-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhalf-planes.tex
488 lines (376 loc) · 14.7 KB
/
half-planes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
\chapter{Half-planes}\label{chap:half-planes}
This chapter contains lengthy proofs of intuitively evident statements.
It is okay to skip it, but make sure you understand the definitions of positive/negative angles and that your intuition agrees with statements \ref{thm:signs-of-triug}, \ref{prop:half-plane}, \ref{cor:half-plane}, \ref{thm:pasch}, and \ref{thm:abc}.
\section{Sign of an angle}
Positive and negative angles can be visualized as {}\emph{counterclockwise} and {}\emph{clockwise} directions; they are defined the following way:
\begin{itemize}
\item The angle $A O B$ is called \index{angle!positive and negative angles}\emph{positive}
if $0<\measuredangle A O B<\pi$;
\item The angle $A O B$ is called {}\emph{negative}
if $\measuredangle A O B<0$.
\end{itemize}
According to the above definitions the straight angle, as well as the zero angle,
are neither positive nor negative.
\begin{thm}{Exercise}\label{ex:AOB+<=>BOA-}
Show that $\angle A O B$ is positive if and only if $\angle B O A$ is negative.
\end{thm}
\begin{thm}{Lemma}\label{lem:straight-sign}
Let $\angle AOB$ be straight.
Then $\angle AOX$ is positive
if and only if $\angle BOX$ is negative.
\end{thm}
\parit{Proof.}
Set $\alpha=\measuredangle AOX$
and
$\beta=\measuredangle BOX$.
Since $\angle AOB$ is straight,
$$\alpha-\beta\equiv \pi.\eqlbl{eq:alpha-beta}$$
It follows that $\alpha=\pi$ $\Leftrightarrow$ $\beta=0$
and $\alpha=0$ $\Leftrightarrow$ $\beta=\pi$.
In these two cases, the signs of $\angle AOX$ and $\angle BOX$ are undefined.
In the remaining cases we have that $|\alpha|<\pi$ and $|\beta|<\pi$.
If $\alpha$ and $\beta$ have the same sign, then $|\alpha-\beta|<\pi$;
the latter contradicts \ref{eq:alpha-beta}.
Hence the statement follows.
\qeds
\begin{thm}{Exercise}\label{ex:PP(PN)}
Assume that angles $ABC$ and $A'B'C'$ have the same sign
and
\[2\cdot \measuredangle ABC\equiv 2\cdot \measuredangle A'B'C'.\]
Show that $\measuredangle ABC= \measuredangle A'B'C'$.
\end{thm}
\section{Intermediate value theorem}
\begin{thm}{Intermediate value theorem}\label{thm:intermidiate}
Let $f\:[a,b]\to \mathbb{R}$ be a continuous function.
Assume
$f(a)$ and $f(b)$ have opposite signs.
Then $f(t_0)=0$ for some $t_0\in[a,b]$.
\end{thm}
\begin{wrapfigure}{r}{38mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-14}
\end{wrapfigure}
The intermediate value theorem is assumed to be known;
it should be covered in any calculus course.
We will use only the following corollary:
\begin{thm}[\abs]{Corollary}\label{cor:intermidiate}
Assume that for any $t\z\in [0,1]$ we have three points in the plane $O_t$, $A_t$, and $B_t$, such that
\begin{enumerate}[(a)]
\item Each function $t\mapsto O_t$, $t\mapsto A_t$, and $t\z\mapsto B_t$ is continuous.
\end{enumerate}
\begin{enumerate}[(a)]\addtocounter{enumi}{1}
\item For any $t\in [0,1]$, the points $O_t$, $A_t$, and $B_t$ do not lie on one line.
\end{enumerate}
Then $\angle A_0O_0B_0$ and $\angle A_1O_1B_1$ have the same sign.
\end{thm}
\parit{Proof.}
Consider the function
$f(t)=\measuredangle A_tO_tB_t$.
Since
the points $O_t$, $A_t$, and $B_t$ do not lie on one line,
Theorem~\ref{thm:straight-angle} implies that $f(t)=\measuredangle A_tO_tB_t\ne 0$ nor $\pi$ for any $t\in[0,1]$.
Therefore, by Axiom~\ref{def:birkhoff-axioms:2c} and Exercise~\ref{ex:comp+cont},
$f$ is a continuous function.
By the intermediate value theorem, $f(0)$ and $f(1)$ have the same sign;
hence the result follows.
\qeds
\section{Same sign lemmas}
\begin{thm}[\abs]{Lemma}\label{lem:signs}
Assume $Q'\in [PQ)$ and $Q'\z\ne P$.
Then for any $X\z\notin (PQ)$ the angles $PQX$ and $PQ'X$ have the same sign.
\end{thm}
{
\begin{wrapfigure}{o}{33mm}
\centering
\vskip-5mm
\includegraphics{mppics/pic-16}
\end{wrapfigure}
\parit{Proof.}
By Proposition~\ref{prop:point-on-half-line},
for any $t\in [0,1]$ there is a unique point $Q_t\in[PQ)$
such that
\[PQ_t= (1-t)\cdot PQ+t\cdot PQ'.\]
The map $t\mapsto Q_t$ is continuous,
\begin{align*}
Q_0&=Q,
&
Q_1&=Q'
\end{align*}
and for any $t\in [0,1]$,
we have that $P\z\ne Q_t$.
}
Applying Corollary~\ref{cor:intermidiate},
for $P_t=P$, $Q_t$, and $X_t=X$, we get that $\angle PQX$ has the same sign as $\angle PQ'X$.
\qeds
\begin{thm}[\abs]{Signs of angles of a triangle}\label{thm:signs-of-triug}
In arbitrary nondegenerate triangle $ABC$,
the angles $ABC$, $BCA$, and $CAB$ have the same sign.
\end{thm}
{
\begin{wrapfigure}{o}{33mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-18}
\end{wrapfigure}
\parit{Proof.}
Choose a point $Z\in (AB)$ so that $A$ lies between $B$ and~$Z$.
According to Lemma~\ref{lem:signs},
the angles $ZBC$ and $ZAC$ have the same sign.
Note that $\measuredangle ABC=\measuredangle ZBC$
and
$$\measuredangle ZAC+\measuredangle CAB\equiv \pi.$$
Therefore, $\angle CAB$ has the same sign as $\angle ZAC$
which in turn has the same sign as $\measuredangle ABC\z=\measuredangle ZBC$.
}
Repeating the same argument for $\angle BCA$ and $\angle CAB$,
we get the result.
\qeds
\begin{thm}[\abs]{Lemma}\label{lem:signsXY}
Assume $[XY]$ does not intersect $(PQ)$,
then angles $PQX$ and $PQY$
have the same sign.
\end{thm}
\begin{wrapfigure}{o}{26mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-20}
\end{wrapfigure}
The proof is nearly identical to the one above.
\parit{Proof.}
According to Proposition~\ref{prop:point-on-half-line},
for any $t\z\in [0,1]$ there is a point $X_t\in[XY]$,
such that
\[XX_t= t\cdot XY.\]
The map $t\mapsto X_t$ is continuous.
Moreover, $X_0=X$, $X_1=Y$, and $X_t\notin(QP)$ for any $t\in [0,1]$.
Applying Corollary~\ref{cor:intermidiate},
for $P_t\z=P$, $Q_t\z=Q$, and $X_t$, we get that
$\angle PQX$ has the same sign as $\angle PQY$.
\qeds
\section{Half-planes}
\begin{thm}{Proposition}\label{prop:half-plane}
Assume $X,Y\notin(PQ)$.
Then angles $PQX$ and $PQY$ have the same sign if and only if $[XY]$ does not intersect $(PQ)$.
\end{thm}
\begin{wrapfigure}{o}{30mm}
\includegraphics{mppics/pic-22}
\centering
\end{wrapfigure}
\parit{Proof.} The if-part follows from Lemma~\ref{lem:signsXY}.
Assume $[XY]$ intersects $(PQ)$;
suppose that $Z$ denotes the point of intersection.
Without loss of generality, we can assume $Z\ne P$.
Note that $Z$ lies between $X$ and $Y$.
According to Lemma~\ref{lem:straight-sign}, $\angle PZX$ and $\angle PZY$ have opposite signs.
It proves the statement if $Z=Q$.
If $Z\ne Q$, then $\angle ZQX$ and $\angle QZX$ have opposite signs by \ref{thm:signs-of-triug}.
In the same way, we get that $\angle ZQY$ and $\angle QZY$ have opposite signs.
If $Q$ lies between $Z$ and $P$, then by Lemma~\ref{lem:straight-sign} two pairs of angles $\angle PQX$, $\angle ZQX$ and $\angle PQY$, $\angle ZQY$ have opposite signs.
It follows that $\angle PQX$ and $\angle PQY$ have opposite signs as required.
In the remaining case $[QZ)=[QP)$ and therefore $\angle PQX=\angle ZQX$ and $\angle PQY=\angle ZQY$.
Therefore again $\angle PQX$ and $\angle PQY$ have opposite signs as required.
\qeds
\begin{thm}[\abs]{Corollary}\label{cor:half-plane}
The complement of a line $(PQ)$ in the plane
can be presented in a unique way as a union of two disjoint subsets
called \index{half-plane}\emph{half-planes}
such that
\begin{enumerate}[(a)]
\item\label{cor:half-plane:angle} Two points $X,Y\notin(PQ)$ lie in the same half-plane if and only if the angles $PQX$ and $PQY$ have the same sign.
\item\label{cor:half-plane:intersect} Two points $X,Y\notin(PQ)$ lie in the same half-plane if and only if $[XY]$ does not intersect~$(PQ)$.
\end{enumerate}
\end{thm}
{
\begin{wrapfigure}{r}{26mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-24}
\end{wrapfigure}
We say that $X$ and $Y$ lie on {}\emph{one side of} $(PQ)$ if they lie in one of the half-planes of $(PQ)$ and we say that $P$ and $Q$ lie on {}\emph{opposite sides of} $\ell$ if they lie in different half-planes of~$\ell$.
\begin{thm}{Exercise}\label{ex:vert-intersect}
Suppose that angles $AOB$ and $A'OB'$ are vertical and $B\notin (OA)$.
Show that the line $(AB)$ does not intersect the segment~$[A'B']$.
\end{thm}
}
Consider triangle $ABC$.
Recall that its vertices are points $A$, $B$ and $C$;
segments $[AB]$, $[BC]$, and $[CA]$ will be called the \index{side!of triangle}\emph{sides of the triangle}.
{
\begin{wrapfigure}{r}{27mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-26}
\end{wrapfigure}
\begin{thm}[\abs]{Pasch's theorem}\label{thm:pasch}\index{Pasch's theorem}
Assume that a line $\ell$ does not pass thru any vertex of a triangle.
Then it intersects either two or zero sides of the triangle.
\end{thm}
\parit{Proof.}
Assume that line $\ell$ intersects side $[AB]$ of the triangle $ABC$ and does not pass thru $A$, $B$, and $C$.
By Corollary~\ref{cor:half-plane}, the vertices $A$ and $B$ lie on opposite sides of~$\ell$.
}
The vertex $C$ may lie on the same side with $A$ and on the opposite side with $B$ or the other way around.
By Corollary~\ref{cor:half-plane}, in the first case, $\ell$ intersects side $[BC]$ and does not intersect $[AC]$; in the second case, $\ell$ intersects side $[AC]$ and does not intersect $[BC]$.
Hence the statement follows.
