-
Notifications
You must be signed in to change notification settings - Fork 6
Open
Description
Hi @anujinho,
I am trying to reproduce your TRIDENT CCVAE model, however, I am not able to pass inputs through the learner/model.
Below is the model:
MAML(
(module): CCVAE(
(encoder): CEncoder(
(net): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2)
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): LeakyReLU(negative_slope=0.2)
(7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): LeakyReLU(negative_slope=0.2)
(11): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(12): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): LeakyReLU(negative_slope=0.2)
(15): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(16): Flatten(start_dim=1, end_dim=-1)
)
)
(decoder): CDecoder(
(linear): Sequential(
(0): Linear(in_features=128, out_features=800, bias=True)
(1): LeakyReLU(negative_slope=0.2)
)
(net): Sequential(
(0): UpsamplingNearest2d(size=(10, 10), mode=nearest)
(1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same)
(2): LeakyReLU(negative_slope=0.2)
(3): UpsamplingNearest2d(size=(21, 21), mode=nearest)
(4): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same)
(5): LeakyReLU(negative_slope=0.2)
(6): UpsamplingNearest2d(size=(42, 42), mode=nearest)
(7): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same)
(8): LeakyReLU(negative_slope=0.2)
(9): UpsamplingNearest2d(size=(84, 84), mode=nearest)
(10): Conv2d(32, 3, kernel_size=(3, 3), stride=(1, 1), padding=same)
(11): Sigmoid()
)
)
(classifier_vae): Classifier_VAE(
(encoder): TADCEncoder(
(net): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2)
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): LeakyReLU(negative_slope=0.2)
(7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): LeakyReLU(negative_slope=0.2)
(11): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(12): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): LeakyReLU(negative_slope=0.2)
(15): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(fe): Sequential(
(0): Conv2d(1, 64, kernel_size=(110, 1), stride=(1, 1), padding=valid, bias=False)
(1): LeakyReLU(negative_slope=0.2)
(2): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), padding=valid, bias=False)
(3): LeakyReLU(negative_slope=0.2)
)
(f_q): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1), padding=valid, bias=False)
(f_k): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1), padding=valid, bias=False)
(f_v): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1), padding=valid, bias=False)
)
(gaussian_parametrizer): GaussianParametrizer(
(h1): Linear(in_features=864, out_features=64, bias=True)
(h2): Linear(in_features=864, out_features=64, bias=True)
)
(classifier): Sequential(
(0): Linear(in_features=64, out_features=32, bias=True)
(1): LeakyReLU(negative_slope=0.2)
(2): Linear(in_features=32, out_features=10, bias=True)
)
)
(gaussian_parametrizer): GaussianParametrizer(
(h1): Linear(in_features=800, out_features=64, bias=True)
(h2): Linear(in_features=800, out_features=64, bias=True)
)
)
)
And below is the minimized stack trace:
Traceback (most recent call last):
...
File ".../trident.py", line 105, in _train_epoch
eval_loss, eval_acc = inner_adapt_trident(ttask, reconst_loss,
File ".../utils.py", line 146, in inner_adapt_trident
reconst_image, logits, mu_l, log_var_l, mu_s, log_var_s = learner(
...
File ".../archs.py", line 812, in forward
mu_s, log_var_s = self.gaussian_parametrizer(xs)
...
File ".../archs.py", line 404, in forward
mu = self.h1(x)
...
RuntimeError: mat1 and mat2 shapes cannot be multiplied (10x128 and 800x64)
Also, below are the hyperparameters:
n_ways: 5
k_shots: 1
q_shots: 10
meta_batch_size: 20
order: False
inner_lr: 0.0014
task_adapt: True
zl: 64
zs: 64
reconstr: std
dataset: cifarfs
wm_channels: 64
wn_channels: 32
download: False
extra: False
adapt_steps_train: 5
adapt_steps_test: 5
Basically the output shape of CEncoder and input shape of GaussianParametrizer doesn't match.
Can you please help to resolve this issue. Will look forward to hearing from you soon. Thanks!
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels