-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevo_search_spos.py
643 lines (546 loc) · 26.7 KB
/
evo_search_spos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import collections
from copy import deepcopy
import numpy as np
import matplotlib.pyplot as plt
import argparse
import torch
import contextlib
import pickle
from model_search import BigramLanguageModel
import random
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
from pathlib import Path
import argparse
import os
import yaml
# Encoder: take a string, output a list of integers
def encode(s):
return [stoi[c] for c in s]
# Decoder: take a list of integers, output a string
def decode(l):
return ''.join([itos[i] for i in l])
global data, train_data, valid_data
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# Checking all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
vocab_set = "".join(chars)
# Create a mapping from characters to integers
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
# Train and test splits
train_size = 0.9
data = torch.tensor(encode(text), dtype=torch.long)
n = int(train_size * len(data))
train_data = data[:n]
valid_data = data[n:]
train_portion = 0.8
n_train = int(train_portion * len(train_data))
#print(n_train)
#print(len(train_data))
train_data_now = train_data[:n_train]
#print(len(train_data))
eval_data = train_data[n_train:]
#print(len(eval_data))
def get_batch(split: str, block_size: int = 8, batch_size: int = 4, device: str = None):
""" Gets a randomized batch from the split of data chosen.
Arguments
---------
split : str, {"train", "valid"}
block_size : int
The context length for predictions, that is, a sentence length
batch_size : int
The batch size, that is, the number of sentences
"""
# generate a small batch of data of inputs x and targets y
assert split in ["test", "valid"]
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
data = valid_data if split == 'test' else eval_data
# generating random indices as markers in the full text document
# such that they are a starting point to the sentence of length
# `block_size` that will be a data point in the batch
ix = torch.randint(
low=0, high=len(data) - block_size, size=(batch_size,)
)
# extracting a sentence of length `block_size` for every
# random starting point in `ix`
x = torch.stack([data[i:i+block_size] for i in ix])
# extracting a sentence of length `block_size` for every
# random starting point in `ix` + 1 (shifted to right)
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
def decode_cand_tuple(cand_tuple):
depth = cand_tuple[0]
embed_dim = cand_tuple[1]
return depth, embed_dim, list(cand_tuple[2:depth+2]), list(cand_tuple[depth + 2: 2 * depth + 2])
def get_arch_param_from_cand(cand, choices):
depth, embed_dim, num_heads, mlp_ratio = decode_cand_tuple(cand)
arch_param = {}
arch_param['num_layers'] = torch.zeros([len(choices["num_layers"])])
i = torch.tensor(choices["num_layers"]) == depth
i = i.nonzero().squeeze()
arch_param['num_layers'][i.item()] = 1
arch_param['embed_dim'] = torch.zeros([len(choices["embed_dim"])])
i = torch.tensor(choices["embed_dim"])== embed_dim
i = i.nonzero().squeeze()
arch_param['embed_dim'][i.item()] = 1
arch_param['num_heads'] = torch.zeros([max(choices["num_layers"]),len(choices["num_heads"])])
for i in range(depth):
j = torch.tensor(choices["num_heads"])== num_heads[i]
j = j.nonzero().squeeze()
arch_param['num_heads'][i,j.item()] = 1
for i in range(arch_param["num_heads"].shape[0]-depth):
arch_param['num_heads'][depth+i,1] = 1
arch_param['mlp_ratio'] = torch.zeros([max(choices["num_layers"]),len(choices["mlp_ratio"])])
for i in range(depth):
j = torch.tensor(choices["mlp_ratio"])== mlp_ratio[i]
j = j.nonzero().squeeze()
arch_param['mlp_ratio'][i,j.item()] = 1
for i in range(arch_param["mlp_ratio"].shape[0]-depth):
arch_param['mlp_ratio'][depth+i,1] = 1
return arch_param
class EvolutionSearcher(object):
