@@ -31,9 +31,9 @@ The idea is to use this after a plate object detector, since the OCR expects the
31
31
32
32
### Available Models
33
33
34
- | Model Name | Time b=1<br /> (ms)<sup >[ 1] </sup > | Throughput <br /> (plates/second)<sup >[ 1] </sup > | Dataset | Accuracy<sup >[ 2] </sup > | Dataset |
35
- | :----------------------------:| :--------------------------------:| :----------------------------------------------:| :-----------------------------------------------------------------------------------------------------------------:| :----------------------:| :---------------------------------:|
36
- | argentinian-plates-cnn-model | 2.0964 | 477 | [ arg_plate_dataset.zip] ( https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0 /arg_plate_dataset.zip ) | 94.05% | Non-synthetic, plates up to 2020. |
34
+ | Model Name | Time b=1<br /> (ms)<sup >[ 1] </sup > | Throughput <br /> (plates/second)<sup >[ 1] </sup > | Dataset | Accuracy<sup >[ 2] </sup > | Dataset |
35
+ | :----------------------------:| :--------------------------------:| :----------------------------------------------:| :----------------------------------------------------------------------------------------------------------------------- :| :----------------------:| :---------------------------------:|
36
+ | argentinian-plates-cnn-model | 2.0964 | 477 | [ arg_plate_dataset.zip] ( https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates /arg_plate_dataset.zip ) | 94.05% | Non-synthetic, plates up to 2020. |
37
37
38
38
_ <sup >[ 1] </sup > Inference on Mac M1 chip using CPUExecutionProvider. Utilizing CoreMLExecutionProvider accelerates speed
39
39
by 5x._
@@ -62,9 +62,9 @@ _<sup>[2]</sup> Accuracy is what we refer as plate_acc. See metrics section._
62
62
63
63
``` shell
64
64
pip install fast-plate-ocr[train]
65
- curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0 /arg_cnn_ocr_config.yaml
66
- curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0 /arg_cnn_ocr.keras
67
- curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0 /arg_plate_benchmark.zip
65
+ curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates /arg_cnn_ocr_config.yaml
66
+ curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates /arg_cnn_ocr.keras
67
+ curl -LO https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates /arg_plate_benchmark.zip
68
68
unzip arg_plate_benchmark.zip
69
69
fast_plate_ocr valid \
70
70
-m arg_cnn_ocr.keras \
@@ -157,7 +157,7 @@ To train the model you will need:
157
157
img_width : 140
158
158
` ` `
159
159
2. A labeled dataset,
160
- see [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/v1.0 /arg_plate_dataset.zip)
160
+ see [arg_plate_dataset.zip](https://github.com/ankandrew/fast-plate-ocr/releases/download/arg-plates /arg_plate_dataset.zip)
161
161
for the expected data format.
162
162
3. Run train script:
163
163
` ` ` shell
0 commit comments