diff --git a/apax/cli/templates/md_config_minimal.yaml b/apax/cli/templates/md_config_minimal.yaml index 4f0a0a4e..4f5bcf6b 100644 --- a/apax/cli/templates/md_config_minimal.yaml +++ b/apax/cli/templates/md_config_minimal.yaml @@ -11,9 +11,9 @@ ensemble: tau: 100 duration: # fs -n_inner: 100 # compiled innner steps +n_inner: 500 # compiled innner steps sampling_rate: 10 # dump interval -buffer_size: 100 +buffer_size: 2500 dr_threshold: 0.5 # Neighborlist skin extra_capacity: 0 diff --git a/apax/cli/templates/train_config_full.yaml b/apax/cli/templates/train_config_full.yaml index 13d89656..4aef6020 100644 --- a/apax/cli/templates/train_config_full.yaml +++ b/apax/cli/templates/train_config_full.yaml @@ -1,7 +1,6 @@ n_epochs: seed: 1 patience: null -n_jitted_steps: 1 data_parallel: True weight_average: null @@ -24,7 +23,7 @@ data: n_train: 1000 n_valid: 100 - batch_size: 32 + batch_size: 4 valid_batch_size: 100 shift_method: "per_element_regression_shift" @@ -39,30 +38,37 @@ data: model: name: gmnn basis: - name: gaussian - n_basis: 7 - r_max: 6.0 - r_min: 0.5 + name: bessel + n_basis: 16 + r_max: 5.0 ensemble: null - # if you would like to train model ensembles, this can be achieved with - # the following example. + # if you would like to use emirical repulsion corrections + # with the following example. + # empirical_corrections: + # - name: exponential + # r_max: 1.5 + + # if you would like to train model ensembles, this can be + # achieved with the following example. + # Hint: loss type hase to be changed to a probabalistic loss like nll or crps # ensemble: - # kind: full + # kind: shallow # n_members: N n_radial: 5 n_contr: 8 - nn: [512, 512] + nn: [256, 256] - calc_stress: true + calc_stress: false - w_init: normal + w_init: lecun b_init: zeros - descriptor_dtype: fp64 + descriptor_dtype: fp32 readout_dtype: fp32 - scale_shift_dtype: fp32 + scale_shift_dtype: fp64 emb_init: uniform + use_ntk: false loss: - name: energy @@ -86,20 +92,21 @@ metrics: optimizer: name: adam kwargs: {} - emb_lr: 0.03 - nn_lr: 0.03 - scale_lr: 0.001 - shift_lr: 0.05 - zbl_lr: 0.001 + emb_lr: 0.001 + nn_lr: 0.001 + scale_lr: 0.0001 + shift_lr: 0.003 + zbl_lr: 0.0001 schedule: - name: linear - transition_begin: 0 - end_value: 1e-6 + name: cyclic_cosine + period: 40 + decay_factor: 0.93 + callbacks: - name: csv checkpoints: - ckpt_interval: 1 + ckpt_interval: 500 # The options below are used for transfer learning base_model_checkpoint: null reset_layers: [] diff --git a/apax/cli/templates/train_config_minimal.yaml b/apax/cli/templates/train_config_minimal.yaml index 67f96a08..8aaa6d98 100644 --- a/apax/cli/templates/train_config_minimal.yaml +++ b/apax/cli/templates/train_config_minimal.yaml @@ -8,7 +8,7 @@ data: n_train: 1000 n_valid: 100 - batch_size: 32 + batch_size: 4 valid_batch_size: 100 metrics: diff --git a/apax/config/lr_config.py b/apax/config/lr_config.py index 23791f2b..770fdf89 100644 --- a/apax/config/lr_config.py +++ b/apax/config/lr_config.py @@ -33,13 +33,13 @@ class CyclicCosineLR(LRSchedule, frozen=True, extra="forbid"): Parameters ---------- - period: int = 20 + period: int = 40 Length of a cycle in epochs. - decay_factor: NonNegativeFloat = 1.0 + decay_factor: NonNegativeFloat = 0.93 Factor by which to decrease the LR after each cycle. 1.0 means no decrease. """ name: Literal["cyclic_cosine"] - period: int = 20 - decay_factor: NonNegativeFloat = 1.0 + period: int = 40 + decay_factor: NonNegativeFloat = 0.93 diff --git a/apax/config/md_config.py b/apax/config/md_config.py index aa1f209b..f61bca79 100644 --- a/apax/config/md_config.py +++ b/apax/config/md_config.py @@ -229,12 +229,12 @@ class MDConfig(BaseModel, frozen=True, extra="forbid"): | Time step in fs. duration : float, required | Total simulation time in fs. - n_inner : int, default = 100 + n_inner : int, default = 500 | Number of compiled simulation steps (i.e. number of iterations of the | `jax.lax.fori_loop` loop). Also determines atoms buffer size. sampling_rate : int, default = 10 | Interval between saving frames. - buffer_size : int, default = 100 + buffer_size : int, default = 2500 | Number of collected frames to be dumped at once. dr_threshold : float, default = 0.5 | Skin of the neighborlist. @@ -273,9 +273,9 @@ class MDConfig(BaseModel, frozen=True, extra="forbid"): ) duration: PositiveFloat - n_inner: PositiveInt = 100 + n_inner: PositiveInt = 500 sampling_rate: PositiveInt = 10 - buffer_size: PositiveInt = 100 + buffer_size: PositiveInt = 2500 dr_threshold: PositiveFloat = 0.5 extra_capacity: NonNegativeInt = 0 diff --git a/apax/config/model_config.py b/apax/config/model_config.py index 4ac054fd..43f6f6a9 100644 --- a/apax/config/model_config.py +++ b/apax/config/model_config.py @@ -35,15 +35,15 @@ class BesselBasisConfig(BaseModel, extra="forbid"): Parameters ---------- - n_basis : PositiveInt, default = 7 + n_basis : PositiveInt, default = 16 Number of uncontracted basis functions. - r_max : PositiveFloat, default = 6.0 + r_max : PositiveFloat, default = 5.0 Cutoff radius of the descriptor. """ name: Literal["bessel"] = "bessel" - n_basis: PositiveInt = 7 - r_max: PositiveFloat = 6.0 + n_basis: PositiveInt = 16 + r_max: PositiveFloat = 5.0 BasisConfig = Union[GaussianBasisConfig, BesselBasisConfig] @@ -84,6 +84,11 @@ class ShallowEnsembleConfig(BaseModel, extra="forbid"): If set to an integer, the jacobian of ensemble energies wrt. to positions will be computed in chunks of that size. This sacrifices some performance for the possibility to use relatively large ensemble sizes. + + Hint + ---------- + Loss type hase to be changed to a probabalistic loss like 'nll' or 'crps' + """ kind: Literal["shallow"] = "shallow" @@ -101,12 +106,12 @@ class Correction(BaseModel, extra="forbid"): class ZBLRepulsion(Correction, extra="forbid"): name: Literal["zbl"] - r_max: NonNegativeFloat = 2.0 + r_max: NonNegativeFloat = 1.5 class ExponentialRepulsion(Correction, extra="forbid"): name: Literal["exponential"] - r_max: NonNegativeFloat = 2.0 + r_max: NonNegativeFloat = 1.5 EmpiricalCorrection = Union[ZBLRepulsion, ExponentialRepulsion] @@ -120,13 +125,13 @@ class BaseModelConfig(BaseModel, extra="forbid"): ---------- basis : BasisConfig, default = GaussianBasisConfig() Configuration for primitive basis funtions. - nn : List[PositiveInt], default = [512, 512] + nn : List[PositiveInt], default = [256, 256] Number of hidden layers and units in those layers. - w_init : Literal["normal", "lecun"], default = "normal" + w_init : Literal["normal", "lecun"], default = "lecun" Initialization scheme for the neural network weights. - b_init : Literal["normal", "zeros"], default = "normal" + b_init : Literal["normal", "zeros"], default = "zeros" Initialization scheme for the neural network biases. - use_ntk : bool, default = True + use_ntk : bool, default = False Whether or not to use NTK parametrization. ensemble : Optional[EnsembleConfig], default = None What kind of model ensemble to use (optional). @@ -134,17 +139,17 @@ class BaseModelConfig(BaseModel, extra="forbid"): Whether to include the ZBL correction. calc_stress : bool, default = False Whether to calculate stress during model evaluation. - descriptor_dtype : Literal["fp32", "fp64"], default = "fp64" + descriptor_dtype : Literal["fp32", "fp64"], default = "fp32" Data type for descriptor calculations. readout_dtype : Literal["fp32", "fp64"], default = "fp32" Data type for readout calculations. - scale_shift_dtype : Literal["fp32", "fp64"], default = "fp32" + scale_shift_dtype : Literal["fp32", "fp64"], default = "fp64" Data type for scale and shift parameters. """ basis: BasisConfig = Field(BesselBasisConfig(name="bessel"), discriminator="name") - nn: List[PositiveInt] = [128, 128] + nn: List[PositiveInt] = [256, 256] w_init: Literal["normal", "lecun"] = "lecun" b_init: Literal["normal", "zeros"] = "zeros" use_ntk: bool = False diff --git a/apax/config/train_config.py b/apax/config/train_config.py index 627d3025..df6e9f6e 100644 --- a/apax/config/train_config.py +++ b/apax/config/train_config.py @@ -118,7 +118,10 @@ class DataConfig(BaseModel, extra="forbid"): | dict of property name, shape (ragged or fixed) pairs. Currently unused. energy_regularisation : | Magnitude of the regularization in the per-element energy regression. - + pos_unit : str, default = "Ang" + unit of length + energy_unit : str, default = "eV" + unit of energy """ directory: str @@ -210,16 +213,20 @@ class OptimizerConfig(BaseModel, frozen=True, extra="forbid"): ---------- name : str, default = "adam" Name of the optimizer. Can be any `optax` optimizer. - emb_lr : NonNegativeFloat, default = 0.02 + emb_lr : NonNegativeFloat, default = 0.001 Learning rate of the elemental embedding contraction coefficients. - nn_lr : NonNegativeFloat, default = 0.03 + nn_lr : NonNegativeFloat, default = 0.001 Learning rate of the neural network parameters. - scale_lr : NonNegativeFloat, default = 0.001 + scale_lr : NonNegativeFloat, default = 0.0001 Learning rate of the elemental output scaling factors. - shift_lr : NonNegativeFloat, default = 0.05 + shift_lr : NonNegativeFloat, default = 0.003 Learning rate of the elemental output shifts. - zbl_lr : NonNegativeFloat, default = 0.001 + zbl_lr : NonNegativeFloat, default = 0.0001 Learning rate of the ZBL correction parameters. + rep_scale_lr : NonNegativeFloat, default = 0.001 + LR for the length scale of thes exponential repulsion potential. + rep_prefactor_lr : NonNegativeFloat, default = 0.0001 + LR for the strength of the exponential repulsion potential. gradient_clipping: NonNegativeFloat, default = 1000.0 Per element Gradient clipping value. Default is so high that it effectively disabled. @@ -230,11 +237,11 @@ class OptimizerConfig(BaseModel, frozen=True, extra="forbid"): """ name: str = "adam" - emb_lr: NonNegativeFloat = 0.02 - nn_lr: NonNegativeFloat = 0.03 - scale_lr: NonNegativeFloat = 0.001 - shift_lr: NonNegativeFloat = 0.05 - zbl_lr: NonNegativeFloat = 0.001 + emb_lr: NonNegativeFloat = 0.001 + nn_lr: NonNegativeFloat = 0.001 + scale_lr: NonNegativeFloat = 0.0001 + shift_lr: NonNegativeFloat = 0.003 + zbl_lr: NonNegativeFloat = 0.0001 rep_scale_lr: NonNegativeFloat = 0.001 rep_prefactor_lr: NonNegativeFloat = 0.0001 @@ -362,7 +369,7 @@ class CheckpointConfig(BaseModel, extra="forbid"): reset_layers: List of layer names for which the parameters will be reinitialized. """ - ckpt_interval: PositiveInt = 1 + ckpt_interval: PositiveInt = 500 base_model_checkpoint: Optional[str] = None reset_layers: List[str] = [] diff --git a/apax/md/simulate.py b/apax/md/simulate.py index a29108a2..4f299187 100644 --- a/apax/md/simulate.py +++ b/apax/md/simulate.py @@ -17,7 +17,7 @@ from apax.config import Config, MDConfig, parse_config from apax.config.md_config import Integrator from apax.md.ase_calc import make_ensemble, maybe_vmap -from apax.md.constraints import Constraint, ConstraintBase, FixAtoms +from apax.md.constraints import Constraint, ConstraintBase from apax.md.dynamics_checks import DynamicsCheckBase, DynamicsChecks from apax.md.io import H5TrajHandler, TrajHandler, truncate_trajectory_to_checkpoint from apax.md.md_checkpoint import load_md_state @@ -255,8 +255,6 @@ def run_sim( dynamics_checks, ) - constraints = [FixAtoms(indices=[6, 8])] - apply_constraints = create_constraint_function( constraints, state, diff --git a/apax/nodes/optimizer/__init__.py b/apax/nodes/optimizer/__init__.py new file mode 100644 index 00000000..8d73c6f6 --- /dev/null +++ b/apax/nodes/optimizer/__init__.py @@ -0,0 +1,3 @@ +from apax.optimizer.get_optimizer import get_opt + +__all__ = ["get_opt"] diff --git a/apax/nodes/optimizer/get_optimizer.py b/apax/nodes/optimizer/get_optimizer.py new file mode 100644 index 00000000..d25d2ba0 --- /dev/null +++ b/apax/nodes/optimizer/get_optimizer.py @@ -0,0 +1,157 @@ +import logging + +import jax.numpy as jnp +import numpy as np +import optax +from flax import traverse_util +from flax.core.frozen_dict import freeze +from optax._src import base + +from apax.optimizer.optimizers import ademamix, sam + +log = logging.getLogger(__name__) + + +def cyclic_cosine_decay_schedule( + init_value: float, + steps_per_epoch, + period: int, + decay_factor: float = 0.9, +) -> base.Schedule: + r"""Returns a function which implements cyclic cosine learning rate decay. + + Args: + init_value: An initial value for the learning rate. + + Returns: + schedule + A function that maps step counts to values. + """ + + def schedule(count): + cycle = count // (period * steps_per_epoch) + step_in_period = jnp.mod(count, period * steps_per_epoch) + arg = np.pi * step_in_period / (period * steps_per_epoch) + lr = init_value / 2 * (jnp.cos(arg) + 1) + lr = lr * (decay_factor**cycle) + return lr + + return schedule + + +def get_schedule( + lr: float, + n_epochs: int, + steps_per_epoch: int, + schedule_kwargs: dict, +) -> optax._src.base.Schedule: + """ + builds a linear learning rate schedule. + """ + schedule_kwargs = schedule_kwargs.copy() + name = schedule_kwargs.pop("name") + if name == "linear": + lr_schedule = optax.linear_schedule( + init_value=lr, transition_steps=n_epochs * steps_per_epoch, **schedule_kwargs + ) + elif name == "cyclic_cosine": + lr_schedule = cyclic_cosine_decay_schedule(lr, steps_per_epoch, **schedule_kwargs) + else: + raise KeyError(f"unknown learning rate schedule: {name}") + return lr_schedule + + +class OptimizerFactory: + def __init__( + self, opt, n_epochs, steps_per_epoch, gradient_clipping, kwargs, schedule + ) -> None: + self.opt = opt + self.n_epochs = n_epochs + self.steps_per_epoch = steps_per_epoch + self.gradient_clipping = gradient_clipping + self.kwargs = kwargs + self.schedule = schedule + + def create(self, lr): + if lr <= 1e-7: + optimizer = optax.set_to_zero() + else: + schedule = get_schedule( + lr, self.n_epochs, self.steps_per_epoch, self.schedule + ) + optimizer = optax.chain( + optax.clip(self.gradient_clipping), + self.opt(schedule, **self.kwargs), + optax.zero_nans(), + ) + return optimizer + + +def get_opt( + params, + n_epochs: int, + steps_per_epoch: int, + emb_lr: float = 0.02, + nn_lr: float = 0.03, + scale_lr: float = 0.001, + shift_lr: float = 0.05, + zbl_lr: float = 0.001, + rep_scale_lr: float = 0.001, + rep_prefactor_lr: float = 0.0001, + gradient_clipping=1000.0, + name: str = "adam", + kwargs: dict = {}, + schedule: dict = {}, +) -> optax._src.base.GradientTransformation: + """ + Builds an optimizer with different learning rates for each parameter group. + Several `optax` optimizers are supported. + """ + + log.info("Initializing Optimizer") + if name == "sam": + opt = sam + elif name == "ademamix": + opt = ademamix + else: + opt = getattr(optax, name) + + opt_fac = OptimizerFactory( + opt, n_epochs, steps_per_epoch, gradient_clipping, kwargs, schedule + ) + + nn_opt = opt_fac.create(nn_lr) + emb_opt = opt_fac.create(emb_lr) + scale_opt = opt_fac.create(scale_lr) + shift_opt = opt_fac.create(shift_lr) + zbl_opt = opt_fac.create(zbl_lr) + rep_scale_opt = opt_fac.create(rep_scale_lr) + rep_prefactor_opt = opt_fac.create(rep_prefactor_lr) + + partition_optimizers = { + "w": nn_opt, + "b": nn_opt, + "atomic_type_embedding": emb_opt, + "scale_per_element": scale_opt, + "shift_per_element": shift_opt, + "a_exp": zbl_opt, + "a_num": zbl_opt, + "coefficients": zbl_opt, + "exponents": zbl_opt, + "rep_scale": rep_scale_opt, + "rep_prefactor": rep_prefactor_opt, + "kernel": nn_opt, + "bias": nn_opt, + "embedding": emb_opt, + "weights_K": nn_opt, + "weights_Q": nn_opt, + "weights_V": nn_opt, + "scale": scale_opt, + } + + param_partitions = freeze( + traverse_util.path_aware_map(lambda path, v: path[-1], params) + ) + tx = optax.multi_transform(partition_optimizers, param_partitions) + + return tx diff --git a/apax/nodes/optimizer/optimizers.py b/apax/nodes/optimizer/optimizers.py new file mode 100644 index 00000000..22237e22 --- /dev/null +++ b/apax/nodes/optimizer/optimizers.py @@ -0,0 +1,84 @@ +from typing import NamedTuple + +import chex +import jax.numpy as jnp +import optax +from jax import tree_util as jtu +from optax import bias_correction, contrib, update_moment, update_moment_per_elem_norm +from optax._src import base, combine, numerics, transform +from optax.tree_utils import tree_zeros_like + + +class ScaleByAdemamixState(NamedTuple): + count: chex.Array + count_m2: chex.Array + m1: base.Updates + m2: base.Updates + nu: base.Updates + + +def ademamix( + lr, + b1=0.9, + b2=0.999, + b3=0.9999, + alpha=5.0, + b3_scheduler=None, # TODO maybe implement schedules + alpha_scheduler=None, + eps=1e-8, + weight_decay=0.0, +): + """AdEMAmix implementation directly taken from the original implementation: + 2409.03137 + """ + return combine.chain( + scale_by_ademamix(b1, b2, b3, alpha, b3_scheduler, alpha_scheduler, eps), + transform.add_decayed_weights(weight_decay), + transform.scale_by_learning_rate(lr), + ) + + +def scale_by_ademamix(b1, b2, b3, alpha, b3_scheduler, alpha_scheduler, eps): + def init_fn(params): + m1 = tree_zeros_like(params) # fast EMA + m2 = tree_zeros_like(params) # slow EMA + nu = tree_zeros_like(params) # second moment estimate + return ScaleByAdemamixState( + count=jnp.zeros([], jnp.int32), + count_m2=jnp.zeros([], jnp.int32), + m1=m1, + m2=m2, + nu=nu, + ) + + def update_fn(updates, state, params=None): + del params + c_b3 = b3_scheduler(state.count_m2) if b3_scheduler is not None else b3 + c_alpha = ( + alpha_scheduler(state.count_m2) if alpha_scheduler is not None else alpha + ) + m1 = update_moment(updates, state.m1, b1, 1) # m1 = b1 * m1 + (1-b1) * updates + m2 = update_moment(updates, state.m2, c_b3, 1) + nu = update_moment_per_elem_norm(updates, state.nu, b2, 2) + count_inc = numerics.safe_int32_increment(state.count) + count_m2_inc = numerics.safe_int32_increment(state.count_m2) + m1_hat = bias_correction(m1, b1, count_inc) + nu_hat = bias_correction(nu, b2, count_inc) + updates = jtu.tree_map( + lambda m1_, m2_, v_: (m1_ + c_alpha * m2_) / (jnp.sqrt(v_) + eps), + m1_hat, + m2, + nu_hat, + ) + return updates, ScaleByAdemamixState( + count=count_inc, count_m2=count_m2_inc, m1=m1, m2=m2, nu=nu + ) + + return base.GradientTransformation(init_fn, update_fn) + + +def sam(lr=1e-3, b1=0.9, b2=0.999, rho=0.001, sync_period=2): + """A SAM optimizer using Adam for the outer optimizer.""" + opt = optax.adam(lr, b1=b1, b2=b2) + adv_opt = optax.chain(contrib.normalize(), optax.sgd(rho)) + return contrib.sam(opt, adv_opt, sync_period=sync_period) diff --git a/apax/train/callbacks.py b/apax/train/callbacks.py index 90825977..a89baa66 100644 --- a/apax/train/callbacks.py +++ b/apax/train/callbacks.py @@ -45,6 +45,10 @@ def on_train_end(self, logs=None): for cb in self.callbacks: cb.on_train_end(logs) + def on_test_batch_end(self, batch, logs=None): + for cb in self.callbacks: + cb.on_test_batch_end(batch, logs) + def format_str(k): return f"{k:.5f}" diff --git a/apax/train/eval.py b/apax/train/eval.py index e111a618..984551af 100644 --- a/apax/train/eval.py +++ b/apax/train/eval.py @@ -120,7 +120,6 @@ def predict(model, params, Metrics, loss_fn, test_ds, callbacks, is_ensemble=Fal 0, test_ds.n_data, desc="Structure", ncols=100, disable=False, leave=True ) for batch_idx in range(test_ds.n_data): - callbacks.on_test_batch_begin(batch_idx) batch = next(batch_test_ds) batch_start_time = time.time() diff --git a/apax/utils/jax_md_reduced/simulate.py b/apax/utils/jax_md_reduced/simulate.py index 4f238887..f590cf81 100644 --- a/apax/utils/jax_md_reduced/simulate.py +++ b/apax/utils/jax_md_reduced/simulate.py @@ -290,6 +290,7 @@ def init_fn(key, R, mass=f32(1.0), **kwargs): @jit def step_fn(state, **kwargs): _dt = kwargs.pop("dt", dt) + _ = kwargs.pop("kT") return velocity_verlet(force_fn, shift_fn, _dt, state, **kwargs) return init_fn, step_fn diff --git a/examples/01_Model_Training.ipynb b/examples/01_Model_Training.ipynb index 08d983bf..5b4bc7e1 100644 --- a/examples/01_Model_Training.ipynb +++ b/examples/01_Model_Training.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -27,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -107,11 +107,11 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "!apax template train" + "!apax template train --full" ] }, { @@ -126,23 +126,25 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1 validation error for Config\n", + "1 validation errors for config\n", "n_epochs\n", - " Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='', input_type=str]\n", - " For further information visit https://errors.pydantic.dev/2.6/v/int_parsing\n", + " Input should be a valid integer, unable to parse string as an integer\n", + " input_type: str\n", + " input: \n", + "\n", "\u001b[31mConfiguration Invalid!\u001b[0m\n" ] } ], "source": [ - "!apax validate train config.yaml" + "!apax validate train config_full.yaml" ] }, { @@ -153,13 +155,14 @@ "\n", "```yaml\n", "data:\n", - " batch_size: 32\n", + " batch_size: 4\n", " data_path: project/ethanol_ccsd_t-train_mod.xyz\n", " directory: project/models\n", " energy_unit: kcal/mol\n", " experiment: ethanol_ccsd_t_cli\n", " n_train: 990\n", " n_valid: 10\n", + " energy_unit: kcal/mol\n", " pos_unit: Ang\n", " valid_batch_size: 100\n", "loss:\n", @@ -185,7 +188,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -193,14 +196,14 @@ "\n", "from apax.utils.helpers import mod_config\n", "\n", - "config_path = Path(\"config.yaml\")\n", + "config_path = Path(\"config_full.yaml\")\n", "\n", "config_updates = {\n", " \"n_epochs\": 100,\n", " \"data\": {\n", " \"n_train\": 990,\n", " \"n_valid\": 10,\n", - " \"valid_batch_size\": 1,\n", + " \"valid_batch_size\": 10,\n", " \"experiment\": \"ethanol_ccsd_t_cli\",\n", " \"directory\": \"project/models\",\n", " \"data_path\": str(train_file_path),\n", @@ -208,17 +211,17 @@ " \"energy_unit\": \"kcal/mol\",\n", " \"pos_unit\": \"Ang\",\n", " },\n", - " \"model\": {\"descriptor_dtype\": \"fp64\"},\n", "}\n", + "\n", "config_dict = mod_config(config_path, config_updates)\n", "\n", - "with open(\"config.yaml\", \"w\") as conf:\n", + "with open(\"config_full.yaml\", \"w\") as conf:\n", " yaml.dump(config_dict, conf, default_flow_style=False)" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -226,12 +229,12 @@ "output_type": "stream", "text": [ "\u001b[32mSuccess!\u001b[0m\n", - "config.yaml is a valid training config.\n" + "config_full.yaml is a valid training config.\n" ] } ], "source": [ - "!apax validate train config.yaml" + "!apax validate train config_full.yaml" ] }, { @@ -245,32 +248,36 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "INFO | 12:22:53 | Running on [cuda(id=0)]\n", - "INFO | 12:22:53 | Initializing Callbacks\n", - "INFO | 12:22:53 | Initializing Loss Function\n", - "INFO | 12:22:53 | Initializing Metrics\n", - "INFO | 12:22:53 | Running Input Pipeline\n", - "INFO | 12:22:53 | Read data file project/ethanol_ccsd_t-train_mod.xyz\n", - "INFO | 12:22:53 | Loading data from project/ethanol_ccsd_t-train_mod.xyz\n", - "INFO | 12:22:54 | Computing per element energy regression.