Skip to content

Commit e3ba3e1

Browse files
committed
Update arg links with new path
1 parent 766f4ff commit e3ba3e1

File tree

4 files changed

+16
-16
lines changed

4 files changed

+16
-16
lines changed

README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -31,9 +31,9 @@ The idea is to use this after a plate object detector, since the OCR expects the
3131

3232
### Available Models
3333

34-
| Model Name | Time b=1<br/> (ms)<sup>[1]</sup> | Throughput <br/> (plates/second)<sup>[1]</sup> | Dataset | Accuracy<sup>[2]</sup> | Dataset |
35-
|:----------------------------:|:--------------------------------:|:----------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:----------------------:|:---------------------------------:|
36-
| argentinian-plates-cnn-model | 2.0964 | 477 | [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_plate_dataset.zip) | 94.05% | Non-synthetic, plates up to 2020. |
34+
| Model Name | Time b=1<br/> (ms)<sup>[1]</sup> | Throughput <br/> (plates/second)<sup>[1]</sup> | Dataset | Accuracy<sup>[2]</sup> | Dataset |
35+
|:----------------------------:|:--------------------------------:|:----------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------:|:----------------------:|:---------------------------------:|
36+
| argentinian-plates-cnn-model | 2.0964 | 477 | [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_plate_dataset.zip) | 94.05% | Non-synthetic, plates up to 2020. |
3737

3838
_<sup>[1]</sup> Inference on Mac M1 chip using CPUExecutionProvider. Utilizing CoreMLExecutionProvider accelerates speed
3939
by 5x._
@@ -62,9 +62,9 @@ _<sup>[2]</sup> Accuracy is what we refer as plate_acc. See metrics section._
6262

6363
```shell
6464
pip install fast-plate-ocr[train]
65-
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_cnn_ocr_config.yaml
66-
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_cnn_ocr.keras
67-
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_plate_benchmark.zip
65+
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_cnn_ocr_config.yaml
66+
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_cnn_ocr.keras
67+
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_plate_benchmark.zip
6868
unzip arg_plate_benchmark.zip
6969
fast_plate_ocr valid \
7070
-m arg_cnn_ocr.keras \
@@ -157,7 +157,7 @@ To train the model you will need:
157157
img_width: 140
158158
```
159159
2. A labeled dataset,
160-
see [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_plate_dataset.zip)
160+
see [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_plate_dataset.zip)
161161
for the expected data format.
162162
3. Run train script:
163163
```shell

docs/index.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -20,9 +20,9 @@ The idea is to use this after a plate object detector, since the OCR expects the
2020

2121
We currently have the following available models:
2222

23-
| Model Name | Time b=1<br/> (ms)<sup>[1]</sup> | Throughput <br/> (plates/second)<sup>[1]</sup> | Dataset | Accuracy<sup>[2]</sup> | Dataset |
24-
|:------------------------------:|:--------------------------------:|:----------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:----------------------:|:---------------------------------:|
25-
| `argentinian-plates-cnn-model` | 2.0964 | 477 | [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_plate_dataset.zip) | 94.05% | Non-synthetic, plates up to 2020. |
23+
| Model Name | Time b=1<br/> (ms)<sup>[1]</sup> | Throughput <br/> (plates/second)<sup>[1]</sup> | Dataset | Accuracy<sup>[2]</sup> | Dataset |
24+
|:------------------------------:|:--------------------------------:|:----------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------:|:----------------------:|:---------------------------------:|
25+
| `argentinian-plates-cnn-model` | 2.0964 | 477 | [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_plate_dataset.zip) | 94.05% | Non-synthetic, plates up to 2020. |
2626

2727
_<sup>[1]</sup> Inference on Mac M1 chip using CPUExecutionProvider. Utilizing CoreMLExecutionProvider accelerates speed
2828
by 5x._
@@ -51,9 +51,9 @@ Calculate Model accuracy:
5151

5252
```shell
5353
pip install fast-plate-ocr[train]
54-
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_cnn_ocr_config.yaml
55-
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_cnn_ocr.keras
56-
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_plate_benchmark.zip
54+
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_cnn_ocr_config.yaml
55+
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_cnn_ocr.keras
56+
curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_plate_benchmark.zip
5757
unzip arg_plate_benchmark.zip
5858
fast_plate_ocr valid \
5959
-m arg_cnn_ocr.keras \

docs/usage.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ To train the model you will need:
7171
img_width: 140
7272
```
7373
2. A labeled dataset,
74-
see [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0/arg_plate_dataset.zip)
74+
see [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates/arg_plate_dataset.zip)
7575
for the expected data format.
7676
3. Run train script:
7777
```shell

fast_plate_ocr/inference/hub.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -16,8 +16,8 @@
1616

1717
AVAILABLE_ONNX_MODELS: dict[str, tuple[str, str]] = {
1818
"argentinian-plates-cnn-model": (
19-
f"{BASE_URL}/v1.0/arg_cnn_ocr.onnx",
20-
f"{BASE_URL}/v1.0/arg_cnn_ocr_config.yaml",
19+
f"{BASE_URL}/arg-plates/arg_cnn_ocr.onnx",
20+
f"{BASE_URL}/arg-plates/arg_cnn_ocr_config.yaml",
2121
)
2222
}
2323
"""Available ONNX models for doing inference."""

0 commit comments

Comments
 (0)