def __init__(self, args, device, model, model_without_ddp, choices, output_dir):
self.device = device
self.model = model
self.model_without_ddp = model_without_ddp
self.args = args
self.max_epochs = args.max_epochs
self.select_num = args.select_num
self.population_num = args.population_num
self.m_prob = args.m_prob
self.crossover_num = args.crossover_num
self.mutation_num = args.mutation_num
self.parameters_limits = args.param_limits
self.min_parameters_limits = args.min_param_limits
self.output_dir = output_dir
self.s_prob =args.s_prob
self.vis_dict = {}
self.keep_top_k = {self.select_num: [], 50: []}
self.epoch = 0
self.checkpoint_path = args.resume
self.eval_iters = 200
self.candidates = []
self.top_losses = []
self.cand_params = []
self.arch_params = []
self.choices = choices
def save_checkpoint(self):
info = {}
info['top_losses'] = self.top_losses
info['candidates'] = self.candidates
info['vis_dict'] = self.vis_dict
info['keep_top_k'] = self.keep_top_k
info['epoch'] = self.epoch
checkpoint_path = os.path.join(self.output_dir, "checkpoint-{}.pth.tar".format(self.epoch))
torch.save(info, checkpoint_path)
print('save checkpoint to', checkpoint_path)
def load_checkpoint(self):
if not os.path.exists(self.checkpoint_path):
return False
info = torch.load(self.checkpoint_path)
self.candidates = info['candidates']
self.vis_dict = info['vis_dict']
self.keep_top_k = info['keep_top_k']
self.epoch = info['epoch']
print('load checkpoint from', self.checkpoint_path)
return True
def is_legal(self, cand):
assert isinstance(cand, tuple)
if cand not in self.vis_dict:
self.vis_dict[cand] = {}
info = self.vis_dict[cand]
if 'visited' in info:
return False
depth, embed_dim, num_heads, mlp_ratio = decode_cand_tuple(cand)
sampled_config = {}
sampled_config['layer_num'] = depth
sampled_config['mlp_ratio'] = mlp_ratio
sampled_config['num_heads'] = num_heads
sampled_config['embed_dim'] = embed_dim
arch_param = get_arch_param_from_cand(cand, self.choices)
#print(arch_param)
eval_err, test_err = self.estimate_loss(arch_param, self.model)
info['eval_err'] = eval_err.item()
info['test_err'] = test_err.item()
info['visited'] = True
return True
def estimate_loss(self, arch_params, model):
out = {}
model.eval()
for split in ['valid', 'test']:
losses = torch.zeros(self.eval_iters)
for k in range(self.eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y, arch_params=arch_params)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out['valid'], out['test']
def update_top_k(self, candidates, *, k, key, reverse=False):
assert k in self.keep_top_k
print('select ......')
t = self.keep_top_k[k]
t += candidates
t.sort(key=key, reverse=reverse)
self.keep_top_k[k] = t[:k]
def stack_random_cand(self, random_func, *, batchsize=50):
while True:
cands = []
arch_params = []
for _ in range(batchsize):
cand, arch_param = random_func()
cands.append(cand)
arch_params.append(arch_param)
for cand in cands:
if cand not in self.vis_dict:
self.vis_dict[cand] = {}
info = self.vis_dict[cand]
return cands, arch_params
def get_random_cand(self):
cand_tuple = list()
config, arch_params = self.model.sample_random_config()
depth_selected = config["num_layers"]
for k in config.keys():
if isinstance(config[k], list):
for i in range(depth_selected):
cand_tuple.append(config[k][i])
else:
cand_tuple.append(config[k])
return tuple(cand_tuple), arch_params
def get_random(self, num):
print('random select ........')
cand_iter, arch_iter = self.stack_random_cand(self.get_random_cand)
i = 0
while len(self.candidates) < num:
cand = cand_iter[i]
arch = arch_iter[i]
if not self.is_legal(cand):
continue
self.candidates.append(cand)
self.arch_params.append(arch)
print('random {}/{}'.format(len(self.candidates), num))
i += 1
print('random_num = {}'.format(len(self.candidates)))
def get_mutation(self, k, mutation_num, m_prob, s_prob):
assert k in self.keep_top_k
print('mutation ......')
