-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinversion.tex
676 lines (535 loc) · 23.9 KB
/
inversion.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
\chapter{Inversion}\label{chap:inversion}
Let $\Omega$ be the circle with center $O$ and radius~$r$.
The \index{inversion}\emph{inversion} of a point $P$ across $\Omega$ is the point $P'\in[OP)$ such that
$$OP\cdot OP'=r^2.$$
In this case, the circle $\Omega$ will be called the
\index{inversion!circle of inversion}\emph{circle of inversion},
and its center $O$ is called the \index{inversion!center of inversion}\emph{center of inversion}.
The inverse of $O$ is undefined.
If $P$ is inside $\Omega$, then $P'$ is outside and the other way around.
Furthermore, $P=P'$ if and only if $P\in \Omega$.
{
\begin{wrapfigure}{r}{37mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-158}
\end{wrapfigure}
Note that the inversion maps $P'$ back to~$P$.
\begin{thm}{Exercise}\label{ex:constr-inversion}
Let $\Omega$ be a circle centered at~$O$.
Suppose that a line $(PT)$ is tangent to $\Omega$ at~$T$.
Let $P'$ be a footpoint of $T$ on $(OP)$.
Show that $P'$ is the inverse of $P$ across $\Omega$.
\end{thm}
}
\begin{thm}{Lemma}\label{lem:inversion-sim}
Let $\Gamma$ be a circle centered at~$O$.
Assume $A'$ and $B'$ are the inverses of $A$ and $B$ across~$\Gamma$.
Then
$$\triangle O A B\sim\triangle O B' A'.$$
Moreover,
$$\begin{aligned}
\measuredangle AOB&\equiv -\measuredangle B'OA',
\\
\measuredangle OBA&\equiv -\measuredangle OA'B',
\\
\measuredangle BAO&\equiv -\measuredangle A'B'O.
\end{aligned}\eqlbl{eq:-angle}$$
\end{thm}
\parit{Proof.}
Let $r$ be the radius of the circle of the inversion.
\begin{wrapfigure}[14]{o}{32mm}
\centering
\includegraphics{mppics/pic-160}
\end{wrapfigure}
By the definition of an inversion,
\begin{align*}
OA\cdot OA'=OB\cdot OB'=r^2.
\end{align*}
Therefore,
$$\frac{OA}{OB'}=\frac{OB}{OA'}.$$
Clearly,
$$\measuredangle AOB= \measuredangle A'OB'\equiv -\measuredangle B'OA'.\eqlbl{eq:-AOB}$$
From SAS, we get that
$$\triangle O A B\z\sim\triangle O B' A'.$$
Applying Theorem~\ref{thm:signs-of-triug} and \ref{eq:-AOB},
we get \ref{eq:-angle}.
\qeds
\begin{thm}{Exercise}%
\label{ex:appolo-circ}
Let $P'$ be an inverse of $P$ across a circle $\Gamma$.
Assume that $P\ne P'$.
Show that the value $\frac{PX}{P'X}$ is the same for all $X\in\Gamma$.
\end{thm}
The converse to the exercise above also holds.
Namely, given a positive real number $k\ne 1$
and two distinct points $P$ and $P'$
the locus of points $X$ such that $\frac{PX}{P'X}=k$ forms a circle which is called the \index{Apollonian circle}\emph{Apollonian circle} (see also Section \ref{sec:Apollonian circle}).
In this case, $P'$ is the inverse of $P$ across the Apollonian circle.
\begin{thm}{Exercise}%
\label{ex:incenter+inversion=orthocenter}
Let $A'$, $B'$, and $C'$ be images of $A$, $B$, and $C$
under the inversion across the incircle of $\triangle A B C$.
Show that the incenter of $\triangle A B C$
is the orthocenter of $\triangle A' B' C'$.
\end{thm}
\begin{thm}{Exercise}\label{ex:consturuction-of-inversion}
Construct an inverse of a given point across a given circle using ruler and compass.
