-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathvec_final_fold.c
250 lines (220 loc) · 9.35 KB
/
vec_final_fold.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
* Calculate the checksum of 128 bits of data.
*
* We add 32 bits of 0s to make 192 bits of data - this matches what a
* CRC does. We reduce the 192 bits in two steps, first reducing the top 64
* bits to produce 96 bits, then reducing the top 32 bits of that to produce 64
* bits.
*
* We then use fixed point Barrett reduction to compute a mod n over GF(2)
* for n = 0x104c11db7 using POWER8 instructions. We use x = 32.
*
* http://en.wikipedia.org/wiki/Barrett_reduction
*
* Copyright (C) 2017 Rogerio Alves <rogealve@br.ibm.com>, IBM
* Copyright (C) 2017 Steven Munroe <sjmunroe@us.ibm.com>, IBM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of either:
*
* a) the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version, or
* b) the Apache License, Version 2.0
*/
#include <altivec.h>
#if defined (__clang__)
#include "clang_workaround.h"
#else
#define __builtin_pack_vector(a, b) __builtin_pack_vector_int128 ((a), (b))
#define __builtin_unpack_vector_0(a) __builtin_unpack_vector_int128 ((vector __int128_t)(a), 0)
#define __builtin_unpack_vector_1(a) __builtin_unpack_vector_int128 ((vector __int128_t)(a), 1)
#endif
#if defined(__LITTLE_ENDIAN__)
static const __vector unsigned long long vfold_const[5]
__attribute__ ((aligned (16))) = {
/* x^96 mod p(x) */
{ 0x00000000f200aa66UL, 0x0000000000000000UL },
/* x^64 mod p(x) */
{ 0x00000000490d678dUL, 0x0000000000000000UL },
/* Barrett constant m - (4^32)/n */
{ 0x0000000104d101dfUL, 0x0000000000000000UL },
/* Barrett constant n */
{ 0x0000000104c11db7UL, 0x0000000000000000UL },
/* byte reverse permute constant, in LE order */
{ 0x08090A0B0C0D0E0FUL, 0x0001020304050607UL }
};
static const __vector unsigned long long vfold_reflect_const[5]
__attribute__ ((aligned (16))) = {
/* x^96 mod p(x)` << 1 */
{ 0x00000000ccaa009eUL, 0x0000000000000000UL },
/* x^64 mod p(x)` << 1 */
{ 0x0000000163cd6124UL, 0x0000000000000000UL },
/* 33 bit reflected Barrett constant m - (4^32)/n */
{ 0x00000001f7011641UL, 0x0000000000000000UL },
/* 33 bit reflected Barrett constant n */
{ 0x00000001db710641UL, 0x0000000000000000UL },
/* byte reverse permute constant, in LE order */
{ 0x08090A0B0C0D0E0FUL, 0x0001020304050607UL }
};
#else
static const __vector unsigned long long vfold_const[5]
__attribute__ ((aligned (16))) = {
/* x^96 mod p(x) */
{ 0x0000000000000000UL, 0x00000000f200aa66UL },
/* x^64 mod p(x) */
{ 0x0000000000000000UL, 0x00000000490d678dUL },
/* Barrett constant m - (4^32)/n */
{ 0x0000000000000000UL, 0x0000000104d101dfUL },
/* Barrett constant n */
{ 0x0000000000000000UL, 0x0000000104c11db7UL },
/* byte reverse permute constant, in BE order */
{ 0x0F0E0D0C0B0A0908UL, 0X0706050403020100UL }
};
static const __vector unsigned long long vfold_reflect_const[5]
__attribute__ ((aligned (16))) = {
/* x^96 mod p(x)` << 1 */
{ 0x0000000000000000UL, 0x00000000ccaa009eUL },
/* x^64 mod p(x)` << 1 */
{ 0x0000000000000000UL, 0x0000000163cd6124UL },
/* 33 bit reflected Barrett constant m - (4^32)/n */
{ 0x0000000000000000UL, 0x00000001f7011641UL },
/* 33 bit reflected Barrett constant n */
{ 0x0000000000000000UL, 0x00000001db710641UL },
/* byte reverse permute constant, in BE order */
{ 0x0F0E0D0C0B0A0908UL, 0X0706050403020100UL }
};
#endif
unsigned long __attribute__ ((aligned (32)))
final_fold(void* __restrict__ data) {
const __vector unsigned long long vzero = {0,0};
const __vector unsigned long long vones = {0xffffffffffffffffUL,
0xffffffffffffffffUL};
const __vector unsigned long long vmask_32bit =
(__vector unsigned long long)vec_sld((__vector unsigned char)vzero,
(__vector unsigned char)vones, 4);
const __vector unsigned long long vmask_64bit =
(__vector unsigned long long)vec_sld((__vector unsigned char)vzero,
(__vector unsigned char)vones, 8);
__vector unsigned long long vconst1 = vec_ld(0, vfold_const);
__vector unsigned long long vconst2 = vec_ld(16, vfold_const);
__vector unsigned long long vconst3 = vec_ld(32, vfold_const);
__vector unsigned long long vconst4 = vec_ld(48, vfold_const);
__vector unsigned long long vdata, v0, v1;
unsigned long result = 0;
vdata = vec_ld(0, (__vector unsigned long long*) data);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
__vector unsigned long long vperm_const = vec_ld(64, vfold_const);
vdata = vec_perm (vdata, vdata, (__vector unsigned char)vperm_const);
#endif
/*
* We append 32 bits of zeroes to our 128 bit value. This gives us 160
* bits that we reduce in two steps.