res = []
res_arch = []
iter = 0
max_iters = mutation_num * 10
def random_func():
# Choose a random candidate
cand = list(random.choice(self.keep_top_k[k]))
depth, embed_dim, num_heads, mlp_ratio = decode_cand_tuple(cand)
random_s = random.random()
new_depth = None
# depth
if random_s < s_prob: # check is depth is mutated
# TODO : sample new depth
if new_depth > depth:
# TODO: sample new number of heads and new mlp ratio for the new layers (new_depth - depth)
raise NotImplementedError
else:
#remove the last layers (depth - new_depth)
mlp_ratio = mlp_ratio[:new_depth]
num_heads = num_heads[:new_depth]
depth = new_depth
# mutate the older mlp ratio
for i in range(depth):
random_s = random.random()
if random_s < m_prob:
# TODO: sample new mlp ratio for the ith layer
raise NotImplementedError
# num_heads
for i in range(depth):
random_s = random.random()
if random_s < m_prob:
# TODO: sample new num heads for the ith layer
raise NotImplementedError
# embed_dim
random_s = random.random()
if random_s < s_prob:
# TODO: sample new embedding dimension
raise NotImplementedError
# mutated candidate
result_cand = [depth] + [embed_dim] + num_heads + mlp_ratio
#print(result_cand)
output = tuple(result_cand)
arch_param_dict = get_arch_param_from_cand(output, self.choices)
return output, arch_param_dict
cand_iter, arch_iter = self.stack_random_cand(random_func)
i = 0
while len(res) < mutation_num and max_iters > 0:
max_iters -= 1
cand = cand_iter[i]
arch = arch_iter[i]
if not self.is_legal(cand):
continue
res.append(cand)
res_arch.append(arch)
print('mutation {}/{}'.format(len(res), mutation_num))
i += 1
print('mutation_num = {}'.format(len(res)))
return res, res_arch
def get_crossover(self, k, crossover_num):
assert k in self.keep_top_k
print('crossover ......')
res_cand = []
res_archs = []
iter = 0
max_iters = 10 * crossover_num
def random_func():
# choose parent 1 (p1) and parent 2 (p2) randomly from top k
p1 = random.choice(self.keep_top_k[k])
p2 = random.choice(self.keep_top_k[k])
output = None # TODO
max_iters_tmp = 50
while len(p1) != len(p2) and max_iters_tmp > 0:
max_iters_tmp -= 1
# TODO: choose parent 1 (p1) and parent 2 (p2) randomly from top k until they have the same length
raise NotImplementedError
# TODO: randomly chose the config from p1 and p2 for every architecture choice to form a new config
arch_param_dict = get_arch_param_from_cand(output, self.choices)
return output, arch_param_dict
cand_iter, arch_iter = self.stack_random_cand(random_func)
i = 0
while len(res_cand) < crossover_num and max_iters > 0:
max_iters -= 1
cand = cand_iter[i]
arch = arch_iter[i]
if not self.is_legal(cand):
continue
res_cand.append(cand)
res_archs.append(arch)
print('crossover {}/{}'.format(len(res_cand), crossover_num))
i += 1
print('crossover_num = {}'.format(len(res_cand)))
return res_cand, res_archs
def search(self):
print(
'population_num = {} select_num = {} mutation_num = {} crossover_num = {} random_num = {} max_epochs = {}'.format(
self.population_num, self.select_num, self.mutation_num, self.crossover_num,
self.population_num - self.mutation_num - self.crossover_num, self.max_epochs))
# self.load_checkpoint()
self.get_random(self.population_num)
while self.epoch < self.max_epochs:
print('epoch = {}'.format(self.epoch))
self.update_top_k(
self.candidates, k=self.select_num, key=lambda x: self.vis_dict[x]['eval_err'])
self.update_top_k(
self.candidates, k=50, key=lambda x: self.vis_dict[x]['eval_err'])
print('epoch = {} : top {} result'.format(
self.epoch, len(self.keep_top_k[50])))
tmp_accuracy = []
for i, cand in enumerate(self.keep_top_k[50]):
print('No.{} {} Top-1 val acc = {}, Top-1 test acc = {}, params = {}'.format(
i + 1, cand, self.vis_dict[cand]['eval_err'], self.vis_dict[cand]['test_err'], 0))
tmp_accuracy.append(self.vis_dict[cand]['eval_err'])
self.top_losses.append(tmp_accuracy)
mutation_cands, mutation_archs = self.get_mutation(
self.select_num, self.mutation_num, self.m_prob, self.s_prob)
