-
Notifications
You must be signed in to change notification settings - Fork 0
/
MykernePCA.R
80 lines (67 loc) · 2.78 KB
/
MykernePCA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#Kernel PCA
# Importing the dataset
dataset = read.csv('Social_Network_Ads.csv')
dataset = dataset[3:5]
# Encoding the target feature as factor
dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1))
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split = sample.split(dataset$Purchased, SplitRatio = 0.75)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
# Feature Scaling
training_set[-3] = scale(training_set[-3])
test_set[-3] = scale(test_set[-3])
#Applying the Kernel PCA
#install.packages('kernlab')
library(kernlab)
kpca = kpca(~., data = training_set[-3],
kernel = 'rbfdot',
feature = 2)
training_set_kpca = as.data.frame(predict(kpca, training_set))
training_set_kpca$Purchased = training_set$Purchased
test_set_kpca = as.data.frame(predict(kpca, test_set))
test_set_kpca$Purchased = test_set$Purchased
# Fitting Logistic Regression to the Training set
classifier = glm(formula = Purchased ~ .,
family = binomial,
data = training_set_kpca)
# Predicting the Test set results
prob_pred = predict(classifier, type = 'response', newdata = test_set_kpca[-3])
y_pred = ifelse(prob_pred > 0.5, 1, 0)
# Making the Confusion Matrix
cm = table(test_set_kpca[, 3], y_pred > 0.5)
# Visualising the Training set results
library(ElemStatLearn)
set = training_set_kpca
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('V1', 'V2')
prob_set = predict(classifier, type = 'response', newdata = grid_set)
y_grid = ifelse(prob_set > 0.5, 1, 0)
plot(set[, -3],
main = 'Logistic Regression (Training set)',
xlab = 'V1', ylab = 'V2',
xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
# Visualising the Test set results
library(ElemStatLearn)
set = test_set_kpca
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('V1', 'V2')
prob_set = predict(classifier, type = 'response', newdata = grid_set)
y_grid = ifelse(prob_set > 0.5, 1, 0)
plot(set[, -3],
main = 'Logistic Regression (Test set)',
xlab = 'V1', ylab = 'V2',
xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))