\end{thm}
\section{Cross-ratio}\index{cross-ratio}
The following theorem lists quantities that do not change after inversion.
\begin{thm}{Theorem}\label{lem:inverse-4-angle}
Let $ABCD$ and $A'B'C'D'$ be two quadrangles
such that the points $A'$, $B'$, $C'$, and $D'$ are the inverses of $A$, $B$, $C$, and $D$ respectively.
Then
\begin{enumerate}[(a)]
\item\label{lem:inverse-4-angle:cross-ratio} $$\frac{AB\cdot CD}{BC\cdot DA}= \frac{A'B'\cdot C'D'}{B'C'\cdot D'A'}.$$
\item\label{lem:inverse-4-angle:angle}
$$\measuredangle ABC+\measuredangle CDA\equiv -(\measuredangle A'B'C'+\measuredangle C'D'A').$$
\item\label{lem:inverse-4-angle:inscribed}
If the quadrangle $ABCD$ is inscribed,
then so is $\square A'B'C'D'$.
\end{enumerate}
\end{thm}
\parit{Proof; (\ref{lem:inverse-4-angle:cross-ratio}).}
Let $O$ be the center of the inversion.
According to Lemma~\ref{lem:inversion-sim},
$\triangle AOB\z\sim \triangle B'OA'$.
Therefore,
\begin{align*}
&&\frac{AB}{A'B'} &=\frac{OA}{OB'}.
\intertext{Analogously,}
\frac{BC}{B'C'}&=\frac{OC}{OB'},&
\frac{CD}{C'D'}&=\frac{OC}{OD'},&
\frac{DA}{D'A'}&=\frac{OA}{OD'}.
\end{align*}
Therefore,
\begin{align*}
\frac{AB}{A'B'}\cdot \frac{CD}{C'D'}&=\frac{OA}{OB'}\cdot\frac{OC}{OD'}=
\frac{OC}{OB'}\cdot\frac{OA}{OD'}
=\frac{BC}{B'C'}\cdot\frac{DA}{D'A'}.
\end{align*}
Hence \textit{(\ref{lem:inverse-4-angle:cross-ratio})} follows.
\parit{(\ref{lem:inverse-4-angle:angle}).}
According to Lemma~\ref{lem:inversion-sim},
\[\begin{aligned}
\measuredangle ABO&\equiv -\measuredangle B'A'O,
&
\measuredangle OBC&\equiv -\measuredangle OC'B',\\
\measuredangle CDO&\equiv -\measuredangle D'C'O,
&
\measuredangle ODA&\equiv -\measuredangle OA'D'.
\end{aligned}\eqlbl{eq:angle=-angle}\]
By Axiom~\ref{def:birkhoff-axioms:2b},
\begin{align*}
\measuredangle ABC&\equiv\measuredangle ABO+\measuredangle OBC,
&
\measuredangle D'C'B'&\equiv\measuredangle D'C'O+\measuredangle OC'B',
\\
\measuredangle CDA&\equiv\measuredangle CDO+\measuredangle ODA,
&
\measuredangle B'A'D'&\equiv\measuredangle B'A'O+\measuredangle OA'D'.
\end{align*}
Therefore,
summing the four identities in \ref{eq:angle=-angle}, we get that
\begin{align*}
\measuredangle ABC+\measuredangle CDA
&\equiv -(\measuredangle D'C'B'+\measuredangle B'A'D').
\intertext{Applying Axiom~\ref{def:birkhoff-axioms:2b} and Exercise~\ref{ex:quadrangle}, we get that}
\measuredangle A'B'C'+\measuredangle C'D'A'
&\equiv -(\measuredangle B'C'D'+\measuredangle D'A'B')\equiv
\\
&\equiv \measuredangle D'C'B'+\measuredangle B'A'D'.
\end{align*}
Hence \textit{(\ref{lem:inverse-4-angle:angle})} follows.
\parit{(\ref{lem:inverse-4-angle:inscribed}).}
Follows by \textit{(\ref{lem:inverse-4-angle:angle})} and Corollary~\ref{cor:inscribed-quadrangle}.
\qeds
\section{Inversive plane and circlines}
Let $\Omega$ be a circle with the center $O$ and the radius~$r$.
Consider the inversion across~$\Omega$.
Recall that the inverse of $O$ is undefined.
To deal with this problem it is useful to add an extra point to the plane, which will be called the \index{point!at infinity}\emph{point at infinity}, denoted as~\index{50@$\infty$}$\infty$.
We can assume that $\infty$ is the inverse of $O$ and the other way around.
The Euclidean plane with the added point at infinity is called the \index{plane!inversive plane}\index{inversive!plane}\emph{inversive plane}.
We will always assume that any line and half-line contains~$\infty$.
Recall that
\index{circline}\emph{circline}
means \textit{circle or line}.
Therefore we may say
\textit{``if a circline contains $\infty$, then it is a line''} or \textit{``a circline that does not contain $\infty$ is a circle''}.
According to Theorem~\ref{thm:circumcenter},
for any $\triangle ABC$ there is a unique circline that passes thru $A$, $B$, and~$C$
(if $\triangle ABC$ is degenerate, then this is a line, and if not it is a circle).
\begin{thm}{Theorem}\label{thm:inverse-cline}
In the inversive plane, the inverse of a circline is a circline.
\end{thm}
Exercise~\ref{ex:inversions-inversive} gives a partial converse to the theorem.
\parit{Proof.}
Suppose $O$ denotes the center of the inversion and $r$ its radius.
Let $\Gamma$ be a circline.
Choose three distinct points $A$, $B$, and $C$ on~$\Gamma$.
(If~$\triangle ABC$ is nondegenerate,
then $\Gamma$ is the circumcircle of $\triangle ABC$;
if $\triangle ABC$ is degenerate,
then $\Gamma$ is the line passing thru $A$, $B$, and~$C$.)
Let $A'$, $B'$, and $C'$ denote the inverses of $A$, $B$, and $C$ respectively.
Let $\Gamma'$ be the circline that passes thru $A'$, $B'$, and~$C'$.
Assume $D$ is a point of the inversive plane that is distinct from $A$, $C$, $O$, and~$\infty$.
Suppose that $D'$ denotes the inverse of~$D$.
By Theorem~\ref{lem:inverse-4-angle}\textit{\ref{lem:inverse-4-angle:inscribed}},
$D'\in\Gamma'$ if and only if $D\in\Gamma$.
It remains to prove that
$O\in \Gamma$ $\Leftrightarrow$ $\infty\in\Gamma'$
and
$\infty\in \Gamma$ $\Leftrightarrow$ $O\in\Gamma'$.
We will prove that
$$\infty\in \Gamma
\quad
\Longrightarrow
\quad
O\in\Gamma';$$
the remaining implications can be proved along the same lines.
If $\infty\in\Gamma$, then $\Gamma$ is a line;
or, equivalently, for any $\epsilon>0$, the circline $\Gamma$ contains a point $P$ such that $OP>r/\epsilon$.
For the inversion $P'\in\Gamma'$ of $P$, we have that $OP'=r^2/OP<r\cdot \epsilon$.
That is, the circline $\Gamma'$ contains points arbitrarily close to~$O$.
It follows that $O\in \Gamma'$.
\qeds
{
\begin{wrapfigure}{r}{37mm}
\vskip-7mm
\centering
\includegraphics{mppics/pic-162}
\end{wrapfigure}
\begin{thm}{Exercise}\label{ex:inv-center not=center-inv}
Assume that a circle $\Gamma'$ is an inverse of a circle $\Gamma$ centered at $Q$.
Suppose $Q'$ denotes the inverse of~$Q$.