\qeds
{
\begin{wrapfigure}[5]{r}{29mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-28}
\bigskip
\includegraphics{mppics/pic-30}
\end{wrapfigure}
\begin{thm}{Exercise}\label{ex:signs-PXQ-PYQ}
Show that two points $X,Y\z\notin(PQ)$ lie on the same side of $(PQ)$
if and only if angles $PXQ$ and $PYQ$ have the same sign.
\end{thm}
\begin{thm}{Exercise}\label{ex:chevinas}
Let $\triangle ABC$ be a nondegenerate triangle,
$A'\in[BC]$ and
$B'\in [AC]$.
Show that $[AA']$ intersects $[BB']$.
\end{thm}
\begin{thm}{Exercise}\label{ex:Z}
Assume that points $X$ and $Y$ lie on opposite sides of the line~$(PQ)$.
Show that $[PX)$ does not intersect~$[QY)$.
\end{thm}
}
\begin{thm}{Advanced exercise}\label{ex:angle-measures}
The following quantity
$$\tilde\measuredangle ABC=
\begin{cases}
\pi&\text{if}\ \measuredangle ABC=\pi
\\
-\measuredangle ABC&\text{if}\ \measuredangle ABC<\pi
\end{cases}
$$
can serve as the angle measure;
that is, the axioms hold if one exchanges $\measuredangle$ to $\tilde\measuredangle$ everywhere.
Show that $\measuredangle$ and $\tilde\measuredangle$ are the only possible angle measures on the plane.
Show that without Axiom~\ref{def:birkhoff-axioms:2c}, this is no longer true.
\end{thm}
\section{Triangle with given sides}
Given $\triangle ABC$, set
\begin{align*}
a&=BC,
&
b&=CA,
&
c&=AB.
\end{align*}
Without loss of generality, we may assume that
\[a\le b \le c.\]
Then all three triangle inequalities for $\triangle ABC$
hold if and only if
\[c\le a+b.\]
The following theorem states that this is the only restriction on $a$, $b$, and~$c$.
\begin{thm}[\abs]{Theorem}\label{thm:abc}
Assume that $0<a\le b\le c\le a+b$.
Then there is a triangle with sides $a$, $b$, and $c$;
that is, there is $\triangle ABC$
such that $a=BC$, $b=CA$, and $c=AB$.
\end{thm}
A proof of the following proposition is given at the end of the section.
\begin{thm}[\abs]{Proposition}\label{prop:C-cont}
Fix a real number $r>0$
and two distinct points $A$ and~$B$.
Then for
any real number $\beta\in [0,\pi]$,
there is a unique point $C_\beta$ such that $BC_\beta=r$
and $\measuredangle ABC_\beta=\beta$.
Moreover, $\beta\mapsto C_\beta$
is a continuous map from $[0,\pi]$ to the plane.
\end{thm}
\parit{Proof of Theorem~\ref{thm:abc} modulo Proposition~\ref{prop:C-cont}.}\label{page:proof:thm:abc}
Fix the points $A$ and $B$ such that $AB=c$.
Given $\beta\in [0,\pi]$,
suppose that $C_\beta$ denotes the point in the plane such that $BC_\beta\z=a$ and $\measuredangle ABC=\beta$.
According to \ref{prop:C-cont},
the map
$\beta\mapsto C_\beta$ is continuous.
Therefore, the function $b\:\beta\mapsto AC_\beta$ is continuous
(formally, it follows from Exercise~\ref{ex:dist-cont} and Exercise~\ref{ex:comp+cont}).
Note that $b(0)=c-a$ and $b(\pi)=c+a$.
Since $c-a\le b\le c+a$,
by the intermediate value theorem (\ref{thm:intermidiate})
there is $\beta_0\in[0,\pi]$ such that
$b(\beta_0)=b$,
hence the result.
\qeds
The proof of Proposition~\ref{prop:C-cont} relies on the following lemma.
\begin{wrapfigure}{o}{27mm}
\vskip2mm
\centering
\includegraphics{mppics/pic-32}
\end{wrapfigure}
Assume $r>0$ and $\pi>\beta>0$.
