-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMonte_Carlo_Euler_Maruyama.m
56 lines (56 loc) · 1.72 KB
/
Monte_Carlo_Euler_Maruyama.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function X = Monte_Carlo_Euler_Maruyama ( time, X0, A, G, figure_on )
% This a MATLAB function for solving stochastic differential equations using Euler-Maruyama integration
% Initially written as part of structural reliability class
% Later reviced and uploaded to GitHub on 1st October 2017
% by
% Anis Mohammed Vengasseri
% anis.mhd@gmail.com
% https://github.com/anismhd
% Description of Function
% Function inputs are,
% 1. time - a vector stores time
% 2. X0 - A vector that stores initial condition
% 3. A - Stochastic Differential Coefficients, see equation (1)
% 4. G - Stochastic Differential Coefficients, see equation (1)
% 5. figure_on - >0 will display input and output figures
%
% dX = A(X,t) + G(X,t)*dW ------ (1)
%
%
dimension = length(X0);
N = size(G(time(1),X0),2);
dt = time(2)-time(1);
% Brownian increaments
dW = sqrt(dt)*randn(N, length(time)-1);
% Discretized brownian paths
W = cumsum(dW,2);
X = zeros(dimension, length(time));
X(:,1) = X0;
Xtemp = X0;
for i=1:length(time)-1
Winc = dW(:,i);
A1 = A(time(i), Xtemp);
G1 = G(time(i), Xtemp);
Xtemp1 = Xtemp + A1*dt + G1*Winc;
A2 = A(time(i+1), Xtemp1);
G2 = G(time(i+1), Xtemp1);
Xtemp = Xtemp + 0.5*(A1+A2)*dt + (G1+G2)*Winc;
X(:,i+1) = Xtemp;
end
if figure_on
figure;
plot(time,W)
xlabel('time')
title('Input Brownian Motion')
for i=1:length(X0)
figure;
plot(time, X(i,:))
xlabel('time')
title_str = sprintf('X_%i',i);
title(title_str)
end
return
else
return
end
end