Show that $Q'$ is not the center of~$\Gamma'$.
\end{thm}
Assume that a \index{circumtool}\emph{circumtool} is a geometric construction tool
that produces a circline passing thru any three given points.
}
\begin{thm}{Exercise}\label{ex:circumtool}
Show that with only a circumtool,
it is impossible to construct the center of a given circle.
\end{thm}
\begin{thm}{Exercise}\label{ex:tangent-circ->parallels}
Show that for any pair of tangent circles in the inversive plane, there is an inversion that sends them to a pair of parallel lines.
\end{thm}
\begin{thm}{Theorem}\label{thm:inverse}
Consider an inversion of the inversive plane across a circle $\Omega$ centered at~$O$.
Then
\begin{enumerate}[(a)]
\item\label{thm:inverse:line-line}
A line passing thru $O$ is inverted into itself.
\item\label{thm:inverse:line}
A line not passing thru $O$ is inverted into a circle that passes thru $O$, and the other way around.
\item\label{thm:inverse:circle}
A circle not passing thru $O$
is inverted into a circle not passing thru~$O$.
\end{enumerate}
\end{thm}
\parit{Proof.}
In the proof, we use Theorem~\ref{thm:inverse-cline} without mentioning it.
\parit{(\ref{thm:inverse:line-line}).}
If a line passes thru $O$, then it contains both $\infty$ and~$O$.
Therefore, its inverse also contains $\infty$ and~$O$.
In particular, the image is a line passing thru~$O$.
\parit{(\ref{thm:inverse:line}).}
Since any line $\ell$ passes thru $\infty$, its image $\ell'$ has to contain~$O$.
If the line does not contain $O$,
then $\ell'\not\ni \infty$;
that is, $\ell'$ is not a line.
Therefore, $\ell'$ is a circle that passes thru~$O$.
\parit{(\ref{thm:inverse:circle}).}
If the circle $\Gamma$ does not contain $O$,
then its image $\Gamma'$ does not contain~$\infty$.
Therefore, $\Gamma'$ is a circle.
Since $\Gamma\not\ni\infty$ we get that $\Gamma' \not\ni O$.
Hence the result.
\qeds
\section{Method of inversion}
Here is an application of inversion,
which we include as an illustration;
we will not use it further in the book.
\begin{thm}{Ptolemy's identity}\label{ptolemy-id}
Let $ABCD$ be an inscribed quadrangle.
Assume that points $A$, $B$, $C$, and $D$ appear on the circline in the same order.
Then
$$ AB\cdot CD+ BC\cdot DA=AC\cdot BD.$$
\end{thm}
\parit{Proof.}
Assume the points $A$, $B$, $C$, and $D$ lie on one line in this order.
\begin{wrapfigure}{o}{39mm}
\centering
\includegraphics{mppics/pic-164}
\end{wrapfigure}
Set $x\z=AB$, $y=BC$, $z\z=CD$.
Note that
$$x\cdot z+y\cdot (x+y+z)=(x+y)\cdot(y+z).$$
Since $AC\z=x+y$, $BD=y+z$, and $DA\z=x+y+z$,
it proves the identity.
\begin{wrapfigure}{o}{39mm}
\centering
\includegraphics{mppics/pic-166}
\end{wrapfigure}
It remains to consider the case when the quadrangle $ABCD$ is inscribed in a circle, say~$\Gamma$.
The identity can be rewritten as
$$\frac{AB\cdot DC}{ BD\cdot CA}+ \frac{BC\cdot AD}{CA\cdot DB}=1.$$
On the left-hand side we have two cross-ratios.
According to Theorem~\ref{lem:inverse-4-angle}\textit{\ref{lem:inverse-4-angle:cross-ratio}}, the left-hand side does not change if we apply an inversion to each point.
Consider an inversion across a circle centered at point $O$ that lies on $\Gamma$ between $A$ and~$D$.
