static final class DisjointSet {
private final int[] root, rank;
public DisjointSet(int size) {
root = new int[size];
rank = new int[size];
for (int i = 0 ; i < size ; i++) {
root[i] = i;
rank[i] = 1;
}
}
public int find(int num) {
if (num == root[num]) {
return num;
}
return root[num] = find(root[num]);
}
public boolean areConnected(int x, int y) {
return find(x) == find(y);
}
public void union(int x, int y) {
final int rootX = find(x), rootY = find(y);
if (rootX == rootY) {
return;
}
if (rank[rootX] < rank[rootY]) {
root[rootX] = rootY;
} else if (rank[rootX] > rank[rootY]) {
root[rootY] = rootX;
} else {
root[rootY] = rootX;
rank[rootX]++;
}
}
}
public int countComponents(int n, int[][] edges) {
final DisjointSet disjointSet = new DisjointSet(n);
for (int[] edge : edges) {
if (!disjointSet.areConnected(edge[0], edge[1])) {
disjointSet.union(edge[0], edge[1]);
n--;
}
}
return n;
}
}