-
Notifications
You must be signed in to change notification settings - Fork 0
/
yelp_optimized.py
220 lines (189 loc) · 10.4 KB
/
yelp_optimized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import json
import pandas as pd
import time
import numpy as np
pd.set_option('display.max_colwidth', -1)
##GENERAL
import time
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import random
from collections import Counter
import csv
import re
import concurrent.futures
##SPACY
import spacy
nlp = spacy.load('en_core_web_sm')
#nlp = spacy.load('en_core_web_md')
#nlp = spacy.load('en_core_web_lg')
from spacy.matcher import Matcher
from spacy.matcher import PhraseMatcher
from spacy.tokens import Span
from spacy.pipeline import SentenceSegmenter
from spacy import displacy
#DATA LOADING AND PROFILING
##Reading Through Chunk Size Parameter
data_preprocessing_start_time = time.time()
chunk_start=time.time()
path = '/Users/ankitkothari/Documents/ONGOING_PROJECTS/optimum/yelp_academic_dataset_review.json'
chunk_iter = pd.read_json(path, lines=True, chunksize=50000)
chunk_list = []
for chunk in chunk_iter:
chunk_list.append(chunk)
data = pd.concat(chunk_list)
chunk_time = (time.time()-chunk_start)/60
print(f'Time Taken for chunking {chunk_time:03.2f} mins')
print(data.head())
print(f' Memory usage in MB {data.memory_usage(deep=True).sort_values()/(1024*1024)}')
print(f'data types {data.info(memory_usage="deep")}')
print(f'data size {data.size}')
for dtype in ['float','int','object']:
selected_dtype = data.select_dtypes(include=[dtype])
mean_usage_b = selected_dtype.memory_usage(deep=True).mean()
mean_usage_mb = mean_usage_b / 1024 ** 2
print("Average memory usage for {} columns: {:03.2f} MB".format(dtype,mean_usage_mb))
def mem_usage(pandas_obj):
if isinstance(pandas_obj,pd.DataFrame):
usage_b = pandas_obj.memory_usage(deep=True).sum()
else: # we assume if not a df it's a series
usage_b = pandas_obj.memory_usage(deep=True)
usage_mb = usage_b / 1024 ** 2 # convert bytes to megabytes
return "{:03.2f} MB".format(usage_mb)
data_reduced = data.copy()
data_int = data_reduced.select_dtypes(include=['int'])
converted_int = data_int.apply(pd.to_numeric, downcast='signed')
print(mem_usage(data_int))
print(mem_usage(converted_int))
compare_ints = pd.concat([data_int.dtypes,converted_int.dtypes],axis=1)
compare_ints.columns = ['before','after']
print(compare_ints.apply(pd.Series.value_counts))
#Merging new columns
data_reduced[converted_int.columns]=converted_int
#total_time_object=0
total_time_category=0
string_columns=['user_id','business_id']
for col in string_columns:
num_unique_values = len(data_reduced[col].unique())
num_total_values = len(data_reduced[col])
print(f'Ratio of unique values to length of {col} is {(num_unique_values/num_total_values):03.2f}')
print(f'Memory Use in in column name {col} Object Data type {col} {data[col].memory_usage(deep=True)/(1024 ** 2):03.2f} MB')
if num_unique_values / num_total_values < 0.5:
start_category= time.time()
data_reduced[col] = data_reduced[col].astype('category')
total_time_category+=time.time()-start_category
print(f'Memory use in column name {col} in Category Data type {col} {data_reduced[col].memory_usage(deep=True)/(1024 ** 2):03.2f} MB')
data_reduced=data_reduced.drop(columns=(['review_id']))
data_preprocessing_optimization_time= (time.time()-data_preprocessing_start_time)/60
print(f'Time Taken for Data Preprocessing Memory Optimization {data_preprocessing_optimization_time:03.2f} mins')
print(f'row count {data.shape[0]}')
print(f'category time {total_time_category}')
print(data_reduced.head())
print(f' Memory usage in MB {data_reduced.memory_usage(deep=True).sort_values()/(1024*1024)}')
print(f'data types {data_reduced.info(memory_usage="deep")}')
print(f'data size {data_reduced.size}')
print(data_reduced.columns)
#Filtering Time
filter_start_time= time.time()
only_rating_1 = data_reduced[data_reduced['stars']==1]
print(only_rating_1.shape)
only_rating_1['month'] = only_rating_1['date'].apply(lambda x: x.month)
group_by_rating_1 = only_rating_1.groupby(['business_id','month']).agg(
{
'stars': 'count'
})
optimized_filter = (time.time()-filter_start_time)/60
print(f'Time Taken for Filtering Memory Optimization {optimized_filter:03.2f} mins')
group_by_rating_1= group_by_rating_1.unstack().reset_index()
print(group_by_rating_1.head())