*/
/* Reduce the top 64 bits */
v1 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero,
(__vector unsigned char)vdata, 8);
v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
(__vector unsigned long long)vconst1);
/* Add 32 bits of zeroes and xor with the reduced top 64 bits */
v0 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vdata,
(__vector unsigned char)vzero, 4);
v0 = vec_xor (v1, v0);
v1 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero,
(__vector unsigned char)v0, 8);
v1 = vec_and (v1, (__vector unsigned long long)vmask_32bit);
v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
(__vector unsigned long long)vconst2);
v0 = vec_xor (v1, v0);
v0 = vec_and (v0, vmask_64bit);
/*
* Now for Barrett reduction. The idea is to calculate q,
* the multiple of our polynomial that we need to subtract. By
* doing the computation 2x bits higher (ie 64 bits) and shifting the
* result back down 2x bits, we round down to the nearest multiple.
*/
v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v0,
(__vector unsigned long long)vconst3);
v1 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero,
(__vector unsigned char)v1, 8);
v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
(__vector unsigned long long)vconst4);
v0 = vec_xor (v1, v0);
/*
* Get the result into r3. We need to shift it left 8 bytes:
* V0 [ 0 1 2 X ]
* V0 [ 0 X 2 3 ]
*/
result = __builtin_unpack_vector_1 (v0);
return result;
}
unsigned long __attribute__ ((aligned (32)))
final_fold_reflected(void *__restrict__ data) {
const __vector unsigned long long vzero = {0,0};
const __vector unsigned long long vones = {0xffffffffffffffffUL,
0xffffffffffffffffUL};
const __vector unsigned long long vmask_32bit =
(__vector unsigned long long)vec_sld((__vector unsigned char)vzero,
(__vector unsigned char)vones, 4);
const __vector unsigned long long vmask_64bit =
(__vector unsigned long long)vec_sld((__vector unsigned char)vzero,
(__vector unsigned char)vones, 8);
__vector unsigned long long vconst1 = vec_ld(0, vfold_reflect_const);
__vector unsigned long long vconst2 = vec_ld(16, vfold_reflect_const);
__vector unsigned long long vconst3 = vec_ld(32, vfold_reflect_const);
__vector unsigned long long vconst4 = vec_ld(48, vfold_reflect_const);
__vector unsigned long long vdata, v0, v1;
unsigned long result = 0;
vdata = vec_ld(0, (__vector unsigned long long*) data);
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
__vector unsigned long long vperm_const = vec_ld(64, vfold_reflect_const);
vdata = vec_perm (vdata, vdata, (__vector unsigned char)vperm_const);
#endif
/*
* We append 32 bits of zeroes to our 128 bit value. This gives us 192
* bits that we reduce in two steps. This time we are reducing the
* bits on the right side (ie the lower bits) and xor'ing them
* on the left side.
*/
/* Reduce the top 64 bits */
v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata,
(__vector unsigned long long)vconst1);
v1 = (__vector unsigned long long)vec_sld ((__vector unsigned char)v1,
(__vector unsigned char)vzero, 4);
/* Add 32 bits of zeroes and xor with the reduced top 64 bits */
v0 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero,
(__vector unsigned char)vdata, 12);
v0 = vec_xor (v1, v0);
/* We have a 96 bit value, now reduce the top 32 bits */
v1 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero,
(__vector unsigned char)v0, 12);
v1 = vec_and (v1, (__vector unsigned long long)vmask_32bit);
v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
(__vector unsigned long long)vconst2);
v0 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero,
(__vector unsigned char)v0, 8);
v0 = vec_xor (v1, v0);
v0 = vec_and (v0, vmask_64bit);
/*
* Now for Barrett reduction. The idea is to calculate q,
* the multiple of our polynomial that we need to subtract. By
* doing the computation 2x bits higher (ie 64 bits) and shifting the
* result back down 2x bits, we round down to the nearest multiple.
*/
v1 = vec_and (v0, vmask_32bit);
v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
(__vector unsigned long long)vconst3);
v1 = vec_and (v1, (__vector unsigned long long)vmask_32bit);
v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
(__vector unsigned long long)vconst4);
v0 = vec_xor (v0, v1);
/*
* Get the result into r3. We need to shift it left 8 bytes:
* V0 [ 0 1 2 X ]
* V0 [ 0 X 2 3 ]
*/
v0 = (__vector unsigned long long)vec_sld ((__vector unsigned char)v0,
(__vector unsigned char)vzero, 4);
result = __builtin_unpack_vector_0 (v0);
return result;
}