-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresearch.html
214 lines (199 loc) · 11.8 KB
/
research.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link
href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/css/bootstrap.min.css"
rel="stylesheet"
integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x"
crossorigin="anonymous"
/>
<link
rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.3.0/font/bootstrap-icons.css"
/>
<link rel="stylesheet" href="research.css" />
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/js/bootstrap.bundle.min.js"
integrity="sha384-MrcW6ZMFYlzcLA8Nl+NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/tWtIaxVXM"
crossorigin="anonymous">
</script>
<title>Anthony Snead</title>
</head>
<body>
<!-- Navbar -->
<nav class="navbar navbar-expand-lg bg-dark navbar-dark py-3 fixed-top">
<div class="container">
<a href="index.html" class="navbar-brand">Anthony Snead</a>
<button
class="navbar-toggler"
type="button"
data-bs-toggle="collapse"
data-bs-target="#navmenu"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navmenu">
<ul class="navbar-nav ms-auto">
<li class="nav-item">
<a href="about.html" class="nav-link">About</a>
</li>
<li class="nav-item">
<a href="research.html" class="nav-link">Research</a>
</li>
<li class="nav-item">
<a href="publications.html" class="nav-link">Publications</a>
</li>
<li class="nav-item">
<a href="outreach.html" class="nav-link">Outreach</a>
</li>
</ul>
</div>
</div>
</nav>
<!-- research -->
<div class="container mt-5 align-items-center">
<h1 style="text-align: center"><u>Research</u></h1>
</div>
<!--Functional Genomics-->
<div class="container" id="FunctionalGenomics" name="FunctionalGenomics">
<div class="row">
<div class="container border border-secondary rounded p-2 bg-light text-dark align-items-center">
<div class="col">
<img src="img/GeneExpression_MDS.jpg" class="img-fluid float-md-start px-3" alt="Responsive Image">
<p style="font-size: 26px; text-align: center;">Functional Genomics</p>
<p>Understanding how genomic variation scales to phenotypic variation, on which
natural selection acts, is a central theme in evolutionary biology. Using the
northern two-lined salamander (<span class="fst-italic">Eurycea bislineata</span>) and the spotted lanternfly
(<span class="fst-italic">Lycorma delicatula</span>), I am currently using whole genome sequencing along with
physiological and morphometric data to explicitly link genetic variants with
traits potentially under selection in urban landscapes. However, a full
understanding of genome-phenome relationship requires interrogating the
intermediate steps between genomic change and phenotypic changes (i.e.,
transcription & translation). Hence, I employ transcriptomic methods like
RNAseq to understand how gene expression regulates phenotypic change. I have
been particularly interested in plastic changes in gene expression driven by
both genotypic and environmental variation. I have been exploring the GxE
interaction both in relation to developmental temperature in the mangrove
rivulus fish (<span class="fst-italic">Kryptolebias marmoratus</span>) and paternal predator exposure in
three-spined stickleback (<span class="fst-italic">Gasterosteus aculeatus</span>) with plan to extend this to
the spotted lanternfly.</p>
</div>
</div>
</div>
</div>
<!--Species Distribution Modeling-->
<div class="container mt-5" id="SpeciesDistributionModeling" name="SpeciesDistributionModeling">
<div class="row">
<div class="container border border-dark rounded p-2 bg-dark text-white align-items-center">
<div class="col">
<img src="img/Riv_Suit.jpg" class="img-fluid float-md-end px-3" alt="Responsive Image">
<p style="font-size: 26px; text-align: center;">Species Distribution Modeling</p>
<p>A species range is dictated by abiotic and biotic factors that either limit
species survival and reproduction in a given environment or limit the ability
of a species to reach a given area. I use a combination of environmental data,
occurrence/count data, and statistical modeling to model the ecological niche
of species and predict future distributions. Using the mangrove rivulus fish
(<span class="fst-italic">Kryptolebias marmoratus</span>), I demonstrated that they are unlikely to shift their
range along side their foundation species (mangrove trees) leaving them
trapped in fragmented habitats with limited protection (<a href="https://www.sciencedirect.com/science/article/pii/S1574954121003149" class="link-primary" target="_blank">Snead et al. 2022</a>).
