-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTFM_AGomez_10_Tables.R
64 lines (55 loc) · 3.15 KB
/
TFM_AGomez_10_Tables.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#####################################
# #
# title: 'Tables' #
# date: '2023-08-10' #
# #
#####################################
# Load data
library(readxl)
data <- read_excel("Y:/data_qc/gwas/mother_child/gsa_qc_mothers_20230502/db/BISC_db_gwas_20230506_codebook.xlsx",
sheet = "db_miQTL_m_EUR", col_types = c("text",
"text", "text", "numeric", "numeric",
"text", "numeric", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric"))
#install.packages("gtsummary")
library(gtsummary)
tbl_summary <- data %>%
select(hospital_parto, sex, gestational_age_birth, birth_weight, ancestry_child, Trophoblasts, Stromal, Hofbauer, Endothelial, nRBC, Syncytiotrophoblast) %>% # keep only columns of interest
tbl_summary(
#by = InfantSex, # stratify entire table by outcome
statistic = list(all_continuous() ~ "{mean} ({sd})", # stats and format for continuous columns
all_categorical() ~ "{n} ({p}%)"), # stats and format for categorical columns
digits = c(Trophoblasts, Stromal, Hofbauer, Endothelial, nRBC, Syncytiotrophoblast) ~ 4, # rounding for continuous columns
type = all_categorical() ~ "categorical", # force all categorical levels to
missing_text = "Missing" # how missing values should display
) %>%
# add_p(test = list(all_continuous() ~ "t.test", all_categorical() ~ "chisq.test"), group = InfantSex) %>%
# #modify_header(bold_labels()) %>% # update the column header
bold_labels() #%>%
# #modify_spanning_header(all_stat_cols() ~ "**M_RN.T1**")%>%
# bold_p()
#tbl_merge <- tbl_merge(list(tbl_summary_sesgo_GENEIDA, tbl_summary_sesgo_1, tbl_summary_sesgo_2, tbl_summary_sesgo_3))
# modify_spanning_header(
# list(
# all_stat_cols() ~ "**Sesgo Analysis**",
# starts_with("p.value") ~ "**p-values**"
# )
# )
tbl_summary
ex <- readRDS("Y:/data_qc/transS/child/0y/placenta_RNAseq_20220803/QC_seqClusterBuster_20220803/denoising/BISC_miRNA_TMM_5cpm_10p_c.lib.rds")
data <- as.data.frame(ex[1])
table1 <- data %>%
tbl_summary(
type = all_continuous() ~ "continuous2", # indicate that you want to print multiple statistics
statistic = all_continuous() ~ c(
"{mean}", # line 1: mean
"{geometric.mean}",
"{min}",
"{median} ({p50}, {p75}, {p95})", # line 2: median and IQR
"{max}"), # line 3: min and max
digits = all_continuous() ~ 2, # rounding for continuous columns
missing_text = "Missing" # how missing values should display
)
table1