-
Notifications
You must be signed in to change notification settings - Fork 2
/
prep_scan.py
209 lines (178 loc) · 7.77 KB
/
prep_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import trimesh
import numpy as np
import pickle as pkl
import torch
import cv2
import argparse
from pytorch3d.io import load_obj
from pytorch3d.renderer import TexturesVertex, TexturesUV
from pytorch3d.structures import Pointclouds, Meshes, packed_to_list
from pytorch3d.ops import knn_points
from pytorch3d.ops import estimate_pointcloud_normals
import smplx
label2class = np.array(
[
'Hat',
'Body',
'Shirt',
'TShirt',
'Vest',
'Coat',
'Dress',
'Skirt',
'Pants',
'ShortPants',
'Shoes',
'Hoodies',
'Hair',
'Swimwear',
'Underwear',
'Scarf',
'Jumpsuits',
'Jacket',
]
)
def convert_to_textureVertex(texture, input_data) -> TexturesVertex:
verts_colors_packed = torch.zeros_like(input_data.verts_packed())
verts_colors_packed[
input_data.faces_packed()
] = texture.faces_verts_textures_packed().cuda() # (*)
return TexturesVertex(packed_to_list(verts_colors_packed, input_data.num_verts_per_mesh()))
def load_mesh(
input_path, texture_path=None, device='cuda'
) -> tuple[Meshes, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
verts, faces, aux = load_obj(input_path)
# * aux doesn't read normal info
try:
trimesh_mesh = trimesh.load(input_path, process=False, maintain_order=True)
vert_normals = torch.from_numpy(trimesh_mesh.vertex_normals.astype(np.float32))
except Exception:
pc = Pointclouds(points=[verts]).to(device)
vert_normals = estimate_pointcloud_normals(pc, neighborhood_size=50).float()[0]
if vert_normals.shape[0] != verts.shape[0]:
pc = Pointclouds(points=[verts]).to(device)
vert_normals = estimate_pointcloud_normals(pc, neighborhood_size=50).float()[0]
texture = None
if texture_path is not None:
# Load image
texture_image = cv2.imread(str(texture_path), cv2.COLOR_BGR2RGB)
# It's important to convert image to float
texture_image = torch.from_numpy(texture_image.astype(np.float32) / 255)
# Extract representation needed to create Textures object
verts_uvs = aux.verts_uvs[None, ...] # (1, V, 2)
faces_uvs = faces.textures_idx[None, ...] # (1, F, 3)
texture_image = texture_image[None, ...] # (1, H, W, 3)
texture = TexturesUV(verts_uvs=verts_uvs, faces_uvs=faces_uvs, maps=texture_image)
scan_mesh = Meshes(
verts=[verts], faces=[faces.verts_idx], textures=texture, verts_normals=[vert_normals]
).to(device)
verts_tex = convert_to_textureVertex(texture, scan_mesh)
col_val = verts_tex.verts_features_list()[0].to(device).unsqueeze(0)
col_val = torch.floor(col_val * 255.0)
norms = scan_mesh.verts_normals_list()[0].unsqueeze(0)
mesh_verts, mesh_faces = scan_mesh.get_mesh_verts_faces(0)
return scan_mesh, mesh_verts, mesh_faces, col_val, norms
def humanbody_data(src_verts, mesh_verts) -> np.ndarray:
template_mesh = trimesh.load('./assets/template_mesh.obj', process=False)
template_verts = np.asarray(template_mesh.vertices)
# load smpl+d and smpl vertices from registraion data
dst_verts = mesh_verts.unsqueeze(0)
dist, idx, nn = knn_points(dst_verts, src_verts)
canon_pose_locations_smpl = template_verts[idx.detach().cpu().numpy()[0, :, 0]]
return canon_pose_locations_smpl
def create_smpl(smpl_file, bm_dir_path, device='cuda'):
if '.pkl' in smpl_file:
smpl_data = pkl.load(open(smpl_file, 'rb'))
else:
smpl_data = dict(np.load(open(smpl_file, 'rb'), allow_pickle=True))
gender = 'neutral'
if 'gender' in smpl_data.keys():
gender = smpl_data['gender']
body_model = smplx.create(
model_path=bm_dir_path, gender=gender, model_type='smpl', batch_size=1, num_betas=10
)
