-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommons.py
48 lines (39 loc) · 1.43 KB
/
commons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import io
import torch
import torch.nn as nn
import torchvision.models as models
#from torchvision import models
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import cv2
from torchvision import datasets
def get_model():
use_cuda = torch.cuda.is_available()
checkpoint_path = 'model_transfer.pt'
res50 = models.resnet50(pretrained=True)
#model = models. densenet161(pretrained=True)
#model.classifier = nn.Linear(2208, 102)
model_transfer=res50
for name,child in model_transfer.named_children():
if name in ['fc']:
for param in child.parameters():
param.requires_grad = True
else:
for param in child.parameters():
param.requires_grad = False
model_transfer.fc = nn.Sequential(nn.Linear(2048, 516),nn.ReLU(inplace=True),nn.Linear(516,64),nn.ReLU(inplace=True),nn.Linear(64,3))
if use_cuda:
model_transfer = model_transfer.cuda()
checkpoint = torch.load('model_transfer.pt')
model_transfer.load_state_dict(checkpoint['state_dict'])
model_transfer.eval()
return model_transfer
def get_tensor(image_bytes):
my_transforms = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
return my_transforms(image).unsqueeze(0)