Consider the triangle $ABC$ such that
$AB=BC=r$ and $\measuredangle ABC=\beta$.
The existence of such a triangle follows from Axiom~\ref{def:birkhoff-axioms:2a} and Proposition~\ref{prop:point-on-half-line}.
According to Axiom~\ref{def:birkhoff-axioms:3},
the values
$\beta$ and~$r$ define the triangle $ABC$ up to the congruence.
In particular, the distance $AC$ depends only on $\beta$ and~$r$.
Set
$$s(\beta,r)\df AC.$$
\begin{thm}[\abs]{Lemma}\label{lem:f(r,a)}
Given $r>0$ and $\epsilon>0$, there is $\delta>0$ such that
\[0<\beta<\delta\quad\Longrightarrow\quad s(r,\beta)<\epsilon.\]
\end{thm}
\parit{Proof.}
Fix two points $A$ and $B$ such that $AB\z=r$.
Choose a point $X$ such that $\measuredangle ABX$ is positive.
Let $Y\in [AX)$ be the point such that $AY=\tfrac\epsilon2$;
it exists by Proposition~\ref{prop:point-on-half-line}.
Points $X$ and $Y$ lie on the same side of $(AB)$;
therefore, $\angle ABY$ is positive.
Set $\delta\z=\measuredangle ABY$.
{
\begin{wrapfigure}{o}{36mm}
\centering
\includegraphics{mppics/pic-34}
\end{wrapfigure}
Suppose $0<\beta<\delta$;
by Axiom~\ref{def:birkhoff-axioms:2a}, we can choose $C$ so that $\measuredangle ABC\z=\beta$ and $BC\z=r$.
Furthermore, we can choose a half-line $[BZ)$ such that $\measuredangle ABZ\z=\tfrac12\cdot \beta$.
Points $A$ and $Y$ lie on opposite sides of~$(BZ)$ and $\measuredangle ABZ\z\equiv -\measuredangle CBZ$.
In particular, $(BZ)$ intersects $[AY]$;
denote by $D$ the point of intersection.
Since $D$ lies between $A$ and $Y$, we have $AD<AY$.
Since $D$ lies on $(BZ)$ we have that $\measuredangle ABD\z\equiv -\measuredangle CBD$.
By Axiom~\ref{def:birkhoff-axioms:3},
$\triangle ABD\cong \triangle CBD$.
It follows that
\begin{align*}
s(r,\beta)&=AC\le
\\
&\le AD+DC=
\\
&=2\cdot AD<
\\
&< 2\cdot AY=
\\
&=\epsilon.
\end{align*}
\qedsf
}
\parit{Proof of Proposition~\ref{prop:C-cont}.}
The existence and uniqueness of $C_\beta$ follow from Axiom~\ref{def:birkhoff-axioms:2a} and Proposition~\ref{prop:point-on-half-line}.
If $\beta_1\ne\beta_2$, then
$$C_{\beta_1}C_{\beta_2}=s(r,|\beta_1-\beta_2|).$$
By \ref{lem:f(r,a)}, the map $\beta\mapsto C_\beta$ is continuous.
\qeds
Given a positive real number $r$ and a point $O$,
the set $\Gamma$ of all points on distance $r$ from $O$ is called a \index{circle}\emph{circle}
with \index{radius}\emph{radius} $r$ and \index{center}\emph{center}~$O$.
\begin{wrapfigure}{r}{40mm}
\centering
\includegraphics{mppics/pic-35}
\end{wrapfigure}
\begin{thm}{Exercise}\label{ex:intersecting-circles-3}
Show that two circles intersect if and only if
\[|r_1-r_2|\le d\le r_1+r_2,\]
where $r_1$ and $r_2$ denote their radiuses, and $d$ is the distance between their centers.
\end{thm}