body_model = body_model.to(device=device)
betas = torch.from_numpy(smpl_data['betas'].reshape(1, 10).astype(np.float32)).to(device=device)
body_pose = torch.from_numpy(smpl_data['body_pose'].astype(np.float32).reshape(1, 69)).to(
device=device
)
global_orient = torch.from_numpy(
smpl_data['global_orient'].reshape(1, 3).astype(np.float32)
).to(device=device)
full_pose = torch.cat([global_orient, body_pose], dim=-1)[0].detach().cpu().numpy()
smpl_trans = smpl_data['transl']
if 'scale' in smpl_data.keys():
smpl_scale = smpl_data['scale']
else:
smpl_scale = 1.0
body_model_output = body_model.forward(
betas=betas, body_pose=body_pose, global_orient=global_orient
)
smpl_verts = body_model_output.vertices
smpl_verts = smpl_verts * torch.from_numpy(smpl_scale.astype(np.float32)).to(device=device)
smpl_verts = smpl_verts + torch.from_numpy(smpl_trans.astype(np.float32)).to(device=device)
return smpl_verts, smpl_scale, smpl_trans, full_pose, betas
def main(scan_obj, scan_tex, smpl_file, save_path, garment_class, bm_dir_path, device='cuda'):
# * load scan mesh using pytorch3d
_, mesh_verts, mesh_faces, col_val, norms = load_mesh(scan_obj, scan_tex, device=device)
# * load registration and create canonical points
smpl_verts, smpl_scale, smpl_trans, full_pose, betas = create_smpl(
smpl_file, bm_dir_path, device
)
canon_pose_locations_smpl = humanbody_data(smpl_verts, mesh_verts)
# * normalize the scan
scan_mesh = trimesh.Trimesh(
vertices=mesh_verts.detach().cpu().numpy(),
faces=mesh_faces.detach().cpu().numpy(),
maintain_order=True,
process=False,
)
total_size = (scan_mesh.bounds[1] - scan_mesh.bounds[0]).max()
centers = (scan_mesh.bounds[1] + scan_mesh.bounds[0]) / 2
scan_mesh.apply_translation(-centers)
scan_mesh.apply_scale(1 / total_size)
# * garment class names to labels
garment_class = (label2class[:, None] == garment_class).argmax(axis=0)
garments = np.zeros(18)
garments[garment_class] = 1
np.savez(
save_path,
points=scan_mesh.vertices,
normals=norms.detach().cpu().numpy(),
colors=col_val.detach().cpu().numpy()[0],
faces=scan_mesh.faces,
scale=(1.0 / total_size),
pose=full_pose,
betas=betas.detach().cpu().numpy()[0],
trans=smpl_trans,
canon_pose=canon_pose_locations_smpl,
garments=garments,
centers=centers,
)
# ! Example call:
# * python prep_scan.py \
# * --scan_obj $SOME_PATH/0000.obj \ -- This file represents the scan mesh;
# * --scan_tex $SOME_PATH/material0.jpeg \ -- This file represents UV texture map for the scan mesh;
# * --smpl_file $SOME_PATH/0000_smpl.pkl \ -- This file represents SMPL mesh fit and is expected to contain keys: betas, body_pose, global_orient, transl, scale;
# * --save_path $SOME_PATH/0000.npz \
# * --bm_dir_path $SMPL_PATH/models \ -- This folder represents the SMPL body model directory; See https://github.com/vchoutas/smplx for more details on setting up SMPL model;
# * --garment_class TShirt Pants Body Hair Shoes
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--scan_obj', help='Path to scan obj file', type=str)
parser.add_argument('-t', '--scan_tex', help='Path to scan texture file', type=str)
parser.add_argument('-r', '--smpl_file', help='Path to SMPL registration file', type=str)
parser.add_argument('-g', '--garment_class', nargs='+', default=[])
parser.add_argument('-s', '--save_path', type=str)
parser.add_argument('-b', '--bm_dir_path', help='Path to SMPL body model directory', type=str)
args = parser.parse_args()
main(
args.scan_obj,
args.scan_tex,
args.smpl_file,
args.save_path,
args.garment_class,
args.bm_dir_path,
device='cuda',
)
print('data saved for scan:', args.scan_obj, 'at:', args.save_path)