-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvisualize.py
104 lines (74 loc) · 2.54 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from sklearn.metrics import log_loss, confusion_matrix
from sklearn.metrics.pairwise import sigmoid_kernel
import pandas as pd
import numpy as np
import itertools
import numpy as np
import matplotlib.pyplot as plt
x_train = pd.read_csv('data/train.csv')
y_train = x_train['is_duplicate']
# ids = x_train['id']
out = pd.read_csv('data/semantic_train.csv')
y_pred = out['is_duplicate']
ids = out['id']
print 'train values for ids'
print max(y_pred.tolist()), min(y_pred.tolist())
min_val = min(y_pred.tolist())
max_val = max(y_pred.tolist())
def sigmoid(z):
z = np.array(z)
z = 1.0 / (1.0 + np.exp(-z))
return z
def scale(z, min_val, max_val):
z = np.array(z)
z = (z - min_val) / (max_val - min_val)
return z
y_pred = sigmoid(y_pred)
# y_pred = scale(y_pred, min_val, max_val)
# print max(y_pred.tolist()), min(y_pred.tolist())
def output(x):
if x > 0.25:
return 1
else:
return 0
def plot_confusion_matrix(cm, classes, img, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.savefig('visual/' + img)
print log_loss(y_train[ids], y_pred)
y = []
for row in y_pred.tolist():
y.append(output(row))
y = np.array(y)
cnf_matrix = confusion_matrix(y_train[ids], y)
np.set_printoptions(precision=2)
class_names = ['Duplicate', 'Not Duplicate']
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, img='semantic.png',
title='Confusion matrix, without normalization')
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, img='semantic_normalised.png', normalize=True,
title='Confusion matrix, normalised')