While I am currently applying this to the brain-eating amoeba
(<span class="fst-italic">Naegleria fowleri</span>) and brook salamanders (<span class="fst-italic">Eurycea </span>spp.), I am also
extending this work in a phylogenetic context to understand niche evolution
and predict past changes in habitat suitability using paleoclimatic data.</p>
</div>
</div>
</div>
</div>
<!--Adaptation Genomics-->
<div class="container mt-5" id="AdaptationGenomics" name="AdaptationGenomics">
<div class="row">
<div class="container border border-secondary rounded p-2 bg-light text-dark align-items-center">
<div class="col">
<img src="img/ebis.jpg" class="img-fluid float-md-start px-3" alt="Responsive Image">
<p style="font-size: 26px; text-align: center;">Adaptation Genomics</p>
<p>While my functional genomics work attempts to link genetic and phenotypic
variation, my work on adaptation genomics attempts to link functional genomic
variation with environmental variation and ecological context. My adaptation
genomics work and functional genomics work goes hand in hand. Currently,
I use cities as natural replicated experiments to identify genes potentially
related to adaptive phenotypes under selection within urban landscapes. I am
using the northern two-lined salamander (<span class="fst-italic">Eurycea bislineata</span>) and the spotted
lanternfly (<span class="fst-italic">Lycorma delicatula</span>) as distantly related systems to understand
the repeatability of adaptation to urban landscape. To better contextualize
genotype by environment associations, I am also assembling and annotating
these genomes while collecting critical phenotypic data across
differentiated populations. Through collaborations with the <a href="https://www.garroway-lab.com/" class="link-primary" target="_blank">Garroway lab</a>,
I am also venturing into genomic forecasting with arctic whales.</p>
</div>
</div>
</div>
</div>
<!--Landscape Genetics-->
<div class="container mt-5" id="LandscapeGenetics" name="LandscapeGenetics">
<div class="row">
<div class="container border border-dark rounded p-2 bg-dark text-white align-items-center">
<div class="col">
<img src="img/Ocean_GeneFlow.jpg" class="img-fluid float-md-end px-3" alt="Responsive Image">
<p style="font-size: 26px; text-align: center;">Landscape Genetics</p>
<p>While understanding adaptive evolution is critical to predicting if and how
species will respond to environmental change, neutral evolutionary processes
such as gene flow and genetic drift dictate both local genetic diversity and
the spread of potentially adaptive alleles which could dictate future
evolutionary responses. Using the mangrove rivulus fish (Kryptolebias
marmoratus), I have demonstrated that asymmetric ocean currents are associated
with both genetic differentiation and estimates of directional gene flow between
mangrove patches (<a href="https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2023.1206543/full" class="link-primary" target="_blank">Snead et al. 2023</a>). Using graph theory, I also found that
patch level genotypic and genetic diversity are impacted primarily by the
population’s centrality to the metapopulation rather than measure of
fragmentation or habitat area (Snead et al. Accepted). I am extending this
work with forward genetic simulations to evaluate how landscape and oceanic
factors impact rates of evolutionary and genetic rescue. Similarly, I am
using the northern two-lined salamander (<span class="fst-italic">Eurycea bislineata</span>) and the spotted
lanternfly (<span class="fst-italic">Lycorma delicatula</span>) as model systems to evaluate how demographic
history, land use, and the environment drives spatial patterns of genetic
diversity across urban landscapes.</p>
</div>
</div>
</div>
</div>
<!--eDNA-->
<div class="container mt-5" id="eDNA" name="eDNA">
<div class="row">
<div class="container border border-secondary rounded p-2 bg-light text-dark align-items-center">
<div class="col">
<img src="img/eDNA_expectations.jpg" class=" img-fluid float-md-start px-3" alt="Responsive Image">
<p style="font-size: 26px; text-align: center;">Environmental DNA</p>
<p>Environmental DNA (eDNA) is a rapidly growing field focused on utilizing DNA
fragments shed into the environment through excrement, mucus, epithelial cells
or other mechanisms. In my eDNA work with the mangrove rivulus fish
(<span class="fst-italic">Kryptolebias marmoratus</span>), I am combining laboratory experiments to quantify
the impact of environmental factors and density on the accumulation and
degradation of DNA with field studies attempting to predict relative abundance
from eDNA concentration. I am also developing assays for terrestrial
applications to understand microhabitat associations in reptiles and insects
using metabarcoding approaches.</p>
</div>
</div>
</div>
</div>
<!-- White Space -->
<section id="white-space" class="p-5 bg-light text-light">
<div class="container">
</div>
</div>
</section>
<!-- Footer -->
<footer class="p-5 bg-dark text-white text-center position-relative">
<div class="container">
<p class="lead">Made with Bootstrap - <a href="https://github.com/anthonysnead/anthonysnead.github.io"
class="link-primary" target="_blank">
See the Code!</a></p>
<a href="#" class="position-absolute bottom-0 end-0 p-5">
<i class="bi bi-arrow-up-circle h1"></i>
</a>
</div>
</footer>
</body>
</html>