##Aggregation Time
optimized_aggregation_start_time = time.time()
grouped = data_reduced.groupby(['business_id']).agg(
{
'stars':'mean'
})
grouped = grouped.reset_index()
group_by_rating = grouped = data_reduced.groupby(['stars']).agg(
{
'cool': 'sum',
'funny': 'sum'
})
group_by_rating = group_by_rating.reset_index()
optimized_aggregation_optimized_time = time.time()-optimized_aggregation_start_time
print(grouped.head(25))
print(group_by_rating.head())
print(f'Time Taken for Aggregarion Memory Optimization {optimized_aggregation_optimized_time:03.2f} mins')
##Text Cleaning
contraction_mapping = {"ain't": "is not","don't": "do not", "aren't": "are not","can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not",
"didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not",
"he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is",
"I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am", "I've": "I have", "i'd": "i would",
"i'd've": "i would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would",
"it'd've": "it would have", "it'll": "it will", "it'll've": "it will have","it's": "it is", "let's": "let us", "ma'am": "madam",
"mayn't": "may not", "might've": "might have","mightn't": "might not","mightn't've": "might not have", "must've": "must have",
"mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have","o'clock": "of the clock",
"oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have",
"she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is",
"should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have","so's": "so as",
"this's": "this is","that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would",
"there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they would", "they'd've": "they would have",
"they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have",
"wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are",
"we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are",
"what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is",
"where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have",
"why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have",
"would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all",
"y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all are","y'all've": "you all have",
"you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have",
"you're": "you are", "you've": "you have", "w/":"with", "cnt":"cannot", "w/o":"without","u":"you"}
def spacy_preprocessing(text):
#print(text)
#text = re.sub(r"\S*\w*.(com)\S*", "",text) #replaces any email or websitw with space
text = re.sub(r"\b([a-zA-Z]{1})\b", " ", text) #replaces single random characters in the text with space
text = re.sub(r"[^a-zA-Z]"," ",text) #replaces special characters with spaces
text = re.sub(r"(.)\1{3,}", r"\1", text) #replaces multiple character with a word with one like pooooost will be post
text = re.sub(r"\s{2,}", r" ", text) #replaces multiple space in the line with single space
tokens = text.split(" ")
#print(tokens)
clean_tokens = [contraction_mapping[i] if i in contraction_mapping else i for i in tokens]
text = " ".join(clean_tokens)
#except:
#text=text
clean_text=[]
for token in nlp(text):
if (token.lemma_ != "-PRON-") & (token.text not in nlp.Defaults.stop_words):
clean_text.append(token.text.lower())
elif (token.lemma_ == "-PRON-") & (token.text not in nlp.Defaults.stop_words):
clean_text.append(token.text.lower())
else:
continue
clean_string = " ".join(clean_text).lstrip()
#print(type(clean_string))
return clean_string
checkpoints=[100, 1000,10000,100000]
def text_profiling(checkpoint):
start = time.time()
temp= data_reduced.copy()
temp= temp.iloc[0:checkpoint]
print(temp.shape)
pool = concurrent.futures.ProcessPoolExecutor(max_workers=4)
words = pool.map(spacy_preprocessing, temp['text'].to_list())
words = list(words)
temp['clean']=words
end = (time.time()- start)/60
return temp, end
time_profiling = [text_profiling(checkpoint)[1] for checkpoint in checkpoints]
print(time_profiling)
def text_profile(checkpoint):
start = time.time()
temp= data_reduced.copy()
temp= temp.iloc[0:checkpoint]
temp['clean']=temp['text'].apply(spacy_preprocessing)
print(temp.shape)
end = (time.time()- start)/60
return temp, end
time_profile = [text_profile(checkpoint)[1] for checkpoint in checkpoints]
print(time_profiling)
print(time_profile)