crossover_cands, crossover_archs = self.get_crossover(self.select_num, self.crossover_num)
self.candidates = mutation_cands + crossover_cands
self.arch_params = mutation_archs + crossover_archs
self.get_random(self.population_num)
self.epoch += 1
self.save_checkpoint()
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
# evolution search parameters
parser.add_argument('--max-epochs', type=int, default=1000)
parser.add_argument('--select-num', type=int, default=10)
parser.add_argument('--population-num', type=int, default=30)
parser.add_argument('--m_prob', type=float, default=0.2)
parser.add_argument('--s_prob', type=float, default=0.4)
parser.add_argument('--crossover-num', type=int, default=10)
parser.add_argument('--epochs', type=int, default=30)
parser.add_argument('--mutation-num', type=int, default=10)
parser.add_argument('--param-limits', type=float, default=10000000)
parser.add_argument('--min-param-limits', type=float, default=0)
# custom parameters
parser.add_argument('--platform', default='pai', type=str, choices=['itp', 'pai', 'aml'],
help='Name of model to train')
parser.add_argument('--teacher_model', default='', type=str,
help='Name of teacher model to train')
parser.add_argument('--relative_position', action='store_true')
parser.add_argument('--max_relative_position', type=int, default=14, help='max distance in relative position embedding')
parser.add_argument('--scale', action='store_true')
parser.add_argument('--gp', action='store_true')
parser.add_argument('--change_qkv', action='store_true')
# Model parameters
parser.add_argument('--model', default='', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int)
parser.add_argument('--patch_size', default=16, type=int)
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
# parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# custom model argument
parser.add_argument('--rpe_type', type=str, default='bias', choices=['bias', 'direct'])
parser.add_argument('--post_norm', action='store_true')
parser.add_argument('--no_abs_pos', action='store_true')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--lr-power', type=float, default=1.0,
help='power of the polynomial lr scheduler')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01_101/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19', 'EVO_IMNET'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--no-prefetcher', action='store_true', default=False,
help='disable fast prefetcher')
parser.add_argument('--output_dir', default='evo_checkpoint',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--amp', action='store_true')
parser.add_argument('--no-amp', action='store_false', dest='amp')
parser.add_argument('--model_path', default='model_one_shot_spos_pretrained.pth', type=str, help='path to pretrained model')
parser.set_defaults(amp=True)
return parser
def main(args):
device = torch.device(args.device)
print(args)
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
# save config for later experiments
with open(os.path.join(args.output_dir, "config.yaml"), 'w') as f:
f.write(args_text)
# fix the seed for reproducibility
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(args.seed)
cudnn.benchmark = True
print(f"Creating CharLM")
model_path = args.model_path
choices = {}
choices["num_layers"] = [2, 4, 6]
choices["embed_dim"] = [96, 192, 384]
choices["num_heads"] = [2, 4, 6]
choices["mlp_ratio"] = [1, 2, 4]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = BigramLanguageModel(choices=choices, block_size=256,
mixop="spos", dropout=0.2, use_we_v2=False).to(device)
model.load_state_dict(torch.load(model_path))
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
t = time.time()
searcher = EvolutionSearcher(args, device, model, model_without_ddp, choices, args.output_dir)
searcher.search()
print('total searching time = {:.2f} hours'.format(
(time.time() - t) / 3600))
if __name__ == '__main__':
parser = argparse.ArgumentParser('CharLM evolution search', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)