By
Theorem~\ref{thm:inverse},
this inversion maps $\Gamma$ to a line.
This reduces the problem to the case when $A$, $B$, $C$, and $D$ lie on one line, which was already considered.
\qeds
{
\begin{wrapfigure}{r}{27mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-168}
\vskip4mm
\includegraphics{mppics/pic-170}
\end{wrapfigure}
In the proof above, we rewrite Ptolemy's identity in a form that is invariant with respect to inversion
and then apply an inversion which makes the statement evident.
The solution of the following exercise is based on the same idea;
one has to make a right choice of inversion.
\begin{thm}{Exercise}\label{ex:4-circles}
Assume that four circles are mutually tangent to each other.
Show that four (among six) of their points of tangency lie on one circline.
\end{thm}
\begin{thm}{Advanced exercise}\label{ex:inverse}
Assume that three circles are tangent to each other and to two parallel lines as shown in the picture.
Show that $(AB)$ is tangent to two circles at~$A$.
\end{thm}
}
\section{Perpendicular circles}
Assume two circles $\Gamma$ and $\Omega$ intersect at two points $X$ and~$Y$.
Let $\ell$ and $m$ be the tangent lines at $X$ to $\Gamma$ and $\Omega$ respectively.
Analogously, let $\ell'$ and $m'$ be the tangent lines at $Y$ to $\Gamma$ and~$\Omega$.
From Exercise~\ref{ex:two-arcs}, we can deduce that
$\ell\perp m$ if and only if $\ell'\perp m'$.
We say that the circle $\Gamma$ is {}\emph{perpendicular} to the circle $\Omega$
(briefly \index{38@$\perp$}$\Gamma\perp \Omega$)
if they intersect and the lines tangent to the circles at one point
(and therefore, both points)
of intersection are perpendicular.
Similarly, we say that the circle $\Gamma$ is perpendicular to the line $\ell$ (briefly $\Gamma\perp \ell$)
if $\Gamma\cap\ell\ne \emptyset$ and $\ell$ is perpendicular to the tangent lines to $\Gamma$ at one point (and therefore, both points) of intersection.
According to Lemma~\ref{lem:tangent},
this happens only if the line $\ell$ passes thru the center of~$\Gamma$.
Now we can talk about \index{perpendicular!circlines}\emph{perpendicular circlines}.
\begin{thm}{Theorem}\label{thm:perp-inverse}
Assume $\Gamma$ and $\Omega$ are distinct circles.
Then $\Omega\perp\Gamma$ if and only if the circle $\Gamma$ coincides with its inversion across~$\Omega$.
\end{thm}
\begin{wrapfigure}[7]{o}{29mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-172}
\end{wrapfigure}
\parit{Proof.}
Suppose that $\Gamma'$ denotes the inverse of~$\Gamma$.
\parit{``Only if'' part.}
Let $O$ be the center of $\Omega$
and $Q$ be the center of~$\Gamma$.
Let $X$ and $Y$ denote the points of intersections of $\Gamma$ and~$\Omega$.
By Lemma~\ref{lem:tangent}, $\Gamma\perp\Omega$ if and only if $(OX)$ and $(OY)$ are tangent to~$\Gamma$.
Since $O\ne X$, Lemma \ref{lem:perp<oblique} implies that $O$ lies outside of~$\Gamma$.
By Theorem \ref{thm:inverse}\textit{\ref{thm:inverse:circle}}, $\Gamma'$ is a circle.
Note that $\Gamma'$ is also tangent to $(OX)$ and $(OY)$ at $X$ and $Y$ respectively.
It follows that $X$ and $Y$ are the footpoints of the center of $\Gamma'$ on $(OX)$ and $(OY)$.
Therefore, both $\Gamma'$ and $\Gamma$ have the center~$Q$.
Finally, $\Gamma'=\Gamma$, since both circles pass thru~$X$.
\parit{``If'' part.}
Assume $\Gamma=\Gamma'$.
Since $\Gamma\ne \Omega$, there is a point $P$ that lies on $\Gamma$, but not on~$\Omega$.
Let $P'$ be the inverse of $P$ across~$\Omega$.
Since $\Gamma=\Gamma'$, we have that $P'\in \Gamma$.
In particular, the half-line $[OP)$ intersects $\Gamma$ at two points.
By Exercise~\ref{ex:inside-outside},
$O$ lies outside of~$\Gamma$.
As $\Gamma$ has points inside and outside of $\Omega$,
the circles $\Gamma$ and $\Omega$ intersect.
The latter follows from Exercise~\ref{ex:intersecting-circles-3}.
Let $X$ be a point of their intersection.
We need to show that $(OX)$ is tangent to $\Gamma$, which means $X$ is the only intersection point of $(OX)$ and~$\Gamma$.
Assume $Z$ is another point of intersection of $(OX)$ and~$\Gamma$.
Since $O$ is outside of $\Gamma$,
the point $Z$ lies on the half-line $[OX)$.
Suppose that $Z'$ denotes the inverse of $Z$ across~$\Omega$.
Clearly, the three points $Z, Z', X$ lie on $\Gamma$ and $(OX)$, which contradicts Lemma~\ref{lem:line-circle}.
\qeds
It is convenient to define the
\index{inversion!inversion across the line}\emph{inversion across the line} $\ell$
as the reflection across $\ell$.
This way we can talk about \index{inversion!inversion across the circline}\emph{inversion across an arbitrary circline}.
\begin{thm}{Corollary}\label{cor:perp-inverse-clines}
Let $\Omega$ and $\Gamma$ be distinct circlines in the inversive plane.
Then
the inversion across $\Omega$ sends $\Gamma$ to itself if and only if $\Omega\perp\Gamma$.
\end{thm}
\parit{Proof.}
By Theorem~\ref{thm:perp-inverse}, it is sufficient to consider the case when $\Omega$ or $\Gamma$ is a line.
Assume $\Omega$ is a line, so the inversion across $\Omega$ is a reflection.
In this case, the statement follows from Corollary~\ref{cor:reflection+angle}.
If $\Gamma$ is a line,
then the statement follows from Theorem~\ref{thm:inverse}.
\qeds
\begin{thm}{Corollary}\label{cor:perp-inverse}
Let $P$ and $P'$ be two distinct points
such that $P'$ is the inverse of $P$ across the circle~$\Omega$.
If a circline $\Gamma$ passes thru $P$ and~$P'$, then $\Gamma\perp\Omega$.
\end{thm}
\parit{Proof.}
Without loss of generality, we may assume that $P$ is inside and $P'$ is outside~$\Omega$.
By Theorem~\ref{thm:abc}, $\Gamma$ intersects $\Omega$.
Suppose that $A$ denotes a point of intersection.
Suppose that $\Gamma'$ denotes the inverse of~$\Gamma$.
Since $A$ is a self-inverse, the points $A$, $P$, and $P'$ lie on~$\Gamma'$.
By Exercise~\ref{ex:unique-cline},
$\Gamma'=\Gamma$
and by Theorem~\ref{thm:perp-inverse}, $\Gamma\perp\Omega$.
\qeds
\begin{thm}{Corollary}\label{cor:h-line}
Let $P$ and $Q$ be two distinct points inside a circle~$\Omega$.
Then there is a unique circline $\Gamma$ perpendicular to $\Omega$ that passes thru $P$ and~$Q$.
\end{thm}
\parit{Proof.}
Let $P'$ be the inverse of the point $P$ across the circle~$\Omega$.
According to Corollary~\ref{cor:perp-inverse},
if a circline that passes thru $P$ and $Q$ is perpendicular to $\Omega$, then it passes thru~$P'$, and the converse holds as well.
Note that $P'$ lies outside of~$\Omega$.
