-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
vgg.py
113 lines (96 loc) · 2.94 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) Anish Athalye. Released under GPLv3.
import numpy as np
import scipy.io
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
# work-around for more recent versions of tensorflow
# https://github.com/tensorflow/tensorflow/issues/24496
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
VGG19_LAYERS = (
"conv1_1",
"relu1_1",
"conv1_2",
"relu1_2",
"pool1",
"conv2_1",
"relu2_1",
"conv2_2",
"relu2_2",
"pool2",
"conv3_1",
"relu3_1",
"conv3_2",
"relu3_2",
"conv3_3",
"relu3_3",
"conv3_4",
"relu3_4",
"pool3",
"conv4_1",
"relu4_1",
"conv4_2",
"relu4_2",
"conv4_3",
"relu4_3",
"conv4_4",
"relu4_4",
"pool4",
"conv5_1",
"relu5_1",
"conv5_2",
"relu5_2",
"conv5_3",
"relu5_3",
"conv5_4",
"relu5_4",
)
def load_net(data_path):
data = scipy.io.loadmat(data_path)
if "normalization" in data:
# old format, for data where
# MD5(imagenet-vgg-verydeep-19.mat) = 8ee3263992981a1d26e73b3ca028a123
mean_pixel = np.mean(data["normalization"][0][0][0], axis=(0, 1))
else:
# new format, for data where
# MD5(imagenet-vgg-verydeep-19.mat) = 106118b7cf60435e6d8e04f6a6dc3657
mean_pixel = data["meta"]["normalization"][0][0][0][0][2][0][0]
weights = data["layers"][0]
return weights, mean_pixel
def net_preloaded(weights, input_image, pooling):
net = {}
current = input_image
for i, name in enumerate(VGG19_LAYERS):
kind = name[:4]
if kind == "conv":
if isinstance(weights[i][0][0][0][0], np.ndarray):
# old format
kernels, bias = weights[i][0][0][0][0]
else:
# new format
kernels, bias = weights[i][0][0][2][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = _conv_layer(current, kernels, bias)
elif kind == "relu":
current = tf.nn.relu(current)
elif kind == "pool":
current = _pool_layer(current, pooling)
net[name] = current
assert len(net) == len(VGG19_LAYERS)
return net
def _conv_layer(input, weights, bias):
conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1), padding="SAME")
return tf.nn.bias_add(conv, bias)
def _pool_layer(input, pooling):
if pooling == "avg":
return tf.nn.avg_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding="SAME")
else:
return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding="SAME")
def preprocess(image, mean_pixel):
return image - mean_pixel
def unprocess(image, mean_pixel):
return image + mean_pixel