Therefore, the points $P$, $P'$, and $Q$ are distinct.
According to Exercise~\ref{ex:unique-cline},
there is a unique circline passing thru $P$, $Q$, and~$P'$.
Hence the result.
\qeds
\begin{thm}{Exercise}\label{ex:inscribed+inv}
Let $P$, $Q$, $P'$, and $Q'$ be points in the Euclidean plane.
Assume $P'$ and $Q'$ are inverses of $P$ and $Q$ respectively.
Show that the quadrangle $PQP'Q'$ is inscribed.
\end{thm}
\begin{thm}{Exercise}\label{ex:centers-of-perp-circles}
Let $\Omega_1$ and $\Omega_2$ be two perpendicular circles with centers at $O_1$ and $O_2$ respectively.
Show that the inverse of $O_1$ across $\Omega_2$
coincides with
the inverse of $O_2$ across~$\Omega_1$.
\end{thm}
\begin{thm}{Exercise}\label{ex:4-th-perp-circ}
Three distinct circles --- $\Omega_1$, $\Omega_2$, and $\Omega_3$, intersect at two points --- $A$ and~$B$.
Assume that a circle $\Gamma$ is perpendicular to $\Omega_1$ and $\Omega_2$.
Show that $\Gamma\perp\Omega_3$.
\end{thm}
Let us consider two new construction tools:
the \index{circumtool}\emph{circumtool} that constructs a circline thru three given points,
and the \index{inversor}\emph{inversor} --- a tool that constructs an inverse of a given point across a given circline.
\begin{thm}{Exercise}\label{ex:construction-perp-clines}
Given two circles $\Omega_1$, $\Omega_2$ and a point $P$ that does not lie on the circles,
use only circumtool and inversor to construct a circline $\Gamma$ thru $P$,
and perpendicular to both $\Omega_1$ and $\Omega_2$.
\end{thm}
\begin{thm}{Advanced exercise}\label{ex:3-construction-perp-clines}
Given three disjoint circles $\Omega_1$, $\Omega_2$, and $\Omega_3$,
use only circumtool and inversor to construct a circline $\Gamma$ that is perpendicular to each circle $\Omega_1$, $\Omega_2$, and $\Omega_3$.
Think what to do if two of the circles intersect.
\end{thm}
\section{Angles after inversion}
\begin{thm}{Proposition}
In the inversive plane, an inverse of an arc is an arc.
\end{thm}
\parit{Proof.}
Consider four distinct points $A$, $B$, $C$, and $D$;
let $A'$, $B'$, $C'$, and $D'$ be their inverses.
We need to show that $D$ lies on the arc $ABC$ if and only if $D'$ lies on the arc $A'B'C'$.
According to Proposition~\ref{prop:arcs},
the latter is equivalent to the following:
$$\measuredangle ADC= \measuredangle ABC
\quad
\iff
\quad
\measuredangle A'D'C'= \measuredangle A'B'C'.$$
The latter follows from Theorem~\ref{lem:inverse-4-angle}\textit{\ref{lem:inverse-4-angle:angle}}.
\qeds
The following theorem states that the angle between arcs changes only its sign after the inversion.
{
\begin{wrapfigure}{r}{55mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-174}
\end{wrapfigure}
\begin{thm}{Theorem}\label{thm:angle-inversion}
Let $AB_1C_1$, $AB_2C_2$ be two arcs in the inversive plane,
and arcs $A'B_1'C_1'$, $A'B_2'C_2'$ be their inverses.
Let $[AX_1)$ and $[AX_2)$ be the half-lines tangent to $AB_1C_1$ and $AB_2C_2$ at $A$,
and
$[A'Y_1)$ and $[A'Y_2)$ be the half-lines tangent to $A'B_1'C_1'$ and $A'B_2'C_2'$ at~$A'$.
Then
$$\measuredangle X_1AX_2\equiv-\measuredangle Y_1A'Y_2.$$
\end{thm}
}
{
\begin{wrapfigure}[6]{o}{21mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-176}
\end{wrapfigure}
The \index{angle!between arcs}\emph{angle between arcs} can be defined as the angle between their tangent half-lines at the common endpoint.
Therefore under inversion, the angles between arcs are preserved up to sign.
From Exercise~\ref{ex:tangent-lim}, it follows that the angle between arcs with the common endpoint $A$ is the limit of $\measuredangle P_1AP_2$ where $P_1$ and $P_2$ are points approaching $A$ along the corresponding arcs.
This observation can be used to define the angle between a pair of curves emerging from one point.
It turns out that under inversion, angles between curves are also preserved up to sign.
}
\parit{Proof.}
By Proposition~\ref{prop:arc(angle=tan)},
\begin{align*}
\measuredangle X_1AX_2&\equiv\measuredangle X_1AC_1+\measuredangle C_1AC_2+\measuredangle C_2AX_2\equiv
\\
&\equiv(\pi-\measuredangle C_1B_1A)+\measuredangle C_1AC_2+(\pi-\measuredangle AB_2 C_2)\equiv
\\
&
\equiv -(\measuredangle C_1B_1A+\measuredangle AB_2 C_2 +\measuredangle C_2 A C_1)\equiv
\\
&\equiv
-(\measuredangle C_1B_1A+\measuredangle AB_2 C_1)
-(\measuredangle C_1B_2C_2 +\measuredangle C_2 A C_1).
\intertext{The same way, we get}
\measuredangle Y_1A'Y_2
&\equiv-(\measuredangle C_1'B_1'A'+\measuredangle A'B_2' C_1')
-(\measuredangle C_1'B_2'C_2' +\measuredangle C_2' A' C_1').
\end{align*}
By Theorem~\ref{lem:inverse-4-angle}\textit{\ref{lem:inverse-4-angle:angle}},
\begin{align*}
\measuredangle C_1B_1A+\measuredangle AB_2 C_1&\equiv-(\measuredangle C_1'B_1'A'+\measuredangle A'B_2' C_1'),
\\
\measuredangle C_1B_2C_2 +\measuredangle C_2 A C_1&\equiv-(\measuredangle C_1'B_2'C_2' +\measuredangle C_2' A' C_1'),
\end{align*}
and hence the result.\qeds
\begin{thm}{Corollary}\label{cor:invese-comp}
Let $P$ be an inverse of a point $Q$ across a circle $\Gamma$.
Assume that $P'$, $Q'$, and $\Gamma'$
are the inverses of $P$, $Q$, and $\Gamma$ across another circle $\Omega$.
Then $P'$ is the inverse of $Q'$ across~$\Gamma'$.
\end{thm}
{
\begin{wrapfigure}{r}{45mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-178}
\end{wrapfigure}
\parit{Proof.}
If $P=Q$, then $P'=Q'\z\in\Gamma'$.
Therefore, $P'$ is the inverse of $Q'$ across~$\Gamma'$.
It remains to consider the case $P\z\ne Q$.
Let $\Delta_1$ and $\Delta_2$ be two distinct circles that intersect at $P$ and~$Q$.
According to Corollary~\ref{cor:perp-inverse},
$\Delta_1\perp\Gamma$ and $\Delta_2\perp\Gamma$.
Let $\Delta_1'$ and $\Delta_2'$ denote the inverses of $\Delta_1$ and $\Delta_2$ across~$\Omega$.
Clearly, $\Delta_1'$ meets $\Delta_2'$ at $P'$ and~$Q'$.
By Theorem~\ref{thm:angle-inversion}, $\Delta_1'\perp\Gamma'$ and $\Delta_2'\z\perp\Gamma'$.
By Corollary~\ref{cor:perp-inverse-clines}, $P'$ is the inverse of $Q'$ across~$\Gamma'$.
\qeds
}