\n", - "INFO | 12:22:54 | Initializing Model\n", - "INFO | 12:22:54 | initializing 1 models\n", - "INFO | 12:23:03 | Initializing Optimizer\n", - "INFO | 12:23:04 | Beginning Training\n", - "Epochs: 100%|█████████████████████████████████████| 100/100 [00:48<00:00, 2.07it/s, val_loss=0.105]\n", - "INFO | 12:23:52 | Finished training\n" + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1732268187.845256 520474 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732268187.848463 520474 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "INFO | 09:36:31 | Running on [CudaDevice(id=0)]\n", + "INFO | 09:36:31 | Initializing Callbacks\n", + "INFO | 09:36:32 | Initializing Loss Function\n", + "INFO | 09:36:32 | Initializing Metrics\n", + "INFO | 09:36:32 | Running Input Pipeline\n", + "INFO | 09:36:32 | Reading data file project/ethanol_ccsd_t-train_mod.xyz\n", + "INFO | 09:36:32 | Found n_train: 990, n_val: 10\n", + "INFO | 09:36:32 | Computing per element energy regression.\n", + "INFO | 09:36:33 | Building Standard model\n", + "INFO | 09:36:33 | initializing 1 model(s)\n", + "INFO | 09:36:40 | Initializing Optimizer\n", + "INFO | 09:36:40 | Beginning Training\n", + "Epochs: 0%| | 0/100 [00:00" ] @@ -366,6 +377,7 @@ " axes[id].set_ylabel(f\"{key}\")\n", " axes[id].set_xlabel(r\"epoch\")\n", "\n", + "plt.legend()\n", "plt.show()" ] }, @@ -381,14 +393,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Structure: 100%|███████████████████████████████| 999/999 [00:03<00:00, 280.74it/s, test_loss=0.0838]\n" + "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 228.47it/s, test_loss=0.0253]\n" ] } ], @@ -400,29 +412,32 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 214.87it/s, test_loss=0.0837]\n" + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1732268339.519757 522195 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732268339.522952 522195 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 229.06it/s, test_loss=0.0253]\n" ] } ], "source": [ - "!apax eval config.yaml" + "!apax eval config_full.yaml" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkw0lEQVR4nOzdeVwU9f8H8NeyuLscAipyqCgk3uARyo1KkligEuKZYoZHpWniFeaVFpRKah6h5vVN8UKiRCVRoVBWU5ASRUWDNAW8EhAVZPfz+8PfTozsIovAssv7+XjMA/Yz75n5zM6wvHdmPp+PgDHGQAghhBBCiBJ6mq4AIYQQQghpuChZJIQQQgghKlGySAghhBBCVKJkkRBCCCGEqETJIiGEEEIIUYmSRUIIIYQQohIli4QQQgghRCVKFgkhhBBCiEqULBJCCCGEEJUoWSSEaIytrS0EAgEEAgFmzJhRZeyKFSu4WH19/Xqq4cvl5uZCIBDA1tZW01UhhJA6QckiIaRB2LVrF8rKylTO37p1a61uj5I8QgipHkoWCSEa17t3b9y/fx8//fST0vmpqam4fPky+vTpU881e7nWrVsjKysLx48f13RVCCGkTlCySAjRuPfffx+A6quHW7Zs4cU1JE2aNEHnzp3Rvn17TVeFEELqBCWLhBCNc3R0RO/evXH06FHcunWLN+/Ro0fYt28f2rRpg4EDB6pcR3l5Ob7//nv0798fzZs3h1gshp2dHT788EPcvHmTF/vee+/Bzs4OAPD3339zz0IqJoUlS5ZAIBBgyZIluHHjBkJCQmBjY4MmTZrgvffeA/Dy29mPHz/G6tWr4enpiWbNmkEsFqNdu3YYPHgwoqOjebGFhYVYsGABHB0dYWRkBLFYjFatWsHDwwOLFi3Cs2fPqvuWEkJIrWk4T4kTQhq1999/H+fOncP27dvx2WefceX79u3Do0ePMGPGDOjpKf9+W1xcjCFDhiA5ORnGxsZwcnJCy5YtceHCBURFRWH//v1ITExEr169AACenp549OgRDhw4ACMjIwQFBVVZt+zsbPTq1QsikQgeHh5gjMHc3Pyl+3Tz5k0MGjQIly5dgqGhITw8PNCiRQvcunULKSkpuHDhAsaMGQPgeVLp6emJzMxMtGzZEgMGDICRkRHy8/Nx+fJlpKamIjQ0FGZmZtV8RwkhpJYwQgjRkHbt2jEALCUlhT18+JAZGBgwe3t7XoyHhwcTCATs+vXrLCcnhwFgQqGQFzNmzBgGgPn7+7OCggLevFWrVjEArEOHDqy8vJwrV6yrXbt2Kuu3ePFiBoABYGPHjmVPnz6tFKNqPTKZjPXu3ZsBYAMHDmR37tzhzX/y5Ak7dOgQ93rHjh0MAHvrrbdYWVlZpXUlJyez0tJSlXUlhJC6QrehCSENgqmpKQIDA3Ht2jX8+uuvAIArV67g1KlT6NevH1577TWly2VlZWH37t1o1aoVoqOjYWFhwZv/ySef4O2330Z2djaOHDlSo7o1b94c69atg1gsrvYyBw8exLlz52BtbY0DBw6gZcuWvPkSiQRvv/0297qgoAAA8Oabb6JJkya8WD09PfTr1w8ikahG9SeEkFdBySIhpMF4saGL4mdVDVsOHz4MxhjeeustNG3aVGlM//79ATxvVV0TPj4+MDU1VWuZhIQEAMCYMWNgbGz80nhFS+/ly5fjf//7Hx48eKB+RQkhpA5QskgIaTC8vb1hZ2eHmJgY/Pvvv/jf//4HExOTKp8p/OuvvwA8bzH9YkMVxTR37lwAwN27d2tUr5r0xfj3338DADp37lyt+P79+2PevHm4c+cOxo8fD3Nzc3Tq1Anvv/8+fvrpJ8jlcrXrQAghtYEauBBCGgyBQID33nsPixcvxvjx45Gfn4/JkyfDwMBA5TKKJKpnz57o0aNHlet3cXGpUb2q2n5t+uqrr/DBBx/g4MGDOHnyJE6dOoVt27Zh27Zt6NOnD5KSkmBkZFQvdSGEEAVKFgkhDcp7772Hzz//HAcPHgTw8r4VbWxsAAAeHh5Yt25dndevutq2bQsAuHz5slrL2dra4uOPP8bHH38MADh79izGjh2Ls2fPYvny5fj8889rva6EEFIVug1NCGlQ2rZti6FDh6JFixZwdXV96dXAt956CwDw888/4+nTp9XejqKxSHl5ec0rW4VBgwYBAHbv3o2SkpIar6dPnz746KOPAAAZGRm1UTVCCFELJYuEkAYnNjYW9+7dg1QqfWlsr169MGzYMNy8eROBgYHIzc2tFFNSUoJdu3ZxLY4BoGXLlhCJRMjPz6+TxiRDhgxBr169cPv2bQwfPhz379/nzX/69CmvdfaPP/6I3377rdKzic+ePeMay7Rr167W60kIIS9Dt6EJIVpv27ZtePjwIY4cOYJOnTqhR48esLOzA2MMubm5+OOPP1BWVoasrCxYWloCeD5M35AhQxATE4OePXvC09MThoaGAIDvv//+leukp6eHH3/8Eb6+vjhy5Ajatm0LT09PrlPuP/74A2ZmZlxy++uvv2LNmjUwNzdHr169YGFhgeLiYpw+fRp37txB69atuYY6hBBSnyhZJIRovaZNm+Lo0aPYu3cvdu7cibS0NGRkZMDExATW1tZ49913MWTIkErjN2/cuBEtWrTAkSNHEBMTww2nVxvJIvD8SuC5c+ewYcMGxMTEQCqVoqysDFZWVujXrx83egvw/FlNAwMDnDx5EpcuXcKvv/4KU1NTtG3bFp988gkmT56MFi1a1Eq9CCFEHQLGGNN0JQghhBBCSMNEzywSQgghhBCVKFkkhBBCCCEqUbJICCGEEEJUomSREEIIIYSoRMkiIYQQQghRiZJFQgghhBCiEiWLhBBCCCFEJUoWCSGEEEKISpQsEkIIIYQQlShZJIQQQgghKlGySAghhBBCVKJkkRBCCCGNzvbt2yEQCJCbm6vpqjR4lCwSogXOnj0Ld3d3GBkZQSAQICMjQ9NVIoSHzlFCdJe+pitACKnas2fPMHz4cEgkEqxatQqGhoZo166dpqtFCIfOUUJ0GyWLhDRw169fx99//43Nmzdj4sSJmq4OIZXQOUqIbqPb0FqgpKRE01UgGnTnzh0AgJmZWa2sj84nUtvoHCW6YsOGDejWrRvEYjFatWqFqVOn4uHDh7yY7OxsDBs2DFZWVpBIJGjTpg1GjRqFwsJCLiYxMRGenp4wMzODsbExOnXqhPnz59fz3tQeSharcOvWLbz//vuwtLSEWCxGt27dsHXrVm5+cnIyBAIB9u3bhy+//BJt2rSBRCLBgAEDcO3atUrrO3PmDAYNGgRTU1MYGhqiX79+OHXqFC9myZIlEAgEuHTpEsaMGYNmzZrB09MTACCXy7FkyRK0atUKhoaG8Pb2xqVLl2Bra4v33nsPAPDXX39BIBBg1apVlbafmpoKgUCA3bt3V2v/c3NzIRAIsHLlSqxfvx6vvfYaDA0NMXDgQNy8eROMMSxbtgxt2rSBgYEBhg4digcPHvDW8dNPP8HPzw+tWrWCWCxG+/btsWzZMshkshq9P43Ne++9h379+gEAhg8fDoFAgP79+wMATpw4AS8vLxgZGcHMzAxDhw5FVlYWb/mqzicA2LlzJ5ydnWFoaIhmzZqhb9++OHr0KG8dR44c4bbTtGlT+Pn54eLFi7yY/Px8TJgwAW3atIFYLIa1tTWGDh2q1oPjirpevXoVY8eOhampKVq2bImFCxeCMYabN29i6NChMDExgZWVFSIjIyutY+3atejWrRu3P71790Z0dDQv5mV/10Q9dI5W/xwtKyvDokWL4OTkBFNTUxgZGcHLywtJSUmVtiWXy7F69Wp069YNEokElpaWmDJlCv79999q15eoZ8mSJZg6dSpatWqFyMhIDBs2DBs3bsTAgQPx7NkzAM+Poa+vL06fPo2PP/4Y69evx+TJk/HXX39xSeXFixfh7++P0tJSLF26FJGRkRgyZIh2/z9jRKn8/HzWpk0bZmNjw5YuXcq+++47NmTIEAaArVq1ijHGWFJSEgPAevXqxZycnNiqVavYkiVLmKGhIXN2duat7/jx40wkEjE3NzcWGRnJVq1axbp3785EIhE7c+YMF7d48WIGgHXt2pUNHTqUbdiwga1fv54xxtjcuXMZADZ48GC2bt06NmnSJNamTRtmbm7Oxo8fz63Dw8ODOTk5Vdqnjz76iDVt2pSVlJRU6z3IyclhAFjPnj1Z165d2TfffMMWLFjARCIRc3V1ZfPnz2fu7u7s22+/ZdOnT2cCgYBNmDCBt46AgAA2YsQItmLFCvbdd9+x4cOHMwBs9uzZNXp/GpvU1FQ2f/58BoBNnz6d/fDDD+zo0aMsMTGR6evrs44dO7Lly5ezzz//nJmbm7NmzZqxnJwcbvmqzqclS5YwAMzd3Z2tWLGCrVmzho0ZM4bNmzePW/5///sfEwgEbNCgQWzt2rXs66+/Zra2tszMzIy3HXd3d2ZqasoWLFjAvv/+exYeHs68vb3Zr7/+Wu19VdS1Z8+ebPTo0WzDhg3Mz8+PAWDffPMN69SpE/vwww/Zhg0bmIeHBwPAW/+mTZsYABYUFMQ2btzI1qxZw0JCQtj06dO5mOr8XRP10Dla/XP07t27zNramoWGhrLvvvuOLV++nHXq1Ik1adKEnT9/nretiRMnMn19fTZp0iQWFRXF5s2bx4yMjFifPn1YWVmZegeJKLVt2zYGgOXk5LA7d+4wkUjEBg4cyGQyGRezbt06BoBt3bqVMcbY+fPnGQC2f/9+letdtWoVA8Du3r1b5/tQXyhZVCEkJIRZW1uze/fu8cpHjRrFTE1N2ePHj7lksUuXLqy0tJSLWbNmDQPALly4wBhjTC6Xsw4dOjBfX18ml8u5uMePHzM7Ozv25ptvcmWKD6PRo0fztpufn8/09fVZQEAAr1zxYVoxWdy4cSMDwLKysriysrKySknlyyiSxZYtW7KHDx9y5WFhYQwA69GjB3v27BlXPnr0aCYSidjTp095+/iiKVOmMENDQy5OnfenMVKcZxU/nHr27MksLCzY/fv3ubI//viD6enpseDgYK5M1fmUnZ3N9PT02DvvvMP7YGSMcceguLiYmZmZsUmTJvHm5+fnM1NTU67833//ZQDYihUrXmk/FXWdPHkyV1ZeXs7atGnDBAIB++qrr7jyf//9lxkYGPDO56FDh7Ju3bpVuY3q/F0T9dE5Wr1ztLy8nPe/QhFnaWnJ3n//fa4sJSWFAWC7du3ixSYkJCgtJzVTMVmMjo5mANjhw4d5MaWlpczExIQNGzaMMcbYX3/9xQCwiRMnqrzwoljv999/X+nc1VZ0G1oJxhgOHDiAwYMHgzGGe/fucZOvry8KCwuRnp7OxU+YMAEikYh77eXlBeD5LWEAyMjIQHZ2NsaMGYP79+9z6yopKcGAAQPw22+/QS6X8+rwwQcf8F4fP34c5eXl+Oijj3jlH3/8caX6jxgxAhKJBLt27eLKfvnlF9y7dw9jx45V+/0YPnw4TE1NudcuLi4AgLFjx0JfX59XXlZWhlu3bnFlBgYG3O/FxcW4d+8evLy88PjxY1y+fBlAzd6fxiwvLw8ZGRl477330Lx5c668e/fuePPNN3H48OFKy7x4PsXFxUEul2PRokXQ0+N/DAgEAgDPn7l5+PAhRo8ezfsbEAqFcHFx4W6dGRgYQCQSITk5uVZukVVsICEUCtG7d28wxhASEsKVm5mZoVOnTtzfmKLsn3/+wdmzZ5WuV92/a1JzdI4qP0eFQiH3v0Iul+PBgwcoLy9H7969eefe/v37YWpqijfffJO3X05OTjA2NlZ625q8mr///hsA0KlTJ165SCTCa6+9xs23s7NDaGgovv/+e5ibm8PX1xfr16/nPa84cuRIeHh4YOLEibC0tMSoUaOwb98+rf4/Rq2hlbh79y4ePnyITZs2YdOmTUpj7ty5g2bNmgEA2rZty5unKFd8KGVnZwMAxo8fr3KbhYWF3HLA8xOyIsWJam9vzytv3rw5bzng+YfU4MGDER0djWXLlgEAdu3ahdatW+ONN95QWQdVXtw/ReJoY2OjtLzih/HFixexYMECnDhxAkVFRbx4xR9XTd6fxkzVhxoAdOnSBb/88gtKSkpgZGTElb94Pl2/fh16enro2rWryu0ojouqc8bExAQAIBaL8fXXX2PWrFmwtLSEq6sr/P39ERwcDCsrK/V2DsrPN4lEAnNz80rl9+/f517PmzcPx44dg7OzM+zt7TFw4ECMGTMGHh4eAKr/d01eHZ2j/5VXPEcBYMeOHYiMjMTly5e55+AA/v5nZ2ejsLAQFhYWSrdP56lmRUZG4r333sNPP/2Eo0ePYvr06YiIiMDp06e5Z/h/++03JCUl4dChQ0hISMDevXvxxhtv4OjRoxAKhZreBbVRsqiEIvsfO3asygSme/fuuHTpEgCoPPCMMd76VqxYgZ49eyqNNTY25r2ueEWuJoKDg7F//36kpqbC0dERP//8Mz766KNK39CrQ9X+vWy/Hz58iH79+sHExARLly5F+/btIZFIkJ6ejnnz5nHvS03eH6KempxPiuPyww8/KP2HWvGq8ieffILBgwcjLi4Ov/zyCxYuXIiIiAicOHECvXr1Umu7ys6rl51rwPMk5MqVK4iPj0dCQgIOHDiADRs2YNGiRfj888+r/XdNNKMxnKM7d+7Ee++9h4CAAMyZMwcWFhYQCoWIiIjA9evXeftlYWHBuztUUcuWLdWqL3k5Rb+gV65cwWuvvcaVl5WVIScnBz4+Prx4R0dHODo6YsGCBUhNTYWHhweioqLwxRdfAAD09PQwYMAADBgwAN988w3Cw8Px2WefISkpqdK6tAEli0q0bNkSTZs2hUwmq/KgKpLFl2nfvj2A599ya3qSKE7ka9eu8b6B3r9/X+ltlUGDBqFly5bYtWsXXFxc8PjxY4wbN65G266p5ORk3L9/H7Gxsejbty9XnpOTw4urjfenMan4ofaiy5cvw9zcnHfFRpn27dtDLpfj0qVLKhN0xXGxsLCo1nFp3749Zs2ahVmzZiE7Oxs9e/ZEZGQkdu7c+dJla4uRkRFGjhyJkSNHoqysDIGBgfjyyy8RFhZW7b9r8uroHFUuJiYGr732GmJjY7lb6QCwePHiSvU8duwYPDw8XvnCAakeHx8fiEQifPvttxg0aBB3fLZs2YLCwkL4+fkBAIqKimBoaMj7IuLo6Ag9PT2UlpYCAB48eMB7/AIAdw4rYrQNPbOohFAoxLBhw3DgwAFkZmZWmn/37l211ufk5IT27dtj5cqVePToUY3WN2DAAOjr6+O7777jla9bt05pvL6+PkaPHo19+/Zh+/btcHR0rPerJopv2hW/WZeVlWHDhg28uNp4fxoTa2tr9OzZEzt27OD1/5WZmYmjR4/i7bfffuk6AgICoKenh6VLl1Z6jkZxvHx9fWFiYoLw8HDe7TIFxXF5/Pgxnj59ypvXvn17NG3atF4/GF+83ScSidC1a1cwxvDs2bNa/7smqtE5qpyyz8QzZ85AKpXy4kaMGAGZTMY9RlRReXl5pX7/yKtr2bIlwsLCkJCQgEGDBmH9+vWYPn06Pv74Y/Tp04d73v/EiROwtbXFzJkz8d1332Ht2rUYMGAA9/kCAEuXLsXrr7+OhQsX4vvvv0d4eDgmT56MNm3a8LqF0iZ0ZVGFr776CklJSXBxccGkSZPQtWtXPHjwAOnp6Th27Fil/gSroqenh++//x5vvfUWunXrhgkTJqB169a4desWkpKSYGJigoMHD1a5DktLS8yYMYPrr2nQoEH4448/cOTIEZibm/O+pSoEBwfj22+/RVJSEr7++mu134NX5e7ujmbNmmH8+PGYPn06BAIBfvjhB94HJVA7709js2LFCrz11ltwc3NDSEgInjx5grVr18LU1BRLlix56fL29vb47LPPsGzZMnh5eSEwMBBisRhnz55Fq1atEBERARMTE3z33XcYN24cXn/9dYwaNQotW7bEjRs3cOjQIXh4eGDdunW4evUqBgwYgBEjRqBr167Q19fHjz/+iIKCAowaNaru34z/N3DgQFhZWcHDwwOWlpbIysrCunXr4Ofnh6ZNmwKo3b9rUjU6Ryvz9/dHbGws3nnnHfj5+SEnJwdRUVHo2rUr74tyv379MGXKFERERCAjIwMDBw5EkyZNkJ2djf3792PNmjUICgqqt3o3FkuWLEHLli2xbt06zJw5E82bN8fkyZMRHh6OJk2aAAB69OgBX19fHDx4ELdu3YKhoSF69OiBI0eOwNXVFQAwZMgQ5ObmYuvWrbh37x7Mzc3Rr18/fP7557zGolql/htga4+CggI2depUZmNjw5o0acKsrKzYgAED2KZNmxhjyruLYOy/Lme2bdvGKz9//jwLDAxkLVq0YGKxmLVr146NGDGCHT9+nItRdM2grH+m8vJytnDhQmZlZcUMDAzYG2+8wbKysliLFi3YBx98oHQfunXrxvT09Ng///yj9v4r9uPF7iZU7beiu4CzZ89yZadOnWKurq7MwMCAtWrVis2dO5f98ssvDABLSkriLV+d96cxUvV+Hzt2jHl4eDADAwNmYmLCBg8ezC5dusSLqep8YoyxrVu3sl69ejGxWMyaNWvG+vXrxxITEytt39fXl5mamjKJRMLat2/P3nvvPXbu3DnGGGP37t1jU6dOZZ07d2ZGRkbM1NSUubi4sH379qm1n6rqOn78eGZkZFQpvl+/fryucjZu3Mj69u3LnT/t27dnc+bMYYWFhbzlXvZ3TdRH52j1zlG5XM7Cw8NZu3btmFgsZr169WLx8fFs/PjxrF27dpWW37RpE3NycmIGBgasadOmzNHRkc2dO5fdvn1brXoT8qoEjL1wmYdolYcPH6JZs2b44osv8Nlnn1Wa36tXLzRv3hzHjx/XQO0IIYQQou3omUUt8uTJk0plq1evBgBueK2Kzp07h4yMDAQHB9dxzQghhBCiq+jKohbZvn07tm/fjrfffhvGxsY4efIkdu/ejYEDB+KXX37h4jIzM5GWlobIyEjcu3cPf/31FyQSCTdfJpO99GF+Y2Nj6q6G1IpHjx4pbbhUUcuWLbWy7zGiG+gcJaRq1MBFi3Tv3h36+vpYvnw5ioqKuEYvin6dFGJiYrB06VJ06tQJu3fv5iWKAHDz5s1KHeC+aPHixdV6CJ2Ql1m5ciU+//zzKmNycnJga2tbPxUi5AV0jhJSNbqy2Ag9ffoUJ0+erDLmtdde43VMSkhN/fXXX7whz5Tx9PSs9KWGkPpC5yghVaNkkRBCCCGEqES3oSuQy+W4ffs2mjZtqrTfQqIZjDEUFxejVatWNRquUFvQ+dcwNZbzrzroHG2YGvo5SudNw1Xdc4eSxQpu374NGxsbTVeDqHDz5k20adNG09WoM3T+NWy6fv5VB52jDVtDPUfpvGn4XnbuULJYgWKUh5s3b8LExETDtSEKRUVFsLGx4Y6PrqLzr2FqLOdfddA52jA19HOUzpuGq7rnDiWLFSguj5uYmNAJ3QDp+u0LOv8aNl0//6qDztGGraGeo3TeNHwvO3ca3sMNhBBCCCGkwaBkkRBCCCGEqETJIiGEEEIIUYmSRUIIIYQQohIli4QQQgghRCVKFgkhhBBCiEqULBJCCCGEEJUoWSSEEEIIISpRskgIIYQQQlSiZJEQQgghhKhEw/3pIJlMhpSUFOTl5cHa2hpeXl4QCoWarhYhhDQI9BlJaqIxnzd0ZVHHxMbGwt7eHt7e3hgzZgy8vb1hb2+P2NhYTVeNEEI0jj4jSU009vOGkkUdEhsbi6CgIDg6OkIqlaK4uBhSqRSOjo4ICgpqNCc1IYQoQ5+RpCbovAEEjDGm6Uo0FEVFRTA1NUVhYSFMTEw0XR21yGQy2Nvbw9HREXFxcdDT++97gFwuR0BAADIzM5Gdna11l821+bioo7Hsp7ah4/IfbX4v6DNScxp6/aqiy+cNUP1jQ88s6oiUlBTk5uZi9+7dvJMZAPT09BAWFgZ3d3ekpKSgf//+mqkk0VmPHz/G5cuXuddPnjxBbm4ubG1tYWBgwJV37twZhoaGmqgiaeToM5LUBJ03z1GyqCPy8vIAAA4ODkrnK8oVcYTUpsuXL8PJyemlcWlpaXj99dfroUaE8NFn5HO//fYbVqxYgbS0NOTl5eHHH39EQEBAlcskJycjNDQUFy9ehI2NDRYsWID33nuvXuqraXTePEfPLOoIa2trAEBmZqbS+YpyRRwhtalz585IS0vjpp07dwIAdu7cySvv3LmzhmtKGiv6jHyupKQEPXr0wPr166sVn5OTAz8/P3h7eyMjIwOffPIJJk6ciF9++aWOa9ow0HnzHD2zWAE9V9EwafNxUYcu7Wd6ejqcnJx04kqiLh2XV6XN7wV9RlYmEAheemVx3rx5OHToEC9ZGjVqFB4+fIiEhASly5SWlqK0tJRXPxsbGzpvGqDqnjt0ZVFHCIVCREZGIj4+HgEBAbwWWwEBAYiPj8fKlSu18mQmhJBXRZ+RNSOVSuHj48Mr8/X1hVQqVblMREQETE1NucnGxqauq1ln6Lx5jpJFHRIYGIiYmBhcuHAB7u7uMDExgbu7OzIzMxETE4PAwEBNV5EQQjSGPiPVl5+fD0tLS16ZpaUlioqK8OTJE6XLhIWFobCwkJtu3rxZH1WtM3TeUAMXnRMYGIihQ4c22l7mCSGkKvQZWffEYjHEYrGmq1GrGvt5Q8miDhIKhTrdhJ8QQl4FfUZWn5WVFQoKCnhlBQUFMDEx4XWL1Rg05vOGbkMTnbR+/XrY2tpCIpHAxcUFv//+e5Xx+/fvR+fOnSGRSODo6IjDhw/z5jPGsGjRIlhbW8PAwAA+Pj7Izs7mxaSnp+PNN9+EmZkZWrRogcmTJ+PRo0e1vm+EEFJf3NzccPz4cV5ZYmIi3NzcNFQjogmULBKds3fvXoSGhmLx4sVIT09Hjx494Ovrizt37iiNT01NxejRoxESEoLz588jICCAa+GmsHz5cnz77beIiorCmTNnYGRkBF9fXzx9+hQAcPv2bfj4+MDe3h5nzpxBQkICLl682Gj6IiOEaIdHjx4hIyMDGRkZAJ53jZORkYEbN24AeP68YXBwMBf/wQcf4K+//sLcuXNx+fJlbNiwAfv27cPMmTM1UX2iKYxwCgsLGQBWWFio6aqQCtQ9Ls7Ozmzq1Knca5lMxlq1asUiIiKUxo8YMYL5+fnxylxcXNiUKVMYY4zJ5XJmZWXFVqxYwc1/+PAhE4vFbPfu3YwxxjZu3MgsLCyYTCbjYv78808GgGVnZyvd7tOnT1lhYSE33bx5U2fOv7S0NAaApaWlaboqr4w+F/5D70XDpM5xSUpKYgAqTePHj2eMMTZ+/HjWr1+/Ssv07NmTiUQi9tprr7Ft27bVWf1I/arusaFnFolOKSsrQ1paGsLCwrgyPT09+Pj4qOzqQSqVIjQ0lFfm6+uLuLg4AM+/eefn5/O6jzA1NYWLiwukUilGjRqF0tJSiEQiXh9ciud5Tp48CXt7+0rbjYiIwOeff17jfSWEEHX1798frIrulbdv3650mfPnz9dhrUhDR7ehiU65d+8eZDKZ0q4e8vPzlS6jqmsIRbziZ1Uxb7zxBvLz87FixQqUlZXh33//xaeffgpA9TBQuta9BCGEEN1EySIhtaBbt27YsWMHIiMjYWhoCCsrK9jZ2cHS0rLS4PMKYrEYJiYmvIkQQghpaChZ1EEymQzJycnYvXs3kpOTIZPJNF2lemNubg6hUKi0qwcrKyuly6jqGkIRr/j5snWOGTMG+fn5uHXrFu7fv48lS5bg7t27eO211155vwghhBBNoWRRx8TGxsLe3h7e3t4YM2YMvL29YW9vj9jYWE1XrV6IRCI4OTnxunqQy+U4fvy4yq4eXtY1hJ2dHaysrHgxRUVFOHPmjNJ1WlpawtjYGHv37oVEIsGbb75ZG7tGCCGEaESNksXa7MPu2bNnmDdvHhwdHWFkZIRWrVohODgYt2/f5q3D1tYWAoGAN3311Ve8mD///BNeXl6QSCSwsbHB8uXLa7J7Wis2NhZBQUFwdHTkjV/p6OiIoKCgRpMwhoaGYvPmzdixYweysrLw4YcfoqSkBBMmTAAABAcH8xrAzJgxAwkJCYiMjMTly5exZMkSnDt3DtOmTQMACAQCfPLJJ/jiiy/w888/48KFCwgODkarVq0QEBDArWfdunVIT0/H1atXsX79ekybNg0REREwMzOrz90nhBBCape6zaz37NnDRCIR27p1K7t48SKbNGkSMzMzYwUFBUrjT506xYRCIVu+fDm7dOkSW7BgAWvSpAm7cOECY+x5FyQ+Pj5s79697PLly0wqlTJnZ2fm5OTEW0+7du3Y0qVLWV5eHjc9evSI1/zb0tKSvfvuuywzM5Pt3r2bGRgYsI0bN1Z737S5eX95eTmztbVlgwcP5nXfwtjzrmMGDx7M7OzsWHl5uYZqWHM1OS5r165lbdu2ZSKRiDk7O7PTp09z8/r168d1E6Gwb98+1rFjRyYSiVi3bt3YoUOHePPlcjlbuHAhs7S0ZGKxmA0YMIBduXKFFzNu3DjWvHlzJhKJWPfu3dn//ve/Ot/Phoq6ztFN9F40TA39uDT0+jVm1T02aieLtd2HnTK///47A8D+/vtvrqxdu3Zs1apVKpfZsGEDa9asGSstLeXK5s2bxzp16vSyXeJo8wmt6DtLKpUqnZ+amsoAsKSkpPqtWC3Q5uOiDl3aT0oWdRO9Fw1TQz8uDb1+jVl1j41at6EVfdhV7G+uOn3YVYwHnvdhpyoeAAoLCyEQCCrdvvvqq6/QokUL9OrVCytWrEB5eTlvO3379oVIJOJt58qVK/j333+Vbqe0tBRFRUW8SVspumdxcHBQOl9RrqobF0IIIYQQZdRKFuuiD7sXPX36FPPmzcPo0aN5XYlMnz4de/bsQVJSEqZMmYLw8HDMnTv3pdtRzFMmIiICpqam3GRjY6Nizxs+a2trAOANUVeRolwRRwghhBBSHQ2qNfSzZ88wYsQIMMbw3Xff8eaFhoaif//+6N69Oz744ANERkZi7dq1KC0trfH2dKlTZC8vL9ja2iI8PBxyuZw3Ty6XIyIiAnZ2dvDy8tJQDQkhhBCijdRKFuuiDzsFRaL4999/IzEx8aUdFLu4uKC8vBy5ublVbkcxTxld6hRZKBQiMjIS8fHxCAgI4LWGDggIQHx8PFauXAmhUKjpqhJCCCFEi6iVLNZFH3bAf4lidnY2jh07hhYtWry0LhkZGdDT04OFhQW3nd9++w3Pnj3jbadTp05o1qyZOruptQIDAxETE4MLFy7A3d0dJiYmcHd3R2ZmJmJiYhAYGKjpKhLSKNRm92IAKnUbpphWrFjBxTx48ADvvvsuTExMYGZmhpCQEDx69Ii3nsbevRghpIbUbTmzZ88eJhaL2fbt29mlS5fY5MmTmZmZGcvPz2eMPe8+5NNPP+XiT506xfT19dnKlStZVlYWW7x4Ma/rnLKyMjZkyBDWpk0blpGRwesaR9GyOTU1la1atYplZGSw69evs507d7KWLVuy4OBgbjsPHz5klpaWbNy4cSwzM5Pt2bOHGRoaNpqucyoqLy9nSUlJLDo6miUlJWlldzkV6cpxeRld2s/G3Bq6trsXY4zxPhfz8vLY1q1bmUAgYNevX+diBg0axHr06MFOnz7NUlJSmL29PRs9ejRvPxpz92K6rKEfl4Zev8aszrrOYax2+7DLyclhAJROim5e0tLSmIuLCzM1NWUSiYR16dKFhYeHs6dPn/K288cffzBPT08mFotZ69at2VdffaXWftEJ3TA1luOiS/vZmJPF+uhebOjQoeyNN97gXl+6dIkBYGfPnuXKjhw5wgQCAbt16xZjrGbdiz19+pQVFhZy082bN3XmHNUlDf2zo6HXrzGr02RRV9EJ3TA1luOiS/vZWJPF0tJSJhQK2Y8//sgrDw4OZkOGDFG6jI2NTaU+ZBctWsS6d++uND4/P5/p6+uzXbt2cWVbtmxhZmZmvLhnz54xoVDIYmNjGWPP7/oMHTqUF3PixAkGgD148EDpthYvXqz0i7wunKO6pKF/djT0+jVmddLPItEOMpkMycnJ2L17N5KTkyGTyTRdJUIahfroXmzHjh1o2rQp7xnk/Px87vltBX19fTRv3pxbT026F9OlHiMIITWnr+kKkNoVGxuLWbNmca3EgefjakdGRlIDF0J0wNatW/Huu+9CIpHU+bbEYjHEYnGdb4cQ0rDRlUUdEhsbi6CgIKVdCAUFBSE2NlZDNSOkcajL7sUAICUlBVeuXMHEiRMrrePOnTu8svLycjx48IBbT026FyOEEICSRZ0hk8nw4YcfgjGmtFNuxhg+/PBDuiVNSB2qq+7FFLZs2QInJyf06NGj0joePnyItLQ0ruzEiROQy+VwcXHhYhp792KEkJqhZFFHJCcnc1cWXhzVRvH6zp07SE5Oru+qEdKohIaGYvPmzdixYweysrLw4YcfoqSkBBMmTAAABAcHIywsjIufMWMGEhISEBkZicuXL2PJkiU4d+4cpk2bxltvUVER9u/fX+mqIgB06dIFgwYNwqRJk/D777/j1KlTmDZtGkaNGoVWrVoBAMaMGQORSISQkBBcvHgRe/fuxZo1axAaGlqH7wYhRBfQM4s64sSJE9zvenp6vKuLFV+fOHECAwYMqPf6EdJYjBw5Enfv3sWiRYuQn5+Pnj17IiEhgWtMcuPGDejp/fc93d3dHdHR0ViwYAHmz5+PDh06IC4uDg4ODrz17tmzB4wxjB49Wul2d+3ahWnTpmHAgAHQ09PDsGHD8O2333LzTU1NcfToUUydOhVOTk4wNzfHokWLMHny5Dp4FwghuoSSRR2Rk5PD/a7sNrSyOEJI3Zg2bVqlK4MKyq7uDx8+HMOHD69ynZMnT64ysWvevDmio6OrXEf37t2RkpJSZQwhhLyIbkPriBcfbu/Tpw8+//xz9OnTp8o4QgghhJCq0JVFHVFxDFiJRIKzZ8/i7Nmz3OunT59WiiOEEEIIeRm6sqgjrl+/zv3+YgOXsrIypXGEEEIIIS9DVxZ1EGOM9/rFZxgJIYQQoh6ZTIaUlBTk5eXB2toaXl5eEAqFmq5WvaArizrixWG8XjWOEEIIIc/FxsbC3t4e3t7eGDNmDLy9vWFvb99oBrugZFFHzJgxo1bjCCGEEPLf6GiOjo6QSqUoLi6GVCqFo6NjoxkdjZJFHVFSUlKrcYQQQkhjJ5PJMGvWLPj7+yMuLg6urq4wNjaGq6sr4uLi4O/vj9mzZ+v86GiULOqI6g7XRcN6EUIIIdWTkpKC3NxczJ8/n9eZPvB8wIuwsDDk5OTofP+llCzqiNOnT3O/m5ubo3379rC2tkb79u1hbm6uNI4QQgghquXl5QFApRGVFBTlijhdRa2hdcQff/wBABCLxTAyMuJ1kWNra4vi4mKUlpZycYTUhuzsbBQXF1cqz8rK4v1UpmnTpujQoUOd1Y0QQl6VtbU1ACAzMxOurq6V5mdmZvLidBUlizpC8Q+7tLQU3bp1Q+/evfHvv/+iWbNmePLkCXJzc3lxhLyq7OxsdOzYscqYsWPHVjn/6tWrlDASQhosLy8v2NraIjw8HHFxcbxb0XK5HBEREbCzs4OXl5cGa1n3KFnUEQ4ODsjMzIRQKMThw4crzRcKhZDJZCovpROiLsUXj507d6JLly68eYovKLa2tjAwMKi0bFZWFsaOHUtfXgghDZpQKERkZCSCgoIQEBCAsLAw7v9tREQE4uPjERMTo/P9LVKyqCMmTJiAPXv2qGyRpSifMGFCfVaLNAJdunTB66+/Xqncw8NDA7UhhJDaFRgYiJiYGMyaNQvu7u5cuZ2dHWJiYhAYGKjB2tUPShZ1RHUvgev6pXJCCCGktgUGBmLo0KGNdgQXShZ1xPr166sdN3v27DquDSGEEKJbhEIh+vfvr+lqaAR1naMj4uLiuN/FYjFvnkQiURpHCCGEEPIylCzqmNatW8PCwoJX1rJlS7Rq1UpDNSKEEEKINqNkUUcoWjnfunULN2/e5M27efMmbt++zYsjhBBCCKkOShZ1hJubW63GEUIIIYQAlCzqDMWVw9qKI4QQQggBKFnUGTExMbUaRwghhBACULKoM+jKIiGEEELqAiWLOsLS0rJW4wghhBBCAEoWdUZ1u8ahLnQIIYQQog5KFnXE9evXazWOEEIIIQSgZFFn6OlV71BWN44QQgghBKBkUWcwxmo1jhBCCCEEoGRRZ9y5c6dW4wghhBBCAEoWdcaTJ09qNY4QQgghBAD0NV0BUjuePXtWq3GEVIeVsQAGD68Ct9X73mnw8CqsjAV1VCtCCCG1iZJFHSGTyWo1jpDqmOIkQpffpgC/qbdcl/9flhBCSMNHySIhpMY2ppVh5KLt6NK5s1rLZV2+jI2RYzCkjupFCCG1TSaTISUlBXl5ebC2toaXlxeEQqGmq1UvavTM4vr162FrawuJRAIXFxf8/vvvVcbv378fnTt3hkQigaOjIw4fPszNe/bsGebNmwdHR0cYGRmhVatWCA4O5g1Ll5ubi5CQENjZ2cHAwADt27fH4sWLUVZWxosRCASVptOnT9dkF7UOdZ1DNCH/EcMTs45Aq55qTU/MOiL/EbXMJ4Roh9jYWNjb28Pb2xtjxoyBt7c37O3tERsbq+mq1Qu1M4e9e/ciNDQUixcvRnp6Onr06AFfX1+VrWxTU1MxevRohISE4Pz58wgICEBAQAAyMzMBAI8fP0Z6ejoWLlyI9PR0xMbG4sqVKxgy5L9rDpcvX4ZcLsfGjRtx8eJFrFq1ClFRUZg/f36l7R07dgx5eXnc5OTkpO4uaiWRqHq39KobRwghhJDniWJQUBAcHR0hlUpRXFwMqVQKR0dHBAUFNY6EkanJ2dmZTZ06lXstk8lYq1atWEREhNL4ESNGMD8/P16Zi4sLmzJlispt/P777wwA+/vvv1XGLF++nNnZ2XGvc3JyGAB2/vz5au5JZYWFhQwAKywsrPE6NEUgEDAAL50EAoGmq6o2bT4u6tC2/UxLS2MAWFpaWr0uW9+07bjUJXovGqaGflwaev2qUl5ezmxtbdngwYOZTCbjzZPJZGzw4MHMzs6OlZeXa6iGr6a6x0atK4tlZWVIS0uDj48PV6anpwcfHx9IpVKly0ilUl48APj6+qqMB4DCwkIIBAKYmZlVGdO8efNK5UOGDIGFhQU8PT3x888/V7k/paWlKCoq4k3aSiCoXsvS6sYRQgghjV1KSgpyc3Mxf/78So9x6enpISwsDDk5OUhJSdFQDeuHWsnivXv3IJPJYGlpySu3tLREfn6+0mXy8/PVin/69CnmzZuH0aNHw8TERGnMtWvXsHbtWkyZMoUrMzY2RmRkJPbv349Dhw7B09MTAQEBVSaMERERMDU15SYbGxuVsYQQQghpXPLy8gAADg4OSucryhVxuqpBtYZ+9uwZRowYAcYYvvvuO6Uxt27dwqBBgzB8+HBMmjSJKzc3N0doaCj3uk+fPrh9+zZWrFjBe/6xorCwMN4yRUVFlDASQgghBABgbW0NAMjMzISrq2ul+Yr2F4o4XaXWlUVzc3MIhUIUFBTwygsKCmBlZaV0GSsrq2rFKxLFv//+G4mJiUqvKt6+fRve3t5wd3fHpk2bXlpfFxcXXLt2TeV8sVgMExMT3qSt5HJ5rcYRQgghjZ2XlxdsbW0RHh5e6f+nXC5HREQE7Ozs4OXlpaEa1g+1kkWRSAQnJyccP36cK5PL5Th+/Djc3NyULuPm5saLB4DExERevCJRzM7OxrFjx9CiRYtK67l16xb69+8PJycnbNu2rVpdwGRkZOh8tq9AzywSQgghtUsoFCIyMhLx8fEICAjgtYYOCAhAfHw8Vq5cqfP9LarddU5oaCg2b96MHTt2ICsrCx9++CFKSkowYcIEAEBwcDDCwsK4+BkzZiAhIQGRkZG4fPkylixZgnPnzmHatGkAnieKQUFBOHfuHHbt2gWZTIb8/Hzk5+dz/SgqEsW2bdti5cqVuHv3LhejsGPHDuzevRuXL1/G5cuXER4ejq1bt+Ljjz9+pTdIW1DXOYQQQqpD3b6SV69ejU6dOsHAwAA2NjaYOXMmnj59Wk+11bzAwEDExMTgwoULcHd3h4mJCdzd3ZGZmYmYmBgEBgZquop1ryZNrdeuXcvatm3LRCIRc3Z2ZqdPn+bm9evXj40fP54Xv2/fPtaxY0cmEolYt27d2KFDh7h5ii5vlE1JSUmMMca2bdumMkZh+/btrEuXLszQ0JCZmJgwZ2dntn//frX2S5ub96t6f6p6z7SFNh8XdWjbflLXOaqtW7eOtWvXjonFYubs7MzOnDlTZfy+fftYp06dmFgsZg4ODrzPSIVLly6xwYMHMxMTE2ZoaMh69+7NdS9W1efovn37uHUom7979+5q75e2naONhTrHZc+ePUwkErGtW7eyixcvskmTJjEzMzNWUFCgNH7Xrl1MLBazXbt2sZycHPbLL78wa2trNnPmzDqpX0NWXl7OkpKSWHR0NEtKStLa7nIqqu6x0b7MoQ5p8wlNyaL207b9pGRROXX/GZ86dYoJhUK2fPlydunSJbZgwQLWpEkTduHCBS7m2rVrrHnz5mzOnDksPT2dXbt2jf3000/cOsvLy1leXh5v+vzzz5mxsTErLi7m1gOAbdu2jRf35MmTOnsvSP1Q57io21fy1KlT2RtvvMErCw0NZR4eHiq38fTpU1ZYWMhNN2/epPOmgaqTfhYJIYRU7ZtvvsGkSZMwYcIEdO3aFVFRUTA0NMTWrVuVxq9ZswaDBg3CnDlz0KVLFyxbtgyvv/461q1bx8V89tlnePvtt7F8+XL06tUL7du35/qUBZ4/V2VlZcWbfvzxR4wYMQLGxsa87ZmZmfHiJBJJ3b0ZpEGpSV/J7u7uSEtL425V//XXXzh8+DDefvttlduhbul0DyWLOqJZs2a812KxGMbGxhCLxVXG6araHL8cABhjWLRoEaytrWFgYAAfHx9kZ2fzYq5evYqhQ4fC3NwcJiYm8PT0RFJSUq3vW0Px+PFjAEB6enql6dSpU9i1axdOnTqldH5WVpaGa1836mLgArlcjkOHDqFjx47w9fWFhYUFXFxcEBcXp7IeaWlpyMjIQEhISKV5U6dOhbm5OZydnbF161YwpnqMbl0auIDUrK/kMWPGYOnSpfD09ESTJk3Qvn179O/fX+lwuwphYWEoLCzkpps3b9bqfhANqJfrnFpCm2+xvPPOO9W6Bf3OO+9ouqpqawi3Ab/66itmamrK4uLi2B9//MGGDBnC7OzseLfwOnTowN5++232xx9/sKtXr7KPPvqIGRoasry8vDrZT03bvHmzWo8/KJuuXr2q6d14KXWOy61btxgAlpqayiufM2cOc3Z2VrpMkyZNWHR0NK9s/fr1zMLCgjHGWF5eHgPADA0N2TfffMPOnz/PIiIimEAgYMnJyUrX+eGHH7IuXbpUKl+6dCk7efIkS09PZ1999RUTi8VszZo1Kvdn8eLFSo+btpyjjUV1z9GanJ9JSUnM0tKSbd68mf35558sNjaW2djYsKVLl9Z6/Uj9o2cWa0CbT+gBAwZU65/zgAEDNF1Vtal7XGp7/HK5XM6srKzYihUruPkPHz5kYrGYaxxw9+5dBoD99ttvXExRUREDwBITE+tkPzXt7t27bPPmzSwlJYWlpaXxpp07dzIAbOfOnZXmKSZtSBQZ03yyqFjn6NGjeTGDBw9mo0aNqrS+x48fM1NTU7Zy5cqX1nfhwoWsTZs2KufTs2faobrnaGlpKRMKhezHH3/klQcHB7MhQ4YoXcbT05PNnj2bV/bDDz8wAwODSmMlv2r9SP2r7rFpUCO4kJp78bmkV43TVorbgBW7b6rObcCKI/kAz28DKm7z5eTkID8/n3er0NTUFC4uLpBKpRg1ahRatGiBTp064X//+x9ef/11iMVibNy4ERYWFnByclK63dLSUpSWlnKvte0Wn7m5OSZOnFhlTJcuXfD666/XU400ry4GLjA3N4e+vj66du3Ki+nSpQtOnjxZaX0xMTF4/PgxgoODX1pfFxcXLFu2DKWlpZUeWQGeP86irJxop4p9JQcEBAD4r69kRXd2L3r8+HGlfo0VfQqyKh5hILqFnlnUERV7j9fX538HqPha13uZr4vxyxU/q4oRCAQ4duwYzp8/j6ZNm0IikeCbb75BQkKCyudE6SFw3VMXAxeIRCL06dMHV65c4cVcvXoV7dq1q7S+LVu2YMiQIWjZsuVL65uRkYFmzZpRQtiIqNtX8uDBg/Hdd99hz549yMnJQWJiIhYuXIjBgwfrfEfU5D90ZVFHhISEYO7cuUqH81OM2qKnp6f0gXfy6hhjmDp1KiwsLJCSkgIDAwN8//33GDx4MM6ePat0JCEam1w3hYaGYvz48ejduzecnZ2xevXqSv+MW7dujYiICADPBy7o168fIiMj4efnhz179uDcuXO8IU3nzJmDkSNHom/fvvD29kZCQgIOHjyI5ORk3ravXbuG3377rVIDLQA4ePAgCgoK4OrqColEgsTERISHh2P27Nl192aQBmfkyJG4e/cuFi1ahPz8fPTs2RMJCQncl+EbN27wriQuWLAAAoEACxYswK1bt9CyZUsMHjwYX375paZ2gWgAJYs64q+//uISxfLyct68Z8+eAXh+heOvv/7S6duCdXEbUPGzoKCAl/QVFBSgZ8+eAIATJ04gPj4e//77LzfG+IYNG5CYmIgdO3bg008/rbRdusWnm9T9Z+zu7o7o6GgsWLAA8+fPR4cOHRAXFwcHBwcu5p133kFUVBQiIiIwffp0dOrUCQcOHICnpydv21u3bkWbNm0wcODASvVq0qQJ1q9fj5kzZ4IxBnt7e66bn8bg8ePHuHz5Mvf6yZMnyM3Nha2tLQwMDLjyzp07w9DQUBNVrDfTpk1Tedv5xS8g+vr6WLx4MRYvXlwPNSMNVn08QKkttPkh3JKSEpaWlsaCg4OZUCjkNWoRCoUsODiYpaWlsZKSEk1XVW01aeAybdo07rVMJmOtW7eusoGLv78/r8zNza1SA5eKDQYKCwt5DVx+/vlnpqenx+sAmTHGOnbsyL788stq1Vubz78XaVOn2y+jS8flVWnze6E4J182aeM529CPS0OvX2NGDVwaGUNDQ7z++uvYsWMHNm/ejLCwMHzzzTcIDQ1FREREoxoTurZvAwoEAnzyySf44osv0KFDB9jZ2WHhwoVo1aoV95C4m5sbmjVrhvHjx2PRokUwMDDA5s2bkZOTAz8/P428D4SQ/3Tu3BlpaWnc66ysLIwdOxY7d+5Ely5deHGEED5KFnWQSCTCu+++i2+++Qbvvvtuo0oUgbq5DTh37lyUlJRg8uTJePjwITw9PZGQkMCNfmFubo6EhAR89tlneOONN/Ds2TN069YNP/30E3r06FG/bwAhpBLFF+oXNbYW+4TUBCWLRCep80wOAAwfPhzDhw9XuT6BQIClS5di6dKlKmN69+6NX375Re26EkIIIQ0ZdZ1DCCGEEEJUomSREEIIIYSoRMkiIYQQQghRiZJFQgghhBCiEiWLhBBCCCFEJUoWCSGEEEKISpQsEkIIIYQQlaifRS2XnZ2N4uLiSuVZWVm8n8o0bdoUHTp0qLO6EUIIIUT7UbKoxbKzs9GxY8cqY8aOHVvl/KtXr1LCSAghhBCVKFnUYoorii+ObQoAT548QW5uLmxtbWFgYFBpWcW4qMquShJCCCGEKFCyqANUjW3q4eGhgdoQQgghRJdQAxdCCCGEEKISJYuEEEIIIUQlug2t5ayMBTB4eBW4rV7eb/DwKqyMBXVUK0IIIYToCkoWtdwUJxG6/DYF+E295br8/7KEEEIIIVWhZFHLbUwrw8hF29Glc2e1lsu6fBkbI8dgSB3VixBCCCG6gZJFLfb48WPkP2I49dcjPDGT8+a9tOucPBnyH7H6qiohhBBCtBQli1rs8uXLAIBJkybVeB1NmzatreoQQgghRAdRsqjFAgICAACdO3eGoaEhb56i021lHXYr0HB/hBBCSPXIZDKkpKQgLy8P1tbW8PLyglAo1HS16gUli1rM3NwcEydOrDJGVYfdhBBCCKme2NhYzJo1C7m5uVyZra0tIiMjERgYqLmK1RPqZ5EQQgghRIXY2FgEBQXB0dERUqkUxcXFkEqlcHR0RFBQEGJjYzVdxTpHySIhhBBCiBIymQyzZs2Cv78/4uLi4OrqCmNjY7i6uiIuLg7+/v6YPXs2ZDKZpqtap+g2NCGEEJ2UnZ2N4uJipfOysrJ4P5Wh57pJSkoKcnNzsXv3bujp8a+v6enpISwsDO7u7khJSUH//v01U8l6QMkiIYQQnZOdnY2OHTu+NG7s2LFVzr969SoljI1YXl4eAMDBwUHpfEW5Ik5XUbJICCFE5yiuKKrqEeKlfdH+f48Sqq5MksbB2toaAJCZmQlXV9dK8zMzM3lxuoqSRUIIITqrqh4hPDw86rk2RNt4eXnB1tYW4eHhiIuL492KlsvliIiIgJ2dHby8vDRYy7pHDVx00KNHjxAaGgoACA0NxaNHjzRcI0IIIUT7CIVCREZGIj4+HgEBAbzW0AEBAYiPj8fKlSt1vr/FGiWL69evh62tLSQSCVxcXPD7779XGb9//3507twZEokEjo6OOHz4MDfv2bNnmDdvHhwdHWFkZIRWrVohODgYt2/f5q3jwYMHePfdd2FiYgIzMzOEhIRUSoL+/PNPeHl5QSKRwMbGBsuXL6/J7mk1Z2dnNG3aFL/++isA4Ndff0XTpk3h7Oys4ZoRQggh2icwMBAxMTG4cOEC3N3dYWJiAnd3d2RmZiImJob6WVRm7969CA0NxeLFi5Geno4ePXrA19cXd+7cURqfmpqK0aNHIyQkBOfPn0dAQAACAgK4+/yPHz9Geno6Fi5ciPT0dMTGxuLKlSsYMmQIbz3vvvsuLl68iMTERMTHx+O3337D5MmTuflFRUUYOHAg2rVrh7S0NKxYsQJLlizBpk2b1N1FreXs7IyzZ88qnXf27FlKGAkhhJAaCAwMxLVr15CUlITo6GgkJSUhOzu7USSKAACmJmdnZzZ16lTutUwmY61atWIRERFK40eMGMH8/Px4ZS4uLmzKlCkqt/H7778zAOzvv/9mjDF26dIlBoCdPXuWizly5AgTCATs1q1bjDHGNmzYwJo1a8ZKS0u5mHnz5rFOnTpVe98KCwsZAFZYWFjtZRqK4uJiBuClU3FxsaarqjZtPi7q0KX9TEtLYwBYWlqapqvyynTpuLwqbXovXvUc1KZzuKEfl4Zev8asusdGrSuLZWVlSEtLg4+PD1emp6cHHx8fSKVSpctIpVJePAD4+vqqjAeAwsJCCAQCmJmZceswMzND7969uRgfHx/o6enhzJkzXEzfvn0hEol427ly5Qr+/fdfpdspLS1FUVERb9JWQ4cO5b3u3r0776eqOEIIIYSQqqiVLN67dw8ymQyWlpa8cktLS+Tn5ytdJj8/X634p0+fYt68eRg9ejRMTEy4dVhYWPDi9PX10bx5c249qrajmKdMREQETE1NucnGxkZpnDY4ceIE7/Wff/7J+6kqjhBCCCGkKg2q65xnz55hxIgRYIzhu+++q/PthYWFca2GgefPPWpzwggARkZG+O233yr1Iebl5YXHjx9runqEEEII0TJqJYvm5uYQCoUoKCjglRcUFMDKykrpMlZWVtWKVySKf//9N06cOMFdVVSs48UGNOXl5Xjw4AG3HlXbUcxTRiwWQywWq9pdrVRSUoKuXbtCIpFwfYg9ffqUEkVCCCGE1Ihat6FFIhGcnJxw/Phxrkwul+P48eNwc3NTuoybmxsvHgASExN58YpEMTs7G8eOHUOLFi0qrePhw4dIS0vjyk6cOAG5XA4XFxcu5rfffsOzZ8942+nUqROaNWumzm5qJScnJ+53AwMDjB07Funp6Rg7dixvdIKKcYQQQgghL6N21zmhoaHYvHkzduzYgaysLHz44YcoKSnBhAkTAADBwcEICwvj4mfMmIGEhARERkbi8uXLWLJkCc6dO4dp06YBeJ4oBgUF4dy5c9i1axdkMhny8/ORn5+PsrIyAM974B80aBAmTZqE33//HadOncK0adMwatQotGrVCgAwZswYiEQihISE4OLFi9i7dy/WrFnDu82sy15MyHft2gUnJyfs2rWryjhCCCGEkKqo/cziyJEjcffuXSxatAj5+fno2bMnEhISuMYkN27c4A2H4+7ujujoaCxYsADz589Hhw4dEBcXxw2+fevWLfz8888AgJ49e/K2lZSUhP79+wN4nvxMmzYNAwYMgJ6eHoYNG4Zvv/2WizU1NcXRo0cxdepUODk5wdzcHIsWLeL1xajLTE1N0b59e1y/fl1lTPv27WFqalqPtSKEEEKItqtRA5dp06ZxVwZflJycXKls+PDhGD58uNJ4W1tbMMZeus3mzZsjOjq6ypju3bsjJSXlpevSVdeuXYO9vb3ShLF9+/a4du2aBmpFCCGEEG1GY0PrmGvXruHhw4fw8PCAjY0NPDw88PDhQ0oUSb2RyWQ4d+4cAODcuXOQyWQarlH9q80hURWysrIwZMgQmJqawsjICH369MGNGze4+f3794dAIOBNH3zwAW8dN27cgJ+fHwwNDWFhYYE5c+agvLy8dnaaEB0nk8mQnJyM3bt3Izk5uVF9tlGyqINMTU1x8uRJ3LhxAydPnqRbz6TOKYbtXLlyJWxsbDBlyhQAwJQpU2BjY4OVK1ciPT29UbTKr+0hUQHg+vXr8PT0ROfOnZGcnIw///wTCxcuhEQi4a1r0qRJyMvL46bly5dz82QyGfz8/FBWVobU1FTs2LED27dvx6JFi+rmjSBEh8TGxsLe3h7e3t4YM2YMvL29YW9vj9jYWE1XrX7Uy3gyWoKGJGqYGstx0eb9VAyN9rJJG4ZOe5G6x6UuhkQdOXIkGzt2bJXb7devH5sxY4bK+YcPH2Z6enosPz+fK/vuu++YiYkJb5jUqmjTOUrD/TUcDb1+L3PgwAEmEAjY4MGDmVQqZcXFxUwqlbLBgwczgUDADhw4oOkq1lidDPdHCCHKdOjQAcbGxgCAZs2aYe7cuVi3bh3mzp3LdV1lbGyMDh06aLKada4uhkSVy+U4dOgQOnbsCF9fX1hYWMDFxQVxcXGV1rVr1y6Ym5vDwcEBYWFhvCu5UqkUjo6OvJGufH19UVRUhIsXLyqtmy4NiUpITchkMsyaNQv+/v6Ii4uDq6srjI2N4erqiri4OPj7+2P27Nk6f0uakkVCyCs7ffo0Hj16hGbNmuHOnTv4+uuvMXXqVHz99de4c+cOmjVrhkePHuH06dOarmqdqoshUe/cuYNHjx7hq6++wqBBg3D06FG88847CAwMxK+//sotM2bMGOzcuRNJSUkICwvDDz/8gLFjx750O4p5yujSkKiE1ERKSgpyc3Mxf/58Xk8vwPMvgmFhYcjJydH5xrUNarg/Qoh2+uGHHwAAS5cuhUAgQHJyMvLy8mBtbQ0vLy8sWbIEM2bMwA8//IA333xTw7XVLnK5HAAwdOhQzJw5E8DzbsZSU1MRFRWFfv36AQCvmzBHR0dYW1tjwIABuH79Otq3b1+jbWv7kKhWxgIYPLwK3Fb/uojBw6uwMhbUQa2INsnLywMArru/FynKFXG6ipJFQsgrKy4uBgDcvn0b9vb2yM3N5ebZ2tpi1KhRvDhdVRdDopqbm0NfXx9du3blxXTp0gUnT55UWRfF6FbXrl1D+/btYWVlValVtq4PiTrFSYQuv00BflN/2S7/vzxp3KytrQEAmZmZcHV1rTRf0RBNEaer6DY0IeSVeXl5AXh+29LBwQFSqRTFxcWQSqVwcHDAV199xYvTVXUxJKpIJEKfPn1w5coVXszVq1fRrl07lXXJyMgA8N8/MTc3N1y4cIHXKjsxMREmJiaVElFdsTGtDFl9NwKTf1V7yuq7ERvTyjS9C0TDvLy8YGtri/DwcO4qv4JcLkdERATs7Ox0/rONWkNXoO0ttnRVYzku2ryfjx8/5lo8+/n5sdTUVFZUVMRSU1OZn58fN+/x48earqra1D0ue/bsYWKxmG3fvp1dunSJTZ48mZmZmXGtkMeNG8c+/fRTLv7UqVNMX1+frVy5kmVlZbHFixezJk2asAsXLnAxsbGxrEmTJmzTpk0sOzubrV27lgmFQpaSksIYY+zatWts6dKl7Ny5cywnJ4f99NNP7LXXXmN9+/bl1lFeXs4cHBzYwIEDWUZGBktISGAtW7ZkYWFhdfZeaBK1hm44Gnr9XqZia+iKn22NqTU0JYsVaPsJrasay3HR5v1MSkriEkI9PT1edzlCoZD7PSkpSdNVVVtNjsvatWtZ27ZtmUgkYs7Ozuz06dPcvH79+rHx48fz4vft28c6duzIRCIR69atGzt06FCldW7ZsoXZ29sziUTCevToweLi4rh5N27cYH379mXNmzdnYrGY2dvbszlz5lSqc25uLnvrrbeYgYEBMzc3Z7NmzWLPnj2r9n5p0zlKyWLD0dDrVx0HDhxgtra2vM82Ozs7rU4UGav+saFnFgkhr0zxcPeMGTOwbt26SvNnzJiBNWvW6PxD4Aq1OSSqwvvvv4/3339f6TwbGxtey2hV2rVrp3R0GEJI1QIDAzF06FCkpKTwGu8JhUJNV61eULJICHlliufiRo0aheXLl2PDhg1cK9yPPvoIaWlpWLNmjc4/BE4I0V1CoRD9+/fXdDU0gpJFQsgrq/gQeFxcHD755BNuXqN6CJwQQnQQJYuEkFcmFAoRGRmJoKAgDB06FIMGDYKBgQGePHmChIQEHDp0CDExMY3mlg0hhOgSShYJIbUiMDAQs2fPxqpVqxAfH8+V6+vrY/bs2QgMDNRg7QghhNQUJYuEkFoRGxuLlStXws/PD2+99RZ3ZfHIkSNYuXIlXF1dKWEkhBAtRMkiIeSVyWQyzJo1C/7+/oiLi+ONofrBBx8gICAAs2fPxtChQ+lWNCGEaBlKFgkhrywlJQW5ubnYvXs3GGOVxoYOCwuDu7s7UlJSGm1rQlK/Hj9+DABIT09XOv/JkyfIzc2Fra0tDAwMKs3Pysqq0/oRok0oWSSEvDJF/4nXr1/H6NGjK40N/cUXX/DiCKlrly9fBgBMmjTpldbTtGnT2qgOIVqNkkVCyCtT9J84btw4+Pv7Y/fu3XBwcEBmZibCw8Mxbtw4XhwhdS0gIAAA0LlzZxgaGlaan5WVhbFjx2Lnzp3o0qWL0nU0bdoUHTp0qMtqasT69euxYsUK5Ofno0ePHli7di2cnZ1Vxj98+BCfffYZYmNj8eDBA7Rr1w6rV6/G22+/XY+11jyZTEadchNCSE25u7tDX18fLVq0QGxsLPT1n3+0uLq6IjY2Fm3atMH9+/fh7u6u4ZqSxsLc3BwTJ058aVyXLl3w+uuv10ONGoa9e/ciNDQUUVFRcHFxwerVq+Hr64srV67AwsKiUnxZWRnefPNNWFhYICYmBq1bt8bff/8NMzOz+q+8BsXGxmLWrFmV7ppERkY2ioZ7ei8PIUT7rF+/Hra2tpBIJHBxccHvv/9eZfz+/fvRuXNnSCQSODo6VhoSjTGGRYsWwdraGgYGBvDx8UF2djY3Pzk5GQKBQOl09uzZOtnHhiQ1NRXl5eUoKChAYGAgpFIpiouLIZVKERgYiIKCApSXlyM1NVXTVSWkUfvmm28wadIkTJgwAV27dkVUVBQMDQ2xdetWpfFbt27FgwcPEBcXBw8PD9ja2qJfv37o0aNHPddcc2JjYxEUFARHR0feZ5ujoyOCgoIQGxur6SrWOUoWic5RfHNevHgx0tPT0aNHD/j6+uLOnTtK41NTUzF69GiEhITg/PnzCAgIQEBAADIzM7mY5cuX49tvv0VUVBTOnDkDIyMj+Pr64unTpwCeX1nLy8vjTRMnToSdnR169+5dL/utSYpnEXfu3IkLFy7A3d0dJiYmcHd3R2ZmJnbu3MmLI4TUv7KyMqSlpcHHx4cr09PTg4+PD6RSqdJlfv75Z7i5uWHq1KmwtLSEg4MDwsPDIZPJVG6ntLQURUVFvElbvdjTg6urK4yNjeHq6oq4uDj4+/tj9uzZVb4fOoERTmFhIQPACgsLNV0VUoG6x8XZ2ZlNnTqVey2TyVirVq1YRESE0vgRI0YwPz8/XpmLiwubMmUKY4wxuVzOrKys2IoVK7j5Dx8+ZGKxmO3evVvpOsvKyljLli3Z0qVLq1VnxrT7/EtKSmIAmFQqZeXl5SwpKYlFR0ezpKQkVl5ezlJTUxkAlpSUpOmqqk2bj0tt06X3Ii0tjQFgaWlpmq7KK6vucbl16xYDwFJTU3nlc+bMYc7OzkqX6dSpExOLxez9999n586dY3v27GHNmzdnS5YsUbmdxYsXMwCVJm08b3T5s42x6p87dGWR6JSafHOWSqW8eADw9fXl4nNycpCfn8+LMTU1hYuLS5Xfxu/fv48JEyaorKsuffuuODa0QCBA//79MXr0aPTv3x8CgYDGhiZES8nlclhYWGDTpk1wcnLCyJEj8dlnnyEqKkrlMmFhYSgsLOSmmzdv1mONa1fFnh7s7e3h7e2NMWPGwNvbG/b29vjrr794cbqKkkWiU+7duweZTAZLS0teuaWlJfLz85Uuk5+fX2W84qc669yyZQt8fX3Rpk0blXWNiIiAqakpN9nY2FS9cw2YYmzo+Ph4BAQE8J7rCQgIQHx8PFauXNloWg4S0hCZm5tDKBSioKCAV15QUAArKyuly1hbW6Njx468v90uXbogPz8fZWVlSpcRi8UwMTHhTdpK0YPD2LFjlT6zOHbsWF6crqJkkZBa9s8//+CXX35BSEhIlXG69O0beD42dExMjNJnFmNiYhpFi0FCGjKRSAQnJyccP36cK5PL5Th+/Djc3NyULuPh4YFr165BLpdzZVevXoW1tTVEIlGd11nTFD09WFpaIjY2lvfMYmxsLCwtLaGvr6/zPT1Qskh0Sk2+OVtZWVUZr/hZ3XVu27YNLVq0wJAhQ6qsqy59+1YIDAzEtWvXkJSUhOjoaCQlJSE7O5sSRUIaiNDQUGzevBk7duxAVlYWPvzwQ5SUlHCPzAQHByMsLIyL//DDD/HgwQPMmDEDV69exaFDhxAeHo6pU6dqahfqlaKnhzt37ijt6eHOnTuNoqcHShaJTqnJN2c3NzdePAAkJiZy8XZ2drCysuLFFBUV4cyZM5XWyRjDtm3bEBwcjCZNmtTWbmkVoVDIe2aRbj0T0nCMHDkSK1euxKJFi9CzZ09kZGQgISGBe8zmxo0bvOfvbGxs8Msvv+Ds2bPo3r07pk+fjhkzZuDTTz/V1C7UK8V78cMPPyi9a/LDDz/w4nQVdcpNdE5oaCjGjx+P3r17w9nZGatXr670zbl169aIiIgAAMyYMQP9+vVDZGQk/Pz8sGfPHpw7dw6bNm0CAAgEAnzyySf44osv0KFDB9jZ2WHhwoVo1aoVN0qEwokTJ5CTk1OtzoAJIUQTpk2bhmnTpimdl5ycXKnMzc0Np0+fruNaNUyKZxHbt2+Pa9euVRrBRdGHr64/s0jJItE5I0eOxN27d7Fo0SLk5+ejZ8+elb456+n9d1Hd3d0d0dHRWLBgAebPn48OHTogLi4ODg4OXMzcuXNRUlKCyZMn4+HDh/D09ERCQgIkEglv21u2bIG7uzs6d+5cPztLCCGkzlTs6SEuLg79+/fn5snl8kbT04OAMcY0XYmGoqioCKampigsLNSJ58d0RWM5Lo1lP7UNHZf/6NJ7kZ6eDicnJ6SlpWn9cH8N/bg09Pq9jGIEF39/f4SFhXHj3kdERCA+Pl6rG/BV99jQlUVCCCGEEBUUPT3MmjWL1+rZzs5OqxNFdVCySAghhBBShcDAQAwdOrTSM4uNpQEfJYuEEEIIIS+h6OmhMaKucwghhBBCiEqULBJCCCGEEJUoWSSEEEIIISrRM4uEkFolk8ka7UPghBCii2p0ZXH9+vWwtbWFRCKBi4sL14O5Kvv370fnzp0hkUjg6OiIw4cP8+bHxsZi4MCBaNGiBQQCATIyMnjzc3NzIRAIlE779+/n4pTN37NnT012kRBSA7GxsbC3t4e3tzfGjBkDb29v2NvbIzY2VtNVI4QQUkNqJ4t79+5FaGgoFi9ejPT0dPTo0QO+vr64c+eO0vjU1FSMHj0aISEhOH/+PAICAhAQEIDMzEwupqSkBJ6envj666+VrsPGxgZ5eXm86fPPP4exsTHeeustXuy2bdt4cS8Ox0YIqRuKjmsdHR0hlUpRXFwMqVQKR0dHBAUFUcJICCFaSu1k8ZtvvsGkSZMwYcIEdO3aFVFRUTA0NMTWrVuVxq9ZswaDBg3CnDlz0KVLFyxbtgyvv/461q1bx8WMGzcOixYtgo+Pj9J1CIVCWFlZ8aYff/wRI0aMgLGxMS/WzMyMF/ficGyEkNonk8kwa9Ys+Pv748CBA3j69CkOHjyIp0+f4sCBA/D398fs2bMhk8k0XVVCCCFqUitZLCsrQ1paGi+p09PTg4+PD6RSqdJlpFJppSTQ19dXZXx1pKWlISMjAyEhIZXmTZ06Febm5nB2dsbWrVtR1WiGpaWlKCoq4k2EEPWlpKQgNzcX7u7u6NixI+82dMeOHeHm5oacnBykpKRouqqEEFIjZWVlWL16NT7++GOsXr0aZWVlmq5SvVErWbx37x5kMhksLS155ZaWlsjPz1e6TH5+vlrx1bFlyxZ06dKFN+wOACxduhT79u1DYmIihg0bho8++ghr165VuZ6IiAiYmppyk42NTY3rREhjlpeXBwCYP3++0tvQn332GS+OEEK0ydy5c2FkZISZM2di3bp1mDlzJoyMjDB37lxNV61eaF3XOU+ePEF0dLTSq4oLFy6Eh4cHevXqhXnz5mHu3LlYsWKFynWFhYWhsLCQm27evFmXVSdEZ1lYWAAAPDw8EBcXB1dXVxgbG8PV1RVxcXHw8PDgxRFCiLZQ5BItWrTA5s2bkZeXh82bN6NFixZYsWJFo0gY1UoWzc3NIRQKUVBQwCsvKCiAlZWV0mWsrKzUin+ZmJgYPH78GMHBwS+NdXFxwT///IPS0lKl88ViMUxMTHgTIaT2VfU4CCGENFRlZWVYtWoVLC0t8c8//2DixImwsrLCxIkT8c8//8DS0hKrVq3S+VvSaiWLIpEITk5OOH78OFcml8tx/PhxuLm5KV3Gzc2NFw8AiYmJKuNfZsuWLRgyZAhatmz50tiMjAw0a9YMYrG4RtsihFSPojeEkydPIiAggHcbOiAgAKdOneLFEUKINtiwYQPKy8vxxRdfQF+f3zW1vr4+li5divLycmzYsEFDNawfanfKHRoaivHjx6N3795wdnbG6tWrUVJSggkTJgAAgoOD0bp1a0RERAAAZsyYgX79+iEyMhJ+fn7Ys2cPzp07h02bNnHrfPDgAW7cuIHbt28DAK5cuQIAXItmhWvXruG3336r1E8jABw8eBAFBQVwdXWFRCJBYmIiwsPDMXv2bHV3kRCiJmtrawDPnwPeuHEj73liOzs7hIeHY/78+VwcIYRog+vXrwMA/P39lc5XlCvidJXayeLIkSNx9+5dLFq0CPn5+ejZsycSEhK4Riw3btyAnt5/Fyzd3d0RHR2NBQsWYP78+ejQoQPi4uLg4ODAxfz8889csgkAo0aNAgAsXrwYS5Ys4cq3bt2KNm3aYODAgZXq1aRJE6xfvx4zZ84EYwz29vZcNz+EkLrl5eUFW1tbpKam4urVqzh16hQ3gouHhweGDRsGOzs7eHl5abqqhBBSbe3btwcAxMfHY+LEiZXmx8fH8+J0lYDRw0ScoqIimJqaorCwkJ5fbEAay3HR9v1UdMrt7++PsLAwODg4IDMzExEREYiPj0dMTAwCAwM1XU21aftxqU269F6kp6fDyckJaWlpeP311zVdnVfS0I9LQ69fVcrKymBkZIQWLVrg77//hlQq5b4Iu7m5oV27drh//z5KSkogEok0XV21VffY0NjQhJBaERgYiJiYGMyaNavSbWhtTRQJIY2bSCTCzJkzsWLFChgaGkIul3Pz9PT0IJfLMWfOHK1MFNVBySIhpNYEBgZi6NChSElJ4b59e3l5QSgUarpqhBBSI66urgAq9+qgeK2Yr8u0rp9FQkjDJhQK0b9/f4wePRr9+/dvlIni+vXrYWtrC4lEAhcXF/z+++9Vxu/fvx+dO3eGRCKBo6Oj0kZ8WVlZGDJkCExNTWFkZIQ+ffrgxo0bAJ43Evz444/RqVMnGBgYoG3btpg+fToKCwt56xAIBJWmPXv21N6OE6JjFEOZDh48GI8fP8aqVaswbdo0rFq1Co8fP8bgwYMbxVCmdGWREEJq0d69exEaGoqoqCi4uLhg9erV8PX1xZUrV5R2Sp6amorRo0cjIiIC/v7+iI6ORkBAANLT07mGgNevX4enpydCQkLw+eefw8TEBBcvXoREIgEA3L59G7dv38bKlSvRtWtX/P333/jggw9w+/ZtxMTE8La3bds2DBo0iHttZmZWd28GIVpOMZTp7t27IZFI8Mknn/Dmh4WFwd3dHSkpKejfv79G6lgfKFkkhJBapOiFQdHDQ1RUFA4dOoStW7fi008/rRS/Zs0aDBo0CHPmzAEALFu2DImJiVi3bh2ioqIAAJ999hnefvttLF++nFuuYutLBwcHHDhwgDfvyy+/xNixY1FeXs7rH87MzKzGgyIQ0tgohiit2INLRYpyXR/KlG5DE0JILSkrK0NaWhp8fHy4Mj09Pfj4+EAqlSpdRiqV8uIBwNfXl4uXy+U4dOgQOnbsCF9fX1hYWMDFxQVxcXFV1kXRuvHFjoSnTp0Kc3NzODs7Y+vWrVWOrlNaWoqioiLeREhjougbNjMzEzKZDMnJydi9ezeSk5Mhk8mQmZnJi9NVdGVRB8lkMmpgQIgG3Lt3DzKZjOt3VsHS0hKXL19Wukx+fr7S+Pz8fADPR7159OgRvvrqK3zxxRf4+uuvkZCQgMDAQCQlJaFfv35K67Fs2TJMnjyZV7506VK88cYbMDQ0xNGjR/HRRx/h0aNHmD59utK6RURE4PPPP6/2/hOiaxR9yH788ce4d+8ecnNzuXm2trYwNzdvFH3IUrKoY2JjYzFr1qxKJ3RkZCR1XUKIFlJ01TF06FDMnDkTANCzZ0+kpqYiKiqqUrJYVFQEPz8/dO3alTeoAQAsXLiQ+71Xr14oKSnBihUrVCaLYWFhCA0N5a3bxsamNnaLEK0gFAoxfPhwrFixgjfgCPB8EJLc3FzMmTNH5y/I0G1oHaLoFNnR0ZE3Nq+joyOCgoIQGxur6SoSotPMzc0hFApRUFDAKy8oKFD5nKCVlVWV8ebm5tDX10fXrl15MV26dOFaQysUFxdj0KBBaNq0KX788Uc0adKkyvq6uLjgn3/+QWlpqdL5YrEYJiYmvImQxkQmk2HHjh0AUKkvRbFYDADYsWOHzreGpmRRRyia9/v7+yMuLg6urq4wNjaGq6sr4uLi4O/v3yia9xOiSSKRCE5OTjh+/DhXJpfLcfz4cbi5uSldxs3NjRcPAImJiVy8SCRCnz59cOXKFV7M1atX0a5dO+51UVERBg4cCJFIhJ9//plrKV2VjIwMNGvWjPunRwjhS05Oxp07d+Dp6Yl///2X13XOgwcP4OHhgTt37iA5OVnTVa1TdBtaR1Rs3v/ipXI9Pb1G07yfEE0LDQ3F+PHj0bt3bzg7O2P16tUoKSnhWkcHBwejdevWiIiIAADMmDED/fr1Q2RkJPz8/LBnzx6cO3cOmzZt4tY5Z84cjBw5En379oW3tzcSEhJw8OBB7h+UIlF8/Pgxdu7cyWuM0rJlSwiFQhw8eBAFBQVwdXWFRCJBYmIiwsPDMXv27Pp9gzTk8ePHvOdGs7KyeD8VOnfuDENDw3qtG2m4FH9jPj4+6NKlC+8RrzVr1mD8+PE4deoUkpOTMWDAAM1Usj4wwiksLGQAWGFhoaarorbo6GgGgBUXFyudX1RUxACw6Ojoeq7Zq9Pm46KOxrKf2qYmx2Xt2rWsbdu2TCQSMWdnZ3b69GluXr9+/dj48eN58fv27WMdO3ZkIpGIdevWjR06dKjSOrds2cLs7e2ZRCJhPXr0YHFxcdy8pKQkBkDplJOTwxhj7MiRI6xnz57M2NiYGRkZsR49erCoqCgmk8nq9L1oKNLS0lS+RxWntLQ0TVdVbQ39uDT0+lVlwYIF3LkxePBgJpVKWXFxMZNKpWzw4MHcvAULFmi6qjVS3WMjYKyKfhMaGW0e7Dw5ORne3t6QSqVKhx6SSqVwd3dHUlKS1l1Z1Objoo7Gsp/aho7Lf7T5vXjxyuKTJ0+Qm5sLW1tbGBgYcOXaeGWxoR+Xhl6/qhw9ehS+vr5o3rw5CgoKeF1RlZeXw9LSEg8ePMAvv/yCgQMHarCmNVPdY0O3oXWEonl/eHg44uLieLei5XI5IiIiGkXzfkIIUcbQ0BCvv/46r8zDw0NDtSHaQtHK+cGDB3jnnXcwf/58ODg4IDMzE+Hh4Xjw4AEvTldRsqgjhEIhIiMjERQUhICAAISFhXEndEREBOLj4xETE6PzJzQhhBBSW+7cucP9fvz4ccTHx3OvK16Brhini6g1tA4JDAxETEwMLly4AHd3d5iYmMDd3R2ZmZmIiYmhfhYJIYQQNShGZnn33XdRVlbGm1daWooxY8bw4nQVXVnUMYGBgRg6dCiN4EIIIYS8Ii8vL1hYWGDXrl14++230aFDBzx58gQGBgbIzs5GdHQ0LCwsdP4RL0oWdZBQKNS6RiyEEFJfaEhUog5FO+CkpCQcPnyYK6/YMErX0W1oQgghjUZsbCzs7e3h7e2NMWPGwNvbG/b29jTCFVEqJSUFd+/eVTpPIBAAeP68YkpKSn1Wq95RskgIIaRRoCFRibpu3boFAHjrrbdQWFiIpKQkREdHIykpCQ8fPsRbb73Fi9NVdBuaEEKIzntxSFRF92KKIVEDAgIwe/ZsDB06lG5JE47iqmJgYCCaNGlS6RGvgIAAHDlyROXVR11BVxYJIYToPMWQqPPnz1c5JGpOTo7O304k6mnZsiWA51el5XI5b55cLkdcXBwvTldRskgIIUTn5eXlAQAcHByUzleUK+IIAYDWrVsDAI4cOYKAgADe4wuKq4oV43QV3YYmhBCi8xT94GVmZiodEjUzM5MXRwjw3+ho5ubm+OOPP+Du7s7Na9euHXr37o379+/rfNc5dGWREEKIzqs4JKqy24k0JCpRRjE62rlz5yo9l3jnzh2cO3cOK1eu1PnnXClZJIQQovMU//Tj4+OV3k6Mj49vFP/0Sc0ousl5sUxZuS6iZJEQQkijQEOiEnVVbEX/4MEDrFq1CtOmTcOqVatw//59+Pv7Y/bs2ZDJZJquap2iZxYJIYQ0GjQkKlGHohX9lClT0KVLF+Tm5nLz1qxZg8mTJ+PgwYNISUnR6ZHT6MoiIYSQRkUxJOro0aPRv39/ShSJSorW8fPnz1famftnn33Gi9NVdGWREEIIIUQJCwsLAICHh4fSztz79euHkydPcnG6ipJFQgghjUpZWRk2bNiA69evo3379vjoo48gEok0XS2ihRhjmq5CvaBkkRBCSKMxd+5crFq1CuXl5VzZnDlzMHPmTCxfvlyDNSMN0Z07dwAAJ0+exNChQzFo0CAYGBjgyZMnSEhIwKlTp3hxuoqSRUIIIY3C3LlzsWLFClhaWuKLL76Av78/4uPjsWDBAqxYsQIAKGEkPIpO2t99913s3bsX8fHx3Dx9fX2MGTMG0dHROt+Zu4A1lmuo1VBUVARTU1MUFhbCxMRE09Uh/6+xHJfGsp/aho7Lf7T5vSgrK4ORkRFatGiBf/75B/r6/10rKS8vR5s2bXD//n2UlJRo3S3phn5cGnr9qiKTydCqVSvcuXMHfn5+ePvtt7kri4cPH8ahQ4dgYWGB27dva2VDqeoeG2oNTQghROdt2LAB5eXl+OKLL3iJIvD8CtHSpUtRXl6ODRs2aKiGpKFSXFMTCATo1asXgoKC0KtXr0bTITdAySIhhJBG4Pr16wAAf39/pfMV5Yo4QoDn/SzevXsXERERyMzM5HXmfvHiRYSHh+POnTtISUnRdFXrFCWLhBBCdF779u0BgPfMWUWKckUcIcB//SdOmzYNV65c4Y3gcvnyZUybNo0Xp6soWSSEEKLzPvroI+jr62PBggW8ltDA82cWFy1aBH19fXz00UcaqiFpiBQNV9atW4dOnTph5syZWLduHWbOnIlOnTph3bp1vDhdRckiIYQQnScSiTBz5kwUFBSgTZs22LRpE27fvo1NmzahTZs2KCgowMyZM7WucQupW15eXrCwsEBYWBgcHBx4I7g4ODhg/vz5sLCwgJeXl6arWqdqlCyuX78etra2kEgkcHFxwe+//15l/P79+9G5c2dIJBI4Ojri8OHDvPmxsbEYOHAgWrRoAYFAgIyMjErr6N+/PwQCAW/64IMPeDE3btyAn58fDA0NYWFhgTlz5lT6BkkIIaRxWr58OebMmYP79+9jypQpaN26NaZMmYL79+9jzpw51G0OUapipzGMMW5qTNROFvfu3YvQ0FAsXrwY6enp6NGjB3x9fVV2SJmamorRo0cjJCQE58+fR0BAAAICApCZmcnFlJSUwNPTE19//XWV2540aRLy8vK4qeIftkwmg5+fH8rKypCamoodO3Zg+/btWLRokbq7SAghREctX74cJSUlvGfPSkpKKFEkSlEDl//H1OTs7MymTp3KvZbJZKxVq1YsIiJCafyIESOYn58fr8zFxYVNmTKlUmxOTg4DwM6fP19pXr9+/diMGTNU1uvw4cNMT0+P5efnc2XfffcdMzExYaWlpS/Zq+cKCwsZAFZYWFiteFI/anJc1q1bx9q1a8fEYjFzdnZmZ86cqTJ+3759rFOnTkwsFjMHBwd26NAh3ny5XM4WLlzIrKysmEQiYQMGDGBXr16ttJ74+Hjm7OzMJBIJMzMzY0OHDq12nen8a5jouPyH3ouGqaEfl4Zev6pER0czAKy4uJiVl5ezpKQkFh0dzZKSklh5eTkrKipiAFh0dLSmq1oj1T02al1ZLCsrQ1paGnx8fLgyPT09+Pj4QCqVKl1GKpXy4gHA19dXZXxVdu3aBXNzczg4OCAsLAyPHz/mbcfR0RGWlpa87RQVFeHixYtK11daWoqioiLeRLRfXVz9Xr58Ob799ltERUXhzJkzMDIygq+vL54+fcrFHDhwAOPGjcOECRPwxx9/4NSpUxgzZkyd7y8hhKhD3UfJFPbs2QOBQICAgIC6rWADomi4UvH/QUWKcl1v4KLWlcVbt24xACw1NZVXPmfOHObs7Kx0mSZNmlTKuNevX88sLCwqxVZ1ZXHjxo0sISGB/fnnn2znzp2sdevW7J133uHmT5o0iQ0cOJC3TElJCQPADh8+rLRuixcvZgAqTdr47UeXqfuttLavfsvlcmZlZcVWrFjBzX/48CETi8Vs9+7djDHGnj17xlq3bs2+//57tfatIm3+9q3L6Lj8h96Lhkmd47Jnzx4mEonY1q1b2cWLF9mkSZOYmZkZKygoqHK5nJwc1rp1a+bl5aXWHRN169fQlJeXM1tbW9a7d29ma2vLyxUU5XZ2dqy8vFzTVa2ROrmyqEmTJ0+Gr68vHB0d8e677+J///sffvzxx1fqQDUsLAyFhYXcdPPmzVqsMdGEurj6nZOTg/z8fF6MqakpXFxcuJj09HTcunULenp66NWrF6ytrfHWW2+p/DYK0JVtQkj9++abbzBp0iRMmDABXbt2RVRUFAwNDbF161aVy8hkMrz77rv4/PPP8dprr9VjbTVPKBRi+PDhOHfuHJ48ecJrRf/kyROcO3cOQUFBWjnUnzrUShbNzc0hFApRUFDAKy8oKICVlZXSZaysrNSKry4XFxcAwLVr16rcjmKeMmKxGCYmJryJaLd79+5BJpPxHkcAAEtLS+Tn5ytdJj8/v8p4xc+qYv766y8AwJIlS7BgwQLEx8ejWbNm6N+/Px48eKB0uxERETA1NeUmGxsbNfeWEEKqryZfpgFg6dKlsLCwQEhISLW2o0tfhGUyGfbv34/evXtDLBZj8uTJaNWqFSZPngyJRILevXsjJiYGMplM01WtU2oliyKRCE5OTjh+/DhXJpfLcfz4cbi5uSldxs3NjRcPAImJiSrjq0vRvY7iOQE3NzdcuHCB91xaYmIiTExM0LVr11faFiEvI5fLAQCfffYZhg0bBicnJ2zbtg0CgQD79+9Xugxd2SaE1KeafJk+efIktmzZgs2bN1d7O7r0RTglJQW5ubkYNmwY9PT4KZNAIEBgYCBycnJ0vjW02rehQ0NDsXnzZuzYsQNZWVn48MMPUVJSggkTJgAAgoODERYWxsXPmDEDCQkJiIyMxOXLl7FkyRKcO3eOGyIHAB48eICMjAxcunQJAHDlyhVkZGRwJ+/169exbNkypKWlITc3Fz///DOCg4PRt29fdO/eHQAwcOBAdO3aFePGjcMff/yBX375BQsWLMDUqVMhFotr/g4RrVIXV78VP6uKUXxpqfjFRCwW47XXXsONGzeUbpeubBNCGrLi4mKMGzcOmzdvhrm5ebWX06Uvwoph/ObPnw9HR0dep9yOjo747LPPeHE6qyYPRK5du5a1bduWiUQi5uzszE6fPs3N69evHxs/fjwvft++faxjx45MJBKxbt26VeqWZNu2bUobmixevJgxxtiNGzdY3759WfPmzZlYLGb29vZszpw5lR7IzM3NZW+99RYzMDBg5ubmbNasWezZs2fV3i9tfghXl9Wkgcu0adO41zKZjLVu3brKBi7+/v68Mjc3t0oNXFauXMmrU8UGLorXFRu4lJWVMQsLC7Zx48Y62U9SP+i4/Ifei4apuseltLSUCYVC9uOPP/LKg4OD2ZAhQyrFnz9/ngFgQqGQmwQCARMIBEwoFLJr167Vav0aomPHjjEAzNPTk8lkMt48mUzGPD09GQB27NgxDdXw1VT32NQoWdRV2nxC6zJ1j8uePXuYWCxm27dvZ5cuXWKTJ09mZmZmXB+c48aNY59++ikXf+rUKaavr89WrlzJsrKy2OLFi1mTJk3YhQsXuJivvvqKmZmZsZ9++on9+eefbOjQoczOzo49efKEi5kxYwZr3bo1++WXX9jly5dZSEgIs7CwYA8ePKiT/ST1g47Lf+i9aJjUOS7qfJl+8uQJu3DhAm8aOnQoe+ONN9iFCxcaRR/GL0sWPTw8GkWyqF9fVzAJqS8jR47E3bt3sWjRIuTn56Nnz55ISEjgntO5ceMG79kTd3d3REdHY8GCBZg/fz46dOiAuLg4ODg4cDFz585FSUkJJk+ejIcPH8LT0xMJCQmQSCRczIoVK6Cvr49x48bhyZMncHFxwYkTJ9CsWbP623lCCKlCaGgoxo8fj969e8PZ2RmrV6+u9ChZ69atERERAYlEwvscBAAzMzMAqFSuqxTtIE6ePImAgABujOjMzExERETg1KlTvDhdRcki0UnTpk3jPRdbUXJycqWy4cOHY/jw4SrXJxAIsHTpUixdulRlTJMmTbBy5UqsXLlS7foSQkh9UPfLdGOneB49IiICGzduhLu7OzfPzs4O4eHhmD9/vs53yk3JIiGEENKIqPtluqLt27fXfoUaMC8vL9ja2iI1NRVXr17FqVOnkJeXB2tra3h4eGDYsGGws7ODl5eXpqtap+jrAyGEEEKIEkKhEJGRkYiPj8ewYcMgFovh7+8PsViMYcOGIT4+HitXrqROuQkhhKhH3bF39+/fj86dO0MikcDR0RGHDx+uFJOVlYUhQ4bA1NQURkZG6NOnD69bpqdPn2Lq1Klo0aIFjI2NMWzYsErdPd24cQN+fn4wNDSEhYUF5syZg/Ly8trZaUJ0VGBgIGJiYnDhwgW4u7vDxMQE7u7uyMzMRExMDAIDAzVdxTpHySIhhNSivXv3IjQ0FIsXL0Z6ejp69OgBX19flQ/Ap6amYvTo0QgJCcH58+cREBCAgIAA3lCR169fh6enJzp37ozk5GT8+eefWLhwIa+B1cyZM3Hw4EHs378fv/76K27fvs37JyaTyeDn54eysjKkpqZix44d2L59OxYtWlR3bwYhOiIwMBDXrl1DUlISoqOjkZSUhOzs7EaRKAKoWT+Lukqbm/frssZyXBrLfmqbmvTzOXXqVO61TCZjrVq1qrKfTz8/P16Zi4sL188nY4yNHDmSjR07VuU2Hz58yJo0acL279/PlWVlZTEATCqVMsYYO3z4MNPT0+O6kGKMse+++46ZmJg0ii5QdFlDPy4NvX6NWXWPDV1ZJITUKplMhuTkZOzevRvJyck6P2ZqRTUZe1cqlfLiAcDX15eLl8vlOHToEDp27AhfX19YWFjAxcUFcXFxXHxaWhqePXvGW0/nzp3Rtm1bbj2KEScqDvXm6+uLoqIiXLx4UWnddGmMX0Je1ZMnTzBt2jT4+vpi2rRpePLkiaarVG8oWSSE1JrY2FjY29vD29sbY8aMgbe3N+zt7REbG6vpqtWLmoy9m5+fX2X8nTt38OjRI3z11VcYNGgQjh49infeeQeBgYH49ddfuXWIRCKuDzxl61G1HcU8ZXRpjF9CXkVAQAAMDQ2xfv16HD16FOvXr4ehoSECAgI0XbV6QckiIaRWxMbGIigoSOn4qUFBQY0mYaxtcrkcADB06FDMnDkTPXv2xKeffgp/f39ERUXV6bZ1aYxfQmoqICAAP/30E0QiET799FNcu3YNn376KUQiEX766adGkTBSskgIeWUymQyzZs2Cv78/4uLi4OrqCmNjY7i6uiIuLg7+/v6YPXu2zt+SNjc3h1AorNQKuaCgAFZWVkqXsbKyqjLe3Nwc+vr66Nq1Ky+mS5cuXGtoKysrlJWV4eHDhyrXo2o7innKiMVimJiY8CZCGpMnT55wiWJxcTEiIiLQvn17REREoLi4mEsYdf2WNCWLhJBXlpKSgtzcXMyfP7/S6A96enoICwtDTk4OUlJSNFTD+iESieDk5ITjx49zZXK5HMePH4ebm5vSZdzc3HjxAJCYmMjFi0Qi9OnTB1euXOHFXL16Fe3atQMAODk5oUmTJrz1XLlyBTdu3ODW4+bmhgsXLvBaZScmJsLExKRSIkoIeW7OnDkAng+TKBKJePNEIhE++eQTXpyuohFcCCGvLC8vD4Dq8WIV5Yo4XabO2LsAMGPGDPTr1w+RkZHw8/PDnj17cO7cOWzatIlb55w5czBy5Ej07dsX3t7eSEhIwMGDB7nRNkxNTRESEoLQ0FA0b94cJiYm+Pjjj+Hm5gZXV1cAwMCBA9G1a1eMGzcOy5cvR35+PhYsWICpU6dCLBbX75tEiJbIzs4GAEycOFHp/JCQECxfvpyL01V0ZZEQ8soU46JW7BuwIkW5ro+fCjwfe3flypVYtGgRevbsiYyMjEpj71ZMmt3d3REdHY1NmzahR48eiImJQVxcHC/xfueddxAVFYXly5fD0dER33//PQ4cOABPT08uZtWqVfD398ewYcPQt29fWFlZ8Z4TFQqFiI+Ph1AohJubG8aOHYvg4OAqxzsnpLHr0KEDAOD7779XOn/Lli28OF0lYIwxTVeioSgqKoKpqSkKCwvp2ZwGpLEcF23eT5lMBnt7ezg6OiIuLo53K1oul3OdTGdnZ2vdsFjafFxqG70XDVNDPy4NvX5VefLkCQwNDSESiXD//n18//33uH79Otq3b4+JEyeiRYsWKCsrw+PHj2FgYKDp6qqtuseGbkMTQl6ZYvzUoKAgBAQEICwsDA4ODsjMzERERATi4+MRExOjdYkiIaRxMzAwwNChQ/HTTz+hadOmvHkzZ84E8LynAm1MFNVBySIhpFYoxk+dNWsW3N3duXI7O7tGM34qIUT3dOzY8ZXm6wK6DV2BNl8q12WN5bjoyn7KZDKkpKQgLy8P1tbW8PLy0uorirpyXGoDvRcNU0M/Lg29flUpKyuDgYEB5HI53nrrLRgaGuLff/9Fs2bN8PjxYxw5cgR6enp48uRJpdbS2oBuQxNCNEIoFKJ///6argYhhLyytWvXQi6Xo3v37oiPj6/0PHavXr3w559/Yu3atZg1a5YGa1q3qDU0IYQQQogSJ0+eBACEh4eDMcYb954xhmXLlvHidBVdWSSEEEIIUcLY2BgA8OOPP2Lq1Kn4+++/uXnt2rXDgAEDeHG6iq4sEkIIIYQoMW7cOADP+1NUNlzm1q1beXG6iq4sEkIIIYQoUfH5a7lcjtGjR6N37944d+4cDhw4oDROF1GySAghhBCiRMXx7MvKyrB7927s3r1baZzilrQuotvQhBBCCCFKKMZfB1BpDPWKryvG6SJKFgkhhBBClJDL5QCej2tfXl7Om1deXs6Nd6+I01V0G5oQQgghRInmzZsDAPLy8irNk8lkXLkiTldRskgIIYQQooS5uTn3e5MmTRAUFMQ1cImJicGzZ88qxekiShYJIYQQQpSQSqXc78+ePVPZwEUqlWL8+PH1WbV6Rc8sEkIIIYQoceHCBe53iUTCm2dgYKA0ThfRlUVCCCGEECUEAgH3+4ABA2Bvb48nT57AwMAA165dw6FDhyrF6SJKFgkhhBBClOjWrRtOnToFfX19HDlyhNfqWSgUQl9fH+Xl5ejWrZsGa1n36DY0IYQQQogSnp6eAJ53kyMUCvHGG29g7NixeOONN6Cnp8d1p6OI01V0ZZEQQgghRIlWrVpxvz979gwnTpx4aZwuoiuLhBBCCCFEJUoWCSGEEEKUyM/Pr9U4bUXJIiGEEEKIEgUFBbUap60oWSSEEEIIUeLOnTu1GqetKFkkhBBCCFEiLS2tVuO0VY2SxfXr18PW1hYSiQQuLi74/fffq4zfv38/OnfuDIlEAkdHRxw+fJg3PzY2FgMHDkSLFi0gEAiQkZHBm//gwQN8/PHH6NSpEwwMDNC2bVtMnz4dhYWFvDiBQFBp2rNnT012kRBCCCGNXElJCfe7WCzmzav4umKcLlI7Wdy7dy9CQ0OxePFipKeno0ePHvD19VV5CTY1NRWjR49GSEgIzp8/j4CAAAQEBCAzM5OLKSkpgaenJ77++mul67h9+zZu376NlStXIjMzE9u3b0dCQgJCQkIqxW7btg15eXncFBAQoO4uEkIIIYTg6dOn3O8vjtJS8XXFOF2kdj+L33zzDSZNmoQJEyYAAKKionDo0CFs3boVn376aaX4NWvWYNCgQZgzZw4AYNmyZUhMTMS6desQFRUFABg3bhwAIDc3V+k2HRwccODAAe51+/bt8eWXX2Ls2LEoLy+Hvv5/u2FmZgYrKyt1d4sQQgghhKfi+M9lZWW8eRVfV4zTRWpdWSwrK0NaWhp8fHz+W4GeHnx8fCCVSpUuI5VKefEA4OvrqzK+ugoLC2FiYsJLFAFg6tSpMDc3h7OzM7Zu3QrGmMp1lJaWoqioiDcRQgghhABA27Ztud8rDvX34uuKcbpIrWTx3r17kMlksLS05JVbWlqq7GMoPz9frfjq1mPZsmWYPHkyr3zp0qXYt28fEhMTMWzYMHz00UdYu3atyvVERETA1NSUm2xsbGpcJ0IIIYToltdff71W47SV1g33V1RUBD8/P3Tt2hVLlizhzVu4cCH3e69evVBSUoIVK1Zg+vTpStcVFhaG0NBQ3ropYSSEEEIIgGo/1qbrj7+pdWXR3NwcQqGwUueTBQUFKt8oKysrteKrUlxcjEGDBqFp06b48ccf0aRJkyrjXVxc8M8//6C0tFTpfLFYDBMTE95ECCGEEAI8b2Bbm3HaSq1kUSQSwcnJCcePH+fK5HI5jh8/Djc3N6XLuLm58eIBIDExUWW8KkVFRRg4cCBEIhF+/vlnSCSSly6TkZGBZs2aVWruTgghhBDyMkePHuV+b926NW9emzZtlMbpIrVvQ4eGhmL8+PHo3bs3nJ2dsXr1apSUlHCto4ODg9G6dWtEREQAAGbMmIF+/fohMjISfn5+2LNnD86dO4dNmzZx63zw4AFu3LjBZeZXrlwB8PyqpJWVFZcoPn78GDt37uQ1RmnZsiWEQiEOHjyIgoICuLq6QiKRIDExEeHh4Zg9e/arvUOEEEIIaZSys7O53x88eMCbd//+faVxukjtZHHkyJG4e/cuFi1ahPz8fPTs2RMJCQlcI5YbN25AT++/C5bu7u6Ijo7GggULMH/+fHTo0AFxcXFwcHDgYn7++Wcu2QSAUaNGAQAWL16MJUuWID09HWfOnAEA2Nvb8+qTk5MDW1tbNGnSBOvXr8fMmTPBGIO9vT3XzQ8hhBBCiLqq+3iarj/GJmBV9S3TyBQVFcHU1JTrloc0DI3luDSW/dQ2dFz+Q+9Fw9TQj0tDr19VvvrqK4SFhQF43s6hYhuIiq8jIiKU9jXd0FX32NDY0IQQQgghSjg5OXG/v9hYtuLrinG6iJJFQgghhBAlVA1lXNM4bUXJIiGEEEKIEnfv3gUA9OjRQ+l8RbkiTldpXafc5OVkMhlSUlKQl5cHa2treHl5QSgUarpahBBCiFZp2bIlAOCPP/6ARCLB06dPuXkSiQR//PEHL05X0ZVFHRMbGwt7e3t4e3tjzJgx8Pb2hr29PWJjYzVdNUIIIUSrVBxApKysjDev4msawYVojdjYWAQFBcHR0RFSqRTFxcWQSqVwdHREUFAQJYyEEEKIGmQyGff7iwN8VHxdMU4XUbKoI2QyGWbNmgV/f3/ExcXB1dUVxsbGcHV1RVxcHPz9/TF79mydP6EJaQjWr18PW1tbSCQSuLi44Pfff68yfv/+/ejcuTMkEgkcHR1x+PBh3vz33nsPAoGANw0aNIibn5ycXGm+Yjp79iwAIDc3V+n806dP1/4bQIiO+PXXX7nf33jjDaxbtw5btmzBunXr8MYbbyiN00X0zKKOSElJQW5uLnbv3s3rFB0A9PT0EBYWBnd3d6SkpKB///6aqSQhjcDevXsRGhqKqKgouLi4YPXq1fD19cWVK1dgYWFRKT41NRWjR49GREQE/P39ER0djYCAAKSnp/MGLxg0aBC2bdvGva54VcPd3R15eXm89S5cuBDHjx9H7969eeXHjh1Dt27duNctWrR45X0mRFfdvHkTADBx4kQcO3YMhw4d4ubZ2dnh/fffx9atW7k4XUXJoo5Q/KOo+M+lIkX5i/9QCCG1SzFylGJUqqioKBw6dAhbt25V2mnvmjVrMGjQIMyZMwcAsGzZMiQmJmLdunWIiori4sRiscrnokQiEW/es2fP8NNPP+Hjjz+GQCDgxbZo0ULnn68ipLbY2NgAADIzM3H16lWcOnWKazzq4eGBvn378uJ0Fd2G1hHW1tYAnp/QyijKFXGEkNpXVlaGtLQ0+Pj4cGV6enrw8fGBVCpVuoxUKuXFA4Cvr2+l+OTkZFhYWKBTp0748MMPeePSvujnn3/G/fv3ecOoKgwZMgQWFhbw9PTEzz//XOX+lJaWoqioiDcR0pgobjWfPn0aAwYMwJUrV1BSUoIrV65gwIAB3GMc7u7umqxmnaMrizrCy8sLtra2CA8PR1xcHO9WtFwuR0REBOzs7ODl5aXBWhKi2+7duweZTAZLS0teuaWlJS5fvqx0mfz8fKXx+fn53OtBgwYhMDAQdnZ2uH79OubPn4+33noLUqlUabdYW7Zsga+vL9q0acOVGRsbIzIyEh4eHtDT08OBAwcQEBCAuLg4DBkyRGndIiIi8Pnnn1d7/7UFdS9Gqqt///5o1qwZ/v33X6SkpCAlJUVpnLJHTHQKI5zCwkIGgBUWFmq6KjVy4MABJhAI2ODBg1lqaiorKipiqampbPDgwUwgELADBw5ouoo1UpPjsm7dOtauXTsmFouZs7MzO3PmTJXx+/btY506dWJisZg5ODiwQ4cO8ebL5XK2cOFCZmVlxSQSCRswYAC7evUqL6Zdu3YMAG+KiIio0/0kdU+d43Lr1i0GgKWmpvLK58yZw5ydnZUu06RJExYdHc0rW79+PbOwsFC5nevXrzMA7NixY5Xm3bx5k+np6bGYmJiX1nfcuHHM09NT5fynT5+ywsJCbrp586bWn6MHDhxgtra2vL9TW1tbrf18ZKzhf3Y09Pq9THR0NAPAxGIx77yRSCQMAFuxYgUrKSnRdDVrpLrHhm5D65DAwEDExMTgwoULcHd3h4mJCdzd3ZGZmYmYmBgEBgZquor1QtHAYPHixUhPT0ePHj3g6+urcjgmRQODkJAQnD9/HgEBAQgICODd0l++fDm+/fZbREVF4cyZMzAyMoKvry+vg1YAWLp0KfLy8rjp448/rtN9JQ2Lubk5hEIhCgoKeOUFBQUqnxO0srJSKx4AXnvtNZibm+PatWuV5m3btg0tWrRQebWwIhcXF6XrUBCLxTAxMeFN2oy6FyM1MXr0aBw4cKDS36SVlRUOHDiA2bNnw9DQUEO1qyf1lLxqBW3/9qNQXl7OkpKSWHR0NEtKSmLl5eWartIrUfe4ODs7s6lTp3KvZTIZa9WqlcqrfCNGjGB+fn68MhcXFzZlyhTG2POrilZWVmzFihXc/IcPHzKxWMx2797NlbVr146tWrWqurtVia6cf7qmJufftGnTuNcymYy1bt26yvPP39+fV+bm5sadf8rcvHmTCQQC9tNPP/HK5XI5s7OzY7NmzapWXSdOnMh69epVrVjGtPscLS8vZ7a2tmzw4MFMJpPx5slkMjZ48GBmZ2enlZ+XDf24NPT6VVd5eTnbuHEjA8A2btyolefKi6p7bChZrEBXTmhdo85xKS0tZUKhkP3444+88uDgYDZkyBCly9jY2FRK8hYtWsS6d+/OGPvvlt/58+d5MX379mXTp0/nXrdr145ZWlqy5s2bs549e7Lly5ezZ8+eqayrLt7i00Xqfi7s2bOHicVitn37dnbp0iU2efJkZmZmxvLz8xljz2/9fvrpp1z8qVOnmL6+Plu5ciXLyspiixcvZk2aNGEXLlxgjDFWXFzMZs+ezaRSKcvJyWHHjh1jr7/+OuvQoQN7+vQpb9vHjh1jAFhWVlalem3fvp1FR0ezrKwslpWVxb788kump6fHtm7dWmfvRUOSlJTEADCpVKp0fmpqKgPAkpKS6rditaChH5eGXj91pKWlMQAsLS1N01WpFXQbmjRKVTUwqNhgoKKXNTBQ/HzZOqdPn449e/YgKSkJU6ZMQXh4OObOnauyrhERETA1NeUmXe96obEYOXIkVq5ciUWLFqFnz57IyMhAQkICd/7cuHGD14WVu7s7oqOjsWnTJvTo0QMxMTGIi4vjursSCoX4888/MWTIEHTs2BEhISFwcnJCSkpKpREltmzZAnd3d3Tu3Flp3ZYtWwYnJye4uLjgp59+wt69e5W2mNZF1L3Yf9TpNH7z5s3w8vJCs2bN0KxZM/j4+Ly0k3mie6g1NCG1JDQ0lPu9e/fuEIlEmDJlCiIiIir9UweAsLAw3jJFRUWUMOqIadOmYdq0aUrnJScnVyobPnw4hg8f/n/t3X1QFPf9B/A3nN4dKmKUyonV3LWiaEQJUPCs1joyosOoNz5ETQnE8alWE/U62sIgEE16+EBiHmz8mcTINBKQiaXWOFhDpDrx1PEQrQafWihm9PChhUNUEPj+/jCcrtwajoJ33L1fMzvKfj+7+93bz+DHvf1+12G8n58fDh482Kbj5uTkyLYlJSUhKSmpTfvxRI9PLzZmzJhW7d4yvZizk8YXFxdj/vz5GDt2LNRqNTZu3IjJkyfj/PnzGDhwoAvOgFyBdxbJo3TGAIOWP50dhBATE4PGxkZUVFQ4bPe0wQNE7uzx6cWam5slbd40vdjjk8aPGDEC27dvR48ePbBz506H8bt378ZvfvMbhIeHIzQ0FB9//DGam5tRVFT0jHtOrsRikTyKUqlEZGSk5BdZyy82vV7vcBu9Xt/qF9+hQ4fs8TqdDhqNRhJjs9lw4sQJ2X0CQGlpKXx9fT1//i2iLkChUCArKwv79++HwWCQjIY2GAzYv38/tmzZ4tHzLbZn0vgn3b17Fw8ePEDfvn1lYziZu+fh19DkcYxGI5KSkhAVFYXo6Ghs3boVdXV19mezEhMTMXDgQJhMJgDAypUrMWHCBGRlZSE+Ph65ubk4deoUduzYAQDw8fHBqlWr8OabbyIkJAQ6nQ7r1q1DcHAwDAYDgIdv4Thx4gQmTpwIf39/mM1mrF69GgkJCXjuuedc8jkQkVTL9GK//e1vJW/c0Ol0XjG9WHsmjX/S7373OwQHB7d669DjPHUyd2/GYpE8zty5c3Hz5k2kpaXBarUiPDy81QCDx99w0zLAIDU1FSkpKQgJCZEMMACAtWvXoq6uDkuWLEF1dTXGjRuHwsJCqNVqAA+/Us7NzUVGRgbq6+uh0+mwevVqyTOJROR6M2fOxIwZM/gGl3bIzMxEbm4uiouL7b/7HOHz2J6HxSJ5pI4cYAA8vLu4fv16rF+/3mF7RESE/R2hROTeFAoFfvnLX7q6G89ce57pbrFlyxZkZmbiq6++wqhRo54aq1KpHA7qo66LzywSERF5gfY80w08fIPVhg0bUFhYiKioqGfRVXIzvLNIRETkJZx9pnvjxo1IS0tDTk4OtFqtfW7ZXr16oVevXi47D3q2WCwSERF5CWef6f7www/R0NCA2bNnS/aTnp6OjIyMZ9l1ciEWi0RERF7EmWe65eaJJe/CZxaJiIiISBaLRSIiIiKSxWKRiIiIiGSxWCQiIiIiWSwWiYiIiEgWi0UiIiIiksVikYiIiIhksVgkIiIiIlksFomIiIhIFotFIiIiIpLFYpGIiIiIZLFYJCIiIiJZLBaJiIiISFa7isVt27ZBq9VCrVYjJiYGJ0+efGp8fn4+QkNDoVarERYWhgMHDkja9+7di8mTJ6Nfv37w8fFBaWlpq33cv38fy5cvR79+/dCrVy/MmjULVVVVkpjKykrEx8ejR48e6N+/P9asWYPGxsb2nCIRERERoR3FYl5eHoxGI9LT01FSUoLRo0cjLi4ON27ccBh/7NgxzJ8/HwsXLsTp06dhMBhgMBhw7tw5e0xdXR3GjRuHjRs3yh539erV+Otf/4r8/Hz8/e9/x7Vr1zBz5kx7e1NTE+Lj49HQ0IBjx44hOzsbu3btQlpamrOnSEREREQthJOio6PF8uXL7T83NTWJ4OBgYTKZHMa/9NJLIj4+XrIuJiZGLF26tFVseXm5ACBOnz4tWV9dXS26d+8u8vPz7evKysoEAGE2m4UQQhw4cED4+voKq9Vqj/nwww9F7969RX19fZvOraamRgAQNTU1bYqnZ8Nbrou3nGdXw+vyCD8L9+Tu18Xd++cMi8UiAAiLxeLqrnSItl4bp+4sNjQ0wGKxIDY21r7O19cXsbGxMJvNDrcxm82SeACIi4uTjXfEYrHgwYMHkv2EhoZi8ODB9v2YzWaEhYUhKChIchybzYbz58873G99fT1sNptkISIiIqJHnCoWb926haamJklBBgBBQUGwWq0Ot7FarU7Fy+1DqVSiT58+svuRO05LmyMmkwkBAQH2ZdCgQW3uExEREZE38OrR0MnJyaipqbEvV69edXWXiIiIiNxKN2eCAwMDoVAoWo1CrqqqgkajcbiNRqNxKl5uHw0NDaiurpbcXXx8PxqNptWo7Jbjyh1LpVJBpVK1uR9ERERE3sapYlGpVCIyMhJFRUUwGAwAgObmZhQVFWHFihUOt9Hr9SgqKsKqVavs6w4dOgS9Xt/m40ZGRqJ79+4oKirCrFmzAAAXL15EZWWlfT96vR5vvfUWbty4gf79+9uP07t3b4wYMcKZ0yQiIiIvdvnyZdTW1rZaX1ZWJvnTEX9/f4SEhHRa31zBqWIRAIxGI5KSkhAVFYXo6Ghs3boVdXV1WLBgAQAgMTERAwcOhMlkAgCsXLkSEyZMQFZWFuLj45Gbm4tTp05hx44d9n3+5z//QWVlJa5duwbgYSEIPLwjqNFoEBAQgIULF8JoNKJv377o3bs3XnvtNej1eowZMwYAMHnyZIwYMQKvvPIKNm3aBKvVitTUVCxfvpx3D4mIiKhNLl++jKFDhz41JiEh4antly5d8qiC0elice7cubh58ybS0tJgtVoRHh6OwsJC+2CSyspK+Po+ehRy7NixyMnJQWpqKlJSUhASEoKCggKMHDnSHrNv3z57sQkA8+bNAwCkp6cjIyMDAPDOO+/A19cXs2bNQn19PeLi4vDHP/7Rvo1CocD+/fuxbNky6PV69OzZE0lJSVi/fr2zp0hERERequWO4meffYbhw4dL2u7du4eKigpotVr4+fm12rasrAwJCQkO70p2ZT5CCOHqTrgLm82GgIAA1NTUoHfv3q7uDn3PW66Lt5xnV8Pr8gg/C/fk7tfF3fv3pJKSEkRGRsJisSAiIuKZbesKbb02Xj0amoiIiIiejsUiEREREclisUhEREREslgsEhEREZEsFotEREREJIvFIhERERHJYrFIRERERLJYLBIRERGRLBaLREQdbNu2bdBqtVCr1YiJicHJkyefGp+fn4/Q0FCo1WqEhYXhwIEDkvZXX30VPj4+kmXKlCmSGK1W2yomMzNTEnP27FmMHz8earUagwYNwqZNmzrmhInIo7FYJCLqQHl5eTAajUhPT0dJSQlGjx6NuLg43Lhxw2H8sWPHMH/+fCxcuBCnT5+GwWCAwWDAuXPnJHFTpkzB9evX7cvnn3/eal/r16+XxLz22mv2NpvNhsmTJ+P555+HxWLB5s2bkZGRgR07dnTsB0BEHofFIhFRB3r77bexePFiLFiwACNGjMD27dvRo0cP7Ny502H8u+++iylTpmDNmjUYPnw4NmzYgIiICHzwwQeSOJVKBY1GY1+ee+65Vvvy9/eXxPTs2dPetnv3bjQ0NGDnzp144YUXMG/ePLz++ut4++23O/YDICKPw2KRiKiDNDQ0wGKxIDY21r7O19cXsbGxMJvNDrcxm82SeACIi4trFV9cXIz+/ftj2LBhWLZsGW7fvt1qX5mZmejXrx9efPFFbN68GY2NjZLj/OIXv4BSqZQc5+LFi/jvf//rsG/19fWw2WyShYi8TzdXd4CIyFPcunULTU1NCAoKkqwPCgrChQsXHG5jtVodxlutVvvPU6ZMwcyZM6HT6fDPf/4TKSkpmDp1KsxmMxQKBQDg9ddfR0REBPr27Ytjx44hOTkZ169ft985tFqt0Ol0rY7T0uboTqXJZMIbb7zh5KdA1PVpevnAr/oScM25e2p+1Zeg6eXTSb1yHRaLRERubt68efa/h4WFYdSoUfjpT3+K4uJiTJo0CQBgNBrtMaNGjYJSqcTSpUthMpmgUqnaddzk5GTJfm02GwYNGtTOsyDqOpZGKjH8yFLgiHPbDf9+W0/DYpGIqIMEBgZCoVCgqqpKsr6qqgoajcbhNhqNxql4APjJT36CwMBAXLlyxV4sPikmJgaNjY2oqKjAsGHDZI/T0gdHVCpVuwtNoq7s/ywNmJu2C8NDQ53aruzCBfxf1suY3kn9chU+s0hE1EGUSiUiIyNRVFRkX9fc3IyioiLo9XqH2+j1ekk8ABw6dEg2HgC+++473L59GwMGDJCNKS0tha+vL/r3728/zpEjR/DgwQPJcYYNG+bwK2gib2a9I3Cvz1AgONyp5V6fobDeES7qdedhsUhE1IGMRiM++ugjZGdno6ysDMuWLUNdXR0WLFgAAEhMTERycrI9fuXKlSgsLERWVhYuXLiAjIwMnDp1CitWrAAA3LlzB2vWrMHx48dRUVGBoqIizJgxA0OGDEFcXByAh4NXtm7dijNnzuBf//oXdu/ejdWrVyMhIcFeCL788stQKpVYuHAhzp8/j7y8PLz77ruSr5mJiBzh19BERB1o7ty5uHnzJtLS0mC1WhEeHo7CwkL7YJLKykr4+j76f/rYsWORk5OD1NRUpKSkICQkBAUFBRg5ciQAQKFQ4OzZs8jOzkZ1dTWCg4MxefJkbNiwwf4VsUqlQm5uLjIyMlBfXw+dTofVq1dLCsGAgAD87W9/w/LlyxEZGYnAwECkpaVhyZIlz/DTIaKuiMUiEVEHW7Fihf3O4JOKi4tbrZszZw7mzJnjMN7Pzw8HDx586vEiIiJw/PjxH+zXqFGjcPTo0R+MIyJ6HL+GJiIiIiJZLBaJiIiISBa/hiYiIiL63t27dwEAJSUlrdru3buHiooKaLVa+Pn5tWovKyvr9P65AotFIiIiou+1vG1p8eLF7d6Hv79/R3XHLbBYJCIiIvqewWAAAISGhqJHjx6StrKyMiQkJOCzzz7D8OHDHW7v7++PkJCQzu7mM8VikYiIiOh7gYGBWLRo0VNjhg8fjoiIiGfUI9fjABciIiIiksVikYiIiIhksVgkIiIiIlksFomIiIhIFotFIiIiIpLF0dAeqKmpCUePHsX169cxYMAAjB8/HgqFwtXdIi/B/CN3xxwlcg7vLHqYvXv3YsiQIZg4cSJefvllTJw4EUOGDMHevXtd3bVnatu2bdBqtVCr1YiJicHJkyefGp+fn4/Q0FCo1WqEhYXhwIEDknYhBNLS0jBgwAD4+fkhNjYWly9fdriv+vp6hIeHw8fHB6WlpR11Sl0C84/cHXOUyHksFj3I3r17MXv2bISFhcFsNqO2thZmsxlhYWGYPXu21/wyzMvLg9FoRHp6OkpKSjB69GjExcXhxo0bDuOPHTuG+fPnY+HChTh9+jQMBgMMBgPOnTtnj9m0aRPee+89bN++HSdOnEDPnj0RFxeH+/fvt9rf2rVrERwc3Gnn566Yf+TumKNE7STIrqamRgAQNTU1ru6K0xobG4VWqxXTpk0TTU1NkrampiYxbdo0odPpRGNjo4t62H7OXpfo6GixfPly+89NTU0iODhYmEwmh/EvvfSSiI+Pl6yLiYkRS5cuFUII0dzcLDQajdi8ebO9vbq6WqhUKvH5559Ltjtw4IAIDQ0V58+fFwDE6dOn29RnIZh/7qorX5eO1pU/C+ao67h7/5xhsVgEAGGxWFzdlQ7R1mvDO4se4ujRo6ioqEBKSgp8faWX1dfXF8nJySgvL8fRo0dd1MNno6GhARaLBbGxsfZ1vr6+iI2NhdlsdriN2WyWxANAXFycPb68vBxWq1USExAQgJiYGMk+q6qqsHjxYvzpT39q9YooR+rr62Gz2SRLV8X8I3fHHKX2unv3LkpKSlBSUoKysjIAD1/717KupKQEd+/edXEvOxcHuHiI69evAwBGjhzpsL1lfUucp7p16xaampoQFBQkWR8UFGR/OfyTrFarw3ir1Wpvb1knFyOEwKuvvopf//rXiIqKQkVFxQ/21WQy4Y033mjTebk75h+5O+YotdeFCxcQGRkpWZeQkCD52WKxePTr/1gseogBAwYAAM6dO4cxY8a0am95/q4ljjrW+++/j9raWiQnJ7d5m+TkZBiNRvvPNpsNgwYN6ozudTrmH7k75ii1V2hoKCwWCwDg3r17qKiogFarhZ+fnyTGk7FY9BDjx4+HVqvFH/7wBxQUFEi+ZmlubobJZIJOp8P48eNd2MvOFxgYCIVCgaqqKsn6qqoqaDQah9toNJqnxrf8WVVVJfmHpKqqCuHh4QCAr7/+GmazGSqVSrKfqKgo/OpXv0J2dnar46pUqlbxXRXzj9wdc5Taq0ePHpK7hj//+c9d2BvX4DOLHkKhUCArKwv79++HwWCQjPQzGAzYv38/tmzZ4vFziSmVSkRGRqKoqMi+rrm5GUVFRdDr9Q630ev1kngAOHTokD1ep9NBo9FIYmw2G06cOGGPee+993DmzBmUlpaitLTUPvVOXl4e3nrrrQ49R3fE/CN3xxx9pKOnFiMv0J7RMx988IF4/vnnhUqlEtHR0eLEiRNPjd+zZ48YNmyYUKlUYuTIkeLLL7+UtDc3N4t169YJjUYj1Gq1mDRpkrh06ZK9/fDhwwKAw+XkyZNCCCHKy8sdtpvN5jaflyeM2Priiy+EVquVfAY6nU588cUXru5auzl7XXJzc4VKpRK7du0S3377rViyZIno06ePsFqtQgghXnnlFfH73//eHv/NN9+Ibt26iS1btoiysjKRnp4uunfvLv7xj3/YYzIzM0WfPn3EX/7yF3H27FkxY8YModPpxL179xz2oSUfvWU0dAvmn2fzhM/C23M0NzdXKJVKsXPnTnH+/HmxePFi0adPH1FVVeUw/ptvvhEKhUJs2rRJfPvttyI1NbXV78eO7B89W229Nk4Xi52RaJmZmSIgIEAUFBSIM2fOiOnTp0v+Ia6vrxfXr1+XLIsWLRI6nU40NzcLIR794/zVV19J4hoaGtp8bp6S0I2NjeLw4cMiJydHHD58uEtOBfG49lyX999/XwwePFgolUoRHR0tjh8/bm+bMGGCSEpKksTv2bNHDB06VCiVSvHCCy/I/ocmKChIqFQqMWnSJHHx4kXZ43trsSgE88+Tecpn4c052tFTi3V0/+jZ6rRi0ZVz2LVoaGgQP/rRj8T69evt69rzj/OTmNDuyVuui7ecZ1fD6/IIPwv31NbrUl9fLxQKhfjzn/8sWZ+YmCimT5/ucJtBgwaJd955R7IuLS1NjBo1SvY49+/fFzU1Nfbl6tWrzBs31SnzLLpyDrvH7du3D7dv38aCBQtatU2fPh39+/fHuHHjsG/fvqeejyfNc0dERPQ0T5tarGUasCf90NRijphMJgQEBNiXrjrLAz3iVLHYGYnWljnsnvTJJ58gLi4OP/7xj+3revXqhaysLOTn5+PLL7/EuHHjYDAYnlowMqGJiIg6VnJyMmpqauzL1atXXd0l+h91ualzvvvuOxw8eBB79uyRrA8MDJTMWfezn/0M165dw+bNmzF9+nSH+/Kkee6IiIiepjOmFnPEk6YFo4ecurPY2XPYtWWfn376Kfr16ydbAD4uJiYGV65ckW1XqVTo3bu3ZCEiIvJEnTG1GHkHp4pFV81h10IIgU8//RSJiYno3r37D/a3tLSUs/ETERF9z2g04qOPPkJ2djbKysqwbNky1NXV2ccAJCYmSt5EtXLlShQWFiIrKwsXLlxARkYGTp06hRUrVrjqFMgFnP4a2mg0IikpCVFRUYiOjsbWrVtbJdrAgQNhMpkAPEy0CRMmICsrC/Hx8cjNzcWpU6ewY8cOAICPjw9WrVqFN998EyEhIdDpdFi3bh2Cg4NhMBgkx/76669RXl6ORYsWtepXdnY2lEolXnzxRQDA3r17sXPnTnz88cfOniIREZFHmjt3Lm7evIm0tDRYrVaEh4ejsLDQPm6gsrJS8nabsWPHIicnB6mpqUhJSUFISAgKCgpk37FNnsnpYrEzEm3t2rWoq6vDkiVLUF1djXHjxqGwsBBqtVpy7E8++QRjx46VfQfjhg0b8O9//xvdunVDaGgo8vLyMHv2bGdPkYiIyGOtWLFC9s5gcXFxq3Vz5szBnDlzOrlX5M58hBDC1Z1wFzabDQEBAaipqeHzi27EW66Lt5xnV8Pr8gg/C/fk7tfF3fvnzdp6bfhuaCIiIiKSxWKRiIiIiGR1uXkWO1PLN/J8k4t7abkenv7EBPPPPXlL/rUFc9Q9uXuOMm/cV1tzh8XiY2prawGAE3O7qdraWgQEBLi6G52G+efePD3/2oI56t7cNUeZN+7vh3KHA1we09zcjGvXrsHf3x8+Pj6u7s7/pOVtNFevXu3yDxQLIVBbW4vg4GDJSHtPw/xzT96Sf23BHHVP7p6jzBv31dbcYbHooTj6jFyJ+UfujjlK7eGteeN+/wUhIiIiIrfBYpGIiIiIZLFY9FAqlQrp6elQqVSu7gp5IeYfuTvmKLWHt+YNn1kkIiIiIlm8s0hEREREslgsEhEREZEsFotEREREJIvFIhERERHJYrFIRERERLJYLHqYI0eOYNq0aQgODoaPjw8KCgpc3SXyIsw/cnfMUWovb84dFosepq6uDqNHj8a2bdtc3RXyQsw/cnfMUWovb86dbq7uAHWsqVOnYurUqa7uBnkp5h+5O+YotZc35w7vLBIRERGRLBaLRERERCSLxSIRERERyWKxSERERESyWCwSERERkSyOhvYwd+7cwZUrV+w/l5eXo7S0FH379sXgwYNd2DPyBsw/cnfMUWovb84dHyGEcHUnqOMUFxdj4sSJrdYnJSVh165dz75D5FWYf+TumKPUXt6cOywWiYiIiEgWn1kkIiIiIlksFomIiIhIFotFIiIiIpLFYpGIiIiIZLFYJCIiIiJZLBaJiIiISBaLRSIiIiKSxWKRiIiIiGSxWCQiIiIiWSwWiYiIiEgWi0UiIiIikvX/PMdOkHu5c7kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACETklEQVR4nO3deVxUVf8H8M+wDaCCCsqiKCQqLrhhoggpTyQaLjyImj6umWZpaagVpqAtkguJpUVWpj2GGxKVGmoETxRoCVKS4JaooaBmAiGCzJzfH/7m5sgMggKz8Hm/Xvdlc+65d7537mnmy7n3nCsTQggQEREREWlgousAiIiIiEh/MVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIp1xdXWFTCaDTCbD/Pnza6y7Zs0aqa6ZmVkjRXh/+fn5kMlkcHV11XUoREQNgskiEemFzz//HJWVlVrXb968uV7fj0keEVHtMFkkIp3r378//vzzT3z55Zca16enpyMvLw+PPvpoI0d2f+3atUNubi6Sk5N1HQoRUYNgskhEOvf0008D0N57+Mknn6jV0yfm5ubw8PBAp06ddB0KEVGDYLJIRDrn6emJ/v374+DBgygoKFBb9/fff2PXrl1o3749hg0bpnUfVVVV+PjjjzF06FC0bt0acrkcbm5ueO6553Dx4kW1utOnT4ebmxsA4Pz589K9kKpFZfny5ZDJZFi+fDkuXLiAmTNnwsXFBebm5pg+fTqA+1/OvnnzJmJiYuDr64tWrVpBLpejY8eOGDVqFOLi4tTqFhcXY+nSpfD09ESzZs0gl8vh7OyMwYMHIyIiArdv367tR0pEVG/05y5xImrSnn76aRw9ehRbtmzBa6+9JpXv2rULf//9N+bPnw8TE81/35aWlmL06NFITU1F8+bN4eXlhTZt2uD48eOIjY3F7t27cejQIfTt2xcA4Ovri7///ht79uxBs2bNEBoaWmNsp0+fRt++fWFhYYHBgwdDCAF7e/v7HtPFixcxfPhwnDhxAtbW1hg8eDDs7OxQUFCAtLQ0HD9+HJMmTQJwJ6n09fVFTk4O2rRpg8cffxzNmjVDYWEh8vLykJ6ejrCwMLRs2bKWnygRUT0RREQ60rFjRwFApKWliRs3bggrKyvh7u6uVmfw4MFCJpOJs2fPinPnzgkAwtTUVK3OpEmTBAAxcuRIUVRUpLZu3bp1AoDo3LmzqKqqkspV++rYsaPW+CIjIwUAAUBMnjxZ3Lp1q1odbftRKBSif//+AoAYNmyYuHLlitr68vJysW/fPun11q1bBQAxYsQIUVlZWW1fqampoqKiQmusREQNhZehiUgv2NraIiQkBGfOnMH//vc/AMDJkyfx448/YsiQIXjkkUc0bpebm4vt27fD2dkZcXFxaNu2rdr6BQsW4Mknn8Tp06fxzTffPFBsrVu3xoYNGyCXy2u9zddff42jR4/CyckJe/bsQZs2bdTWW1pa4sknn5ReFxUVAQCeeOIJmJubq9U1MTHBkCFDYGFh8UDxExE9DCaLRKQ37h3oovq3poEt+/fvhxACI0aMQIsWLTTWGTp0KIA7o6ofREBAAGxtbeu0TVJSEgBg0qRJaN68+X3rq0Z6r169Gp999hmuX79e90CJiBoAk0Ui0hv+/v5wc3NDfHw8/vrrL3z22WewsbGp8Z7C33//HcCdEdP3DlRRLS+//DIA4OrVqw8U14PMxXj+/HkAgIeHR63qDx06FK+88gquXLmCadOmwd7eHl27dsXTTz+NL7/8Ekqlss4xEBHVBw5wISK9IZPJMH36dERGRmLatGkoLCzE7NmzYWVlpXUbVRLVp08f9O7du8b9e3t7P1BcNb1/fXr77bcxZ84cfP311/jhhx/w448/4tNPP8Wnn36KRx99FCkpKWjWrFmjxEJEpMJkkYj0yvTp07FixQp8/fXXAO4/t6KLiwsAYPDgwdiwYUODx1dbHTp0AADk5eXVaTtXV1e88MILeOGFFwAAP//8MyZPnoyff/4Zq1evxooVK+o9ViKimvAyNBHplQ4dOmDMmDGws7PDwIED79sbOGLECADAV199hVu3btX6fVSDRaqqqh482BoMHz4cALB9+3aUlZU98H4effRRPP/88wCA7Ozs+giNiKhOmCwSkd5JSEjAtWvXkJGRcd+6ffv2xdixY3Hx4kWEhIQgPz+/Wp2ysjJ8/vnn0ohjAGjTpg0sLCxQWFjYIINJRo8ejb59++LSpUsYN24c/vzzT7X1t27dUhud/cUXX+D777+vdm/i7du3pcEyHTt2rPc4iYjuh5ehicjgffrpp7hx4wa++eYbdO3aFb1794abmxuEEMjPz8cvv/yCyspK5ObmwsHBAcCdx/SNHj0a8fHx6NOnD3x9fWFtbQ0A+Pjjjx86JhMTE3zxxRcIDAzEN998gw4dOsDX11ealPuXX35By5YtpeT2f//7H9avXw97e3v07dsXbdu2RWlpKQ4fPowrV66gXbt20kAdIqLGxGSRiAxeixYtcPDgQezcuRPbtm1DZmYmsrOzYWNjAycnJ/znP//B6NGjqz2/+cMPP4SdnR2++eYbxMfHS4/Tq49kEbjTE3j06FG8//77iI+PR0ZGBiorK+Ho6IghQ4ZIT28B7tyraWVlhR9++AEnTpzA//73P9ja2qJDhw5YsGABZs+eDTs7u3qJi4ioLmRCCKHrIIiIiIhIP/GeRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERE3Kli1bIJPJkJ+fr+tQDAKTRSID9PPPP8PHxwfNmjWDTCZDdna2rkOiJoZtkKjpMNN1AERUN7dv38a4ceNgaWmJdevWwdraGh07dtR1WNSEsA0SNS1MFokMzNmzZ3H+/Hl89NFHeOaZZ3QdDjVBbINETQsvQ+uBsrIyXYdABuTKlSsAgJYtW9bL/tj+qK7YBskYvf/+++jRowfkcjmcnZ0xd+5c3LhxQ63O6dOnMXbsWDg6OsLS0hLt27fHU089heLiYqnOoUOH4Ovri5YtW6J58+bo2rUrlixZ0shHU7+adLJYUFCAp59+Gg4ODpDL5ejRowc2b94srU9NTYVMJsOuXbvw1ltvoX379rC0tMTjjz+OM2fOVNvfkSNHMHz4cNja2sLa2hpDhgzBjz/+qFZn+fLlkMlkOHHiBCZNmoRWrVrB19cXAKBUKrF8+XI4OzvD2toa/v7+OHHiBFxdXTF9+nQAwO+//w6ZTIZ169ZVe//09HTIZDJs3769Vsefn58PmUyGtWvXYuPGjXjkkUdgbW2NYcOG4eLFixBC4I033kD79u1hZWWFMWPG4Pr162r7+PLLLxEUFARnZ2fI5XJ06tQJb7zxBhQKxQN9PlSz6dOnY8iQIQCAcePGQSaTYejQoQCA7777Dn5+fmjWrBlatmyJMWPGIDc3V237mtofAGzbtg0DBgyAtbU1WrVqhcceewwHDx5U28c333wjvU+LFi0QFBSE3377Ta1OYWEhZsyYgfbt20Mul8PJyQljxoyp083kqlhPnTqFyZMnw9bWFm3atMGyZcsghMDFixcxZswY2NjYwNHREdHR0dX28d5776FHjx7S8fTv3x9xcXFqde73PUDq2AZr3wYrKysREREBLy8v2NraolmzZvDz80NKSkq191IqlYiJiUGPHj1gaWkJBwcHPPvss/jrr79qHS89uOXLl2Pu3LlwdnZGdHQ0xo4diw8//BDDhg3D7du3Adw5n4GBgTh8+DBeeOEFbNy4EbNnz8bvv/8uJZW//fYbRo4ciYqKCrz++uuIjo7G6NGjDf+3TjRRhYWFon379sLFxUW8/vrr4oMPPhCjR48WAMS6deuEEEKkpKQIAKJv377Cy8tLrFu3TixfvlxYW1uLAQMGqO0vOTlZWFhYiEGDBono6Gixbt060atXL2FhYSGOHDki1YuMjBQARPfu3cWYMWPE+++/LzZu3CiEEOLll18WAMSoUaPEhg0bxKxZs0T79u2Fvb29mDZtmrSPwYMHCy8vr2rH9Pzzz4sWLVqIsrKyWn0G586dEwBEnz59RPfu3cU777wjli5dKiwsLMTAgQPFkiVLhI+Pj3j33XfFiy++KGQymZgxY4baPoKDg8X48ePFmjVrxAcffCDGjRsnAIhFixY90OdDNUtPTxdLliwRAMSLL74o/vvf/4qDBw+KQ4cOCTMzM9GlSxexevVqsWLFCmFvby9atWolzp07J21fU/tbvny5ACB8fHzEmjVrxPr168WkSZPEK6+8Im3/2WefCZlMJoYPHy7ee+89sWrVKuHq6ipatmyp9j4+Pj7C1tZWLF26VHz88cdi5cqVwt/fX/zvf/+r9bGqYu3Tp4+YOHGieP/990VQUJAAIN555x3RtWtX8dxzz4n3339fDB48WABQ2/+mTZsEABEaGio+/PBDsX79ejFz5kzx4osvSnVq8z1A6tgGa98Gr169KpycnERYWJj44IMPxOrVq0XXrl2Fubm5OHbsmNp7PfPMM8LMzEzMmjVLxMbGildeeUU0a9ZMPProo6KysrJuJ4nu69NPPxUAxLlz58SVK1eEhYWFGDZsmFAoFFKdDRs2CABi8+bNQgghjh07JgCI3bt3a93vunXrBABx9erVBj+GxtRkk8WZM2cKJycnce3aNbXyp556Stja2oqbN29KyWK3bt1ERUWFVGf9+vUCgDh+/LgQQgilUik6d+4sAgMDhVKplOrdvHlTuLm5iSeeeEIqU335TJw4Ue19CwsLhZmZmQgODlYrV3153p0sfvjhhwKAyM3NlcoqKyurJZX3o0oW27RpI27cuCGVh4eHCwCid+/e4vbt21L5xIkThYWFhbh165baMd7r2WefFdbW1lK9unw+dH+qdnn3F1afPn1E27ZtxZ9//imV/fLLL8LExERMnTpVKtPW/k6fPi1MTEzEv//9b7UvSyGEdM5KS0tFy5YtxaxZs9TWFxYWCltbW6n8r7/+EgDEmjVrHuo4VbHOnj1bKquqqhLt27cXMplMvP3221L5X3/9JaysrNTa/5gxY0SPHj1qfI/afA9QdWyDtWuDVVVVar8dqnoODg7i6aeflsrS0tIEAPH555+r1U1KStJYTg/v7mQxLi5OABD79+9Xq1NRUSFsbGzE2LFjhRBC/P777wKAeOaZZ7R2yqj2+/HHH1drx4asSV6GFkJgz549GDVqFIQQuHbtmrQEBgaiuLgYWVlZUv0ZM2bAwsJCeu3n5wfgziVhAMjOzsbp06cxadIk/Pnnn9K+ysrK8Pjjj+P777+HUqlUi2HOnDlqr5OTk1FVVYXnn39erfyFF16oFv/48eNhaWmJzz//XCo7cOAArl27hsmTJ9f58xg3bhxsbW2l197e3gCAyZMnw8zMTK28srISBQUFUpmVlZX036Wlpbh27Rr8/Pxw8+ZN5OXlAXiwz4dq7/Lly8jOzsb06dPRunVrqbxXr1544oknsH///mrb3Nv+EhMToVQqERERARMT9a8FmUwG4M59ODdu3MDEiRPV/p8xNTWFt7e3dGnNysoKFhYWSE1NrZdLaHcPoDA1NUX//v0hhMDMmTOl8pYtW6Jr167S/5Oqsj/++AM///yzxv3W9XuAtGMb1NwGTU1Npd8OpVKJ69evo6qqCv3791drW7t374atrS2eeOIJtePy8vJC8+bNNV62pvpz/vx5AEDXrl3Vyi0sLPDII49I693c3BAWFoaPP/4Y9vb2CAwMxMaNG9XuV5wwYQIGDx6MZ555Bg4ODnjqqaewa9cug/+Na5Kjoa9evYobN25g06ZN2LRpk8Y6V65cQatWrQAAHTp0UFunKld9CZ0+fRoAMG3aNK3vWVxcLG0H3Gl0d1M1Rnd3d7Xy1q1bq20H3PlSGjVqFOLi4vDGG28AAD7//HO0a9cO//rXv7TGoM29x6dKHF1cXDSW3/3l+9tvv2Hp0qX47rvvUFJSolZf9T/Qg3w+VHvavugAoFu3bjhw4ADKysrQrFkzqfze9nf27FmYmJige/fuWt9HdR61tTEbGxsAgFwux6pVq7Bw4UI4ODhg4MCBGDlyJKZOnQpHR8e6HRw0t09LS0vY29tXK//zzz+l16+88gq+/fZbDBgwAO7u7hg2bBgmTZqEwYMHA6j99wDdH9vgP+V3t0EA2Lp1K6Kjo5GXlyfd+waoH//p06dRXFyMtm3banx/tkP9ER0djenTp+PLL7/EwYMH8eKLLyIqKgqHDx+W7u///vvvkZKSgn379iEpKQk7d+7Ev/71Lxw8eBCmpqa6PoQH0iSTRVWGP3nyZK0JTK9evXDixAkA0HpyhRBq+1uzZg369OmjsW7z5s3VXt/dI/cgpk6dit27dyM9PR2enp746quv8Pzzz1f7i7w2tB3f/Y77xo0bGDJkCGxsbPD666+jU6dOsLS0RFZWFl555RXpc3mQz4ca1oO0P9V5/O9//6vxB/fuXugFCxZg1KhRSExMxIEDB7Bs2TJERUXhu+++Q9++fev0vpra4f3aJnAnSTl58iT27t2LpKQk7NmzB++//z4iIiKwYsWKWn8PUMNoCm1w27ZtmD59OoKDg7F48WK0bdsWpqamiIqKwtmzZ9WOq23btmpXi+7Wpk2bOsVLdaOaI/TkyZN45JFHpPLKykqcO3cOAQEBavU9PT3h6emJpUuXIj09HYMHD0ZsbCzefPNNAICJiQkef/xxPP7443jnnXewcuVKvPbaa0hJSam2L0PRJJPFNm3aoEWLFlAoFDWeOFWyeD+dOnUCcOev2gdtCKrGeubMGbW/OP/880+Nl1GGDx+ONm3a4PPPP4e3tzdu3ryJKVOmPNB7P6jU1FT8+eefSEhIwGOPPSaVnzt3Tq1efXw+pN3dX3T3ysvLg729vVqPjiadOnWCUqnEiRMntCb0qvPYtm3bWp3HTp06YeHChVi4cCFOnz6NPn36IDo6Gtu2bbvvtvWlWbNmmDBhAiZMmIDKykqEhITgrbfeQnh4eK2/B+j+2AY1i4+PxyOPPIKEhATpUjoAREZGVovz22+/xeDBgx+6I4HqLiAgABYWFnj33XcxfPhw6Vx98sknKC4uRlBQEACgpKQE1tbWan+UeHp6wsTEBBUVFQCA69evq92KAUBqz6o6hqhJ3rNoamqKsWPHYs+ePcjJyam2/urVq3Xan5eXFzp16oS1a9fi77//fqD9Pf744zAzM8MHH3ygVr5hwwaN9c3MzDBx4kTs2rULW7ZsgaenZ6P3gqj+sr77L+nKykq8//77avXq4/Mh7ZycnNCnTx9s3bpVbU6wnJwcHDx4EE8++eR99xEcHAwTExO8/vrr1e6tUZ3fwMBA2NjYYOXKlWqX01RU5/HmzZu4deuW2rpOnTqhRYsWjfplee/lQAsLC3Tv3h1CCNy+fbvevweaMrZBzTR9Rx45cgQZGRlq9caPHw+FQiHdVnS3qqqqanP9Uf1q06YNwsPDkZSUhOHDh2Pjxo148cUX8cILL+DRRx+VxgJ89913cHV1xUsvvYQPPvgA7733Hh5//HHpuwQAXn/9dfTr1w/Lli3Dxx9/jJUrV2L27Nlo37692hRRhqZJ9iwCwNtvv42UlBR4e3tj1qxZ6N69O65fv46srCx8++231eYTrImJiQk+/vhjjBgxAj169MCMGTPQrl07FBQUICUlBTY2Nvj6669r3IeDgwPmz58vzck0fPhw/PLLL/jmm29gb2+v9lepytSpU/Huu+8iJSUFq1atqvNn8LB8fHzQqlUrTJs2DS+++CJkMhn++9//qn0xAvXz+VDN1qxZgxEjRmDQoEGYOXMmysvL8d5778HW1hbLly+/7/bu7u547bXX8MYbb8DPzw8hISGQy+X4+eef4ezsjKioKNjY2OCDDz7AlClT0K9fPzz11FNo06YNLly4gH379mHw4MHYsGEDTp06hccffxzjx49H9+7dYWZmhi+++AJFRUV46qmnGv7D+H/Dhg2Do6MjBg8eDAcHB+Tm5mLDhg0ICgpCixYtANTv90BTxzZY3ciRI5GQkIB///vfCAoKwrlz5xAbG4vu3bur/eE8ZMgQPPvss4iKikJ2djaGDRsGc3NznD59Grt378b69esRGhraaHE3RcuXL0ebNm2wYcMGvPTSS2jdujVmz56NlStXwtzcHADQu3dvBAYG4uuvv0ZBQQGsra3Ru3dvfPPNNxg4cCAAYPTo0cjPz8fmzZtx7do12NvbY8iQIVixYoXaQFKD0/gDsPVHUVGRmDt3rnBxcRHm5ubC0dFRPP7442LTpk1CCM3TQwjxz5Qzn376qVr5sWPHREhIiLCzsxNyuVx07NhRjB8/XiQnJ0t1VFMxaJqDqaqqSixbtkw4OjoKKysr8a9//Uvk5uYKOzs7MWfOHI3H0KNHD2FiYiL++OOPOh+/6jjunV5C23GrpgT4+eefpbIff/xRDBw4UFhZWQlnZ2fx8ssviwMHDggAIiUlRW372nw+dH/azs+3334rBg8eLKysrISNjY0YNWqUOHHihFqdmtqfEEJs3rxZ9O3bV8jlctGqVSsxZMgQcejQoWrvHxgYKGxtbYWlpaXo1KmTmD59ujh69KgQQohr166JuXPnCg8PD9GsWTNha2srvL29xa5du+p0nNpinTZtmmjWrFm1+kOGDFGbKufDDz8Ujz32mNTeOnXqJBYvXiyKi4vVtrvf9wBVxzZYuzaoVCrFypUrRceOHYVcLhd9+/YVe/fuFdOmTRMdO3astv2mTZuEl5eXsLKyEi1atBCenp7i5ZdfFpcuXapT3ET1TSbEPd1ApFdu3LiBVq1a4c0338Rrr71WbX3fvn3RunVrJCcn6yA6IiIiMnZN8p5FfVVeXl6tLCYmBgCkx2nd7ejRo8jOzsbUqVMbODIiIiJqqtizqEe2bNmCLVu24Mknn0Tz5s3xww8/YPv27Rg2bBgOHDgg1cvJyUFmZiaio6Nx7do1/P7777C0tJTWKxSK+96c37x5c05XQzrx999/axzodLc2bdoY7HxkpP/YBonqpskOcNFHvXr1gpmZGVavXo2SkhJp0Itq7iaV+Ph4vP766+jatSu2b9+uligCwMWLF6tNeHuvyMjIWt10TlTf1q5dixUrVtRY59y5c3B1dW2cgKjJYRskqhv2LBqhW7du4YcffqixziOPPKI2+ShRY/n999/VHommia+vb7U/gojqC9sgUd0wWSQiIiIirZrMZWilUolLly6hRYsWGucsJN0TQqC0tBTOzs4P9NhCY8G2qv+aQltlO9R/+t4O2Yb0X23bUJNJFi9dugQXFxddh0G1cPHiRbRv317XYegM26rhMOa2ynZoOPS1HbINGY77taEmkyyqnthw8eJF2NjY6Dga0qSkpAQuLi7SuWqq2Fb1X1Noq2yH+k/f2yHbkP6rbRtqMsmiqgvcxsaGjVbPNfXLFWyrhsOY2yrboeHQ13bINmQ47teG9O8mByIiIiLSG0wWiYiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEirJvO4P2OjUCiQlpaGy5cvw8nJCX5+fjA1NdV1WERq2E5JX7At0sNo6u2HPYsGKCEhAe7u7vD398ekSZPg7+8Pd3d3JCQk6Do0IgnbKekLtkV6GGw/TBYNTkJCAkJDQ+Hp6YmMjAyUlpYiIyMDnp6eCA0NbVKNl/QX2ynpC7ZFehhsP3fIhBBC10E0hpKSEtja2qK4uBg2Nja6DueBKBQKuLu7w9PTE4mJiTAx+SfXVyqVCA4ORk5ODk6fPm2Q3ePGcI7qg6F/DsbeTgHDP0e1YQzHaOxtUd/Pkb7Hdz/G3n6A2p8j9iwakLS0NOTn52PJkiUQQiA1NRXbt29HamoqhBAIDw/HuXPnkJaWputQqQm7u53e/eUKACYmJmyn1GjYFulhsP38gwNcDMjly5cBAGfPnsXEiRORn58vrXN1dcWbb76pVo9IF1Ttr2fPnhrXq8rZTqmhsS3Sw2D7+Qd7Fg2Ik5MTAGDKlCka75+YMmWKWj0iXVC1v5ycHI3rVeVsp9TQ2BbpYbD9/IP3LBqQyspKNGvWDHZ2dvjjjz9gZvZPx3BVVRXat2+PP//8E2VlZbCwsNBhpA/GGM5RfTD0z4H3+RgHYzhGY2+L+n6O9D2++zH29gPwnkWjlJ6ejqqqKhQVFSEkJEStZzEkJARFRUWoqqpCenq6rkOlJszU1BTR0dHYu3cvgoOD1dppcHAw9u7di7Vr1xrslysZDrZFehhsP/9gsmhAVPdFbNu2DcePH4ePjw9sbGzg4+ODnJwcbNu2Ta0eka6EhIQgPj5eYzuNj49HSEiIrkOkJoJtkR4G288dHOBiQFT3RXTq1AlnzpypNpv8Tz/9pFaPSJdCQkIwZsyYJv3UA9IPbIv0MNh+mCwaFD8/P7i6umLlypXYs2eP2jqlUomoqCi4ubnBz89PRxESqTM1NcXQoUN1HQYR2yI9lKbefpgsGhDV/RNjx46Fra0tysvLpXVWVlYoLy/Hnj17mtRfO0RERNSweM+iAZLJZBrLNJUTERERPQwmiwZEoVBg4cKFGDlyJIqLi5GSkoK4uDikpKTgxo0bGDlyJBYtWgSFQqHrUImIiMhI8DK0AVE9emj79u0wNzevdv9EeHg4fHx8kJaW1qTvrSAiIqL6w55FA8JHDxEREVFjY7JoQPjoISIiImpsTBYNyN1T5yiVSrV1nDqHiIiIGgKTRQPCRw8RERFRY2OyaEBu3rwJV1dXrF69GpmZmWqPHsrKysLq1asxfPhwXYdJRER65vvvv8eoUaPg7OwMmUyGxMTEGusnJCTgiSeeQJs2bWBjY4NBgwbhwIEDjRMs6R0miwYkLy8PXl5eWLx4MS5duqS2rqCgAIsXL0ZeXp6OoiMiIn1VVlaG3r17Y+PGjbWq//333+OJJ57A/v37kZmZCX9/f4waNQrHjh1r4EhJH3HqHAPi4eGBzMxM6XVubi4mT56Mbdu2oVu3blIdIiKiu40YMQIjRoyodf2YmBi11ytXrsSXX36Jr7/+Gn379q3n6EjfMVk0INbW1ujXr1+18m7dumksJyIiqg9KpRKlpaVo3bq11joVFRWoqKiQXpeUlDRGaNQIeBmaiIiIarR27Vr8/fffGD9+vNY6UVFRsLW1lRYXF5dGjJAaEpNFIiIi0iouLg4rVqzArl270LZtW631wsPDUVxcLC0XL15sxCipIfEyNBEREWm0Y8cOPPPMM9i9ezcCAgJqrCuXyyGXyxspMmpM7FkkIiKiarZv344ZM2Zg+/btCAoK0nU4pEPsWSQiIjJyf//9N86cOSO9PnfuHLKzs9G6dWt06NAB4eHhKCgowGeffQbgzqXnadOmYf369fD29kZhYSEAwMrKCra2tjo5BtId9iwSEREZuaNHj6Jv377StDdhYWHo27cvIiIiAACXL1/GhQsXpPqbNm1CVVUV5s6dCycnJ2mZP3++TuIn3WLPIhERkZEbOnQohBBa12/ZskXtdWpqasMGRAaFPYtEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaPVCyuHHjRri6usLS0hLe3t746aefaqy/e/dueHh4wNLSEp6enti/f7/a+oSEBAwbNgx2dnaQyWTIzs7Wui8hBEaMGAGZTIbExMQHCZ+IiIiIaqnOyeLOnTsRFhaGyMhIZGVloXfv3ggMDMSVK1c01k9PT8fEiRMxc+ZMHDt2DMHBwQgODkZOTo5Up6ysDL6+vli1atV93z8mJgYymayuYRMRERHRA6hzsvjOO+9g1qxZmDFjBrp3747Y2FhYW1tj8+bNGuuvX78ew4cPx+LFi9GtWze88cYb6NevHzZs2CDVmTJlCiIiIu773Mns7GxER0drfS8iIiIiql91ShYrKyuRmZmpltSZmJggICAAGRkZGrfJyMiolgQGBgZqra/NzZs3MWnSJGzcuBGOjo73rV9RUYGSkhK1hYiIiIjqpk7J4rVr16BQKODg4KBW7uDgID038l6FhYV1qq/NSy+9BB8fH4wZM6ZW9aOiomBraystLi4udXo/IiIiIjKQ0dBfffUVvvvuO8TExNR6m/DwcBQXF0vLxYsXGy5AIqIa1PegwLvNmTMHMplM4/fjvn374O3tDSsrK7Rq1QrBwcEPeSRE1BTVKVm0t7eHqakpioqK1MqLioq0Xhp2dHSsU31NvvvuO5w9exYtW7aEmZkZzMzuPNJ67NixGDp0qMZt5HI5bGxs1BYiosbWEIMCVb744gscPnwYzs7O1dbt2bMHU6ZMwYwZM/DLL7/gxx9/xKRJk+r9+IjI+NUpWbSwsICXlxeSk5OlMqVSieTkZAwaNEjjNoMGDVKrDwCHDh3SWl+TV199Fb/++iuys7OlBQDWrVuHTz/9tC6HQEakvntrhBCIiIiAk5MTrKysEBAQgNOnT2vcV0VFBfr06VNtqqf8/HzIZLJqy+HDhx/6eMkwNcSgQAAoKCjACy+8gM8//xzm5uZq66qqqjB//nysWbMGc+bMQZcuXdC9e3eMHz++wY6TiIxXnS9Dh4WF4aOPPsLWrVuRm5uL5557DmVlZZgxYwYAYOrUqQgPD5fqz58/H0lJSYiOjkZeXh6WL1+Oo0ePYt68eVKd69evIzs7GydOnAAAnDx5EtnZ2dJ9jY6OjujZs6faAgAdOnSAm5vbgx89GayG6K1ZvXo13n33XcTGxuLIkSNo1qwZAgMDcevWrWr7e/nllzX25qh8++23uHz5srR4eXk9/EGTwWmoQYFKpRJTpkzB4sWL0aNHj2r7yMrKQkFBAUxMTNC3b184OTlhxIgRGnsnVTgokIi0Eg/gvffeEx06dBAWFhZiwIAB4vDhw9K6IUOGiGnTpqnV37Vrl+jSpYuwsLAQPXr0EPv27VNb/+mnnwoA1ZbIyEitMQAQX3zxRa1jLi4uFgBEcXFxrbfRd5mZmQKAyMzM1HUo9aIu52jAgAFi7ty50muFQiGcnZ1FVFSUxvrjx48XQUFBamXe3t7i2WefFUIIoVQqhaOjo1izZo20/saNG0Iul4vt27erbbd//37h4eEhfvvtNwFAHDt2TFp37ty5amV1ZYxt1djU9hwVFBQIACI9PV2tfPHixWLAgAEatzE3NxdxcXFqZRs3bhRt27aVXq9cuVI88cQTQqlUCiGE6Nixo1i3bp20fvv27QKA6NChg4iPjxdHjx4VEydOFHZ2duLPP//U+L6RkZEav4fZDvWXvn9X6Ht8VPtz9EADXObNm4fz58+joqICR44cgbe3t7QuNTUVW7ZsUas/btw4nDx5EhUVFcjJycGTTz6ptn769OkQQlRbli9fXlOSy5u1m6iG6K05d+4cCgsL1erY2trC29tbbZ9FRUWYNWsW/vvf/8La2lprjKNHj0bbtm3h6+uLr776qsbjYY8O1UVmZibWr1+PLVu2aH1AgVKpBAC89tprGDt2LLy8vPDpp59CJpNh9+7dGrfhoEAi0sYgRkMT3a0hpnBS/VtTHSEEpk+fjjlz5qB///4a36d58+aIjo7G7t27sW/fPvj6+iI4OLjGhJHTPBmvhhgUmJaWhitXrqBDhw7SgL/z589j4cKFcHV1BQA4OTkBALp37y7tQy6X45FHHsGFCxc0vi8HBRKRNma6DoBqdvr0aZSWlmpcl5ubq/bvvVq0aIHOnTs3WGxNzXvvvYfS0lK1e3LvZW9vj7CwMOn1o48+ikuXLmHNmjUYPXq0xm3Cw8PVtikpKWHCaCTuHhSouhKiGhR4933bd1MNClywYIFUdvegwClTpmjsJVeNfAYALy8vyOVynDx5Er6+vgCA27dvIz8/Hx07dqznoyQiY8dkUY+dPn0aXbp0uW+9yZMna1136tQpo0sYG6K3RvVvUVGR1Cujet2nTx8Ad6ZwysjIgFwuV9tP//798Z///Adbt27V+N7e3t44dOiQ1uORy+XV9knGIywsDNOmTUP//v0xYMAAxMTEVBsU2K5dO0RFRQG4MyhwyJAhiI6ORlBQEHbs2IGjR49i06ZNAAA7OzvY2dmpvYe5uTkcHR3RtWtXAICNjQ3mzJmDyMhIuLi4oGPHjlizZg2AO7cFERHVBZNFPabqUdy2bRu6detWbX15eTny8/Ph6uoKKysrtXW5ubmYPHmy1l5JQ9YQvTVubm5wdHREcnKylByWlJTgyJEjeO655wAA7777Lt58801p+0uXLiEwMBA7d+5Uu2/3XtnZ2WoJKDUtEyZMwNWrVxEREYHCwkL06dMHSUlJ0i0PFy5cgInJP3cE+fj4IC4uDkuXLsWSJUvQuXNnJCYmSrNA1NaaNWtgZmaGKVOmoLy8HN7e3vjuu+/QqlWrej0+ImoCGnqkjb4wxFFZDzPa2RBHStflHO3YsUPI5XKxZcsWceLECTF79mzRsmVLUVhYKIQQYsqUKeLVV1+V6v/444/CzMxMrF27VuTm5orIyEhhbm4ujh8/LtV5++23RcuWLcWXX34pfv31VzFmzBjh5uYmysvLNcagaeTzli1bRFxcnMjNzRW5ubnirbfeEiYmJmLz5s0N8jmQbjSFc9QUjtHQ6fs50vf4qPbniD2LZJAaorfm5ZdfRllZGWbPno0bN27A19cXSUlJsLS0rFNsb7zxBs6fPw8zMzN4eHhg586dCA0NrZ8DJyIiamQyIYTQdRCNoaSkBLa2tiguLjaYUX5ZWVnw8vJCZmYm+vXr12jb6oohnqOGwM9B/zWFc9QUjtHQ6fs50vf4qPbniFPnEBEREZFWTBaJiIiISCves6jnHJvLYHXjFHCpbnm91Y1TcGyu+ekORERERLXFZFHPPetlgW7fPwt8X7ftuv3/tkREREQPg8minvswsxITIragm4dHnbbLzcvDh9GToPmZIURERES1w2RRzxX+LVDesgvg3KdO25UXKlH4d5MY6E5EREQNiANciIiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrPsFFj928eRMAkJWVpXF9eXk58vPz4erqCisrK7V1ubm5DR4fERERGT8mi3osLy8PADBr1qwH3keLFi3qKxwiIiJqgpgs6rHg4GAAgIeHB6ytrautz83NxeTJk7Ft2zZ069at2voWLVqgc+fODR0mERERGTEmi3rM3t4ezzzzzH3rdevWDf369WuEiIiIiKip4QAXIiIiItKKySIRERERacVkkYiIiIi0YrJIRERERFoxWSQiIjJy33//PUaNGgVnZ2fIZDIkJibed5vU1FT069cPcrkc7u7u2LJlS4PHSfqJySIREZGRKysrQ+/evbFx48Za1T937hyCgoLg7++P7OxsLFiwAM888wwOHDjQwJGSPuLUOUREREZuxIgRGDFiRK3rx8bGws3NDdHR0QDuTNH2ww8/YN26dQgMDGyoMElPsWeRiIiI1GRkZCAgIECtLDAwEBkZGVq3qaioQElJidpCxoHJIhEREakpLCyEg4ODWpmDgwNKSkpQXl6ucZuoqCjY2tpKi4uLS2OESo2AySIRERE9tPDwcBQXF0vLxYsXdR0S1RPes0hERERqHB0dUVRUpFZWVFQEGxsbWFlZadxGLpdDLpc3RnjUyNizSERERGoGDRqE5ORktbJDhw5h0KBBOoqIdInJIhERkZH7+++/kZ2djezsbAB3psbJzs7GhQsXANy5hDx16lSp/pw5c/D777/j5ZdfRl5eHt5//33s2rULL730ki7CJx1jskhERGTkjh49ir59+6Jv374AgLCwMPTt2xcREREAgMuXL0uJIwC4ublh3759OHToEHr37o3o6Gh8/PHHnDanieI9i0REREZu6NChEEJoXa/p6SxDhw7FsWPHGjAqMhTsWSQiIiIirZgsEhEREZFWTBaJiIiISCsmi0RERESkFZNFIiIiItKKySIRERERacVkkYiIiIi0YrJIRERERFoxWSQiIiIirZgsEhEREZFWTBaJiIiISCs+G9qA3Lx5E3l5edLr3NxctX8BwMPDA9bW1o0eGxERERknJosGJC8vD15eXtXKJ0+eLP13ZmYm+vXr15hhERERkRFjsmhAPDw8kJmZKb0uLy9Hfn4+XF1dYWVlJdUhIiIiqi9MFg2ItbV1tV7DwYMH6ygaIiIiagqYLBoohUKBtLQ0XL58GU5OTvDz84OpqamuwyIiIiIjw9HQBighIQHu7u7w9/fHpEmT4O/vD3d3dyQkJOg6NCIiIjIy7Fk0MAkJCQgNDUVQUBAWL14MKysrlJeX45tvvkFoaCji4+MREhKi6zCJiIjISLBn0YAoFAosXLgQXl5eOH78OObOnYunn34ac+fOxfHjx+Hl5YVFixZBoVDoOlQiusvGjRvh6uoKS0tLeHt746effqqx/u7du+Hh4QFLS0t4enpi//79WuvOmTMHMpkMMTExGtdXVFSgT58+kMlkyM7OfoijIKKmismiAUlLS0N+fj6OHj2KXr16ISMjA6WlpcjIyECvXr1w9OhRnDt3DmlpaboOlYj+386dOxEWFobIyEhkZWWhd+/eCAwMxJUrVzTWT09Px8SJEzFz5kwcO3YMwcHBCA4ORk5OTrW6X3zxBQ4fPgxnZ2et7//yyy/XuJ6I6H6YLBqQgoICAMCIESOwa9cuHD58GOHh4Th8+DB27dqFESNGqNUjIt175513MGvWLMyYMQPdu3dHbGwsrK2tsXnzZo31169fj+HDh2Px4sXo1q0b3njjDfTr1w8bNmxQq1dQUIAXXngBn3/+OczNzTXu65tvvsHBgwexdu3aej8uImo6HihZrO9LKgkJCRg2bBjs7Ow0Xiq5fv06XnjhBXTt2hVWVlbo0KEDXnzxRRQXFz9I+Abr6tWrAAClUonmzZvjpZdewoYNG/DSSy+hefPm0uVnVT0i0q3KykpkZmYiICBAKjMxMUFAQAAyMjI0bpORkaFWHwACAwPV6iuVSkyZMgWLFy9Gjx49NO6nqKgIs2bNwn//+99aPdWpoqICJSUlagsREfAAyWJDXFIpKyuDr68vVq1apXEfly5dwqVLl7B27Vrk5ORgy5YtSEpKwsyZM+savkFr06YNAODAgQPV7ktUKBQ4ePCgWj0i0q1r165BoVDAwcFBrdzBwQGFhYUatyksLLxv/VWrVsHMzAwvvviixn0IITB9+nTMmTMH/fv3r1WsUVFRsLW1lRYXF5dabUdExq/Oo6HvvqQCALGxsdi3bx82b96MV199tVr9uy+pAMAbb7yBQ4cOYcOGDYiNjQUATJkyBQCQn5+v8T179uyJPXv2SK87deqEt956C5MnT0ZVVRXMzJrGoO67k0Bzc3OEhoaif//+OHr0KOLj43H79u1q9YjIuGRmZmL9+vXIysqCTCbTWOe9995DaWkpwsPDa73f8PBwhIWFSa9LSkqYMBIRgDr2LDbUJZUHUVxcDBsbG62JojFeUjl27BgAQCaTQaFQYPv27Vi4cCG2b98OpVIp/XCo6hGRbtnb28PU1BRFRUVq5UVFRXB0dNS4jaOjY43109LScOXKFXTo0AFmZmYwMzPD+fPnsXDhQri6ugIAvvvuO2RkZEAul8PMzAzu7u4AgP79+2PatGka31cul8PGxkZtISIC6pgsNtQllbq6du0a3njjDcyePVtrHWO8pPL1118DuHOJyd7eHgsXLsTGjRuxcOFC2NnZQQihVs/Y1fe9s0IIREREwMnJCVZWVggICMDp06c17qum6Uh+/fVX+Pn5wdLSEi4uLli9evVDHScZLgsLC3h5eSE5OVkqUyqVSE5OxqBBgzRuM2jQILX6AHDo0CGp/pQpU/Drr78iOztbWpydnbF48WIcOHAAAPDuu+/il19+kdar2vrOnTvx1ltvNcShEpERM7jrtyUlJQgKCkL37t2xfPlyrfWM+ZJK+/btYWpqiujoaKnM1dUV7dq1azIjoVX3zsbGxsLb2xsxMTEIDAzEyZMn0bZt22r1VffORkVFYeTIkYiLi0NwcDCysrLQs2dPAMDq1avx7rvvYuvWrXBzc8OyZcsQGBiIEydOwNLSUm1/qulIfvnlF7XykpISDBs2DAEBAYiNjcXx48fx9NNPo2XLljX+cUPGKywsDNOmTUP//v0xYMAAxMTEoKysTLqVZ+rUqWjXrh2ioqIAAPPnz8eQIUMQHR2NoKAg7NixA0ePHsWmTZsAAHZ2drCzs1N7D3Nzczg6OqJr164AgA4dOqitb968OYA7t/C0b9++QY+XiIxPnXoWG+KSSl2UlpZi+PDhaNGiBb744gut00UAxnlJRTXq8erVq1AqlWrrFAoFrl27plbPmNX3dCRCCMTExGDp0qUYM2YMevXqhc8++wyXLl1CYmKi2r5qmo7k888/R2VlJTZv3owePXrgqaeewosvvoh33nmn3j8DMgwTJkzA2rVrERERgT59+iA7OxtJSUnSFZcLFy7g8uXLUn0fHx/ExcVh06ZN6N27N+Lj45GYmCj9UUNE1NjqlCw2xCWV2lL12FhYWOCrr76q1tPTFPj6+gK4cwm0qKgIr7zyCk6dOoVXXnkFRUVFqKioUKtnrBri3tlz586hsLBQrY6trS28vb3V9nm/6UgyMjLw2GOPwcLCQu19Tp48ib/++ktjbMZ4fy2pmzdvHs6fP4+KigocOXIE3t7e0rrU1FRs2bJFrf64ceNw8uRJVFRUICcnB08++WSN+8/Pz8eCBQu0rnd1dYUQAn369HmIoyCipqrOl6Hr+5IKcGcexQsXLuDSpUsAgJMnTwK40yvp6OgoJYo3b97Etm3b1H5Q27RpA1NT04f7FAzE3U9hqKysxKpVqzRON2TsT2uo6d7ZvLw8jdvc795Z1b811bl3OhJNo/cLCwvh5uZWbR+qda1ataq2TVRUFFasWKHtcImIiHSqzvMsNsQlla+++gp9+/ZFUFAQAOCpp55C3759pal1srKycOTIERw/fhzu7u5wcnKSlosXLz7UB2CIWrduXadyqh8PMh1JbYSHh6O4uFhammKbJiIi/fVAA1zmzZuHefPmaVyXmpparWzcuHEYN26c1v1Nnz4d06dP17p+6NCh0kjfpkw18fn169fRpk0b+Pv7o1mzZigrK0NKSor05BZtE6Qbi4a4d1b1b1FREZycnNTqqC7d3T0dyd369++P//znP9i6davW97n7Pe4ll8ur7ZOIiEhf8NnQBkQ1yrdbt26wtrbGrl278Omnn2LXrl1o1qwZPDw81OoZq4a4d9bNzQ2Ojo5qdUpKSnDkyBGpTm2mIxk0aBC+//57aYJ01ft07dpV4yVoIiIifWdwU+fQnakzfvnlF/z444+4fPkynJycMHjwYPj7++s6tEZT3/fOymQyLFiwAG+++SY6d+4sTZ3j7OyM4OBgALWbjmTSpElYsWIFZs6ciVdeeQU5OTlYv3491q1b1xgfCxERUb1jsmhAVJeXf/jhB4wdOxbh4eEYOXIkcnJyMHbsWPz4449q9YzZhAkTcPXqVURERKCwsBB9+vSpdu+sick/Heeqe2eXLl2KJUuWoHPnztXunX355ZdRVlaG2bNn48aNG/D19UVSUlKdRt7b2tri4MGDmDt3Lry8vGBvb4+IiAjOsUhERAZLJprIzYAlJSWwtbWVHhNoiFJTU+Hv74+oqCh8+OGHaqNx3dzcMGvWLCxZsgQpKSkYOnSozuJ8UMZwjuoDPwf91xTOUVM4RkOn7+dI3+Oj2p8j9iwaED8/P7i6uiI9PR25ubmIjY3F2bNn0alTJ8yZMwfjx4+Hm5sb/Pz8dB0qERERGQkmiwZE9Yi/sWPHonXr1igvL5fWLVmyBOXl5dizZ0+TmXeSiIiIGh5HQxsgmUymsUxTOREREdHDYLJoQBQKBRYuXIiRI0eiuLgYKSkpiIuLQ0pKCm7cuIGRI0di0aJFUCgUug6ViIiIjAQvQxuQtLQ05OfnY/v27TA3N682iCU8PBw+Pj5IS0szyAEuREREpH/Ys2hAVI9RvHu6l7upyu9+3CIRERHRw2CyaEBUj6HLycnRuF5Vfvfj6oiIiIgeBpNFA6KaOmflypVQKpVq65RKJaKiojh1DukVhUKB1NRUbN++HampqbyflojIADFZNCCqqXP27t2L4OBgZGRkoLS0FBkZGQgODsbevXuxdu1aTp1DeiEhIQHu7u7w9/fHpEmT4O/vD3d3dyQkJOg6NCIiqgMmiwYmJCQE8fHxOH78OHx8fGBjYwMfHx/k5OQgPj4eISEhug6RCAkJCQgNDYWnp6faHzWenp4IDQ1lwkhEZECYLBqoe5/SeO9laSJduXuKp8TERAwcOBDNmzfHwIEDkZiYyCmeiHRk48aNcHV1haWlJby9vfHTTz/VWD8mJgZdu3aFlZUVXFxc8NJLL+HWrVuNFC3pEyaLBkbVY9OrVy+1HptevXqxx4b0gmqKpyVLlsDERP0rxsTEBOHh4Th37hzS0tJ0FCFR07Nz506EhYUhMjISWVlZ6N27NwIDA3HlyhWN9ePi4vDqq68iMjISubm5+OSTT7Bz504sWbKkkSMnfcBk0YCwx4YMAad4ItI/77zzDmbNmoUZM2age/fuiI2NhbW1NTZv3qyxfnp6OgYPHoxJkybB1dUVw4YNw8SJE+/bG0nGicmiAWGPDRkCTvFEpF8qKyuRmZmJgIAAqczExAQBAQHIyMjQuI2Pjw8yMzOl5PD333/H/v378eSTT2p9n4qKCpSUlKgtZByYLBoQ9tiQIeAUT0T65dq1a1AoFHBwcFArd3BwQGFhocZtJk2ahNdffx2+vr4wNzdHp06dMHTo0BovQ0dFRcHW1lZaXFxc6vU4SHeYLBoQ9tiQIeAUT0SGLzU1FStXrsT777+PrKwsJCQkYN++fXjjjTe0bhMeHo7i4mJpuXjxYiNGTA2Jz4Y2IHf32CQmJqpdimaPDekT1RRPCxcuhI+Pj1Tu5ubGKZ6IGpm9vT1MTU1RVFSkVl5UVARHR0eN2yxbtgxTpkzBM888AwDw9PREWVkZZs+ejddee63arVAAIJfLIZfL6/8ASOfYs2hA2GNDhiQkJARnzpxBSkoK4uLikJKSgtOnTzNRJGpkFhYW8PLyQnJyslSmVCqRnJyMQYMGadzm5s2b1RJC1W/LvVO3kfFjz6KBYY8NGRJTU1MMHTpU12EQNXlhYWGYNm0a+vfvjwEDBiAmJgZlZWWYMWMGAGDq1Klo164doqKiAACjRo3CO++8g759+8Lb2xtnzpzBsmXLMGrUKHZINEFMFg1QSEgIxowZg7S0NFy+fBlOTk7w8/Pj/8BERKTRhAkTcPXqVURERKCwsBB9+vRBUlKSNOjlwoULaj2JS5cuhUwmw9KlS1FQUIA2bdpg1KhReOutt3R1CKRDMtFE+pNLSkpga2uL4uJi2NjY6Doc0oDn6A5+DvqvKZyjpnCMhk7fz5G+x0e1P0e8Z5GIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrTp1joBQKBafOISIiogbHnkUDlJCQAHd3d/j7+2PSpEnw9/eHu7s7EhISdB0aERERGRn2LBqYhIQEhIaGIigoCIsXL4aVlRXKy8vxzTffIDQ0lE9xISIionrFZNGAKBQKLFy4EF5eXsjJycHevXulda6urvDy8sKiRYswZswYXpImIiKiesHL0AYkLS0N+fn5yMzMhKenJzIyMlBaWoqMjAx4enoiMzMT586dQ1pamq5DJSIiIiPBZNGAFBQUAACGDx+OxMREDBw4EM2bN8fAgQORmJiI4cOHq9UjIiIielhMFg3I1atXAQAhISEQQiA1NRXbt29HamoqhBAIDg5Wq0dERET0sHjPogFp06YNAOD999/HW2+9hfz8fGmdq6srWrVqpVaPiIju4HRjRA+OPYsGpF27dgCAY8eOoby8HJs2bcKlS5ewadMmlJeX49ixY2r1iIiI040RPSwmiwbEx8cHZmZmsLW1hVwux+zZs+Hs7IzZs2fD0tIStra2MDMzg4+Pj65DJSLSC6rpxjQNCgwNDWXCSFQLTBYNSHp6OqqqqlBSUlLtvsQrV66gpKQEVVVVSE9P11GERET6QzXd2MiRIzUOChw5ciQWLVoEhUKh61CJ9BqTRQNy+fJlAIAQoto6mUwmlavqERE1ZarpxpYsWQITE/WfOxMTE4SHh3O6MaJaYLJoQNq2bQsA8PX1RXFxMVJSUhAXF4eUlBTcuHEDgwcPVqtHRNSUqf5w7tmzp8b1qnL+gU1UMyaLRkQmk+k6BCI1CoVCbYonXu6jxuTk5AQAyMnJ0bheVa6qR0SaceocA3LlyhUAwI8//ghbW1uUl5dL66ysrHDr1i21ekS6lJCQgIULF1ab4ik6OprPL6dG4efnB1dXV6xcuRKJiYlql6KVSiWioqLg5uYGPz8/HUZJpP/Ys2hAVH/93u+eRf6VTLrGEaikD0xNTREdHY29e/ciODhYrS0GBwdj7969WLt2LedbJLoPmdCUeRihkpIS2Nraori4GDY2NroO54FUVlaiWbNmaNasGWxsbHDx4kVpnYuLC0pKSlBWVoaysjJYWFjoMNIHYwznqD4Y+uegUCjg7u4OT09Pjb05wcHByMnJwenTpw32R9rQz1FtGNMxaurldnNzw9q1aw26l1vfz5G+x0e1P0fsWTQgqqlziouLUVlZqTYpd2VlJYqLizl1DukcR6CSvgkJCcGZM2fUBgWePn3aoBNFosbEexYNSEFBAQCgb9+++OuvvzB79mxpnZubG/r27Ytjx45J9Yh0gSNQSR+Zmppi6NChug6DyCCxZ9GAqCbifv755zX+lTxnzhy1ekS6wBGoRETGhcmiAWnTpg2AO/ffyGQyDB06FBMnTsTQoUMhk8mQmJioVo9IF+4egapUKtXWcQQqEZHhYbJoQNq1awcASEpK0jiyLykpSa0ekS5wBGp1GzduhKurKywtLeHt7Y2ffvqpxvq7d++Gh4cHLC0t4enpif3792utO2fOHMhkMsTExEhl+fn5mDlzJtzc3GBlZYVOnTohMjISlZWV9XVIRNSE8J5FA6LqsbG3t8fx48fh4+MjrXNzc4OXlxf+/PNP9tiQzoWEhCA+Ph4LFy6s1k7j4+Ob1MCCnTt3IiwsDLGxsfD29kZMTAwCAwNx8uRJjU9bSk9Px8SJExEVFYWRI0ciLi4OwcHByMrKqnYf6BdffIHDhw/D2dlZrTwvLw9KpRIffvgh3N3dkZOTg1mzZqGsrAxr165t0OMlIuPDqXMMjGr+uqCgIAwfPhxWVlYoLy9HUlIS9u3bZ9A/xMZyjh6WMX0OCoUCaWlpuHz5MpycnODn52cUPYp1OUfe3t549NFHsWHDBgB3LsW7uLjghRdewKuvvlqt/oQJE1BWVoa9e/dKZQMHDkSfPn0QGxsrlRUUFMDb2xsHDhxAUFAQFixYgAULFmiNY82aNfjggw/w+++/1/sxkm7o+znS9/io9ueIPYsG5u4em7t/TJpijw3pv6Y+ArWyshKZmZkIDw+XykxMTBAQEICMjAyN22RkZCAsLEytLDAwULonGbiTcE6ZMgWLFy9Gjx49ahVLcXExWrdurXV9RUUFKioqpNclJSW12i8RGT8miwYoJCQEY8aMMcoeGyJjcu3aNSgUCjg4OKiVOzg4IC8vT+M2hYWFGusXFhZKr1etWgUzMzO8+OKLtYrjzJkzeO+992q8BB0VFYUVK1bUan9E1LQwWTRQTb3HhqipyszMxPr165GVlQWZTHbf+gUFBRg+fDjGjRuHWbNmaa0XHh6u1qNZUlICFxeXeomZiAwbR0MTETUQe3t7mJqaoqioSK28qKgIjo6OGrdxdHSssX5aWhquXLmCDh06wMzMDGZmZjh//jwWLlwIV1dXte0uXboEf39/+Pj4YNOmTTXGKpfLYWNjo7YQEQFMFomIGoyFhQW8vLyQnJwslSmVSiQnJ2PQoEEatxk0aJBafQA4dOiQVH/KlCn49ddfkZ2dLS3Ozs5YvHgxDhw4IG1TUFCAoUOHwsvLC59++mm1Ry8SEdUWL0MTETWgsLAwTJs2Df3798eAAQMQExODsrIyzJgxAwAwdepUtGvXDlFRUQCA+fPnY8iQIYiOjkZQUBB27NiBo0ePSj2DdnZ2sLOzU3sPc3NzODo6omvXrgD+SRQ7duyItWvXqj3VSVuPJhGRNkwWiYga0IQJE3D16lVERESgsLAQffr0QVJSkjSI5cKFC2q9fj4+PoiLi8PSpUuxZMkSdO7cGYmJiVqfta3JoUOHcObMGZw5cwbt27dXW9dEZksjonrEeRZJb/Ac3cHPQf81hXPUFI7R0On7OdL3+Kj254g3sRARERGRVg+ULNb3c04TEhIwbNgw2NnZQSaTITs7u9o+bt26hblz58LOzg7NmzfH2LFjq40YpKalvtuhEAIRERFwcnKClZUVAgICcPr0abU6o0ePRocOHWBpaQknJydMmTIFly5dktbn5+dDJpNVWw4fPlx/B05ERNSI6pwsqp5zGhkZiaysLPTu3RuBgYG4cuWKxvqq55zOnDkTx44dQ3BwMIKDg5GTkyPVKSsrg6+vL1atWqX1fV966SV8/fXX2L17N/73v//h0qVLfFpJE9YQ7XD16tV49913ERsbiyNHjqBZs2YIDAzErVu3pDr+/v7YtWsXTp48iT179uDs2bMIDQ2t9n7ffvstLl++LC1eXl71/yEQERE1BlFHAwYMEHPnzpVeKxQK4ezsLKKiojTWHz9+vAgKClIr8/b2Fs8++2y1uufOnRMAxLFjx9TKb9y4IczNzcXu3bulstzcXAFAZGRkaHzfW7duieLiYmm5ePGiACCKi4tre6jUyIqLi2t9juq7HSqVSuHo6CjWrFkjrb9x44aQy+Vi+/btWuP48ssvhUwmE5WVlUII7W24JmyrhqcubdVQNYVjNHT6fo70PT6q/TmqU8+i6jmnAQEBUlltnnN6d33gznNOtdXXJDMzE7dv31bbj4eHBzp06KB1P1FRUbC1tZUWPonAeDREOzx37hwKCwvV6tja2sLb21vrPq9fv47PP/8cPj4+MDc3V1s3evRotG3bFr6+vvjqq69qPB62VSIi0md1ShZres7p3c8tvVttnnN6P4WFhbCwsEDLli1rvZ/w8HAUFxdLy8WLF2v9fqTfGqIdqv6tzT5feeUVNGvWDHZ2drhw4QK+/PJLaV3z5s0RHR2N3bt3Y9++ffD19UVwcHCNCSPbKhER6TOjnWdRLpdDLpfrOgwyQosXL8bMmTNx/vx5rFixAlOnTsXevXshk8lgb2+v9nzdRx99FJcuXcKaNWswevRojftjWyUiIn1Wp57FhnjOaW04OjqisrISN27ceKj9kHFoiHao+rc2+7S3t0eXLl3wxBNPYMeOHdi/f3+No529vb1x5syZ2h0cERGRnqlTstgQzzmtDS8vL5ibm6vt5+TJk7hw4UKd9kPGoSHaoZubGxwdHdXqlJSU4MiRIzW2MaVSCQCoqKjQWic7OxtOTk73PzAiIiI9VOfL0PX9nFPgzkCBCxcuSPPVnTx5EsCd3h5HR0fY2tpi5syZCAsLQ+vWrWFjY4MXXngBgwYNwsCBAx/6QyDDU9/tUCaTYcGCBXjzzTfRuXNnuLm5YdmyZXB2dkZwcDAA4MiRI/j555/h6+uLVq1a4ezZs1i2bBk6deokJZRbt26FhYUF+vbtC+DOHKKbN2/Gxx9/3MifEBERUT15kKHW7733nujQoYOwsLAQAwYMEIcPH5bWDRkyREybNk2t/q5du0SXLl2EhYWF6NGjh9i3b5/a+k8//VQAqLZERkZKdcrLy8Xzzz8vWrVqJaytrcW///1vcfny5VrHzCH8+q+u56i+26FSqRTLli0TDg4OQi6Xi8cff1ycPHlSWv/rr78Kf39/0bp1ayGXy4Wrq6uYM2eO+OOPP6Q6W7ZsEd26dRPW1tbCxsZGDBgwQG3Kp4b4HKjxNYVzZGzHWFVVJVJSUkRcXJxISUkRVVVVug7podX1HG3YsEF07NhRyOVyMWDAAHHkyJEa6//111/i+eefF46OjsLCwkJ07ty52vdmfcZHja+254jPhia9wXN0Bz8H/dcUzpExHWNCQgIWLlyI/Px8qczV1RXR0dEG/XCHupyjnTt3YurUqYiNjYW3tzdiYmKwe/dunDx5Em3btq1Wv7KyEoMHD0bbtm2xZMkStGvXDufPn0fLli3Ru3fveo+PdIPPhiYioiYvISEBoaGh8PT0REZGBkpLS5GRkQFPT0+EhoYiISFB1yE2infeeQezZs3CjBkz0L17d8TGxsLa2hqbN2/WWH/z5s24fv06EhMTMXjwYLi6umLIkCE1JooVFRUoKSlRW8g4MFkkIiKjpFAosHDhQowcORKJiYkYOHAgmjdvjoEDByIxMREjR47EokWLoFAodB1qg3qQBxl89dVXGDRoEObOnQsHBwf07NkTK1eurPGz4gMGjBeTRSIiMkppaWnIz8/HkiVLYGKi/nNnYmKC8PBwnDt3DmlpaTqKsHE8yIMMfv/9d8THx0OhUGD//v1YtmwZoqOj8eabb2p9Hz5gwHgZ7aTcRETUtF2+fBkA0LNnT43rVeWqevQPpVKJtm3bYtOmTTA1NYWXlxcKCgqwZs0aREZGatyGDxgwXuxZJCIio6Sa3zQnJ0fjelW5sc+D+iAPMnByckKXLl1gamoqlXXr1g2FhYWorKxs0HhJ/zBZJCIio+Tn5wdXV1esXLlSmkBfRalUIioqCm5ubvDz89NRhI3jQR5kMHjwYJw5c0btczt16hScnJxgYWHR4DGTfmGySERERsnU1BTR0dHYu3cvgoOD1UZDBwcHY+/evVi7dq1a75mxCgsLw0cffYStW7ciNzcXzz33XLUHGYSHh0v1n3vuOVy/fh3z58/HqVOnsG/fPqxcuRJz587V1SGQDvGeRSIiMlohISGIj4/HwoUL4ePjI5W7ubkhPj7eoOdZrIsJEybg6tWriIiIQGFhIfr06YOkpCRp0MuFCxfUBgG5uLjgwIEDeOmll9CrVy+0a9cO8+fPxyuvvKKrQyAd4qTcpDd4ju4wps9BoVAgLS0Nly9fhpOTE/z8/IyiF8eYzpE2xnaMxtgW9f0c6Xt8VPtzxJ5FImoQxvrUDDJMpqamGDp0qK7DIDJIvGeRiOodn5pBRGQ8mCwSUb3iUzOIiIwLk0Uiqld8agYRkXFhskhE9YpPzSAiMi5MFomoXvGpGURExoXJIhHVKz41g4jIuDBZJKJ6xadmEBEZF86zSET1TvXUjLCwMLWnZri6ujapp2YQERkD9iwSUYORyWS6DoGIiB4Sk0UiqneclJuIyHgwWSSiesVJuYmIjAuTRSKqV5yUm4jIuDBZJKJ6xUm5iYiMC5NFIqpXnJSbiMi4MFkkonrFSbmJiIwLk0UiqleclJuIyLhwUm4iqneqSbkXLlyoNim3m5sbJ+UmIjIwTBaJqEGEhIRgzJgxSEtLw+XLl+Hk5AQ/Pz/2KBIRGRgmi0TUYExNTTF06FBdh0FERA+B9ywSERERkVZMFomIiIhIKyaLRERERKQVk0UiIiIi0orJIhERERFpxWSRiIiIiLRiskhEREREWnGeRSIiMnoKhYITxBM9IPYsEhGRUUtISIC7uzv8/f0xadIk+Pv7w93dHQkJCboOjcggMFkkIiKjlZCQgNDQUHh6eiIjIwOlpaXIyMiAp6cnQkNDmTAS1QKTRSIiMkoKhQILFy7EyJEjkZiYiIEDB6J58+YYOHAgEhMTMXLkSCxatAgKhULXoRLpNd6zSET16ubNm8jLy5Nel5eXIz8/H66urrCyspLKPTw8YG1trYsQqYlIS0tDfn4+tm/fDhMT9b4RExMThIeHw8fHB2lpaXyGOVENmCwSUb3Ky8uDl5fXfetlZmaiX79+jRARNVWXL18GAPTs2VPjelW5qh4RacbL0AZKoVAgNTUV27dvR2pqKi+jkN7w8PBAZmamtGzbtg0AsG3bNrVyDw8PHUfaeDZu3AhXV1dYWlrC29sbP/30U431d+/eDQ8PD1haWsLT0xP79+/XWnfOnDmQyWSIiYlRK79+/Tr+85//wMbGBi1btsTMmTPx999/18fhGAwnJycAQE5Ojsb1qnJVPSLSjMmiAeLIPtJn1tbW6Nevn7R069YNANCtWze18qZyCXrnzp0ICwtDZGQksrKy0Lt3bwQGBuLKlSsa66enp2PixImYOXMmjh07huDgYAQHB2tMeL744gscPnwYzs7O1db95z//wW+//YZDhw5h7969+P777zF79ux6Pz595ufnB1dXV6xcuRJKpVJtnVKpRFRUFNzc3ODn56ejCIkMhGgiiouLBQBRXFys61Aeyp49e4RMJhOjRo0SGRkZorS0VGRkZIhRo0YJmUwm9uzZo+sQH5ixnKOHZWyfQ2ZmpgAgMjMzdR1KvanLORowYICYO3eu9FqhUAhnZ2cRFRWlsf748eNFUFCQWpm3t7d49tln1cr++OMP0a5dO5GTkyM6duwo1q1bJ607ceKEACB+/vlnqeybb74RMplMFBQUaHzfW7duieLiYmm5ePGiUbTDu78z09PTRUlJiUhPT+d3ZiPQ9/io9ueIPYsGhCP7iAxLZWUlMjMzERAQIJWZmJggICAAGRkZGrfJyMhQqw8AgYGBavWVSiWmTJmCxYsXo0ePHhr30bJlS/Tv318qCwgIgImJCY4cOaLxfaOiomBraystLi4udTpWfRUSEoL4+HgcP34cPj4+sLGxgY+PD3JychAfH4+QkBBdh0ik95gsGhDVyL4lS5ZoHdl37tw5pKWl6ShCIrrbtWvXoFAo4ODgoFbu4OCAwsJCjdsUFhbet/6qVatgZmaGF198Ues+2rZtq1ZmZmaG1q1ba33f8PBwFBcXS8vFixfve3yGIiQkBGfOnEFKSgri4uKQkpKC06dPM1EkqiWOhjYgHNlHRJmZmVi/fj2ysrIgk8nqbb9yuRxyubze9qdvTE1NOT0O0QNiz6IB4cg+IsNib28PU1NTFBUVqZUXFRXB0dFR4zaOjo411k9LS8OVK1fQoUMHmJmZwczMDOfPn8fChQvh6uoq7ePeATRVVVW4fv261vclItKGyaIB4cg+IsNiYWEBLy8vJCcnS2VKpRLJyckYNGiQxm0GDRqkVh8ADh06JNWfMmUKfv31V2RnZ0uLs7MzFi9ejAMHDkj7uHHjBjIzM6V9fPfdd1AqlfD29q7vwyQiI8fL0AbE1NQU0dHRCA0NRXBwMMLDw9GzZ0/k5OQgKioKe/fuRXx8PExNTXUdKhH9v7CwMEybNg39+/fHgAEDEBMTg7KyMsyYMQMAMHXqVLRr1w5RUVEAgPnz52PIkCGIjo5GUFAQduzYgaNHj2LTpk0AADs7O9jZ2am9h7m5ORwdHdG1a1cAd6YpGj58OGbNmoXY2Fjcvn0b8+bNw1NPPaVxmh0iopowWTQwqpF9CxcuhI+Pj1Tu5ubGkX1EemjChAm4evUqIiIiUFhYiD59+iApKUkaxHLhwgW1AWs+Pj6Ii4vD0qVLsWTJEnTu3BmJiYla71XW5vPPP8e8efPw+OOPw8TEBGPHjsW7775br8dGRE2DTAghdB1EYygpKYGtrS2Ki4thY2Oj63AemkKhQFpaGi5fvgwnJyf4+fkZfI+isZ2jB2Vsn0NWVha8vLyM6vF+xnaONGkKx2jo9P0c6Xt8VPtzxJ5FA8WRfURERNQYOMCFiIiIiLRiskhERNQEbNy4Ea6urrC0tIS3tzd++umnWm23Y8cOyGQyBAcHN2yAekyhUCA1NRXbt29Hampqk3tSGpNFIiIyek39x37nzp0ICwtDZGQksrKy0Lt3bwQGBlabj/Ne+fn5WLRoUZOeki0hIQHu7u7w9/fHpEmT4O/vD3d3dyQkJOg6tEbDZJGIiIwaf+yBd955B7NmzcKMGTPQvXt3xMbGwtraGps3b9a6jUKhwH/+8x+sWLECjzzySCNGqz8SEhIQGhoKT09PZGRkoLS0FBkZGfD09ERoaGiTaUNMFslg1fWSyu7du+Hh4QFLS0t4enpi//79auuFEIiIiICTkxOsrKwQEBCA06dPq9UZPXo0OnToAEtLSzg5OWHKlCm4dOmSWp1ff/0Vfn5+sLS0hIuLC1avXl0/B0xEdcYfe6CyshKZmZkICAiQykxMTBAQEICMjAyt273++uto27YtZs6cWav3qaioQElJidpiyBQKBRYuXIiRI0ciMTERAwcORPPmzTFw4EAkJiZi5MiRWLRoUZPopWaySAaprpdU0tPTMXHiRMycORPHjh1DcHAwgoOD1R6duHr1arz77ruIjY3FkSNH0KxZMwQGBuLWrVtSHX9/f+zatQsnT57Enj17cPbsWYSGhkrrS0pKMGzYMHTs2BGZmZlYs2YNli9fLk2oTESNhz/2d1y7dg0KhUKa21PFwcEBhYWFGrf54Ycf8Mknn+Cjjz6q9ftERUXB1tZWWlxcXB4qbl1LS0tDfn4+lixZojYXKnAn2Q4PD8e5c+eQlpamowgbkWgiiouLBQBRXFys61BIi7qcowEDBoi5c+dKrxUKhXB2dhZRUVEa648fP14EBQWplXl7e4tnn31WCCGEUqkUjo6OYs2aNdL6GzduCLlcLrZv3641ji+//FLIZDJRWVkphBDi/fffF61atRIVFRVSnVdeeUV07dr1vsekYmxtNTMzUwAQmZmZug6l3hjbOdLEGI4xJSVFABAZGRka16enpwsAIiUlpXEDqye1PUcFBQUCgEhPT1crX7x4sRgwYEC1+iUlJcLV1VXs379fKps2bZoYM2ZMje9z69YtUVxcLC0XL1406DYUFxcnAIjS0lJRVVUlUlJSRFxcnEhJSRFVVVWipKREABBxcXG6DvWB1bYNcZ5FMjiqSyrh4eFS2f0uqWRkZCAsLEytLDAwEImJiQCAc+fOobCwUO0yja2tLby9vZGRkYGnnnqq2j6vX7+Ozz//HD4+PjA3N5fe57HHHoOFhYXa+6xatQp//fUXWrVqVW0/FRUVqKiokF4b+qUbIn1x+fJlAEDPnj01PshA9VQcVT1jZW9vD1NTUxQVFamVFxUVwdHRsVr9s2fPIj8/H6NGjZLKlEolAMDMzAwnT55Ep06dqm0nl8shl8vrOXrdcXJyAgBs2LABH374IfLz86V1rq6umD17tlo9Y/ZAl6F1ca/YqVOnMGbMGNjb28PGxga+vr5ISUl5kPDJwD3IJZXCwsIa66v+rc0+X3nlFTRr1gx2dna4cOECvvzyy/u+z93vcS9ju3RDpC/u/rHXNMBlw4YNavWMlYWFBby8vJCcnCyVKZVKJCcnY9CgQdXqe3h44Pjx48jOzpaW0aNHw9/fH9nZ2U3mO8rPzw9t2rRBeHg4evTogY0bN2Lz5s3YuHEjevTogSVLlqBt27ZNYqR4nZNFXd0rNnLkSFRVVeG7775DZmYmevfujZEjR2r9ASZqKIsXL8axY8dw8OBBmJqaYurUqRAP8dTM8PBwFBcXS8vFixfrMVqipsvPzw9t27ZFeHg4evbsqTbApWfPnk3qxz4sLAwfffQRtm7ditzcXDz33HMoKyvDjBkzAABTp06VrtZYWlqiZ8+eakvLli3RokUL9OzZU+3KibGTyWQAgOTkZMydOxdPP/005s6dq5Z4NwV1ThbrOvx+/fr1GD58OBYvXoxu3brhjTfeQL9+/aS/6IQQiImJwdKlSzFmzBj06tULn332GS5duiRdIrx27RpOnz6NV199Fb169ULnzp3x9ttv4+bNm2pJJzUNdb2kAgCOjo411lf9W5t92tvbo0uXLnjiiSewY8cO7N+/H4cPH67xfe5+j3vJ5XLY2NioLURUP+7+Q04IIS1NzYQJE7B27VpERESgT58+yM7ORlJSknTl48KFC0Z/Ob6u0tLSpI4wVdKoohrwcuXKlSYxwKVOyeKDDL/PyMhQqw/cuYdLVf9+94oBgJ2dHbp27YrPPvsMZWVlqKqqwocffoi2bdvCy8tL4/sa2xB++kddL6kAwKBBg6r9JXjo0CGpvpubGxwdHdXqlJSU4MiRI1r3qXpfANI9h4MGDcL333+P27dvq71P165dNd6vSEQNJy0tDVevXkVUVBRycnLg4+MDGxsb+Pj44LfffsPKlSubzI89AMybNw/nz59HRUUFjhw5Am9vb2ldamoqtmzZonXbLVu2SB04TUVBQQEAYMSIESguLkZKSgri4uKQkpKCGzduYMSIEWr1jFmdBrjUdK9YXl6exm3q414xmUyGb7/9FsHBwWjRogVMTEzQtm1bJCUlaf0BjoqKwooVK+pyeGRAwsLCMG3aNPTv3x8DBgxATExMtUsq7dq1Q1RUFABg/vz5GDJkCKKjoxEUFIQdO3bg6NGj0pQ2MpkMCxYswJtvvonOnTvDzc0Ny5Ytg7Ozs/SIqyNHjuDnn3+Gr68vWrVqhbNnz2LZsmXo1KmTlFBOmjQJK1aswMyZM/HKK68gJycH69evx7p16xr/QyJq4lQ9ZfPmzcPixYurDXC5efMmlixZwh410ujq1asAgJCQEJibm2Po0KFq64ODg/HNN99I9YyZQYyGFkJg7ty5aNu2LdLS0mBlZYWPP/4Yo0aNws8//6zx5uTw8HC10a8lJSVN5qbcpmDChAm4evUqIiIiUFhYiD59+lS7pHL3vFg+Pj6Ii4vD0qVLsWTJEnTu3BmJiYnSaEgAePnll1FWVobZs2fjxo0b8PX1RVJSEiwtLQEA1tbWSEhIQGRkJMrKyuDk5IThw4dj6dKl0ghAW1tbHDx4EHPnzoWXlxfs7e0REREhjZojosaj+m3IycnBwIEDq/3Yq25jMvYBLvRg2rRpA+DOxO5PP/202m+KUqmUelpV9YxaXebjqaioEKampuKLL75QK586daoYPXq0xm1cXFzEunXr1MoiIiJEr169hBBCnD17VgAQx44dU6vz2GOPiRdffFEIIcS3334rTExMqs0D5O7urnVevXsZw5xhxo7n6A5j+xw4z6JhMoZjrKqqEq6urmLUqFFCoVCorVMoFGLUqFHCzc1NVFVV6SjCh6Pv50jf47sf1TydMplMjBo1SqSnp4uSkhKRnp4uRo0aJWQymUHP0ylEA82zePe9YqpLc6p7xebNm6dxG9W9YgsWLJDKtN0r1qdPHwD/3Cv23HPPAQBu3rwJABpnUFfdM0ZEunX69GmUlpZWK8/NzVX7V5MWLVqgc+fODRYbNU2mpqaIjo5GaGgogoODpVHROTk5iIqKwt69exEfHw9TU1Ndh0p6yM/PD66urrC3t8fx48fh4+MjrXNzc4OXlxf+/PPPJjGavs5PcNmxY4eQy+Viy5Yt4sSJE2L27NmiZcuWorCwUAghxJQpU8Srr74q1f/xxx+FmZmZWLt2rcjNzRWRkZHC3NxcHD9+XKrz9ttvi5YtW4ovv/xS/Prrr2LMmDHCzc1NlJeXCyGEuHr1qrCzsxMhISEiOztbnDx5UixatEiYm5uL7Ozses2eSXd4ju4wxM/h1KlTAsBDLadOndL1YdSaIZ6jujKmY9yzZ49wdXVVa29ubm5iz549ug7toej7OdL3+Gpjz549QiaTiZEjR4oNGzaITz75RGzYsEGMHDlSyGSyJtOG6nzPoi7uFbO3t0dSUhJee+01/Otf/8Lt27fRo0cPfPnll+jdu3ddD4GI6pmqR3Hbtm3o1q2b2rry8nLk5+fD1dUVVlZW1bbNzc3F5MmTNfZKEtWHkJAQjBkzptoAF/Yo0v2EhIQgPj4eCxcuxN69e6VyNzc3xMfHIyQkRIfRNR6ZEE1jwqmSkhLY2tqiuLiY89jpKZ6jOwzxc8jKyoKXlxcyMzPRr1+/RttWVwzxHNVVUzhGQ6fv50jf46sLTY+LNIY/Nmp7jgxiNDQREVFd3bx5U21aN2293B4eHrC2ttZFiGQgTE1Nq42mb0qYLBIRkVHKy8vT+uCGuxlSrzaRLjBZJCIio+Th4YHMzEzpter+2HvvrfXw8NBFeEQGg8kiEREZJWtra409ht26dWNPIlEd1OnZ0ERERETUtDBZJCIiIiKtmCwSERERkVZMFomIiIhIKyaLRERERKQVk0UiIiIi0orJIhERERFpxWSRiIiIiLRiskhEREREWjFZJCIiIiKtmCwSERERkVZMFomIiIhIKyaLRERERKQVk0UiIiIi0orJIhERERFpxWSRiIiIiLRiskhEREREWjFZJCIiIiKtmCwSERERkVZmug6AiIyDY3MZrG6cAi7V7W9Qqxun4Nhc1kBRERHRw2KySET14lkvC3T7/lng+7pt1+3/tyUiIv3EZJGI6sWHmZWYELEF3Tw86rRdbl4ePoyehNENFBcRET0cJotEVC8K/xYob9kFcO5Tp+3KC5Uo/Fs0TFBERPTQOMCFiIiIiLRizyIRPbSbN28CALKysqqtKy8vR35+PlxdXWFlZVVtfW5uboPHR0RED47JIhE9tLy8PADArFmzHngfLVq0qK9wiIioHjFZJKKHFhwcDADw8PCAtbW12rrc3FxMnjwZ27ZtQ7du3TRu36JFC3Tu3LmhwyQiogfAZJGIHpq9vT2eeeaZGut069YN/fr1a6SIiIiovnCACxERERFpxWSRiKiBbdy4Ea6urrC0tIS3tzd++umnGuvv3r0bHh4esLS0hKenJ/bv36+2fvny5fDw8ECzZs3QqlUrBAQE4MiRI2p1Tp06hTFjxsDe3h42Njbw9fVFSkpKvR8bERk/JotERA1o586dCAsLQ2RkJLKystC7d28EBgbiypUrGuunp6dj4sSJmDlzJo4dO4bg4GAEBwcjJydHqtOlSxds2LABx48fxw8//ABXV1cMGzYMV69eleqMHDkSVVVV+O6775CZmYnevXtj5MiRKCwsbPBjJjI2lZWViImJwQsvvICYmBhUVlbqOqTGJZqI4uJiAUAUFxfrOhTSgufoDmP7HDIzMwUAkZmZqetQ6k1dztGAAQPE3LlzpdcKhUI4OzuLqKgojfXHjx8vgoKC1Mq8vb3Fs88+e994vv32WyGEEFevXhUAxPfffy/VKSkpEQDEoUOH7hvz3fs0lnYohPG1RX0/R/oeX20tXrxYmJmZCQDSYmZmJhYvXqzr0B5abc8RexaJiBpIZWUlMjMzERAQIJWZmJggICAAGRkZGrfJyMhQqw8AgYGBWutXVlZi06ZNsLW1Re/evQEAdnZ26Nq1Kz777DOUlZWhqqoKH374Idq2bQsvLy+N+6moqEBJSYnaQtTUvfzyy1izZg3s7Ozw0Ucf4fLly/joo49gZ2eHNWvW4OWXX9Z1iI2CyaKBUigUSE1Nxfbt25GamgqFQqHrkIjoHteuXYNCoYCDg4NauYODg9bLwYWFhbWqv3fvXjRv3hyWlpZYt24dDh06BHt7ewCATCbDt99+i2PHjqFFixawtLTEO++8g6SkJLRq1Urj+0ZFRcHW1lZaXFxcHvSwiYxCZWUl1q1bBwcHB5w/fx7u7u5ISUmBu7s7zp8/DwcHB6xbt65JXJJmsmiAEhIS4O7uDn9/f0yaNAn+/v5wd3dHQkKCrkMjokbi7++P7OxspKenY/jw4Rg/frx0H6QQAnPnzkXbtm2RlpaGn376CcHBwRg1ahQuX76scX/h4eEoLi6WlosXLzbm4RDpnffffx9VVVUICQmBh4eH2m+uh4cH/v3vf6Oqqgrvv/++rkNtcEwWDUxCQgJCQ0Ph6emJjIwMlJaWIiMjA56enggNDWXCSKRH7O3tYWpqiqKiIrXyoqIiODo6atzG0dGxVvWbNWsGd3d3DBw4EJ988gnMzMzwySefAAC+++477N27Fzt27MDgwYPRr18/vP/++7CyssLWrVs1vq9cLoeNjY3aQsalLqPyP/roI/j5+aFVq1bSiPv7jeI3NmfPngUAfPDBB+jZsyc2btyIzZs3Y+PGjejZsydiY2PV6hkzTsptQBQKBRYuXIiRI0ciMTERJiZ3cv2BAwciMTERwcHBWLRoEcaMGQNTU1MdR0tEFhYW8PLyQnJysvSUG6VSieTkZMybN0/jNoMGDUJycjIWLFgglR06dAiDBg2q8b2USiUqKioA/POsbtV3hIqJiQmUSuUDHo1hOH36NEpLSzWuUz2HXNvzyI35SUKqUfmxsbHw9vZGTEwMAgMDcfLkSbRt27Za/dTUVEycOBE+Pj6wtLTEqlWrMGzYMPz2229o166dDo6g8bm6ukr/Hj9+HHv37pXWdezYER07dsT58+elekatccbb6J4xjMpKSUkRAERGRobG9enp6QKASElJadzA6okxnKP6YGyfg7GNQBWibudox44dQi6Xiy1btogTJ06I2bNni5YtW4rCwkIhhBBTpkwRr776qlT/xx9/FGZmZmLt2rUiNzdXREZGCnNzc3H8+HEhhBB///23CA8PFxkZGSI/P18cPXpUzJgxQ8jlcpGTkyOEuDMa2s7OToSEhIjs7Gxx8uRJsWjRImFubi6ys7Pr/Rj1xalTp9RGrD7IcurUKV0fRq015Kj8e1VVVYkWLVqIrVu3Nkh8+ujAgQNSuwgKChIZGRmitLRUZGRkiKCgIGndgQMHdB3qA6vtOWLPogFR3WvUs2dPjetV5druSSKixjdhwgRcvXoVERERKCwsRJ8+fZCUlCQNYrlw4YJaD6CPjw/i4uKwdOlSLFmyBJ07d0ZiYqL0/7epqSny8vKwdetWXLt2DXZ2dnj00UeRlpaGHj16ALhz+TspKQmvvfYa/vWvf+H27dvo0aMHvvzyS2nEtDFS9Shqew55eXk58vPz4erqCisrK7V1qmeYa+uVNGSqUfnh4eFS2f1G5d/r5s2buH37Nlq3bq21TkVFhdS7DcDgR9TfPW/p0aNH8euvv6JDhw749ddfcfToUY31jBWTRQPi5OQEAMjJycHAgQOrrVdN2quqR0T6Yd68eVovO6emplYrGzduHMaNG6exvqWlZa3uTe7fvz8OHDhQpziNRU3PIR88eHAjR6N7NY3Kz8vLq9U+XnnlFTg7O1eb1uluUVFRWLFixUPFqk9USWBgYCCSk5Px7LPPSuvMzMwwbNgwHDx4sEkkixzgYkD8/Pzg6uqKlStXVrvvSKlUIioqCm5ubvDz89NRhEREZGzefvtt7NixA1988QUsLS211jO2EfVt2rQBcKcXtrS0FOvWrcO8efOwbt06lJaWSmMDVPWMGZNFA2Jqaoro6Gjs3bsXwcHBaqOhg4ODsXfvXqxdu5aDW4iISPIgo/JV1q5di7fffhsHDx5Er169aqxrbCPqVQN5kpKSMH78eHh7e2PlypXw9vbG+PHjkZSUpFbPmPEytIEJCQlBfHw8Fi5cCB8fH6nczc0N8fHxCAkJ0WF0RESkbx5kVD4ArF69Gm+99RYOHDiA/v37N1K0+kN1Nc/e3h7Hjx+v9pvr5eWFP//8s0lczWOyaIBCQkIwZswYpKWl4fLly3BycoKfnx97FImISKOwsDBMmzYN/fv3x4ABAxATE4OysjLMmDEDADB16lS0a9cOUVFRAIBVq1YhIiICcXFxcHV1lZ4g1Lx5czRv3lxnx9GYVFfzQkND8eSTT2L06NG4desWLC0tcfbsWezfvx/x8fFN4reXyaKBMjU1xdChQ3UdBhERGYC6jsr/4IMPUFlZidDQULX9REZGYvny5Y0Zuk6FhIRg0aJFWLduHaqqqqRyMzMzLFq0qMlczWOySERE1ATUZVR+fn5+wwdkABISErB27VqMGDECVlZW+Ouvv9CqVSuUl5dj7dq1GDhwYJNIGJksEhEREd1D9dS0Rx55BAcOHIBCoZDWmZqa4pFHHmkyT01jskhERER0j7S0NK09rAqFQnomdFpamtHfFsZkkYiIiOged88TaW5ujnHjxqF///44evQodu/ejdu3b1erZ6w4zyIRERHRPX744QcAgEwmg6OjI+Li4hAWFoa4uDg4OjpCJpOp1TNmTBaJiIiI7pGeng4AEEKgd+/eag/C6N27N4QQavWMGZNFMlgbN26Eq6srLC0t4e3tjZ9++qnG+rt374aHhwcsLS3h6emJ/fv3q60XQiAiIgJOTk6wsrJCQEAATp8+La3Pz8/HzJkz4ebmBisrK3Tq1AmRkZGorKxUqyOTyaothw8frt+DJyKNHJvLYHXjFHApu06L1Y1TcGwu01HUpI/u/m4XQiAzMxO7du1CZmamlCjeW89Y8Z5FMkg7d+5EWFgYYmNj4e3tjZiYGAQGBuLkyZNo27Zttfrp6emYOHEioqKiMHLkSMTFxSE4OBhZWVno2bMngDtPK3j33XexdetWuLm5YdmyZQgMDMSJEydgaWmJvLw8KJVKfPjhh3B3d0dOTg5mzZqFsrIyrF27Vu39vv32W/To0UN6bWdn17AfCBEBAJ71skC3758Fvq/bdt3+f1silS5duuDUqVMwNTXFN998g3379knrTE1NYWpqCoVCgS5duugwykYimoji4mIBQBQXF+s6FNKiLudowIABYu7cudJrhUIhnJ2dRVRUlMb648ePF0FBQWpl3t7e4tlnnxVCCKFUKoWjo6NYs2aNtP7GjRtCLpeL7du3a41j9erVws3NTXp97tw5AUAcO3bsvsegjbG11czMTAFAZGZm6jqUemNs50gTQzzGzMxM4dhcJk4kbxei4FidlhPJ24Vjc5lBtVN9P0f6Ht/9bNmyRQAQAISpqalwdnYWjo6OwtnZWZiamkrrtmzZoutQH1htzxF7FsngVFZWIjMzE+Hh4VKZiYkJAgICkJGRoXGbjIwMhIWFqZUFBgYiMTERAHDu3DkUFhYiICBAWm9rawtvb29kZGTgqaee0rjf4uJitG7dulq56rFQXbp0wcsvv4zRo0drPZ6KigpUVFRIr0tKSrTWJaKaFf4tUN6yC+Dcp07blRcqUfi3uH9FajLat28v/bdCocClS5fuW89Y8Z5FMjjXrl2DQqGQHlOl4uDgID2/9F6FhYU11lf9W5d9njlzBu+99x6effZZqax58+aIjo7G7t27sW/fPvj6+iI4OBhfffWV1uOJioqCra2ttLi4uGitS0RE1NjYs0j0AAoKCjB8+HCMGzcOs2bNksrt7e3VejAfffRRXLp0CWvWrNHauxgeHq62TUlJCRNGIiIdu3DhQr3WM2TsWSSDY29vD1NTUxQVFamVFxUVwdHRUeM2jo6ONdZX/VubfV66dAn+/v7w8fHBpk2b7huvt7c3zpw5o3W9XC6HjY2N2kJERLpVm+/3utQzZA+ULDb2lCUq+/btg7e3N6ysrNCqVSsEBwc/SPhk4CwsLODl5YXk5GSpTKlUIjk5GYMGDdK4zaBBg9TqA8ChQ4ek+m5ubnB0dFSrU1JSgiNHjqjts6CgAEOHDoWXlxc+/fRTmJjc/3+h7OxsODk51ekYiYhIt7Q96u9B6xmyOieLqilLIiMjkZWVhd69eyMwMBBXrlzRWF81ZcnMmTNx7NgxBAcHIzg4GDk5OVId1ZQlsbGxOHLkCJo1a4bAwEDcunVLqrNnzx5MmTIFM2bMwC+//IIff/wRkyZNeoBDJmMQFhaGjz76CFu3bkVubi6ee+45lJWVYcaMGQCAqVOnqg2AmT9/PpKSkhAdHY28vDwsX74cR48exbx58wDcmaF/wYIFePPNN/HVV1/h+PHjmDp1KpydnaU/SlSJYocOHbB27VpcvXoVhYWFavc0bt26Fdu3b0deXh7y8vKwcuVKbN68GS+88ELjfThERPTQ7h54WB/1DFpdh1nrYsqS27dvi3bt2omPP/64ruFKDH0If1NQ13P03nvviQ4dOggLCwsxYMAAcfjwYWndkCFDxLRp09Tq79q1S3Tp0kVYWFiIHj16iH379qmtVyqVYtmyZcLBwUHI5XLx+OOPi5MnT0rrP/30U2mqhHsXlS1btohu3boJa2trYWNjIwYMGCB2797doJ+DvuPUOYbJEI/xYdqaIbZTfT9H+h7f/djb22v9zr97sbe313WoD6y256hOPYuqKUvunl6kNlOW3F0fuDNliar+/aYsAYCsrCwUFBTAxMQEffv2hZOTE0aMGKHWO3mviooKlJSUqC1kXObNm4fz58+joqICR44cgbe3t7QuNTUVW7ZsUas/btw4nDx5EhUVFcjJycGTTz6ptl4mk+H1119HYWEhbt26hW+//VZtstXp06dDCKFxUZk2bRpOnDiBsrIyFBcX48iRIwgNDW2YD4CIiBqMhUXtJmmvbT1DVqdkUVdTlvz+++8AgOXLl2Pp0qXYu3cvWrVqhaFDh+L69esa35fTkRAREdGDYrL4D4MYDa1UKgEAr732GsaOHSsNLpDJZNi9e7fGbcLDw1FcXCwtFy9ebMyQiYiIyIBVVVXVaz1DVqdkUVdTlqhGknbv3l1aL5fL8cgjj2id34jTkRAREdGDqu3ta03hNrc6Tcp995QlqhGiqilLVKNK76WasmTBggVSmbYpS/r06QPgnylLnnvuOQCAl5cX5HI5Tp48CV9fXwDA7du3kZ+fj44dO9blEIiIyEjdvHkTwJ373DUpLy9Hfn4+XF1dYWVlpbYuNze3weMjw8KexX/U+QkuYWFhmDZtGvr3748BAwYgJiam2pQl7dq1Q1RUFIA7U5YMGTIE0dHRCAoKwo4dO3D06FFpEsu7pyzp3Lkz3NzcsGzZMrUpS2xsbDBnzhxERkbCxcUFHTt2xJo1awDcGbRARPrj5s2byMvLk16rfoTv/TH28PCAtbV1o8ZGxk3V7u5+qlJdtWjRor7CIQN39+DF+qhnyOqcLE6YMAFXr15FREQECgsL0adPHyQlJUkDVC5cuKA2UbGPjw/i4uKwdOlSLFmyBJ07d0ZiYiJ69uwp1Xn55ZdRVlaG2bNn48aNG/D19UVSUhIsLS2lOmvWrIGZmRmmTJmC8vJyeHt747vvvkOrVq0e5viJqJ7l5eXBy8urWvnkyZPVXmdmZqJfv36NFRY1AaoOBm1/iOTm5mLy5MnYtm0bunXrVm19ixYt0Llz54YOkwyEpaUlysvLa1XP2MlEU0iJcefStq2tLYqLi3n/op7iObrD0D+He3sWtV36M+SeRUM/R7VhjMeYlZUFLy8vo/lDRd/Pkb7Hdz9OTk5aZ3q5m6OjIy5fvtwIEdW/2p6jOvcsEhHVxNrautoP8eDBg3UUDRHRg6nN41zrUs+QGf8REhEREdXR7du367WeIWOySERERHQPjob+B5NFIiIionvcuHGjXusZMiaLRERERPfg1Dn/YLJIREREdI/mzZvXaz1DxmSRiIiI6B7angT0oPUMGZNFIiIiont07twZFhYWNdaxsLBoEhO5M1kkIiIi0qCiokJrwmhhYYGKiopGjkg3mCwSERERaVFRUYE//vhDesKJjY0N/vjjjyaTKAJMFomIiIhq1K5dO6SkpAAAUlJS0K5dOx1H1LiYLBIRERGRVkwWiYiIiEgrJotEREREpJWZrgMgIiIi0genT59GaWmpxnW5ublq/2rSokULo5xKh8kiERERNXmnT59Gly5d7ltv8uTJNa4/deqU0SWMTBaJiIioyVP1KG7btg3dunWrtr68vBz5+flwdXWFlZVVtfW5ubmYPHmy1p5JQ8ZkkYiIiOj/devWDf369dO4bvDgwY0cjX7gABciIiIi0oo9i0REREQAHJvLYHXjFHCp7n1pVjdOwbG5rAGi0j0mi0REREQAnvWyQLfvnwW+r/u23f5/e2PEZNFAKRQKpKWl4fLly3BycoKfnx9MTU11HRaRGrZTIjIkH2ZWYkLEFnTz8Kjztrl5efgwehJGN0BcusZk0QAlJCRg4cKFyM/Pl8pcXV0RHR2NkJAQ3QVGdBe2UyIyJDdv3kTh3wI//v43ylsqq62/72joywoU/i0aI9RGxwEuBiYhIQGhoaHw9PRERkYGSktLkZGRAU9PT4SGhiIhIUHXIRKxnRLpoY0bN8LV1RWWlpbw9vbGTz/9VGP93bt3w8PDA5aWlvD09MT+/fsbKVLdyMvLAwDMmjULXl5e1RZfX19MnjwZvr6+Gter5l9s0aKFLg+jQciEEMaZBt+jpKQEtra2KC4uho2Nja7DeSAKhQLu7u7w9PREYmIiTEz+yfWVSiWCg4ORk5OD06dPG+SlPmM4R/XB0D8HY2+ngOGfo9owxmPMysqCl5cXMjMztU6NYkjqco527tyJqVOnIjY2Ft7e3oiJicHu3btx8uRJtG3btlr99PR0PPbYY4iKisLIkSMRFxeHVatWISsrCz179qz3+PTBtWvXkJiYCA8PD1hbW1dbr5pHUds8jIDhPcGltueIPYsGJC0tDfn5+ViyZInaDzAAmJiYIDw8HOfOnUNaWpqOIiRiO9Wkvnt0li9fDg8PDzRr1gytWrVCQEAAjhw5Um0/+/btg7e3N6ysrNCqVSsEBwfX52HpvZs3byIrK0ta7n5c293lN2/e1HGkDe+dd97BrFmzMGPGDHTv3h2xsbGwtrbG5s2bNdZfv349hg8fjsWLF6Nbt25444030K9fP2zYsKGRI2889vb2eOaZZ+Dr64t+/frBo5b3LXp4eKBfv37o16+fQSWKdcF7Fg3I5cuXAUDrX3WqclU9Il1gO1W3c+dOhIWFqfXoBAYG1tijM3HiRLUeneDgYLUenS5dumDDhg145JFHUF5ejnXr1mHYsGE4c+YM2rRpAwDYs2cPZs2ahZUrV+Jf//oXqqqqkJOT06jHrmt5eXnw8vKqVn7v49qMpadRm8rKSmRmZiI8PFwqMzExQUBAADIyMjRuk5GRgbCwMLWywMBAJCYman2fiooKVFRUSK9LSkoeLnAdY/v5B5NFA+Lk5AQAyMnJwcCBA6utV/0QqOoR6QLbqbq7e3QAIDY2Fvv27cPmzZvx6quvVqt/d48OALzxxhs4dOgQNmzYgNjYWADApEmTqr3HJ598gl9//RWPP/44qqqqMH/+fKxZswYzZ86U6nXv3r2hDlMveXh4IDMzU3qtbYBCbXuQDNW1a9egUCjg4OCgVu7g4CDdp3evwsJCjfULCwu1vk9UVBRWrFjx8AHrCbaffzBZNCB+fn5wdXXFypUrNd4LFhUVBTc3N/j5+ekwSmrq2E7/0Rg9OpWVldi0aRNsbW3Ru3dvAHfuzSsoKICJiQn69u2LwsJC9OnTB2vWrNHa42tsvUIAYG1tXa3Hp6k+rq0xhIeHq7XdkpISuLi46DCih8P28w/es2hATE1NER0djb179yI4OFhtlGlwcDD27t2LtWvXGuygATIObKf/qKlHR1sPTW17dPbu3YvmzZvD0tIS69atw6FDh2Bvbw8A+P333wHcubdx6dKl2Lt3L1q1aoWhQ4fi+vXrGt83KioKtra20mLIP/Kkzt7eHqampigqKlIrLyoqgqOjo8ZtHB0d61QfAORyOWxsbNQWMg5MFg1MSEgI4uPjcfz4cfj4+MDGxgY+Pj7IyclBfHw8568jvcB22vD8/f2RnZ2N9PR0DB8+HOPHj8eVK1cA3OnBBYDXXnsNY8eOhZeXFz799FPIZDLs3r1b4/7Cw8NRXFwsLRcvXmy0Y6GGZWFhAS8vLyQnJ0tlSqUSycnJGDRokMZtBg0apFYfAA4dOqS1Phk3XoY2QCEhIRgzZgyfjEF6je20YXt0mjVrBnd3d7i7u2PgwIHo3LkzPvnkE4SHh0v3g959j6JcLscjjzyCCxcuaHxfuVwOuVxe52MkwxAWFoZp06ahf//+GDBgAGJiYlBWVibdSzt16lS0a9cOUVFRAID58+djyJAhiI6ORlBQEHbs2IGjR49i06ZNujwM0hEmiwbK1NQUQ4cO1XUYRDVq6u307h4d1bQ1qh6defPmadxG1aOzYMECqaw2PTpKpVK659DLywtyuRwnT56Er68vAOD27dvIz89Hx44dH/7AyOBMmDABV69eRUREhHQPa1JSknTLw4ULF9TuL/bx8UFcXByWLl2KJUuWoHPnzkhMTKz1HItkXJgsEhE1oPru0SkrK8Nbb72F0aNHw8nJCdeuXcPGjRtRUFCAcePGAQBsbGwwZ84cREZGwsXFBR07dsSaNWsAQKpDTc+8efO0/pGSmpparWzcuHFsLwSAySIRUYOq7x4dU1NT5OXlYevWrbh27Rrs7Ozw6KOPIi0tDT169JD2s2bNGpiZmWHKlCkoLy+Ht7c3vvvuO7Rq1apxPwAiMnh83B/pDZ6jO/g56L+mcI6awjEaOn0/R/oeH/Fxf0RERERUD5gsEhEREZFWTBaJiIiISCsmi0RERESkFZNFIiIiItKKySIRERERacVkkYiIiIi0ajKTcqumkywpKdFxJKSN6tw0kak/tWJb1X9Noa2yHeo/fW+HbEP6r7ZtqMkki6WlpQAAFxcXHUdC91NaWgpbW1tdh6EzbKuGw5jbKtuh4dDXdsg2ZDju14aazBNclEolLl26hBYtWkAmk+k6nHpRUlICFxcXXLx40ShmxxdCoLS0FM7OzmqPP2tqjK2tGls7BZpGWzW2dggYX1vU93ZobG3I2NoPUPs21GSSRWPERymRIWA7JX3BtkgPoym3H/37U4SIiIiI9AaTRSIiIiLSismiAZPL5YiMjIRcLtd1KERasZ2SvmBbpIfRlNsP71kkIiIiIq3Ys0hEREREWjFZJCIiIiKtmCwSERERkVZMFomIiIhIKyaLRERERKQVk0UD9P3332PUqFFwdnaGTCZDYmKirkMi0ohtlfQB2yE9DLYfJosGqaysDL1798bGjRt1HQpRjdhWSR+wHdLDYPsBzHQdANXdiBEjMGLECF2HQXRfbKukD9gO6WGw/bBnkYiIiIhqwGSRiIiIiLRiskhEREREWjFZJCIiIiKtmCwSERERkVYcDW2A/v77b5w5c0Z6fe7cOWRnZ6N169bo0KGDDiMjUse2SvqA7ZAeBtsPIBNCCF0HQXWTmpoKf3//auXTpk3Dli1bGj8gIi3YVkkfsB3Sw2D7YbJIRERERDXgPYtEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWn1f27Kexsr8ukQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -472,11 +487,11 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "!rm -rf project config.yaml eval.log" + "# !rm -rf project config_full.yaml eval.log\n" ] }, { @@ -489,7 +504,7 @@ ], "metadata": { "kernelspec": { - "display_name": "apax311", + "display_name": "new_defaults", "language": "python", "name": "python3" }, @@ -503,7 +518,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/examples/02_Molecular_Dynamics.ipynb b/examples/02_Molecular_Dynamics.ipynb index 83b414e8..0c2f5748 100644 --- a/examples/02_Molecular_Dynamics.ipynb +++ b/examples/02_Molecular_Dynamics.ipynb @@ -36,9 +36,17 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There is already a config file in the working directory.\n" + ] + } + ], "source": [ - "!apax template train # generating the config file in the cwd" + "!apax template train --full # generating the config file in the cwd" ] }, { @@ -50,7 +58,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "Epochs: 100%|█████████████████████████████████████| 100/100 [00:47<00:00, 2.09it/s, val_loss=0.105]\n" + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1732268437.776210 522570 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732268437.779425 522570 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "Epochs: 0%| | 0/100 [00:00" ] @@ -236,7 +247,7 @@ "\n", "Open the config and specify the starting structure and simulation parameters.\n", "If you specify the data set file itself, the first structure of the data set is going to be used as the initial structure.\n", - "Your `md_config_minimal.yaml` should look similar to this:\n", + "Your `md_config.yaml` should look similar to this:\n", "\n", "```yaml\n", "ensemble:\n", @@ -266,7 +277,10 @@ " ), # if the model from example 01 is used change this\n", " \"duration\": 5000, # fs\n", " \"ensemble\": {\n", - " \"temperature\": 300,\n", + " \"temperature_schedule\": {\n", + " \"T0\": 300,\n", + " \"name\": \"constant\",\n", + " },\n", " },\n", "}\n", "config_dict = mod_config(md_config_path, config_updates)\n", @@ -319,22 +333,29 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO | 21:44:19 | reading structure\n", - "INFO | 21:44:19 | Unable to initialize backend 'rocm': NOT_FOUND: Could not find registered platform with name: \"rocm\". Available platform names are: CUDA\n", - "INFO | 21:44:19 | Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory\n", - "INFO | 21:44:20 | initializing model\n", - "INFO | 21:44:20 | loading checkpoint from /home/linux3_i1/segreto/uni/dev/apax/examples/project/models/etoh_md/best\n", - "INFO | 21:44:20 | Initializing new trajectory file at md/md.h5\n", - "INFO | 21:44:20 | initializing simulation\n", - "INFO | 21:44:23 | running simulation for 5.0 ps\n", - "Simulation: 0%| | 0/10000 [00:00" ] @@ -377,11 +398,11 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ - "!rm -rf project md config.yaml example.traj md_config.yaml" + "!rm -rf project md config_full.yaml example.traj md_config.yaml" ] }, { @@ -394,7 +415,7 @@ ], "metadata": { "kernelspec": { - "display_name": "apax", + "display_name": "new_defaults", "language": "python", "name": "python3" }, @@ -408,7 +429,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/examples/03_Transfer_Learning.ipynb b/examples/03_Transfer_Learning.ipynb index 36c2ad6e..5080e533 100644 --- a/examples/03_Transfer_Learning.ipynb +++ b/examples/03_Transfer_Learning.ipynb @@ -114,18 +114,9 @@ "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/ms/miniconda3/envs/apax311/lib/python3.11/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", - " pid, fd = os.forkpty()\n" - ] - } - ], + "outputs": [], "source": [ - "!apax template train" + "!apax template train --full" ] }, { @@ -134,7 +125,7 @@ "metadata": {}, "outputs": [], "source": [ - "config_path = Path(\"config.yaml\")\n", + "config_path = Path(\"config_full.yaml\")\n", "\n", "config_updates = {\n", " \"n_epochs\": 100,\n", @@ -152,7 +143,7 @@ "}\n", "config_dict = mod_config(config_path, config_updates)\n", "\n", - "with open(\"config.yaml\", \"w\") as conf:\n", + "with open(\"config_full.yaml\", \"w\") as conf:\n", " yaml.dump(config_dict, conf, default_flow_style=False)" ] }, @@ -165,26 +156,29 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO | 16:25:57 | Running on [cuda(id=0)]\n", - "INFO | 16:25:57 | Initializing Callbacks\n", - "INFO | 16:25:57 | Initializing Loss Function\n", - "INFO | 16:25:57 | Initializing Metrics\n", - "INFO | 16:25:57 | Running Input Pipeline\n", - "INFO | 16:25:57 | Read data file project/benzene_mod.xyz\n", - "INFO | 16:25:57 | Loading data from project/benzene_mod.xyz\n", - "INFO | 16:26:06 | Computing per element energy regression.\n", - "INFO | 16:26:06 | Initializing Model\n", - "INFO | 16:26:06 | initializing 1 models\n", - "INFO | 16:26:10 | Initializing Optimizer\n", - "INFO | 16:26:10 | Beginning Training\n", - "Epochs: 0%| | 0/100 [00:00" + "" ] }, - "execution_count": 9, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHACAYAAABONwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACa/ElEQVR4nO2deXwU9f3/X3vn3iSQg5BwBFBA0CIogihUEJHWo15VEUURtBWvqhX1p9b6VdRqD62tWk8Uqq1Vq7RiUQQVkRsVhHCEIwmEAEk2xyZ7zu+P3c/szB7JntlN8no+HvuAzM7Ofmaz2Xnt631pJEmSQAghhBDSC9EmewGEEEIIIcmCQogQQgghvRYKIUIIIYT0WiiECCGEENJroRAihBBCSK+FQogQQgghvRYKIUIIIYT0WiiECCGEENJroRAihBBCSK+FQogQQgghvRYKoQTxn//8B+PHj0d6ejry8vJw8cUXh9zX4XDg3nvvxejRo5GZmYmSkhJce+21OHTokGq/zZs349xzz0Vubi769OmD+fPno6WlRb7/9ddfh0ajCXqrq6sLe+033XQThgwZgvT0dBQUFOCiiy7Czp07I34NCCGEkFSHQigB/Otf/8Ls2bNx/fXX49tvv8WaNWtw9dVXh9zfarVi8+bNePDBB7F582a89957qKiowIUXXijvc+jQIUybNg1Dhw7FunXrsHz5cmzfvh1z5syR9/n5z3+Ow4cPq27nnXceJk+ejMLCwrDXP3bsWLz22mvYsWMHPvnkE0iShOnTp8PlckX1ehBCCCEpi0TiisPhkPr37y+9/PLLMR1n/fr1EgDpwIEDkiRJ0osvvigVFhZKLpdL3ue7776TAEi7d+8Oeoy6ujrJYDBIixcvVm3/4IMPpDFjxkgmk0kaPHiw9Jvf/EZyOBwh1/Ltt99KAKQ9e/bEdE6EEEJIqkFHKM5s3rwZNTU10Gq1GDNmDPr164fzzz8f27Zti+g4FosFGo0Gubm5AACbzQaj0Qit1vcrS09PBwB89dVXQY+xePFiZGRk4LLLLpO3ffnll7j22mtx++2344cffsCLL76I119/HY899ljQY7S2tuK1117D4MGDUVZWFtE5EEIIIakOhVCcqaysBAD85je/wf/7f/8Py5YtQ15eHqZMmYL6+vqwjtHe3o57770XV111FXJycgAA55xzDmpra/G73/0OdrsdDQ0NWLhwIQDg8OHDQY/zyiuv4Oqrr5YFEwA88sgjWLhwIa677jqUl5fj3HPPxaOPPooXX3xR9di//OUvyMrKQlZWFj7++GOsWLECRqMx4teDEEIISWUohMJk4cKFIRORxW3nzp1wu90AgAceeACXXnqpnG+j0Wjwz3/+s9PncTgcuOKKKyBJEv7617/K20866SS88cYbeOaZZ5CRkYHi4mIMHjwYRUVFKpdIsHbtWuzYsQNz585Vbf/222/x29/+VhY5WVlZmDdvHg4fPgyr1SrvN2vWLGzZsgWrV6/GCSecgCuuuALt7e3RvnyEEEJISqKRJElK9iK6A0ePHsXx48c73Ke8vBxr1qzBOeecgy+//BKTJk2S7xs/fjymTZsWMgQF+ERQZWUlVq5ciT59+gTd78iRI8jMzIRGo0FOTg7efvttXH755ap95s6di82bN2PLli2q7enp6XjkkUdwySWXBF1/MFFlt9uRl5eHl19+GVdddVWHrwEhhBDSndAnewHdhYKCAhQUFHS639ixY2EymVBRUSELIYfDgf3792PgwIEhHydE0O7du/H555+HFEEAUFRUBAB49dVXkZaWhnPPPVd1f0tLC/7xj39g0aJFAY899dRTUVFRgaFDh3Z6LgJJkiBJEmw2W9iPIYQQQroDFEJxJicnBzfffDMefvhhlJWVYeDAgfjd734HACrXZvjw4Vi0aBF+9rOfweFw4LLLLsPmzZuxbNkyuFwu1NbWAgDy8/Pl3Jw///nPmDhxIrKysrBixQrcc889eOKJJ+SEasE777wDp9OJa665JmB9Dz30EH76059iwIABuOyyy6DVavHtt99i27Zt+L//+z9UVlbinXfewfTp01FQUIDq6mo88cQTSE9Px8yZMxP0qhFCCCFJIqk1az0Uu90u3XXXXVJhYaGUnZ0tTZs2Tdq2bZtqHwDSa6+9JkmSJO3bt08CEPT2+eefy4+ZPXu2lJ+fLxmNRunkk08OKIsXTJgwQbr66qtDrm/58uXSxIkTpfT0dCknJ0c6/fTTpZdeekmSJEmqqamRzj//fKmwsFAyGAxSaWmpdPXVV0s7d+6M7UUhhBBCUhDmCBFCCCGk18KqMUIIIYT0WiiECCGEENJrYbJ0J7jdbhw6dAjZ2dnQaDTJXg4hhBBCwkCSJDQ3N6OkpCRoaxjljt2C48ePS1dffbWUnZ0tmc1m6YYbbpCam5s7fMyLL74oTZ48WcrOzpYASA0NDRE/b1VVVchEZt5444033njjLbVvVVVVHV7nu40jNGvWLBw+fBgrVqyAw+HA9ddfj/nz52Pp0qUhH2O1WjFjxgzMmDED9913X1TPm52dDQCoqqqSx10QQgghJLVpampCWVmZfB0PRbeoGtuxYwdGjhyJDRs2YNy4cQCA5cuXY+bMmaiurkZJSUmHj1+1ahV+/OMfo6GhIaDnTmc0NTXBbDbDYrFQCBFCCCHdhHCv390iWXrt2rXIzc2VRRAATJs2DVqtFuvWrYvrc9lsNjQ1NaluhBBCCOmZdAshVFtbi8LCQtU2vV6P/Px8uQNzvFi0aBHMZrN8Kysri+vxCSGEEJI6JFUIhTvRvSu57777YLFY5FtVVVWXPj8hhBBCuo6kJkvfddddmDNnTof7lJeXo7i4GHV1dartTqcT9fX1KC4ujuuaTCYTTCZTXI9JCCEktXG73bDb7cleBokAg8EAnU4X83GSKoTCneg+YcIENDY2YtOmTRg7diwAYOXKlXC73Rg/fnyil0kIIaQHY7fbsW/fPrjd7mQvhURIbm4uiouLY+rz1y3K50eMGIEZM2Zg3rx5eOGFF+BwOLBgwQJceeWVcsVYTU0Npk6disWLF+P0008H4Mktqq2txZ49ewAA33//PbKzszFgwADk5+cn7XwIIYSkBpIk4fDhw9DpdCgrK+u48R5JGSRJgtVqlaNF/fr1i/pY3UIIAcCSJUuwYMECTJ06FVqtFpdeeimeffZZ+X6Hw4GKigpYrVZ52wsvvIBHHnlE/vnss88GALz22mudhuQIIYT0fJxOJ6xWK0pKSpCRkZHs5ZAISE9PBwDU1dWhsLAw6jBZt+gjlEzYR4gQQnou7e3t2LdvHwYNGiRfWEn3oa2tDfv378fgwYORlpamuq9H9REihBBCEglnSXZP4vF7oxAihBCSGCwWoLo6+H3V1Z77CUkyFEKEEELij8UCzJgBTJ4M+Pdjq6rybJ8xg2IoCezfvx8ajQZbt25N6PPMmTMHF198cUKfIx5QCBFCCIk/zc1AXR1QWQlMmeITQ1VVnp8rKz33Nzcnc5UkDoQSVn/605/w+uuvJ2VNkUAhRAghJP6UlgKrVgHl5UBlJZw/Pgf2r9b4RFB5uef+0tIkLzRGGP4LidlsjnjQeTKgECKEEJIYyspkMXTJmb/EtDd3wLH/gE8EdfdZjkkO/7377rsYPXo00tPT0adPH0ybNg2tra0AgJdffhkjRoxAWloahg8fjr/85S8dHmvbtm04//zzkZWVhaKiIsyePRvHjh2T73e73XjqqacwdOhQmEwmDBgwAI899hgAYPDgwQCAMWPGQKPRYMqUKQACQ2M2mw233XYbCgsLkZaWhkmTJmHDhg3y/atWrYJGo8Fnn32GcePGISMjAxMnTkRFRUU8Xq6QUAgRQghJHGVlcC1ejO/6nYCDef3QkJ4DvPlm9xdBQFLDf4cPH8ZVV12FG264ATt27MCqVatwySWXQJIkLFmyBA899BAee+wx7NixA48//jgefPBBvPHGG0GP1djYiHPOOQdjxozBxo0bsXz5chw5cgRXXHGFvM99992HJ554Ag8++CB++OEHLF26FEVFRQCA9evXAwA+/fRTHD58GO+9917Q5/n1r3+Nf/3rX3jjjTewefNmDB06FOeddx7q6+tV+z3wwAN45plnsHHjRuj1etxwww3xeMlCI5EOsVgsEgDJYrEkeymEENL9OHhQaht6ojTw3mXSwHuXSdXZBZJUXi5JBw8me2WSJElSW1ub9MMPP0htbW3RHeDgQc/5AJ5/16xR/5yg89y0aZMEQNq/f3/AfUOGDJGWLl2q2vboo49KEyZMkCRJkvbt2ycBkLZs2SLfN336dNX+VVVVEgCpoqJCampqkkwmk/S3v/0t6Fr8jye47rrrpIsuukiSJElqaWmRDAaDtGTJEvl+u90ulZSUSE899ZQkSZL0+eefSwCkTz/9VN7nP//5jwQg5O+no99fuNfvbtNZmhBCSDfD64w4qg/LmxyDBgPfr/c4Jj0hPCbCf8IBOvNMz/YEh/9OOeUUTJ06FaNHj8Z5552H6dOn47LLLoPRaMTevXsxd+5czJs3T97f6XTCbDYHPda3336Lzz//HFlZWQH37d27F42NjbDZbJg6dWrU6927dy8cDgfOFK8PPENTTz/9dOzYsUO178knnyz/X4zOqKurw4ABA6J+/o6gECKEEBJ/qqtlceAYPlre7HzzLeCSGb5w0urV3T9huqzME+5TXOQTHf7T6XRYsWIFvv76a/zvf//Dc889hwceeAAfffQRAOBvf/tbwFDyUCMoWlpacMEFF+DJJ58MuK9fv36orKyM/wl0gMFgkP8vGiYmciAuc4QIIYTEn+xsoLAQKC+H4/0P5M2OwiJfNVlhoWe/7k5VFTB7tnrb7NmBCdRxRqPR4Mwzz8QjjzyCLVu2wGg0Ys2aNSgpKUFlZSWGDh2quomkZn9OPfVUbN++HYMGDQp4TGZmJoYNG4b09HR89tlnQR9vNBoBAC6XK+RahwwZIq9P4HA4sGHDBowcOTKGVyF26AgRQgiJP2YzsHw50NwMe0Y+AE/4w+Fye5yS1as9IihEuKbboEyMLi/3OEGzZ/scrwSFx9atW4fPPvsM06dPR2FhIdatW4ejR49ixIgReOSRR3DbbbfBbDZjxowZsNls2LhxIxoaGvCrX/0q4Fi33HIL/va3v+Gqq67Cr3/9a+Tn52PPnj14++238fLLLyMtLQ333nsvfv3rX8NoNOLMM8/E0aNHsX37dsydOxeFhYVIT0/H8uXLUVpairS0tIAwXGZmJn7xi1/gnnvuQX5+PgYMGICnnnoKVqsVc+fOjfvrEwkUQoQQQhKD2QyYzXAea5U3OVzeOd/dPRwGqMJ/qpwgZc5QgsJ/OTk5+OKLL/DHP/4RTU1NGDhwIJ555hmcf/75AICMjAz87ne/wz333IPMzEyMHj0ad9xxR9BjlZSUYM2aNbj33nsxffp02Gw2DBw4EDNmzIBW6wkcPfjgg9Dr9XjooYdw6NAh9OvXDzfffDMAQK/X49lnn8Vvf/tbPPTQQzjrrLOwatWqgOd54okn4Ha7MXv2bDQ3N2PcuHH45JNPkJeXF9fXJlI4fb4TOH2eEEJiY9eRZkz/wxcAgHfmn4Hx5X2SvCIfYvp8sOnlnSL6CNXVBTo/wikqLPQ4Y93d+UpROvr9hXv9piNECCEkodidvkRX2RHqCSjCfwGOT08K//VwKIQIIYQkFKfbJ34cCaz+SQre8F9QekL4rxfAqjFCCCEJxeHyiR9nT3KESI+AQogQQkhCcahCYz3MESLdHgohQgghCcWhDI2lqBBi3VD3JB6/NwohQgghCcWRwsnSotuy3W5P8kpINFitVgDqbtSRwmRpQgghCUWdI5RajpBer0dGRgaOHj0Kg8Eg980hqY0kSbBarairq0Nubm7I8SHhQCFECCEkoahCY+7UcoQ0Gg369euHffv24cCBA8leDomQ3NxcFBcXx3QMCiFCCCEJRRUac6aWIwR4ZmUNGzaM4bFuhsFgiMkJElAIEUIISSiq0FiK9hHSarWRd5YmPQIGQwkhhCQUpRBKtWRpQiiECCGEJBSl+EnV8nnSe6EQIoQQklDYWZqkMhRChBBCEooqNJaiOUKk90IhRAghJKGoQmNOOkIktaAQIoQQklC6Q9UY6b1QCBFCCEkorBojqQyFECGEkITCqjGSylAIEUIISSipPGuMEAohQgghCUVdNcbQGEktKIQIIYQkFHXVGB0hklp0GyFUX1+PWbNmIScnB7m5uZg7dy5aWlo63P/WW2/FiSeeiPT0dAwYMAC33XYbLBZLF66aEEKIumqMjhBJLbqNEJo1axa2b9+OFStWYNmyZfjiiy8wf/78kPsfOnQIhw4dwtNPP41t27bh9ddfx/LlyzF37twuXDUhhBB11RgdIZJadIvp8zt27MDy5cuxYcMGjBs3DgDw3HPPYebMmXj66adRUlIS8JhRo0bhX//6l/zzkCFD8Nhjj+Gaa66B0+mEXt8tTp0QQro9rBojqUy3cITWrl2L3NxcWQQBwLRp06DVarFu3bqwj2OxWJCTk9OhCLLZbGhqalLdCCGERA9njZFUplsIodraWhQWFqq26fV65Ofno7a2NqxjHDt2DI8++miH4TQAWLRoEcxms3wrKyuLet2EEEJYNUZSm6QKoYULF0Kj0XR427lzZ8zP09TUhJ/85CcYOXIkfvOb33S473333QeLxSLfqqqqYn5+QgjpzbBqjKQySU2UueuuuzBnzpwO9ykvL0dxcTHq6upU251OJ+rr61FcXNzh45ubmzFjxgxkZ2fj/fffh8Fg6HB/k8kEk8kU1voJIYR0jpOzxkgKk1QhVFBQgIKCgk73mzBhAhobG7Fp0yaMHTsWALBy5Uq43W6MHz8+5OOamppw3nnnwWQy4cMPP0RaWlrc1k4IISQ87ApHiDlCJNXoFjlCI0aMwIwZMzBv3jysX78ea9aswYIFC3DllVfKFWM1NTUYPnw41q9fD8AjgqZPn47W1la88soraGpqQm1tLWpra+FyuZJ5OoQQ0qtQ5gjZWTVGUoxuU0O+ZMkSLFiwAFOnToVWq8Wll16KZ599Vr7f4XCgoqICVqsVALB582a5omzo0KGqY+3btw+DBg3qsrUTQkhvxsmqMZLCdBshlJ+fj6VLl4a8f9CgQZAk3x/YlClTVD8TQghJEBYL0NwMlJYG3lddDYfD58IzR4ikGt0iNEYIISRFsViAGTOAyZMB/yrbqipg8mTYjx6TN9lZNUZSDAohQggh0dPcDNTVAZWVwJQpPjFUVeX5ubISDsWlhrPGSKpBIUQIISR6SkuBVauA8nKfGPr6a1kEobwczqxseXeO2CCpBoUQIYSQ2CgrA1atQvvQE/Fq3igc+MmlsgjCqlWwK0wgh0ti/iZJKSiECCGExE5ZGT557AX8dtp8/H7SNZ5tb74JlJUFuEAuhsdICkEhRAghJHaqqmB5+XUAQEO6NxQ2ezZcBw7C3wBysISepBAUQoQQQmLDmxhtb2gEANhOGy/nDDmmTQ/Y3cESepJCUAgRQgiJnupqX3VYQREAoD0jS06gth8MHFzNpooklaAQIoQQEj3Z2UBhoac6bN48AIDN4ZITqJ3lQ+RdtRrPv6wcI6kEhRAhhJDoMZuB5cuB1avhyPTkBslNE8vK4Hj/3wAAvVYDg85zyaEQIqkEhRAhhJDYMJuB0lI4vNVg7YqRGvZCT7hMr/MJIYbGSCrRbWaNEUIISW0cXifIphijITpJG3Ra6L2xMTpCJJWgECKEEBIXhOhRCiEheow6LbSyEKIjRFIHCiFCCCFxwe4SjpAiNOYVRXqdBjqNRwhxAj1JJZgjRAghJC6I0JjDJcndo4UjZNBpYdAzWZqkHhRChBBC4oJysrxwhcQ2oypHiKExkjpQCBFCCIkLdoXTY3N43SFFaIxVYyQVoRAihBCLxdMhORjV1Z77Sac4lULIK4DsytAY+wiRFIRCiBDSu7FYgBkzgMmTPTOzlFRVebbPmEExFAbKkJfoJSTcH4NOC72O5fMk9aAQIoT0bpqbgbo6oLLSMzNLiCHvIFFUVnrub25O5iq7BY4gjpAvWVoDg9YbGnMzNEZSBwohQkjvprRUHhAqi6Gvv/aJoPJyz/2lpcldZzdALYQ8jpAqNKanI0RSDwohQgjxDgi1nHgSbjvpEnw++za1CCorS/YKuwXK0JhwhFShMa02YD9Ckg0bKhJCCACUlWH1o3/Gh5tacTQzDz+u3AS8+SZFUAQok6VFjpCyjxAgBexHSLKhI0QIIQBQVYWml14FALQa0z3bZs8OTKAmIbErHSFHkBwhVo2RFIRCiBBCvInRrU2tAADrsOHqnKE4i6FtNRY8//keefxETyFY+bxDVTXG0BhJPSiECCG9m+pqOTG6tagEANCmNwUmUIfqMxQFD/17G373SQU+r6iL2zFTgWDJ0qoRG1rOGiOpB4UQIaR3k50NFBYC5eVoueoaAECbwyUnUKO83HN/dnZcns7hcmPboSYAQE1DW1yOmSqo+wh1FBqjI0RSByZLE0J6N2YzsHw50NwM67p6AECb3Ts9vawMWL3aI4LM5rg83d6jLXJIrK7ZFpdjpgrBy+d9oTG3JAXsR0iyoSNECCFmM1BaihabE4DHEXKLpn+lpXETQQCwraZJ/n9dc3vcjpsKBGuo6OSIDZLiUAgRQoiXVq8QAoB2r6MRb7Yf8o3qONrDHCFnkBEb6tCYJmA/QpINhRAhhHhptfnEjxweizPblY5QU88SQnZWjZFuCIUQIYR4aVE4QtYECCG3W8IPh3tJaCwgWdpXNcbQGEklKIQIIcSL1a4IjTniL4QO1FvRYnPCqwfQYHX0mF5CLrcE5SzVgPJ5va9qjOXzJJWgECKEEC8titBYIhwhkR80ur8Zeq8aOtrSM8Jj/i6Pr3zeGxrTMjRGUhMKIUII8aJMlm5LgCMkKsZG9TejINsEAKhr6hnhMadbLW4CGyr6kqUZGiOpRLcRQvX19Zg1axZycnKQm5uLuXPnoqWlpcPH3HTTTRgyZAjS09NRUFCAiy66CDt37uyiFRNCuhMut6QSP4lIlhaO0EklZhQKIdRDKsccfiE+X7K0CI35yudZNUZSiW4jhGbNmoXt27djxYoVWLZsGb744gvMnz+/w8eMHTsWr732Gnbs2IFPPvkEkiRh+vTpcLkSUw1CCOm+tCryg4AYQmMWS9BxHJIkYXtVAwBgVP8cFGSnAehBQsgdSggpQ2N0hEjq0S06S+/YsQPLly/Hhg0bMG7cOADAc889h5kzZ+Lpp59GSUlJ0McphdKgQYPwf//3fzjllFOwf/9+DBkypEvWTgjpHlhtauETVWjMYgFmzADq6jzjOcrK5LsO76hEfbsLOsmNE9IlFOZ4HKGjPSQ05p/3E9BHSK8BnGyoSFKPbuEIrV27Frm5ubIIAoBp06ZBq9Vi3bp1YR2jtbUVr732GgYPHowyxYeTPzabDU1NTaobIaTnoyydB4A2P4coLJqbPSLIf2p9VRW2z/8VAGCY5TDS2lp7X2hMp/WIIQTmExGSTLqFEKqtrUVhYaFqm16vR35+Pmprazt87F/+8hdkZWUhKysLH3/8MVasWAGj0Rhy/0WLFsFsNsu3jkQTIaTn0OovhKJxhEpLVVPrm6bNQNPqNcCUKdiGLADASWeMAkpLUdjDQmP+JfE22RHyiB69Vgu9lo4QST2SKoQWLlwIjUbT4S3W5OZZs2Zhy5YtWL16NU444QRcccUVaG8PbUXfd999sFgs8q1KfKMjhPRo/IVQ1DlC3qn1DcNH4awZD2LssqO48Uez8L9RZwMARg3rBwAKR6hnhMbsTsnvZ7UjZNRz+jxJTZKaI3TXXXdhzpw5He5TXl6O4uJi1NXVqbY7nU7U19ejuLi4w8cLZ2fYsGE444wzkJeXh/fffx9XXXVV0P1NJhNMJlNE50EI6f4EhMZiKZ8vK8PWx/8MyzpPZeunw8bLd51U4hngWpTjdYR6yJgNf0eo3c8RMui0kCT1IFZCUoGkCqGCggIUFBR0ut+ECRPQ2NiITZs2YezYsQCAlStXwu12Y/z48Z082ockSZAkCTZbz/jgIT2fN9fuR1aaHj8bU5rspfR4/B2gmMrnq6pQ8bclwMkXYcKBbzG2ZgeWjT4HuUMH4eRSjxASydLHWmxwuSXoRLvpbop/uCtYjpBIDaIjRFKJbpEjNGLECMyYMQPz5s3D+vXrsWbNGixYsABXXnmlXDFWU1OD4cOHY/369QCAyspKLFq0CJs2bcLBgwfx9ddf4/LLL0d6ejpmzpyZzNMhJCwaWu148N/bce+738PN5NKE4+8IRR0aq6oCpkzBLm02AGDieeNxd83XWPWXG/DBn29EWu0hAECfTCM0GsAtAcdbu/bL2Wc7juC+974PCAfGgs/58Qi6QCHEhookNekWQggAlixZguHDh2Pq1KmYOXMmJk2ahJdeekm+3+FwoKKiAlarFQCQlpaGL7/8EjNnzsTQoUPx85//HNnZ2fj6668DEq8JSUWa2h0APBO97bxwJJy4JEtXV3uqxSorUdF/GADgxNNOUiVQY8oUoLoaep0WfTJFd+muFUK/+Wg7/r7+IN765kDcjinETabJE2gQnaWditCYb9YYhT1JHbpFHyEAyM/Px9KlS0PeP2jQIEiS74+rpKQE//3vf7tiaYQkhFZFXxu7y400gy6Jq+n5CCFk0mthc7qjC41lZwOFhXBqtNjddwDgknBicTbQJ9MjhqZMAQoLPfvBkzB9rMWGo11YOVZVb0VVfRsA4J2NVZh/djk0mtjDckIIZZn0aLQ64HBJcLklWcQbdFq4vAKIjhBJJbqNI0RIb0M5Cd3m4IUj0YiBq32zPC5NVELIbAaWL8eB9z+G3SUhzaBFWV6G576yMmD1amD5cs9+8OUJdWXl2Nq9x+X/Vx5txeaDDXE5rgiNZZl8369tTpdfaIzl8yT1oBAiJEVR5qgwNBZfrHYnttVYVC6yEJ59vWXt1mirxsxm7EImAOCEomxolUnQpaWyCAIUJfRdGBpbW+kRQkavKHlnQ3xahCgdIYHN4Q4eGmOyNEkhKIQISVGUjpDdSSEUT/7f+9vw0+e+wvp99fI2kSxdkOVpuBpVZ2kvFUeaAQAnFmV3uF9XN1WUJAlf7z0GALjlx0MBAMu+OxyQKB4NQtykG3XQe8Vfu9OlCo1x1hhJRSiECElRVDlCFEJxZd/xVgDArroWeZvIESrwujSx9BGqqPUKoeJOhFAXh8Yqj7XiSJMNRr0WN00uR3nfTFjtLvznu0MxH1sIHr1WA5Pec2lpd7hl0aPXaWQXiuXzJJWgECIkRVGGZkQFDokPYsDq8RafEyOEZ0EsOUJehCN0QqeOUNfOG/vamx80bmAe0gw6XD7OM0IoHuExZb8gkdhvtTshoo9GhSPk33yRkGRCIURIimK1MTSWKFq9Ya/jLXZ5mwgPiRyhaIVQu8OF/cc8jtPwThyhguyu7S691hsWmzikDwDg0lP7Q6fVYPPBRuypa47p2MpcIOEIKV1Ng045a0xS5WcRkkwohAhJUVrtDI0lCpGIrmxkKCdLZ/mSpaO5WO+pa4FbAnIzDHKYLRTCETrabEu4MHC7JblibMKQvp7nz0nDlBM83f0/2X4kpuMrq8NMXkeo2dsLC1CHxgD2EiKpA4UQISmK0hGyUQjFFWtQR0hdPi9J0b3uuxRhsc768wihZHe5YWlzdLhvrOysbUaD1YFMo04e8wEAw/t5XKu6ptjylOQp8wpHSJmEbdD6QmMAK8dI6kAhREiKos4RohCKFy63hHZvX6bjrT4hJJKl+3qrxoDowmMiP6izsBgApBl0MKcbACQ+T0hUi50+OF8uYweAvAzP+TZYYxNiyhwh4QgJIaTXaqDValRCiC0hSKpAIURIiqLKEeJFI24o2xKIZGmXW5KrxMzpBjmEE00voV214SVKC+LdS+hos03u4KxEhMUmesNiglxZCNkDHhMJYqK8UeerGmtp97zWQngZtNqA/QlJNhRChKQozBFKDMpGlQ1WB5wut5w8DXhmZaUZPB+NUTlCYZbOC+JZQr9xfz1Of/xTPPLRdtV2h8uNdd6eSRO8idKCvAyPI9UYoyNk7yA0JpwgrVYDnVZUjjE0RlIDCiFCUhTViA2Wz+NYiw2VR1s637ET/KfK11vtcjm9ztsDJ8Po6Y4cqRBqanfgkMUjaE4oDNcRil9TxR21zZAk4KNvD6lcoS0HG9FicyI/04iR/XJUj4mXIxSsfL7Z6wgpk6RFs0WKe5IqUAilIDsON/m+HVosnonWwaiu9txPeiRWOkIqrv7bNzjvj1+oev9Eg/+U+eMtdtm5yDTqoNFokGH0XMgjbaq425sf1M+cBrPXaekMkTB9LA5CSISiGqwOfF/j+2z4YtdRAMCkoX3VIz8QP0fIqawa83OElDlJRk6gJykGhVCKUd1gxQXPfYUrXlgLZ0MjMGMGMHkyUOXX8KyqyrN9xgyKoR6KlZ2lZRwuN3bXtcDhklDV0BbTsQIcoVa7LI7EnCxlQ8BI+M93tQCAk0pyOtnTR36mx5Gpj9GRAdQib3XFUfn/X+z2/P9sb6m8EpEs3WJzxvQ+s6v6CHmTpdvVoTHl/5kjRFIFCqEUY9eRZjjdEvYft+KTb6uBujqgshKYMsUnhqqqPD9XVnrub46tERpJTVrtLJ8XHG+xyx2Km2IsM2/1EzfHWmyygMj0CiHhCLVH4AjVNbdjyboDAIBrJwwK+3H5XiFS3xq7EFKWq6/eVScfV7hDZw/rG/CYnHQDRJV/Y1v0a3CqqsbUjpAqNOb9PwsASKpAIZRi1Fp89vhrO5qAVauA8nKfGPr6a58IKi/33F9amqTVkkTSxtCYjDKRONZ+O0qnDfALjXmFULpROELhC6GXv9wHm9ONH5Xl4qwggiMUwhFqiIMQEjk5ALC1qhGNVju+3H0UkuQp5y/MSQt4jE6rkUv4YwmPKRsqpnkdoeaOQmPsI0RSBAqhFKNW0dRs44EGfK/JAVatglRejt8MnoZzXvsexw8f84mgsrLkLZYkFKVz0du/PStLyyMRQmv2HMMPh5pU2/zDXcdbbbLgyTR5LuDphsiE0PEWG95c63GDbp82rNNGikryEhQac0vAV3uO4Ytdnv5Bk4OExeQ1ZMQuxhzK0JhwhLydpYOGxjhvjKQIFEIpxhFvxYkoMX1tzT6grAwvP/w3vD7uQlT2KcX6slHAm29SBPVglE3/ADpCyoqqpvbwhNCxFhtmv7IOc9/YoNruL27UydJqRyjc0NjfvtyHNocLJ5ea5ZEV4dJHCKGW+IXGRG+i1RVHO8wPEuR6E6ZjaaqonDLfUbK0r2qMjhBJDSiEUgzhCF15mkfkfPTdIXzw6XdYtL1V3udYZi4we3ZgAjXpMfi7Fr29fD6a0NjxFjvcEnDY0q4qJRdOmzBtjrUEJktnRBAaq2+1Y/Ha/QCA286JzA0CfI5Qq90VUU5SMEQoaubofgCAD789hKPNNqQbdBg3KC/0GryOUGMMrpSqs7RfsrQyR8ggV431bnFPUgcKoRTjiFcITT+pGKcOyIXDJeGOT6vg1mhhdHkuAEf7Dw5MoCY9Cv/+NclKlv7Dil1403uRTyYqR6gtvEouZem7MolY5AgVefv31LcGJkuLqrFwyuff2VAFq92Fk0pyMHVEYVhrU5KTppddklh7+YjzmHJiAdINOvl9c0Z5vixOghEPR0iUwxt0GrkhpWgKatD7xKGBOUIkxaAQSjGEI1SUY8L1I3wluKfUH8ANp5UAAI5ePkudQB2qzxDptrT6CaFkhMYONbbhT5/txqPLdiR8MnpnKHOEwq0aU4pJ5RR04QgNyM8A4Jk3Jgau+leNhdNQcd8xT5PH80cVR+wGAYBGo/HlCcWYMC0cmD6ZJlUH6Y7CYoCvci0WR0i8R5WOkECvVVaNeUNjvTzvjaQOFEIpRLvDJVdtFOekYcYppRjRUov+rcfxwp3nof+AIgDAMRh81WSFhUB2eB1sSffBv+lfMoSQuCjbXW45ETZZHI0iNKYMMymrqYS4KRNCqMUuhyIzvQIoks7SYoJ9H+/U+mgIVUL/1jcH5GaI4SCcr6w0vapUvjMhJIRYLI6UzxHyjdgQGIKFxugIkRRBn+wFEB8iLGbSa2FON0CTkYf//N+lcFmaYRhYhoJthwF4kkBRVgasXu0RQWZzWMe32p040mTD4L6ZCTsHEh/8c1OSERpTXhRtTheM+uR9bzoaRbJ0WwghJNw24Qi12JzyFHr/0Fg4Q1fFY0UZfDTkB3GE9tS14P99sA1FOSasu39ap8dwuyXZ7co06TBtZBGeXF6BwX0zUd7J33w8k6UNOo1cNSYwqkJjrBojqQWFUApR660YKzanyRa7NjcX2txcAEBf7zfOY2LEQIT9g25dugUrK+qw/Pazwx4ISZKDf7J0MhwhZU+Zdocb2YEtaLoESZJwtCXy8vlQoTGr1zUpyjHBoNPA4ZJw8LgVQGCydFsYnaWFeOmbFbsQUpavVzV41nSsxQ5JkjoNu1kdLrnpZLbJgPRsHT69a7I8NqQj4pEsrQyNpfldWVShMe//e3slJEkdGBpLIXz5QcGvOLIQao7uw2pXnWcg4/r99dEtkETMv7fWYLnXyYsEf0coGfkUyotirNVMsdBgdahCc2ELoZCOkC8xuk+m52/qYL1V3gb4+giFkywtZp/lZ8YQGgviCIkvRi63FNY6RDhVp/UlK/fPTZeHqnZEPJOl9VptgCMUNDTGWWMkRaAQSiFEaKw4hBASwxnbHK6AHJJwEN/wK2qbOtmTxIPjLTbc8c5W3Pb3rRGXv4vfr/gin4jy+c4SoJWOUDLL90XpvJgV2tTmCCt5W50jpHCEvCIzw6hDH6+LI4SG3FAxzPL5dodLDrX1icERCtZUUQghILxKOSH2wnGAAp4/juXzRr0mIFk6aGiMydIkRaAQSiGOeCtjis3BhVCmSS9/Uz0W4QRup8stf1BW1HI2WVewp64FkuRxc5RVT+EgLsxi9EG8wwivfLUPYx5dgR2HQ4viBr/QmJK3vjmAs55aiX3HWv0fFnfEayeSm92Suhy+1ebEv7fWqMQOoA6NNSkcIZ8Q0gckOAc4Qp0IIZEfZNBpkG2KPtMg3+vIBHOEAAScWzDEa5KdFt7UeyU+IaQWmcu+O4TvqhvDOoZIftZrA5Ol1VVjYtYYHSGSGlAIpRCdhcYAoG+25wNLmTwaDspwws7a5qSXQ/cGlCJB2RAwHFq95dziAhVvIfT5zjo0Wh1YV3k85D6NfsnSSj7ZXouq+jZ808Hj44XoITQgP0NuzKd8P7/+9X7c/vZWvLZmv+pxoUJjVpsvobivX4Kz6Cwt5wgpjvHA+9/j5y+ulZ0PwNcNOj/TGFXpvCDfK8hUQkgxbiecBPFWxXlFigiNOd2S3JRx95FmLFi6Bbe/vTWsY9gVDRVFsrlAHRqjI0RSCwqhFEKM1wgVGgOCJEyHSaPiwtHc7sRhS2QXZhI5lQohpBym68/xFhueWr4TB4779hfJ0uICFW8hJC6sHfWtUb5n/B0h4ZSEU14eK0JEFmSbkON1yJShov3e11kpHAB/IaTsI6R0hNRCKMtv6Ko4P4fLjb+vP4h1++qx64jPUT3e6vm99okhPwgIXj6vCo21hx8ay4rCmUoz6GQXrLHV81rt9DrHx4J86dpZ24Q3vzkAtyLPx6kKjfnlCClDY1rmCJHUgkIohRAf5MXm0B+qQggdjXAukf9UaYbHEk/lUZ+wOdIUWnguXXcQf1m1Fy9+USlv83eE4l0+Ly6aHQ36bOggWbrd6xD5J/G22V14+N/b8NXuY/FaqhwaK8xOgzndc5FXOkKiosxflIXqI2RVlJj7Jzj7D10Vx6y1tENct5W/S18PoejzgwBlsrTvvFSOUBgJ4r4eQpGHxgAgT06Y9pyTEJieajS1aHn439vx4AfbsG6fr/DC4QqdLK0asaEXs8boCJHUgEIoRZAkSf7A7zA0JleORegI+V3wdlIIJZxKb8dhADjSQWhMhNCOKByANkd8HKF2h0sVyhEIh6ShNfQF1qJKlg7uCPkLpDV7juGNtQfwf//5Iar1BkOEgQuVjpDC4RH3+7ccCFY+b3f6mkNmGAIdIV9nac+/QgSIUnZA7e7Vx6GHkPLxDVY73G4JbXaXSuw1h+EI+ealRR4aAyBXlwlxvM/rULrcUkDVonCkhSMGKEJj+k46S8uOEIUQSQ0ohFKE+la7/EFS2EHDFlE5FnFoLMARYuVYInG43HJvGkAtcvwRpdvHFGGRAEcoinwKu9ONHz+9Chf9eU3AfSLUoryQ+dOhI+QNlflXVQmBsruuJW4l97IQyjHJyeMqR0gWQn7uVBBHSCmO0o06Ve8fndYX0hGOkMstweGSUN3QJu9Xa/H9XyRLxxoay8s0yM/X3O4MCPOFkyPUYos+NKZcQ6OfIwQEum3iZ+VrLkJjBkX5vsAQtGqMoTGSGlAIpQjig69vlrHDDr4F3g/uaHOExIdkxZGWjnYnMVLd0KbKgTjSQdWYEEL1ClEi3I08hSMUaYJ7XXM7Dlva8cPhJpUoaXe4ZIcplCPkdksqseGfI2QLFRrz/uxyS9gdp/eYyBHyhMZEjpBDfh4hRgKFkG/NQgiJHkJGnRZGvVYlYJRl5yJHCPBc9FVCSBUa8+YIxRgaM+l18t9mvdWuyg9Srr8jfDlC0YXGhCMk3hP7FULe/7UVHbeFIHK5JTl0aNBpVaEwIPj0ec4aI6kChVAS2XesVf4WdySMijFAmSwdWY6Qxfstb9ygPADA3rqWoCGTePPht4fwzP8qsGbPsaQ25etqKo96RIAoJAqVI9Rmd8lVUcdbgjhCipBLpBcOcQxAnWOivKiGyhFqbndCmcvq/7uTQ2MhnAIA2H7IEtF6Q1GnDI2lqYVQg9UOl3eh/hfr9iChMSEwM7zhI6WAUTopBp0GOm/jojaHC9XK0FhTYGisT4yhMcDnyNS32lDb1Ka6L5wcoVhDY0J0N1rtsFgdqsTtACFkUztCys8Sg14LvU4LvdbnAqn+z1ljJMWgEEoSd7y9BT9+ehX++72n67DIO+ioYgwA+npDYx2Vz3+yvTYgGVo4QqNKzMg06mB3uVXWdyJobnfgzne24rmVezDr5XU4+ZH/Yd7ijV1SaZRsRN7PiOIcAKGFkDL3xGp3yRdq8Y07T9EVONI8oVZFzow638T3/4ZWe1CnyX/4pjJHSJIktHt/9neErCohFHv4tcXmlI9ZkB0YGlM6owE5QkFCY0IcijJ5lSOkEEIajQYZYt6Y3alyhJRhzmNxyhHyHEOU0DsCqgzDcYSUA1ejQbzXGqwOOT9I0OYXAhOiXLzGSiEkRI+ycsyg/L+Ws8ZIatFthFB9fT1mzZqFnJwc5ObmYu7cuWhpCc96lyQJ559/PjQaDT744IPELjRMhhZmAfCMYAAUPYRCNFMUdFY+v/doC256cxNu/ftm1XbRHC8v04gTvHPGEp0wve9YK1xuCWkGLYpyTLA73VjxwxF8tSd+FUWpyl5vxdiEIX0AeEq2W4J0A1fmEQE+V0j0uhEXfiByIWRVOkLtwR0hp1sKWprd6OdAKB0hh0uSXZhQoTEgPo5QnffvItOoQ6ZJjxy/qjHlF4KOcoRa7E643ZK8jwh9pRt1cs+gDL/cmnRFL6EahRA6rMgREuHMWENjgLKpok3OQxI5gZHlCMUYGrPaA74kKUWmchCtmMWmHIEiQl/KXkKqPkJ6MWuMjhBJDbqNEJo1axa2b9+OFStWYNmyZfjiiy8wf/78sB77xz/+MaZmZ4ngoh/1BwB8vfc46praw+ohBPgGOyrdAyXiwrD/uFX1TV8kQOamGzDcK4QSXUIvXJGTS3PxzX1TMXN0MQBPx+Voj7fihyNxW18i2eetGBvVP0fuOOyf9wH48oME9X75LlkmvZxcGmkJfWhHSP2+aQjSS8jfEWpXNFRU/j9AfCh+3nG4WRZM0SKHxbx/F3KOkPcclEIoVEIvAEiSRwzJpfOKHCAhYvxDSkIINbU5VeKnqd0pH1s0VIw1WRrwc4S8AvCEIs8XJv/f2ctfVmLa71fLQhEAWsSIjZhDY46AjuFK8aMU2OL3LxKltRrIIUWVI6QLDJPRESKpQrcQQjt27MDy5cvx8ssvY/z48Zg0aRKee+45vP322zh06FCHj926dSueeeYZvPrqq1202vAoy8/AqQNyIUmePJraTuaMCbJMerkiI9jwVfEt2O50q5rOiQthboYBJxZ1nSMEAIP7ZEKj0chhot110T3v7W9vwbzFG/FDHEIuiUb0EBrcN0t2+eqChMf8hZCo4lL2uhGlyBE7QmGExjzPGfg+svhVGdoUicfK3Bv/3CHlc7Y5XDGP4BBCSDgj/qExpRBqtTtV4t9/bc3tTlUzRYEQMZlGP0fI62hUHmuBW/Jc2MW22qZ21Zyx/Hg4QsocIa9oHlbo+Vv1zxF6b3MN9tS14Ou9vs7evhEbsYbG7NjfQWhM9Tv2bld2lRaYQjlC3v93RY4iIeHQLYTQ2rVrkZubi3Hjxsnbpk2bBq1Wi3Xr1oV8nNVqxdVXX43nn38excXFYT2XzWZDU1OT6pYoLh7jcYX+vfWQL1m6k9CYRqNRNFUMDI8pL1LKsQ6ifD43w4ATvYKk4khiBYUshAoyAQDDvN9uY3GEAKCmsa2TPZNLc7tDvoAP7puJohzP78u/JBoAqvyEkEiCb5VDOHq5ijCWZGmlsPEPs4TlCKmqznzrCHBh/KrLYg2PCfFY6BVCIlk6mBCSJLVr5h+2a253qMZrCPrKjlDw0Jiofuufl45+3r/PWkt73OaMCYI7QtnetasdISGYVUJQnJsxurXkKhwhERoTRrrVHtwF9DlCHgGqEkL6QPGj/L+DydIkRegWQqi2thaFhYWqbXq9Hvn5+aitrQ35uDvvvBMTJ07ERRddFPZzLVq0CGazWb6VlZVFve7OmDkwEzoN8H2NBXu9VUayI1RdDViCX0Q6yhNSfvgrPyTFhS03w4gTvaGxqvq2oHkr8UIWQn09QkjkRXmGkUb2IdjucMkXg1gmZHcF+495xE3fLCPM6Qa5EjBYCb1whMSFvr7VDofLLbs/mUadXHociyOkzAPyv6gGqxzz7zsVSmAEdpb2HFs4J6Hcu/9tr8X1r63v9Hfpa6boeQ1z/Mrn/b8MiAuzJEmyeBNhsE4dIT8xI3KHhINZmpch/y5rm9pUYbF4hN6FI3S0xSaftwiNKcWrJElyCFV5/s1xS5a2B/zttilzhOyBv3+H7Aj5Xge1I6SsGuOsMZJaJFUILVy4EBqNpsPbzp07ozr2hx9+iJUrV+KPf/xjRI+77777YLFY5FtVVVVUz98pFgv6Xnohzjq0HYDv21FxThpQVQVMngzMmBFUDMmOUJDKMeWFSbgSysnzuekG5Gca5VCDcm5SPJEkCfuOqj9MB/bJhF6rgdXuwqEIZ50pz9USRilxMhEdpcv7ei5iPiGkPme3W5KF0JgBuQA8fWmUF5oMhSPkP/i0M1SOUJvSEfITQkEcISFQRCjKvw+RwN8REmsX5xOscszllvDwh9vxecVRfLI99BcZQN1MUbmeYFVjgM8Vsbvccvm/yC9qbnfIF/QMRY6QKB4Y2CdDdSwh5oQjVJqXjmLZEbLhmNeViUfFGOATIrtqm+GWPLk0g7x/O1a7SxYOTe1O+fNC+XchcoSyo0yWFs9vtbvk94gIZ1s7CY05InKENKrHEJJsYvdzY+Cuu+7CnDlzOtynvLwcxcXFqKurU213Op2or68PGfJauXIl9u7di9zcXNX2Sy+9FGeddRZWrVoV9HEmkwkmU+yJj53S3AzU1eHipo+x6oKTAABpBi1yjh0GfvxjoLLSt5/ZrHpoQXbopoptQUJjygufuJAML87G0WYbKmqbceqAvPidl5fjrXY025zQaDxTwwHPh+HgvpnYXdeC3Uea0T83PezjKb/5+rsVqYbIDyr3hgSLvKLTXwgdbbHB5nRDp9VgdH8zPtl+BMdb7PLv0KDTwKjXyheUSJOlw80RCh4a8+xTnJMGS5tDLX46coS8P48bmIev9x7HD4ebIEmSyjH5pvK4PPS3oZPfpbKHEOBzhGxON9odroAvA+L52+2+16og24R9x1pDOkLXTRiIsQPzMKokR3WsdO8+Yg2leenyF4ojTe3ymuJRMaY8Tq2ip5iyarC53Ym8TKNKuIq/cZdbks892mTp7DQ9tBrIArLEnCaHy1pDhcYcomosSI5Qp6ExOkIkNUiqECooKEBBQUGn+02YMAGNjY3YtGkTxo4dC8AjdNxuN8aPHx/0MQsXLsSNN96o2jZ69Gj84Q9/wAUXXBD74mOltBRYtQrnTp2OdHs72oxpKDYCGiGCysuBVas8+/nRUWisPUhoTHy7zzbp5WZmo/ub8eXuY/im8jiuOn2A6hhWuxMGnVb14RUpwlrvn5uuKqMdVpSF3XUt2FPXgiknFoZ6eADKC15jW2qHxir9wgrCRfAXQsINKslNk12jY612udpLOBJyjlDEVWMhHKE2X1Jtc7szuCPk3b/InIaKI82qvCB/UaQUOkLEnVKWC51Wg/pWO2qb2tHP7BO9/9pU7XueToWQr6s04HkPazSefKCmdkeAEBKOkBAFBp1GroZqancGzRHS67T4UVluwHNnGNSCojQvQxaNhy1tKMn1rCkezRQBdc8oACjKMcGg8yRot3lDw3mZRrmbNeD7u1CGuKMNjWm1GuRlGOXcp0F9M2XnLFRozL+hojIEFqp8Xs/p8yTFCPtKd9lll2H58uUR53bEgxEjRmDGjBmYN28e1q9fjzVr1mDBggW48sorUVJSAgCoqanB8OHDsX79egBAcXExRo0apboBwIABAzB48OAuP4eglJUh87P/4dzabQCAoh3fqkVQiPwked5YB1VjgO+brPjWnZvp+3YpRMjqXUdVJc5V9VaMf/wzzF+8MYYTQ0BYTDDUWwUTacK0SgilvCPkDY0VeEJjhSFyhEQPoQH5GbIbUN9qk8uTRc6KMUpHqFVxcWwK4giJUFBHobFib0hKGZZTiiL/BGVxYczNMGKo9/y31/jCY602Jz7e5guHWToRtXV+oTGt1peYfLzFLr+3xZcDIcTE30GaQYdsb4J1c7sjqCMUCuWYDcDjCPlyhGyyYPCfYB8t/iX4QjyKKjCRJ6Ss8hN/F+J3bdQFDjyNBOEAAR4hJFwxVV5QB6ExfUhHKHDWGB0hkiqELYQaGhrwk5/8BAMGDMBDDz2EShG66SKWLFmC4cOHY+rUqZg5cyYmTZqEl156Sb7f4XCgoqICVqu1g6OkIGVluGHWj5Fta8W5e7wVcG++GVIEAZ0kSytCAmKavbjY5Kb7vnGeOiAX2Wl6NFod+La6Ud7+3uYaNLc78XnF0ZhKn/1dEYFImN4dgxCKR45Qi82JNXuOxdznxh9JkgISTUUCfF1zO9yK5xOO0ID8DPkieLzF5wiJb+OmaB2hEDlCIrwzMN+zvo6SpYu9F+NQjhDgX1othIYOJ3lDTco8oY+31arEekeitsXmlO8XYSgAMHsv1iIEqddq0N/rzojnF2tKN+hkIdHc7lS1JeiMYEJIVI0dsbT7kqXjFBrLTtPLPXgAX26ZnCDuFUJK4dpgdcDudMuOULRhMYHSlRrcR+kI+X5nwcJkwUNjnZXP0xEiqUHYQuizzz5DZWUl5s6di7feegvDhg3DOeecg6VLl8Jmi2wAaDTk5+dj6dKlaG5uhsViwauvvoqsrCz5/kGDBkGSJEyZMiXkMSRJwsUXX5zwtUZEVRV+dNv1+O6PP8eNGz7wbJs925MwHYJwq8ZEWEFZOi/Q67Q4e5gnLLlqpyf/SpIkfPhtjbzPh1s77tHUEftDCKFhQggdaY7IXYx3jtBTy3di1svr5M7e8eJIkyfZWafVyLlRBdkmaDSeD35lWboonS9TOELHW+yKi7VwhGLvI6RyhGxqR6ij8nkh4lQNFTvoJi3uSzfoMFIWQr6E//c2e8JiohrKv0wfAL6tasR9732PCY9/Jh9LmSsj/i8qLftmmeTXSohIsaZ0o9oRsioEUmco9zHptSjIMslhzqMtNtmtildozBOa8p2nEF2yI+QNaR73+7s/3mrzDVyNMiwmyFUKIUVoLFT5vHidRXNEddVY8BwhVo2RVCOiJJCBAwfiN7/5DSorK7FixQqUlJRg3rx56NevH2655RZs2rQpUevsmVRVAVOmAJWV0JSXA2vWeMJilZWe7SHEUF95An2Q0Jji4ufLEfJc+JQXEwCYcqJXCO06CsDTYFGMhgCAf39bE3Uo1N8VEQzumwmtxpOv0dG8NH/inSMkQnNrFQ3p4oE477K8dDmkZdD5ppwrewkd8AqhgfmZ8v12l1t28uQcoSindYfKERIXzUF9PL8b/4aKyirDYrM3NKbsHRRCCEmS5BtqatThpBJPkv/GAw3YdKABNY1tWFvpeb3nTPSEp/1F7daqRlz0/Br8ff1BNNucKM1LxyMXnaRKtha9hMTvsCDbFOBcKAVZjtIR8gs7doSysqx/Xrrcw0un1cDlluSKy3hVjfkfS/QUy1EIOSDw91XXZIu5h5Agzz80JuatBRmrAXjEucstyeMylIInTeUIKUNjTJYmqUXU2bDnnHMO3nrrLdTW1mLRokV4++23QyYukyBUV8siSM4JmjjR869SDFVXBzxUDF5tsTmDNLRTzpdyot3hkhNflY4QAEz2CqHvqi042mzDh996HKBJQ/vCpNei8mhrVIMz3W5JHtooSsgFaQYdBnovwJHkCcU7R0i4ad9Vx2dCukCMYuifp66IE00V6xR5QsrQmHLmldguLtZy1ZifAOkMqyJHqFVZfu19PwzwOkLN7U7VRUkpmkSScqgcIcAnPmxOX8l6ulGHU8rM6J+bjvpWOy7969eY/fI6SBJwRnk+RvXPCXguwFM6Dngq7pbOG48v7vkxrhinDhP7O0IeIaTOZRFrMvmFxvzDjh2hTPYtzfO8VjqtRg7Ticq3PlnxqzJVhqaEI5TjN1bkuN8XoKPNtpi7SsvP7xViWm+1p3gPKsVPq99njtXuDNFHiA0VSfcgpj5C+/btw9NPP43HH38cFosF06ZNi9e6ej7Z2UBhYWBidFmZTwwVFnr283+oyddbxj885t/Z92izTU589a9KKcxOky9Iq3cdxUdeIXTV6QMwbUQRAEQVOjpkaYPd6YZBp5Era5QMKYg8T0gphJrbnTHb6uJ4u+uaVUnFsXJYnhnnL4REkq3n/ja7r/RbhNBEeKzKO+AzIEcownP2nwPW1O4ZQSHcntK8dIiUFGWISiQgZ6fp5W7L7WE4QsqQWbpBhwyjHu//ciKuPK0MGo0vb+ySU0vlfDV/USt684wpy8PEIX2hVeTMCIRD4guNGRUhHL/QmEEbNDQWqSNUqhC2RX5jcOIVGgPU+UYiLOkTcoE5QoAnTCd6CPl3x44U8WWpv9fRTA8SGgs2080XGuu8fJ6zxkiqEbEQam9vx1tvvYVzzjkHw4YNw+LFizF37lzs27cPy5cvT8QaeyZmM7B8ObB6dWBidFmZZ/vy5QE9hADPmI2CEGM22v0+pOqabSFDYwDwY2/12F9W7UF1QxsyjDqcM7wQF/7IU4334beHIk4oFp2VB+RnqKpIBGLURrgzxyRJCjjPWBKmHS63fLF3S8C2mvi5QqJEXoSUBP5NFasaPK9RTppeTv4V4THZETKqq8YiL59XCzxPPyC3XLacm2GUxbHy4ion12cYZFdEKXL8nSlxYRQXS6NOK//eC3PS8MSlJ+M/t56FaSMKcdawvvjJ6H5yBWObw6U6tkhA7ttBArJ4vYQ4K8g2BVyw2xShMZUjZAvfEUo3BBdC/vMA4zFnTKD8siIq5YTwEzlC4suP6MOldITCEXgdIRxA8WVFtBAINWvM87MLjiChMVOnoTE6QiQ1CPuvZv369Xj11VfxzjvvoL29HT/72c+wfPlyTJ06NeUmu3cbzOagQgdA0P5BSvpmm1DT2IZjIRrKCY42tytCY4Ef2FNOLMBzK/fIFTjnjixCulGHKScWIDtNjyNNNqzfV48JQ/qEe1by5PXBfmExgS9hOjxHqKndKYsAk14Lm9ONxjZH1CEJ/2/U31VbML48/PPriFrZEVJfLEVoTJTQy6Xzim7Gwlmo9gohcXGPVgiJfBiR02Jpc8jjJrQaz+iJvExP3xhVJVKr5/2Sl2GUB/w63RKcLjf0Om1IR0hORA4iMkaW5ODl606Tf5YkSbUuIbh8JekdCCE/QV+QZZLz5az+OUKqZGlfKDnS8nkRGgN8faEAj+iLx5wxgXgP9Mk0ykIilCN0YnE2ahrbVG5prKGxGaOKsfdoC34yuh8ABIQc/f8vfnZ43R29VtlHqLPO0nSESGoQtiN0xhlnYN26dXj00Udx6NAhLF26FNOmTaMIShIFIRKmxUVJXCzqmm2wiDljQRyhH5XlqXKHLjzF4wSZ9DrMHOX5MFRWkoXEYpHzmXyl896Lh9/cNDFRW4Q2OkN80Gen6eVvybHkCfknaSvbB8TKEUVXYCXFfo6QMj9IIFeOeS90ohQ6ms7SdqdbDqWJ525qc8gl2FkmPTQaDfLFfKlW3+sphLM53aD6Vt/ufX7/qrF2v9BYOBVZGo1Gfo8qf5fi3DsSuTl+F/uC7DSFI+QNjdmVfYR8fXiES5YZhiOkFEsqR0ghhPIzjXH9DBQ5Osr3j7J8XjlnbLh3NEhdc7vsCMUaGssy6XHvjOEY1d/zBc3/dfX8P1AIO7zvDYM+lCMUKIqcdIRIihC2ENq4cSO2bNmCBQsWIC8v/iMZSGT0kSdV+zlC3g8pURpd12STw0B5mYFCSKfVyGX0OWl6nDXM1+n7Im947L/f13b87c1i8cxFmzwZqKpSlM5nBZ2bNqTQkyx9rMUetJmfP0K4FGSb5NySzhrxdXg8b2hBXL/imTAtcoCUnZSBwNDYAW8yeZlKCKkv/hl+obFIhJAylCGSbi1tDjnhVrgk4j2hfB8pc8qUeR4iJOafh2b1C42FE3YCfMJcOXhVlIZ3lHeT4+8IKarGOguNiShvRhiCIZzQWLx6CAnEtPmRinEfyqq3pjanHNoUw5PjGRrzR67GU4hf/5w6T46QNzSmcIRCNVTU0xEiKUbYQujUU0+V///ll1/immuuwYQJE1BT43EL3nzzTXz11VfxXyEJiugX0mIL/u1cOA3KZGlzevAP7UtO7Q8AuGr8APmiCwDjy/sgw6iDpc0hX7iD4p2bJird9tV6hMVgqdVXGVdX59kPngu8yG8Ip3JMCJeCLJPsXsXiCIlw4imluQA87kywXjqR4nS5ZdFW1EGO0Gc7juDvGzytEcS3eiDw4i9cC6PO20coggtHi/cbvFGvlcNMljaHnCgtxEG+LKh9r2eDLIQM0Go18nsilCPkyxHyjgYJVwh5f5fKeWP1siMUQWgs2yTnU/l3lvaUzwd+AQjHtRJ/Y2kGrZyTB6jdmniWzgPAxCF9sOzWSfjtRSfJ2+QcoXYHjnsFa7ZJL4uzeCZL+yOEkMMlycLFPzRqtTvl96YqR8gbGtNrNSrXTHaE3FJSJhUQ4k/EydL/+te/cN555yE9PR1btmyRmylaLBY8/vjjcV8gCY64SAZ8O3OoHaHDTe2yC+BfPi+YcmIh1j8wFb8+b7hqu06rkZMmOxQs3rlpKC+Hff9BueqpfO7VIeemRZIwrXSEgoVTIkUIq/KCTLnP0XdxSJg+2mKTp4b3zfQXQqIJph03vbkJdqcb00cW4SejS+R9/C/+AY6QI3whJM/UMupUoRWRZyK25WcKMeITgnJyvTdsliaEkF8ITHzL968aC9sRylC7e5IkhZUj5O8I9c0yyuJLhL7aFflKJr1W5UikG3SqDs6hGNQnAzdOGoyHfqruY9RPERqLZ8UY4AkZjupvVoXllI6W/PpkGeXEZqUjFG8hpBS1/s6f6DnkCY15HSHFFynRR8h/ZqFB6/uZ88ZIKhCxEPq///s/vPDCC/jb3/4Gg8H3gXTmmWdi8+bNcV0cCY3cSVchhCTJN4FaOEJ7FQImWNWYoDA7LejFQYzE6NS58Zb9V40aB5dWhwx7Gwp/2BpybppY3+HG9sBj+aEKjQlHKIaqMTGjrSDLhJNLPbkQ31U1Rn08gUiULsw2BZR952ca5Yux0y3hoh+V4PlZp6ocOP9ZUxl+OUKROELKmVri9650hES4RVQpKZv0CSEkLnQmv8ox8a94bLtfsnRaGG4LoAyNeZ6vxeZLivd/LZQo38dpBi2yTPqAhorKWWMajUYOBQLhCzWNRoP/99ORuHq8eiixMkconj2EQiEL2TaH3EMoP9Mod5hvd7jl916snaX9Meq08ueC7Px5P3PE81uV5fPK0JhBNBRV/y3oFT8zPEZSgYiFUEVFBc4+++yA7WazGY2NjfFYEwkD/5ECgCeHRDjNA7xzpGoaPe5Mtkkf1TT5sIUQAJSVYe9DiwAAgxoOQQOEnJsmmtL5T2QPRtAcoSCjGcJFlB8XZJtwsjc89m0c8oTkRGlzWsB9Go1GbiR55Wll+P0VPwr4ffi7IIHl8+E3VFROWTcrLqSimaIQBsKFUoYGGxXl84Cv+scmh8bcqvVGnSMkErWt6mqoDKOuw/CaMtTlGV+ikR2UVlkIedYoQmDKaqqMGOdxpSlGfsQ7NBYMtSMkcqg8LQNExZroaB5vR0ij0cgl9Fa7pw+V6DIt3jttdlfw0FgoR0jxM0voSSoQ8ZWxuLgYe/bsCdj+1Vdfoby8PC6LIp0jKoqUgzWVuRsDFWXZgK/3SqTIobFwKryqqrDnlb8DAE44dtCzLcTctEJ5EGnnYzbEzDRVjlAMjpAQVn2zTDhFOEJxqBwTzRT7BRFCAPDslWPw7FVj8PjPRgd13/r6uQuxlM935ghl+zlCwcrnc+XQmNoRavNzhMTPkZSme44v1uV57mMtnYfFALUjJHJ3Ahwhv1J+pRCKdQwF4Psdxzs0Fgwh/JxuCdXesLN43gLvFwrxO4i3EAKg6tGk/LIl3LA2h0uuAFP2DRO/E3+HUOkQcd4YSQUiFkLz5s3D7bffjnXr1kGj0eDQoUNYsmQJ7r77bvziF79IxBpJEDKNgY5QmyJ3oygnDcprbaj8oM4QjtDeulbV5PQAvHPT9mg9+w+79PwO56b5V1F1RLxzhIQj1DfLhJNKzNBpNahrtsnhhWipDVE6LxhZkoMLTykJ2i0ZCO0IRVM+r5yynpPuG9op5wilqR0NdUNFrxBKF46Q50ImcpTk0Jg3v6g9SDgqHPwT3+vDKJ0HPMJQOD1CCPh3lvYv5c82RR4a64jxg/Oh12pwSlluzMfqjAyjL6dJVGQKN0aM2xHEOzQmnh/w/H6Vofg+siPoG7FhVIickf1yMGv8ANwxbZjqeBqNRj4fOkIkFYj4r2bhwoVwu92YOnUqrFYrzj77bJhMJtx999249dZbE7FGEoSsIDlCyt4pOq0G+Zkm+aKfG6JirDMG9smAXqtBm8OFQ5Y2VWM5GcXctN1ThwIAhow7yZMbJKrGpkzxdMv2JkyL0Fg4g1eVoSzxwRmTI6Q4XrpRh2GFWdhZ24xvqxtRbC6O+rhHQjRTDBejXoucNL2c3B6QIxSJI2QLzxGShZDVDkmSoNFoFFVjRtXzh8oR8m+oGK7Q8Be19a2dl84LctL1aHO4fELI5B8aU4sylSMUB9fkNxeehLvPO1GVe5QoPDlOejRaHdjvbcSZ7+cICRLjCPmaKorfsUmvlV9Hq90l/10qw15arQaP/Wx00GMadJ5mmswRIqlAxI6QRqPBAw88gPr6emzbtg3ffPMNjh49ikcffTQR6yMhkD/4FaGxNr9vwYWKD8loHSGDTotBfTsZkuqdm+YuH4I9hQMBeKvCOpibJlyT4632Di/wTpdbTuRVJktHmyPkcLnlC68Y4yDK6L+NMWG6Vh6vEZ0QAtRuSECOUAQXDauicaBSCPn3ERIXVLvT7Q19uBRVQd7QmHCEOskRaotgoKny+EJ4idBYOEJInFNBlue1FnksYhp6YGjM9/4Pp3S+M/wTsBONEHLCERJh1MIuEEK+sKNT/ozJNOlV4zeEoAk2UicYonKMVWMkFYh66KrRaMTIkSNx+umnIysr+CgFkjiyRI6QIjSmHCsA+GYVAdELIQAY2lkJvXduWs1H/0ObU4JBp8FA0SgwxNy0vAyDnCvgP0dMSX2rHZLkGQnRJ9PkqzSK0hESVTc6rUa+EI8d5GkQ+tWeY1EdUxBqvEYkKEVAul8foUjK52VHyKT3E0K+gaqARxQIx6e+1Q6LVyRqNb59RLK0f45Qrn+OUJShMRGKq1eUhneGOKe+2Z591WXezsDQWJwdoa5GhDLFaxzKEUrEuSmbVQoHOt2gU+UOBZs+3xFsqkhSiZimz5PkEax8vs2urpRRNoGLNjQGKPKEjnbQVNFslvODyvtmqb8ZlpYGzFTTaDRyH5S6DvKERDJ1fqYJOq1GTvq2tDk6zlkKgQjF9ck0yrk6Pz6xEBqNp8N0tHlCkiTFyRHy/Z7k6fOG2ByhHMX0dVE1JkqyNRqNKk+oQTGgV7w+yvJ5h8stD+EVPYj8y+fD7yytnkAfTldpwYxR/VBiTsOZQ/p61qj3lXlb7a4Ad1Q5liMeOUJdjf8MMfE+Uf6Npxm0UVWGdka6wSd42hS/Y5EUr0yWDvf5fYNXKYRI8qEQ6qaIDyGHS4LNGfwbedwcITlhuuPKMeEYDS0KzyEskEvoQztCynwewHfxlCTI+S6RoEyUVq5jjDfp9dMdRyI+JuBJRBYho1DJ0uEgOj0b9b6LmlEXTdWYCFPpZdHjlnzhO+WFVZknJFwZ5YBeuWrM6VZVJsqOkF+lVtg5QoqGfO0Ol2/OWAc9hARzJw3G1/dNlcO26jJvhRAyar3n63v/d2dHSCBeI6UjlIiwGKCuyJPFrl/vpmDl8x3BCfQklaAQ6qYoh0aKKeOBOUK+C3KwyfPhIvcS6qSEXnSJFtPlO0N0Wz7aHNqFUVaMAR6BIM69MYp5Y/7CSnDuSE+S9IofohNCQmDkZhjCDg0FQ+QtKX+/0cwaE6GxLJMeaYrwl3BfcoIIoR8ONeHhD7cBUM/WMilCY+I9ptH4qsr853uFe/45aXrZxbEomwVGOb9LOSBUWTgA+PUR6paOkFoIiYq9rhBCymRpWWAbdPJra7U75TJ4fZihMbm5KB0hkgKELYQeeughbNq0KZFrIRGg12nli5tor9/ulyCqSpbuoKt0Z5QXeL5117d2PCR1t3CEwhZCooTe5wi53BIeXfYD/vv9YQA+IaRO/FaHVCJB2UNIybkjCwEAa/cel1/PSJDDYjG4QYAvLKTsxeMTQuE3VBQhU1F55t9VXHlhFblSv/ukAruOtKAw24QHfzpSvl84QjanW85TStP7QiOBobHwLsj+E+jFe8t/PEm4CKenpd0pi0ZfjlB8y+e7GtECAfCIOtGsUPllJ1FOl5wj5PAJzEyTTpU7JJwdY5iOkF7hcro5c4wkmbCFUHV1Nc4//3yUlpbiF7/4BT7++GPY7bEPqiTRk+XXXdrfESqIQ9UYEN6QVEmSsOeI575hhdlB9/EnWHfpNXuO4ZWv9uGOt7ei8mhLgCMEKMquo0iYlkNj2WrXYUhBFgb3zYTd5cYXu45GfNxai6fRXSz5QQCQ79cgEIiufF6IElF55j+fK1hoDPCI3vd+OVGegg6ok6XbFAn54n0W2FAxfKEhBHqDIiwXtSPkXY9yblqwhorhCrVUQinklDlU+ZlGuV9YohyhTEUIrFX+sqVX9ReKNDSm9y766pfXofz+/+Lk3/wP6/fVx3vphIRF2ELo1VdfRW1tLf7+978jOzsbd9xxB/r27YtLL70UixcvRn0938RdTaZfCX1AjpAqNBZbqW9nozaONNnQbHNCp9VgUN8gvYaCEKy7tDi+3eXGwx9u9wmhrEBR1xhFCb0o0S7wc4Q0Gg2mjfC4Qp9GER6rtXjWGasjNKokBzqtBiP65cjblOXz4X5zbvUrZVc6QnqtRlVCPsT7u/1RWS7evXliQK+oNDlZ2pcjlKbXIs2bf9PmcKnm3EUSGhS/y+qGNvliGm23ZnGuyrlpws1SV411Q0dIsX5liwWdViP/7J9QHS+UobE2RWgsXSGQIg2NTRjSR/Vzs82JNTFWbRISLRHlCGm1Wpx11ll46qmnUFFRgXXr1mH8+PF48cUXUVJSgrPPPhtPP/00ampqErVeokB88IswiK93iufXWphjghianRdDjhDQuRAS2wf2yZBt+84I5gjtVeQhfbn7GFZV1AEI7m5ZonCERD6Sf44Q4MsTWllRF3HuQmddpcOlvCAL6++fij/8/EfyNpO3fF6Swu+7IvLGhFhWCqHsNL1qmvpVp5Xh3Zsn4J2bzgg63kLubO3wVQ2lKRwhSfKEzSKtGgN8YU7xe8806qLOsRK9tUSukUmvlSvf1KGx7ucIKZOl/X9HQtQnOjSmTpZWVI1FERp7+IKTsPWhc7H5wXMx+wxP77H2CEK/hMSTmP5yRowYgREjRuDXv/41jh49ig8//BAffvghAODuu++OywJJaPy7S/v3Tkkz6HD/+SPQanfGPCW7s4TpSBOlAZ9oUHaXFhfEYYVZ2F3XIlvx6tBY9DlCwhHyzxECgFMH5CIvw4AGqwMbDzTgjPI+AfuEQoi5UHPGIsH/dyWSlQGP4Agn/NCRI+SfeKvXaTFuUH7IYykbKrY7fTlCSlepTekWRBEaExWJ0YbFAF9TRRFiU/YWyonzrLGuRpkj1NfvNSrINgGHE5ks7etZZlWVz4vcIWVDxfAcIcAngvMy1KNaCOlq4lY1VlBQgLlz5+Lf//43RVAXkRlirIDyAjXv7HLcMe2EmJ+rsxL6SBOlAZ8jpOwuLXoVPXrxKFXlUjBHKDohFLxqDPAIgnOGFwGIvHpMDFwNNnk+VpTfssPNE5JzhLzvEaUQiDSEosoRkquxtNDrtPLarA6XPJU8ks7NooS+UszQijJRGggMjSnXoeos3Q2TpbM7coS87+VEl897Rmz42jIIgexyS/L7LZo+Ria/XDNCuhqWz3djfBPo/UNj8f9AFN2laxrbVE0cBZEmSgOecJ0ooz3WYkNTu0N2h04qycHDF5wEwFOqHawCLtLyebtTOV4j+AVXVI+JkFy4HIlT1VgwtFqNnFwarhCSq8aCOEL+PWk6Q84RcrrkyjUhJoRIslgd8lTySISGCNkeOC6EUAyOkPfvQTRmVAqhNINWfg27Z46QMlla/d6dcVIxSsxpmHJiYUKeO2hoTOEIAb4wdbidpZX4ku5ZSk+SQ/fziImM/wR6nyMUf32bl2lEn0wjjrfasfdoC072zucCPBVju7yhsUgcIa3W0126prENR5raUdfs+RAtyjEhO82Ac0cW4eELRsKg06q+EfvmjUXmCB33DvXUaTUh2wmcPtgTDtt7tBUWq0N2LDrC5nTJ4ZhECCHAkzDttLvCKqF3utxy+XiwqrFIHSGR89XucPscIe+2dKMOTe1OVVuFSBwh8bsUOSZ9YgmNec9VrEWZa6TRaDCqvxl7j7bIFZDdiWxVsrT6NZo2sgjTRhYl7LnTDSJZWh0aM+i0MOg0cLgkNLcLIRT5Z48y6ZqQZEBHqBvjP2bDf9ZYvBlZ4qlk+rbaotp+vNWORqsDGo2nDD0SlN2lRdhNeYzrzxyMa7zJlAKRI9QQYdXYsWaRH+Qbr+FPfqYRg/p4qqa2VjeGddw6bx8kk14bc3VeKCIpobcqQgzB+ghFOixU5CjZnC5f1Zj3PSbEhxCZRp027MGb/usCfJ21o0EIMJEH5v938M5NZ+Cre8/p0mGp8UIpZGMJH0aD2hHyzhoz+mbVAZ6u5UCUQkgxwoWQZBDxu7a1tYN5U6RL8YXGouvsGymnDvAMJ918oEG1XVSMleVlRCzClN2lRaK0aOAYCjlHKMKqsaMtnvBVqLCYYIz3PLccbOhwP4FyxpiyGiueRNJdWghjvVYj5/DE4gilKRwhZbI04HuvBUtQDgf/juf+icCRIP4ehED2d6ZMel2A8OouhOr71BUok6Llhop+QlgQTWgsjTlCJMlELISKiopwww034KuvvkrEekgE+DtCco5QgoTQ2IEegbDxgLpn1I7DTQAiC4sJRK+jI002WQh15ipFEhrbcrABW6saAfgcoWCJ0krGDMgFAPlxnSEnSicoLAaoewl1hjx53qiThZk6Ryj2ZGnRokGEYYUQirRrc16GvyMU/UVeuBRiKGyivhAkA4NOi7L8dKQbdCjN79rQnnLKvK+hok71r3Kd0R6foTGSLCJ+17711luor6/HOeecgxNOOAFPPPEEDh06lIi1kU4IzBHyjhVIUGjsRwNyodEAVfVtqonxX+32NEI7rYMS7FAIR6iuuR2V3oqxToWQKJ9vc3TYYPBQYxt+/uI3uPSvX2P9vnp5zlinjlCZcIQaw2pgeMSSuERpgXB2bGEklIrwhbKKSCWEInRFVA0VnYE5QkDwSq1wEL9LQSxCKMPvubtjdVhH/Ovmifjv7WdFnOweK8L1sTvdaGl3qrb5/74jCYsKGBojySbid+3FF1+MDz74ADU1Nbj55puxdOlSDBw4ED/96U/x3nvvwemMfE4TiQ55tpLXAfDvIxRvctIMONE7emGTNzzW7nDh673HAQCTTyiI+JjCETrU2I793sqhIZ04S8IRcrmlDueCLVl3AHaXGy63hFuWbsYPXueqMyE0vF82THotLG0O7DvWeSj4iCI0lihEwnJEjlAIIRR5srSvoaL/PDuRSFsfIi+nM/yT0Tv73XSEfzVYIooGkklhThoG9+04bJwIlC6fyAXzhcb8HaHoq8YohEiyiPqToqCgAL/61a/w3Xff4fe//z0+/fRTXHbZZSgpKcFDDz0Eq9Uaz3WSIGR5P/itXjEgnIBEhgREeEwIoY37G9DmcKEw24QR/cIvnRcUeh2hrVWNcLgkpBt06NeJsxJsmro/7Q4X/r6+CoBHBBxttuE/33kGuXYWGjPotBjd3wzA4wp1xpEgg2HjjTGSZGnv+0A5wT4nhmRpVUNFMXTVoHaEog2NKSfQA/EJjck/96DQWDIx6bVyh3pR3RcyNKaNJjTmG9VCSDKIWggdOXIETz31FEaOHImFCxfisssuw2effYZnnnkG7733Hi6++OI4LpMEQ9jTLQF9hBJ3ARg3yCuEvInEq3d5+u1MPqEgqkRhkVcjzqG8IDNkRZeSzsZs/Oe7w6hvtaOfOQ3v3jxBFSYKJyFX5Altqeo8YVoOjSXQEYpkAn2rXOKs7KaskwVH5A0VfW6UCMMKISpcF+EURCrClRPogRhDY37v+7QeFhpLFhqNJiDsKMLyAY6QPoqGinomS5PkEvG79r333sMFF1yAsrIyLF26FL/85S9RU1ODt956Cz/+8Y8xe/Zs/Pvf/8aqVasSsFyiJNNv+rz4tp7Ib8JjB3jygLbVWNDucGFVhWdSe7TN3PxdlPIwy+9zOxmzsXjtfgDANWcMxLCibDx9+cnyfZ05QoCycqyx032PNCc+Wdq/fP6dDQdx9lOfY/eR5oB9hUOoDBVpNL7eSZE3VPR9TAjh6QuNxeYIAb4GmVkmfUxupv9z0xGKHwFuWxyrxsSx2h1uuMOcpUdIPIlYCF1//fUoKSnBmjVrsHXrVixYsAC5ubmqfUpKSvDAAw/Ea40AgPr6esyaNQs5OTnIzc3F3Llz0dISfNyDYMqUKdBoNKrbzTffHNd1JRPhclhtnunPIn8kkReAsvx0FGSb4HBJ+GR7LXbXtUCrASYN7RvV8ZTdpQFgSCel8wKzXEIf2Etoy8EGfFttgVGnxZWnlQEAZozqh0cvOgmXjOkfVlK3cIR21jbLoaZgSJIk5wgVZXedEPpgyyEcrLdi5c7ADtjBHCEAuGlyOWacVIyTSnICHtPxc/veT0J4+pKlPc8hWhlEM9BU/C5jaaYY7LkphOKHUmRqNb73o79wjSo0pjhGOO0hCIk3EX9qHT58GBkZGR3uk56ejocffjjqRQVj1qxZOHz4MFasWAGHw4Hrr78e8+fPx9KlSzt83Lx58/Db3/5W/rmztXcnxIdTi80p93cBEhsa02g0GDsgD8u31+JPn+4G4OkvFE4H5mBotRoUZJlwyBteCrcho3ARGoI4QovXHgAA/PSUfqoBprMnDMLsCeGtq585HcU5aahtasf31RaMDzGAtanNKTtxIt8pEfiXz4veRdUNbQH7BnOEAGD+2UOiem6dViN3EBbC098REsV10Tg6YsxGrP1xMv0dIYbG4oZSCGUa9XIYXLldp9WEFdb2R/meaXO4+HsjXU7E8t3pdKKpqSng1tzcDLs9sk6/4bJjxw4sX74cL7/8MsaPH49Jkybhueeew9tvv91p6X5GRgaKi4vlW05OZN+GUxnhCNkUZa2A79taohAJ02JQZjTVYkoKFSGlcIVQ32zRiNGm2n68xZcUfd2EQTGtS84T2nYg+A7V1ThyyBMazM0wJDRJXVk+L0kSDjV6BFBNY6AQCuUIxYJwgGRHyBsuE4muglhCY7HMGfOsxS9HiI5Q3FC+tsr/K3/f+ihEEOARUELoM0+IJIOIr5i5ubnIy8sLuOXm5iI9PR0DBw7Eww8/DLc7fhbn2rVrkZubi3Hjxsnbpk2bBq1Wi3Xr1nX42CVLlqBv374YNWoU7rvvvk6r2Ww2W4DIS1UyFN/4jykGTSaqu7FgrDdhWhDrsEeRJ6TRIOzyYDEv6pCfENhysBF2lxvDCrNwSlluTOsaU+gRaFv+sRyoqlLfWVUFTJ6MI7fdDSCxYTFAXT7faHXIIYTqhsD3s2iw6e+QxPT8XlHR3K6uTPQPP0UjhOTQWIyjI/yFH4VQ/MgIIX6UosgYRQ8h+TiiuzSbKpIkEPE79/XXX0dJSQnuv/9+fPDBB/jggw9w//33o3///vjrX/+K+fPn49lnn8UTTzwRt0XW1taisFB9sdXr9cjPz0dtbW3Ix1199dV466238Pnnn+O+++7Dm2++iWuuuabD51q0aBHMZrN8Kysri8s5JAKTXqea3g50TTjgpJIc+Rtc3yxjxDkn/ogk4xJzetjr7+et0DpsUQsh4ZB0NqYjHMbketayrs9gbP3ZtT4xVFUFTJkCVFbiSLsnJpTIsBigHrEhOlkDQE1DW0DTR5E8r+wjFCtpfj15fOXzsYuPM8r7wKjXYuLQ4OHHcNFpNSo3lDlC8UP0iwLUglNZTRZNxZjv+OwlRJJHxJ+Ub7zxBp555hlcccUV8rYLLrgAo0ePxosvvojPPvsMAwYMwGOPPYb777+/w2MtXLgQTz75ZIf77NixI9IlysyfP1/+/+jRo9GvXz9MnToVe/fuxZAhwfMl7rvvPvzqV7+Sf25qakppMZRp0qPR6sDxlug6+0aDSa/DKaVmbNjfgLOHFUSVF6BEdJfurJGikn5m4Qi1q7YLh6gkDhPGR48ZhpL/HcQh5ODiaXfj/PsW4+5rz8aQX8wBKiuB8nIcufVuYF1tQivGAHUfIaX4a7W70Gh1IE8RVrLa1POg4oF/uFVOlo6DI3TeScXY/sh5UY1n8CfDqJPdMgqh+KHMN1O7Q75LSLShMUBZOUYhRLqeiIXQ119/jRdeeCFg+5gxY7B27VoAwKRJk3Dw4MFOj3XXXXdhzpw5He5TXl6O4uJi1NWpq2OcTifq6+tRXFwc9trHjx8PANizZ09IIWQymWAyde1051jINHqEkHCE/L+5J4qrxw/AvmOtmOU3GT4apo4owgdbD+HysaVhP0YZGpMkSQ4HVnuFUP84CKE0gw7/XHAWfv/BFry34zg+Lv0RvvrvIXx2pAGF5eXAqlU4stkCILHjNQBFd2enS+UIAR4XTCmEZEconjlCIcZXxCNHCIhuRlUwMox6OYHef20kekKFw5S9mmL5HXLwKkkmEX9SlpWV4ZVXXgkIfb3yyiuyc3L8+HHk5eUFe7iKgoICFBR0nmg7YcIENDY2YtOmTRg7diwAYOXKlXC73bK4CYetW7cCAPr16xf2Y1Id8U2tK0NjAPCzMaX42ZjwhUtHjOiXg09/NTmixxSZPWLV5nSjvtUuV4fVeKuoSvPiM5iyf246npkzEfOXf4kbP9iFqtxibCgdiZ+8+hRQVoYjq4541tNFoTG7041aPyFU3WDFKG8nbMAzHBPw9ZmKB/5CSAjuwO3JdWGUF+xkr6UnoQyNZYYKjUXRQ0gg3k/MESLJIOJPyqeffhqXX345Pv74Y5x22mkAgI0bN2Lnzp149913AQAbNmzAz3/+87gtcsSIEZgxYwbmzZuHF154AQ6HAwsWLMCVV16JkpISAEBNTQ2mTp2KxYsX4/TTT8fevXuxdOlSzJw5E3369MF3332HO++8E2effTZOPvnkTp6x+yAudl0ZGksFTHodCrJNONpsw2FLu08IyY5QHNskVFXhxFvmYPzwC1CVW4w9fcqA2bOBVatQ2+Qdr9GFobFDfnlR/iX0rSHK52PB32kU7zN/1ymeLlQ0qJyLXvK30BWESpbOiJMjlE5HiCSRiN+5F154ISoqKjBz5kzU19ejvr4e559/Pnbu3Imf/vSnAIBf/OIX+P3vfx/XhS5ZsgTDhw/H1KlTMXPmTEyaNAkvvfSSfL/D4UBFRYVcFWY0GvHpp59i+vTpGD58OO666y5ceuml+Oijj+K6rmQjvp0dbYluxEF3psSbMC3ET7vDJZfT94+TI6RMjB4qed5bewaO8OQITZmCugZPC4GE5wjpfMnSwhESLpS/ELImsHxe/jmOVWPxJFSZN4mNUK+r8v/RTJ6Xj8NkaZJEIvqkdDgcmDFjBl544QUsWrQoUWsKSn5+fofNEwcNGqSqnikrK8Pq1au7YmlJxRca612OEOBJiP622oLDXiEkBEKaQYu8KBs8qqiulkUQyssxdOHtwH/3Y8+YM4F15XBX7kNdUzug1SU+R0jM+1IIoXGD8vGf7w4H9BKSh67G0REy+TlCvlljqRUaU4ZtetPfQqJRNVQ0Ba8gM8YSGjOyfJ4kj4gkvMFgwHfffZeotZAoEB/8x7s4RygVEJVjInm4RpEoHZdeStnZQGEh4E2MHjpyEACg0mKHa+XnOD7iZLi0OmgQ3iDXWDDpfJ2lRWjsNG9jy8DQmKgaS4wjlGbQyq9vWpySpeNFOnOEEkKokGP8Q2McsUG6nojfuddccw1eeeWVRKyFRIGcI9TaGx0hdWhMJEr3z4tTfpDZDCxfDqxeDZSVoTQvHUadFjanGzVZfXHkrX8A8HS5jiUsEA4iR6iuuV0e6THOOzNN2VTR5ZbkPIt4ihKTIdSF0D9HKDWSpTWaxHdY700o+0UpnUal2NTH4AgxR4gkk4i/MjqdTrz66qv49NNPMXbsWGRmqhvXxTs3iHSMEEIu79Tm3vQtWPQKEo5QPEvnZcxmzw2eHIjBfTNRcaQZe442Q0r3bE90WAzwCaEDxzyip0+mUW4a2dzuhKXNAXO6QTUgNr5VY1rF/xUXQj+xkWxHUgizruiw3ptQVocpRVHcHCHvcWwUQiQJRPxJuW3bNpx66qkAgF27dqnu4wdP19ObB02K7tKiieIhWQglTpgMLcxCxZFm7K1rlYVGokvnAZ+70eytCCs2pyHDqEd+phH1rXbUNLR5hZDnQqKNsyNi0odyAbQw6rTyMNhkO5LiwpzsdfQ0VJViIdxB9hEi3ZWIhdDnn3+eiHWQKPH/1t+bLgDC+TnS1A6ny60IjcXREfJDdL/eU9eCIq8QS3TpPOBzhAQiP6p/brpHCDW2YWRJjmLOmD6uX0xCOUKAR3zb2zxCKFXK53uTM9oVpKuSpX3/12o1SDNo0e5wx9RHiLPGSDKJWsLv2bMHn3zyCdraPBcf/3lHpGvI6sVCqG+WCQadBm4JONJsS0wPIT+GCiF0tMVTMYbED1wFAgdaCjdMNI4UeUJy6XwcK8YAv3BYiJ5CRr0WuhjHrcSKHBrrRc5oV6AUuP7z5cR9seTJyQ0V6QiRJBDxO/f48eOYOnUqTjjhBMycOROHDx8GAMydOxd33XVX3BdIOsb/gpfWiy4AWq0GxaKXUEObPIMrkY7Q0AKfI1TrFULF5i4IjfkJ3GI/ISTcMKUjFE/SOhhmmp5C4SiGxhJDqCaKgEIIs48Q6aZE/M698847YTAYcPDgQWRk+L55//znP8fy5cvjujjSOb05NAb4QkTfVjXC4ZKg02pQlJ04YVJekAmNBrC0OfDDoSYAXRQa87vIiIo5ER4UJfTCFctKi7MQUjlCwXsHJbtiDACy0zz9o+LZQ4moHbYAIeT9OabQmOgjRCFEkkDEn5b/+9//8Mknn6C0VD1natiwYThw4EDcFkbCozeHxgCfENiwvx6Ap4IrkaXsaQYdyvIycLDeijpvF+suCY355QgV53jOu9TbKkAIoCXrPMOOp5xYGNfnVzZUDNVNOhXCUWef0BeXnNofF55Skuyl9ChCTZxX3hdbaIw5QiR5RCyEWltbVU6QoL6+vltNbe8p+H87S4Vv5V2JyJXZdKABQJxL50MwpCATB+t9vXu6smpMIM67vyJH6LvqRmw60ACDToNrzhgQ1+dXNlT07zIthFEqiPDsNAN+f8WPkr2MHkeaXgejXgu7042ctOBfvuIRGmNDRZIMIn7nnnXWWVi8eLH8s0ajgdvtxlNPPYUf//jHcV0c6Rx/R6i3Vcv08wof0VAykflBApEwDXjCAfmZie0qDQQKoWI/IdRgdeD5z/cAAH56cgkK4+xSdZfQGEkMWq0GT1wyGg/9dKQ84FggO0IxJMoLN5E5QiQZROwIPfXUU5g6dSo2btwIu92OX//619i+fTvq6+uxZs2aRKyRdIC/TZ0K4YmuxL9nUFc4QkohVJid1iX9s5ShsfxMoyw+ctIMMKcbYGlz4JPtRwAA1585KO7P31FoTE6WTnLpPEksl5xaGnS7+AwyxNC3isnSJJlE/M4dNWoUdu3ahUmTJuGiiy5Ca2srLrnkEmzZsgVDhgxJxBpJB/T2HCGRLC0o6WIh1BVhMUAthPw7WSvF39iBeTi5NDfuz2/ymzWmJEMOjXGkRW/ElyzNhoqkexLVVziz2YwHHngg3mshUZBm0EKrAbwTNnqdEPIXPl0SGivIlv9f1AUVY4A6/6LEzwUrzUvHD4c9FWxzJg5KyPOnheEIJbuZIkkOI/rlAACGKb4gRIpcNcZkaZIEovrkamxsxPr161FXVwe3W53cdu2118ZlYSQ8NBoNMo16efSC/zTwnk5Omh6ZRh1avR+gXREaM2cY0DfLhGMtti4TQnqdp1mhyy3J+UECIf6Kc9IwY1RxQp4/nByh3haWJR5uOHMQLjilX0x5aaJPlc3phtstQZvkxpykdxGxEProo48wa9YstLS0ICcnR5UfodFoKISSQKbJJ4R6myOk0WhQkpuO3XUtALpGCAHA0MLMLhVCgMcVanO7AsKB544swrsbq3HPeSfGFJ7oiI6E0KShffGPjVU4e1jfhDw3SW00Gk3MyflKEd3udNFdJF1KxO+2u+66CzfccAMef/zxoGX0pOtRNo/rbVVjgKdybHddC/IzjV3mSlwxrgx1zTacMzy+/Xo6wqjXos3hkkvnBROH9MV3v5me0KRtZdVagBAa1heb/t80Dl0mUaNsz9BmpxAiXUvE77aamhrcdtttFEEphOgubdBpEuYIpDIlZnWX5a7gklNLQ1bRJAohRvxDYwASLkKU4ieY60gRRGJBq9XApNfC5nQzYZp0ORFfNc877zxs3LgxEWshUSLmSvVGNwjwJUx3pRBKBjNGFWNIQWZCqsI6I03lCPU+sU0SD3sJkWQRsSP0k5/8BPfccw9++OEHjB49GgaDQXX/hRdeGLfFkfAQobHelh8kuOhHJdh0oAHXThyY7KUklN9eNCppz63XaaHXauB0S71WcJPEkm7QoREOtNnZXZp0LRELoXnz5gEAfvvb3wbcp9Fo4HJRzXc1IjTWW6t2BvbJxBs3nJ7sZfR40gw6tNicFEIkIchNFZ28hpCuJWIh5F8uT5KPLIR4gSIJJNPkEULZcZ5sTwjAwaskefATrQeQ6XWC+E2dJJL7Z47AD4ebYmqcR0go5KaKzBEiXUzYWY8zZ86ExWKRf37iiSfQ2Ngo/3z8+HGMHDkyrosj4UFHiHQFF/2oP+47fwQrxEhCEEn4TJYmXU3YQuiTTz6BzWaTf3788cdRX18v/+x0OlFRURHf1ZGwyOrlOUKEkO5POkNjJEmELYQkSerwZ5I8xBDQIQWZSV4JIYREBwevkmTBHKEewJQTC7H6nikozWOTS0JI9ySdQogkibCFkEajCcgNYK5A6jCwD90gQkj3RW6oyNAY6WLCFkKSJGHOnDkwmUwAgPb2dtx8883IzPRcgJX5Q4QQQkgk0BEiySJsIXTdddepfr7mmmsC9uHkeUIIIdEgcoTaHexVR7qWsIXQa6+9lsh1EEII6cWwjxBJFpyeSAghJOkwNEaSBYUQIYSQpCM3VGSyNOliKIQIIYQkHfYRIsmCQogQQkjSYWiMJItuI4Tq6+sxa9Ys5OTkIDc3F3PnzkVLS0unj1u7di3OOeccZGZmIicnB2effTba2tq6YMWEEELCRU6WZmiMdDHdRgjNmjUL27dvx4oVK7Bs2TJ88cUXmD9/foePWbt2LWbMmIHp06dj/fr12LBhAxYsWACtttucNiGE9ArS5fJ5CiHStXSLERs7duzA8uXLsWHDBowbNw4A8Nxzz2HmzJl4+umnUVJSEvRxd955J2677TYsXLhQ3nbiiSd2yZoJIYSED3OESLLoFtbI2rVrkZubK4sgAJg2bRq0Wi3WrVsX9DF1dXVYt24dCgsLMXHiRBQVFWHy5Mn46quvOnwum82GpqYm1Y0QQkhikUdssKEi6WK6hRCqra1FYWGhapter0d+fj5qa2uDPqayshIA8Jvf/Abz5s3D8uXLceqpp2Lq1KnYvXt3yOdatGgRzGazfCsrK4vfiRBCCAkKk6VJskiqEFq4cKE8zDXUbefOnVEd2+32fKu46aabcP3112PMmDH4wx/+gBNPPBGvvvpqyMfdd999sFgs8q2qqiqq5yeEEBI+QgjZnW643FKSV0N6E0nNEbrrrrswZ86cDvcpLy9HcXEx6urqVNudTifq6+tRXFwc9HH9+vUDAIwcOVK1fcSIETh48GDI5zOZTPJgWUIIIV2DyBECPAnTmaZukcJKegBJfacVFBSgoKCg0/0mTJiAxsZGbNq0CWPHjgUArFy5Em63G+PHjw/6mEGDBqGkpAQVFRWq7bt27cL5558f++IJIYTEDZPeF6BooxAiXUi3yBEaMWIEZsyYgXnz5mH9+vVYs2YNFixYgCuvvFKuGKupqcHw4cOxfv16AIBGo8E999yDZ599Fu+++y727NmDBx98EDt37sTcuXOTeTqEEEL80Go18pgN9hIiXUm3kdxLlizBggULMHXqVGi1Wlx66aV49tln5fsdDgcqKipgtVrlbXfccQfa29tx5513or6+HqeccgpWrFiBIUOGJOMUCCGEdEC6QYd2h5u9hEiXopEkiVlpHdDU1ASz2QyLxYKcnJxkL4cQQnosExd9hkOWdny44EycXJqb7OWQbk641+9uERojhBDS80njmA2SBCiECCGEpATymA0nmyqSroNCiBBCSEogN1WkI0S6EAohQgghKYFvzAaFEOk6KIQIIYSkBCY9x2yQrodCiBBCSEqQzmRpkgQohAghhKQE6aKhIh0h0oV0m4aKhBBCeigWC9Dc7KsaUwqh6mogOxswm5O0ONLToSNECCEkeVgswIwZwOTJSGv3TAZos7tgtTvx3PsbsfqKmzz3WyxJXijpqVAIEUIISR7NzUBdHVBZifS33gAAVBxpxkV/WIVn1h3B/adc5rm/uTnJCyU9FQohQgghyaO0FFi1CigvR3pdLQDgy93HsLvBBgCoMRei/dOVnv0ISQAUQoQQQpJLWRmwahXSzdnypkn7tyDd6RFDh7L6JGtlpBdAIUQIIST5lJVh8j1zMaZmJ+7+YjHe+MfDKMtLBwBUN7QleXGkJ8OqMUIIIcmnqgoDb56D9ysr5U2lFd9hV8koVDVYk7gw0tOhI0QIISS5VFUBU6YAlZVAeTmwZg1QXo6yw/sAANUHjiR3faRHQyFECCEkeVRXq0XQqlXAxInAqlUo1Ts9u3yw3LMfIQmAQogQQkjyyM4GCgt9IqiszLO9rAyl994BAKjKLfLsR0gCoBAihBCSPMxmYPlyYPVqnwjyUjbM83N1v8HsLE0SBpOlCSGEJBezOajQKfVWjR1rdaDd4UKadwQHIfGEjhAhhJCUxJxuQJbJ8329mpVjJEFQCBFCCElJNBqN7ApVsZcQSRAUQoQQQlKW0rwMAEB1PR0hkhgohAghhKQsZfnsLk0SC4UQIYSQlEV2hCiESIKgECKEEJKy+HKEGBojiYFCiBBCSMpSRkeIJBgKIUIIISlLf68jVN9qR6vNmeTVkJ4IhRAhhJCUxZxuQE6a6CVEV4jEHwohQgghKU1ZvgiPMU+IxB8KIUIIISmNSJimI0QSAYUQIYSQlEYkTFexqSJJABRChBBCUho6QiSRUAgRQghJaURTRfYSIomAQogQQkhK40uWpiNE4g+FECGEkJRG9BKytDnQ1O5I8mpIT6PbCKH6+nrMmjULOTk5yM3Nxdy5c9HS0hJy//3790Oj0QS9/fOf/+zClRNCCImFLJMeeRkGAEB1PV0hEl+6jRCaNWsWtm/fjhUrVmDZsmX44osvMH/+/JD7l5WV4fDhw6rbI488gqysLJx//vlduHJCCCGxwl5CJFHok72AcNixYweWL1+ODRs2YNy4cQCA5557DjNnzsTTTz+NkpKSgMfodDoUFxertr3//vu44oorkJWV1SXrJoQQEh9K89LxXbWFeUIk7nQLR2jt2rXIzc2VRRAATJs2DVqtFuvWrQvrGJs2bcLWrVsxd+7cDvez2WxoampS3QghhCSXMlaOkQTRLYRQbW0tCgsLVdv0ej3y8/NRW1sb1jFeeeUVjBgxAhMnTuxwv0WLFsFsNsu3srKyqNdNCCEkPrCXEEkUSRVCCxcuDJnQLG47d+6M+Xna2tqwdOnSTt0gALjvvvtgsVjkW1VVVczPTwghJDZELyEKIRJvkpojdNddd2HOnDkd7lNeXo7i4mLU1dWptjudTtTX1wfkAQXj3XffhdVqxbXXXtvpviaTCSaTqdP9CCGEdB1l+V5HqN4KSZKg0WiSvCLSU0iqECooKEBBQUGn+02YMAGNjY3YtGkTxo4dCwBYuXIl3G43xo8f3+njX3nlFVx44YVhPRchhJDUo3+uxxFqtjnR1OaE2VtOT0isdIscoREjRmDGjBmYN28e1q9fjzVr1mDBggW48sor5YqxmpoaDB8+HOvXr1c9ds+ePfjiiy9w4403JmPphBBC4kC6UYe+WUYATJgm8aVbCCEAWLJkCYYPH46pU6di5syZmDRpEl566SX5fofDgYqKClit6j+QV199FaWlpZg+fXpXL5kQQkgc8eUJUQiR+KGRJElK9iJSmaamJpjNZlgsFuTk5CR7OYQQ0mtZsHQzln13GP/vJyNw41nlyV4OSXHCvX53G0eIEEJI70Z0l66qpyNE4geFECGEkG4BewmRREAhRAghpFvAXkIkEVAIEUII6RaUeR2hqgZPLyFC4gGFECGEkG5BSa5HCFntLjRYHUleDekpUAgRQgjpFqQZdCjM9nT+Zwk9iRcUQoQQQroNvsox5gmR+EAhRAghpNvgqxyjI0TiA4UQIYSQbkMZK8dInKEQIoQQ0m0oVVSOERIPKIQIIYR0G9hLiMQbCiFCCCHdhrJ8X44QewmReEAhRAghpNvQz5wOjQZod7hxrMWe7OWQHgCFECGEkG6DUa9FcU4aAGDbIUuSV0N6AhRChBBCuhVnDu0LAPj1u9+hppG5QiQ2KIQIIYR0Kx6+YCSGF2fjaLMNN7y2Ac3tHLdBoodCiBBCSLciO82AV+achoJsEyqONOOWpVsohkjUaCSm3XdIU1MTzGYzLBYLcnJykr0cQgghXr6rbsQVL65Fu8MNvVaDUwfmYfIJBbh8XCkKs9OSvTySZMK9ftMRIoQQ0i05uTQXL84eh8F9M+F0S1i/rx6/+6QCU59ZjbfXH2R5PQkLOkKdQEeIEEJSnwPHW/HFrqN4Z2MVttU0AQDOKM/HE5ecjEF9M5O8OpIMwr1+Uwh1AoUQIYR0H5wuN17/ej+e/l8F2h1uZJn0+MPPf4RzRxYle2mki2FojBBCSK9Dr9PixrPK8b87JuP0QflosTkxb/FG/PHTXXC7+b2fBEIhRAghpMcxoE8GlswbjzkTBwEA/vjpbsx/cxOaWF1G/KAQIoQQ0iMx6LT4zYUn4XeXnQyjXotPdxzBxc+vwZ66lmQvjaQQFEKEEEJ6NJePK8O7N09AP3MaKo+24uLn12DFD0eSvSySIlAIEUII6fGcXJqLj26dhNMH+/KG/rCCeUOEQogQQkgvoW+WCUtu9OUN/emz3Zj/5kbmDfVyKIQIIYT0GkTe0NOXn+LNG6rDxX9eg2+rGpO9NJIkKIQIIYT0Oi4bW4p/3TwRJeY0VB5rxcV/WYMH3v8ejVZ7spdGuhgKIUIIIb2S0aVmfHTrJFwypj8kCViy7iDOeWY13ly7H3anO9nLI10EO0t3AjtLE0JIz+ebyuN48INt2O0trS/NS8ftU4fhZ2P6Q6+jZ9Ad4YiNOEEhRAghvQOHy42/rz+I51buwdFmGwBgVP8cPHvlGJQXZCV5dSRSOGKDEEIIiQCDTotrJwzCF/f8GPfPHA5zugHbaprw0+e+wrubqjnNvodCIUQIIYQoSDfqMP/sIfjkjrNxRnk+rHYX7v7nt/jVP76F1e5M9vJInKEQIoQQQoJQbE7DkhvPwN3TT4BOq8H7W2pw6V/XoqremuylkTjSbYRQfX09Zs2ahZycHOTm5mLu3Lloael4XkxtbS1mz56N4uJiZGZm4tRTT8W//vWvLloxIYSQ7o5Oq8GCc4Zh6Y3j0TfLiB2Hm3DBn7/Cl7uPJntpJE50GyE0a9YsbN++HStWrMCyZcvwxRdfYP78+R0+5tprr0VFRQU+/PBDfP/997jkkktwxRVXYMuWLV20akIIIT2B8eV98NGtk3BKqRmNVgeue3U9ln13KNnLInGgW1SN7dixAyNHjsSGDRswbtw4AMDy5csxc+ZMVFdXo6SkJOjjsrKy8Ne//hWzZ8+Wt/Xp0wdPPvkkbrzxxrCem1VjhBBCBO0OF+5773u8v6UGeq0GL84ei6kjipK9LBKEHlU1tnbtWuTm5soiCACmTZsGrVaLdevWhXzcxIkT8c4776C+vh5utxtvv/022tvbMWXKlJCPsdlsaGpqUt0IIYQQAEgz6PD05afgoh+VwOmW8Islm/HV7mPJXhaJgW4hhGpra1FYWKjaptfrkZ+fj9ra2pCP+8c//gGHw4E+ffrAZDLhpptuwvvvv4+hQ4eGfMyiRYtgNpvlW1lZWdzOgxBCSPdHp9Xg6ctPwfSRRbA73Zi3eCO2clZZtyWpQmjhwoXQaDQd3nbu3Bn18R988EE0Njbi008/xcaNG/GrX/0KV1xxBb7//vuQj7nvvvtgsVjkW1VVVdTPTwghpGdi0Gnx3NVjcPYJBWhzuPDLtzahvpVzyrojSc0ROnr0KI4fP97hPuXl5Xjrrbdw1113oaGhQd7udDqRlpaGf/7zn/jZz34W8Li9e/di6NCh2LZtG0466SR5+7Rp0zB06FC88MILYa2ROUKEEEJC0dzuwEV/XoPKY604+4QCvDbnNOi0mmQviyD867e+C9cUQEFBAQoKCjrdb8KECWhsbMSmTZswduxYAMDKlSvhdrsxfvz4oI+xWj19HrRateml0+ngdnOYHiGEkNjJTjPgL9ecioufX4Mvdh3Fcyt3445pJyR7WSQCukWO0IgRIzBjxgzMmzcP69evx5o1a7BgwQJceeWVcsVYTU0Nhg8fjvXr1wMAhg8fjqFDh+Kmm27C+vXrsXfvXjzzzDNYsWIFLr744iSeDSGEkJ7E8OIcPP6z0QCAP322G59X1CV5RSQSuoUQAoAlS5Zg+PDhmDp1KmbOnIlJkybhpZdeku93OByoqKiQnSCDwYD//ve/KCgowAUXXICTTz4ZixcvxhtvvIGZM2cm6zQIIYT0QC45tRRXjx8ASQJuWbIZmw82dP4gkhJ0iz5CyYQ5QoQQQsLB5nThxjc24svdx5CTpsc/bp6A4cW8biSLHtVHiBBCCEl1THodXpw9FqcOyEVTuxOzX1mP/cdak70s0gkUQoQQQkicyDDq8dqc0zG8OBtHm2247IWv8fUeNlxMZSiECCGEkDhizjBg8VyPGDrWYsesV9bhT5/uhsvNTJRUhEKIEEIIiTOF2Wl4/5dn4ufjyiBJwB8+3YU5r61Ho5VNF1MNCiFCCCEkAaQbdXjyspPxzOWnIN2gw5e7j+Hi59dgT11zspdGFFAIEUIIIQnk0rGleO+XE9E/Nx37j1vxs+e/Zq+hFIJCiBBCCEkwI/rl4N8LzsTpg/LRbHPihtc34Jn/VcDp4qSDZEMhRAghhHQBfbNMeOvG8bjqdE/jxedW7sGVL32D6gZrspfWq6EQIoQQQroIo16LRZeMxrNXjUG2SY+NBxow809f4t9ba8D+xsmBQogQQgjpYi48pQT/vf0s/KjM03zx9re34pdLNuNYiy3ZS+t1UAgRQgghSaAsPwP/vHkCfnXuCdBrNfh4Wy3O+8MXeP7zPexI3YVw1lgncNYYIYSQRLOtxoK7/vEtKo74SutPKsnBdRMG4bKxpdBqNUlcXfck3Os3hVAnUAgRQgjpCmxOF97fXIP/fH8YX+89LneiPn1QPh6/ZDSGFmYleYXdCwqhOEEhRAghpKupb7XjHxur8KdPd6PN4YJRp8X8s8sx7+xymNMNyV5et4BCKE5QCBFCCEkW1Q1WPPjBNnxecRQAkJOmx9xJ5bh+0iDkpFEQdQSFUJygECKEEJJMJEnCJ9tr8fsVu7DrSAsAwKjTYkhhFoYXZ2NoYRYyjTqkGXRIN+pQkpuOgX0yUJBlgkaTxNwiiwVobgZKSwPvq64GsrMBszlhT08hFCcohAghhKQCbreE/247jGc/2y0Loo7INOpQmJOG3AwD8jOMyM0wIj/T4P3XiLwM3//7ZpmQm26IX1K2xQLMmAHU1QGrVgFlZb77qqqAKVOAwkJg+fKEiaFwr9/6hDw7IYQQQuKKVqvBT08uwU9G90N1Qxt21jajorYJ+49b0eZwweZwocXmRHVDGw41tqHV7sK+CMrwdVoN+mQaMahvJk4oysIJRdnoZ05HfqZHLPUzpyHNoAvvYM3NHhFUWekRPUIMCRFUWenbL4GuUDjQEeoEOkKEEEK6G3anG9UNVhxrsaPBakdDqx31VjsarQ7Ut9rRaLV7/3XgeKsdljZHp8fUaTUYUpCJk0rMGFKQiSyTHpneW4ZRhyyTHulGHXRaDTTQALW10Fw/B5qqKqC0DJonnwDu/TU0VVWwDxwMy19eQmNWHixtdpw2KB/lBfGtimNoLE5QCBFCCOnp2J1uNFjtONLUjj11Ldh1pAV76ppxtNmGeqsd9S12tNpdCXv+Jy8djZ+fNiCux2RojBBCCCFhYdRrUZSThqKcNJxcmhtwvyRJqGu2YfshC7bVNKGq3gqr3YVWuxNWmyckZ7U70Wp3QZIkCItFAiA5HJAsFkjQQNJogOxsGIwGmDMMyE335CkVZJu69HyVUAgRQgghpEM0Go0slM4ZXhT+A/1zggCgvDwwgTqJcNYYIYQQQuKPUgSVlwNr1nj+FQnUVVXJXiEACiFCCCGExJvqarUIWrUKmDjR869SDFVXJ3edYGiMEEIIIfEmO9vTJwhQh8HKyjw/iz5C2dlJWqAPCiFCCCGExBez2dMsMVhn6bIyYPXqhHeWDhcKIUIIIYTEH7M5tNAJNnYjSTBHiBBCCCG9FgohQgghhPRaKIQIIYQQ0muhECKEEEJIr4VCiBBCCCG9FgohQgghhPRaKIQIIYQQ0muhECKEEEJIr4VCiBBCCCG9FnaW7gRJkgAATU1NSV4JIYQQQsJFXLfFdTwUFEKd0NzcDAAoEwPjCCGEENJtaG5uhrmDmWYaqTOp1Mtxu904dOgQsrOzodFo4nbcpqYmlJWVoaqqCjk5OXE7bneB58/z5/nz/Hn+PP9Enr8kSWhubkZJSQm02tCZQHSEOkGr1aI0gcPhcnJyeuUfgoDnz/Pn+fP8eys8/8Sff0dOkIDJ0oQQQgjptVAIEUIIIaTXQiGUJEwmEx5++GGYTKZkLyUp8Px5/jx/nj/Pn+efCjBZmhBCCCG9FjpChBBCCOm1UAgRQgghpNdCIUQIIYSQXguFUJJ4/vnnMWjQIKSlpWH8+PFYv359speUEBYtWoTTTjsN2dnZKCwsxMUXX4yKigrVPu3t7bjlllvQp08fZGVl4dJLL8WRI0eStOLE8cQTT0Cj0eCOO+6Qt/WGc6+pqcE111yDPn36ID09HaNHj8bGjRvl+yVJwkMPPYR+/fohPT0d06ZNw+7du5O44vjgcrnw4IMPYvDgwUhPT8eQIUPw6KOPqtr997Rz/+KLL3DBBRegpKQEGo0GH3zwger+cM63vr4es2bNQk5ODnJzczF37ly0tLR04VlET0fn73A4cO+992L06NHIzMxESUkJrr32Whw6dEh1jJ56/v7cfPPN0Gg0+OMf/6janozzpxBKAu+88w5+9atf4eGHH8bmzZtxyimn4LzzzkNdXV2ylxZ3Vq9ejVtuuQXffPMNVqxYAYfDgenTp6O1tVXe584778RHH32Ef/7zn1i9ejUOHTqESy65JImrjj8bNmzAiy++iJNPPlm1vaefe0NDA84880wYDAZ8/PHH+OGHH/DMM88gLy9P3uepp57Cs88+ixdeeAHr1q1DZmYmzjvvPLS3tydx5bHz5JNP4q9//Sv+/Oc/Y8eOHXjyySfx1FNP4bnnnpP36Wnn3trailNOOQXPP/980PvDOd9Zs2Zh+/btWLFiBZYtW4YvvvgC8+fP76pTiImOzt9qtWLz5s148MEHsXnzZrz33nuoqKjAhRdeqNqvp56/kvfffx/ffPMNSkpKAu5LyvlLpMs5/fTTpVtuuUX+2eVySSUlJdKiRYuSuKquoa6uTgIgrV69WpIkSWpsbJQMBoP0z3/+U95nx44dEgBp7dq1yVpmXGlubpaGDRsmrVixQpo8ebJ0++23S5LUO8793nvvlSZNmhTyfrfbLRUXF0u/+93v5G2NjY2SyWSS/v73v3fFEhPGT37yE+mGG25QbbvkkkukWbNmSZLUs89dkiQJgPT+++/LP4dzvj/88IMEQNqwYYO8z8cffyxpNBqppqamy9YeD/zPPxjr16+XAEgHDhyQJKl3nH91dbXUv39/adu2bdLAgQOlP/zhD/J9yTp/OkJdjN1ux6ZNmzBt2jR5m1arxbRp07B27dokrqxrsFgsAID8/HwAwKZNm+BwOFSvx/DhwzFgwIAe83rccsst+MlPfqI6R6B3nPuHH36IcePG4fLLL0dhYSHGjBmDv/3tb/L9+/btQ21treo1MJvNGD9+fLd/DSZOnIjPPvsMu3btAgB8++23+Oqrr3D++ecD6NnnHoxwznft2rXIzc3FuHHj5H2mTZsGrVaLdevWdfmaE43FYoFGo0Fubi6Ann/+brcbs2fPxj333IOTTjop4P5knT9njXUxx44dg8vlQlFRkWp7UVERdu7cmaRVdQ1utxt33HEHzjzzTIwaNQoAUFtbC6PRKH8QCIqKilBbW5uEVcaXt99+G5s3b8aGDRsC7uvp5w4AlZWV+Otf/4pf/epXuP/++7FhwwbcdtttMBqNuO666+TzDPb30N1fg4ULF6KpqQnDhw+HTqeDy+XCY489hlmzZgFAjz73YIRzvrW1tSgsLFTdr9frkZ+f3+Nek/b2dtx777246qqr5HlbPf38n3zySej1etx2221B70/W+VMIkS7jlltuwbZt2/DVV18leyldQlVVFW6//XasWLECaWlpyV5OUnC73Rg3bhwef/xxAMCYMWOwbds2vPDCC7juuuuSvLrE8o9//ANLlizB0qVLcdJJJ2Hr1q244447UFJS0uPPnXSMw+HAFVdcAUmS8Ne//jXZy+kSNm3ahD/96U/YvHkzNBpNspejgqGxLqZv377Q6XQBlUFHjhxBcXFxklaVeBYsWIBly5bh888/R2lpqby9uLgYdrsdjY2Nqv17wuuxadMm1NXV4dRTT4Ver4der8fq1avx7LPPQq/Xo6ioqMeeu6Bfv34YOXKkatuIESNw8OBBAJDPsyf+Pdxzzz1YuHAhrrzySowePRqzZ8/GnXfeiUWLFgHo2ecejHDOt7i4OKBoxOl0or6+vse8JkIEHThwACtWrFBNX+/J5//ll1+irq4OAwYMkD8PDxw4gLvuuguDBg0CkLzzpxDqYoxGI8aOHYvPPvtM3uZ2u/HZZ59hwoQJSVxZYpAkCQsWLMD777+PlStXYvDgwar7x44dC4PBoHo9KioqcPDgwW7/ekydOhXff/89tm7dKt/GjRuHWbNmyf/vqecuOPPMMwPaJezatQsDBw4EAAwePBjFxcWq16CpqQnr1q3r9q+B1WqFVqv+iNXpdHC73QB69rkHI5zznTBhAhobG7Fp0yZ5n5UrV8LtdmP8+PFdvuZ4I0TQ7t278emnn6JPnz6q+3vy+c+ePRvfffed6vOwpKQE99xzDz755BMASTz/hKVhk5C8/fbbkslkkl5//XXphx9+kObPny/l5uZKtbW1yV5a3PnFL34hmc1madWqVdLhw4flm9Vqlfe5+eabpQEDBkgrV66UNm7cKE2YMEGaMGFCEledOJRVY5LU8899/fr1kl6vlx577DFp9+7d0pIlS6SMjAzprbfekvd54oknpNzcXOnf//639N1330kXXXSRNHjwYKmtrS2JK4+d6667Turfv7+0bNkyad++fdJ7770n9e3bV/r1r38t79PTzr25uVnasmWLtGXLFgmA9Pvf/17asmWLXBUVzvnOmDFDGjNmjLRu3Trpq6++koYNGyZdddVVyTqliOjo/O12u3ThhRdKpaWl0tatW1WfhzabTT5GTz3/YPhXjUlScs6fQihJPPfcc9KAAQMko9EonX766dI333yT7CUlBABBb6+99pq8T1tbm/TLX/5SysvLkzIyMqSf/exn0uHDh5O36ATiL4R6w7l/9NFH0qhRoySTySQNHz5ceumll1T3u91u6cEHH5SKiookk8kkTZ06VaqoqEjSauNHU1OTdPvtt0sDBgyQ0tLSpPLycumBBx5QXfR62rl//vnnQf/er7vuOkmSwjvf48ePS1dddZWUlZUl5eTkSNdff73U3NychLOJnI7Of9++fSE/Dz///HP5GD31/IMRTAgl4/w5fZ4QQgghvRbmCBFCCCGk10IhRAghhJBeC4UQIYQQQnotFEKEEEII6bVQCBFCCCGk10IhRAghhJBeC4UQIYQQQnotFEKEEEII6bVQCBFCCCGk10IhRAjpVsyZMwcXX3xxspdBCOkhUAgRQgghpNdCIUQI6bZMmTIFt956K+644w7k5eWhqKgIf/vb39Da2orrr78e2dnZGDp0KD7++GP5MS6XC3PnzsXgwYORnp6OE088EX/6059Ux3U6nbjtttuQm5uLPn364N5778V1112ncqLcbjcWLVokH+eUU07Bu+++21WnTgiJExRChJBuzRtvvIG+ffti/fr1uPXWW/GLX/wCl19+OSZOnIjNmzdj+vTpmD17NqxWKwCPgCktLcU///lP/PDDD3jooYdw//334x//+Id8zCeffBJLlizBa6+9hjVr1qCpqQkffPCB6nkXLVqExYsX44UXXsD27dtx55134pprrsHq1au78vQJITHC6fOEkG7FnDlz0NjYiA8++ABTpkyBy+XCl19+CcDj9pjNZlxyySVYvHgxAKC2thb9+vXD2rVrccYZZwQ95oIFC1BbWys7OsXFxbj77rtx9913y8ctLy/HmDFj8MEHH8BmsyE/Px+ffvopJkyYIB/nxhtvhNVqxdKlSxP5EhBC4og+2QsghJBYOPnkk+X/63Q69OnTB6NHj5a3FRUVAQDq6urkbc8//zxeffVVHDx4EG1tbbDb7fjRj34EALBYLDhy5AhOP/101XHHjh0Lt9sNANizZw+sVivOPfdc1VrsdjvGjBkT93MkhCQOCiFCSLfGYDCoftZoNKptGo0GAGQR8/bbb+Puu+/GM888gwkTJiA7Oxu/+93vsG7durCfs6WlBQDwn//8B/3791fdZzKZojoPQkhyoBAihPQq1qxZg4kTJ+KXv/ylvG3v3r3y/81mM4qKirBhwwacffbZADyhsc2bN8uu0ciRI2EymXDw4EFMnjy5S9dPCIkvFEKEkF7FsGHDsHjxYnzyyScYPHgw3nzzTWzYsAGDBw+W97n11luxaNEiDB06FMOHD8dzzz2HhoYG2V3Kzs7G3XffjTvvvBNutxuTJk2CxWLBmjVrkJOTg+uuuy5Zp0cIiRAKIUJIr+Kmm27Cli1b8POf/xwajQZXXXUVfvnLX6pK7O+9917U1tbi2muvhU6nw/z583HeeedBp9PJ+zz66KMoKCjAokWLUFlZidzcXJx66qm4//77k3FahJAoYdUYIYR0gtvtxogRI3DFFVfg0UcfTfZyCCFxhI4QIYT4ceDAAfzvf//D5MmTYbPZ8Oc//xn79u3D1VdfneylEULiDBsqEkKIH1qtFq+//jpOO+00nHnmmfj+++/x6aefYsSIEcleGiEkzjA0RgghhJBeCx0hQgghhPRaKIQIIYQQ0muhECKEEEJIr4VCiBBCCCG9FgohQgghhPRaKIQIIYQQ0muhECKEEEJIr4VCiBBCCCG9FgohQgghhPRa/j/MvcWI2WrmlgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHACAYAAABONwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeNUlEQVR4nO2deZwT9fnHP5Nzs0eSvQ92gV1AAUXkUARRqCAirfctoijFo1pvBWvVWquo1f7aWq3aKh7Fq1ZtSysWQUARuVFBWI7lWFiWhV02e2Q35/z+mHwnM9lJMskmm+t5v177gk0mk+8k2cxnnufzPA/H8zwPgiAIgiCIDEST6AUQBEEQBEEkChJCBEEQBEFkLCSECIIgCILIWEgIEQRBEASRsZAQIgiCIAgiYyEhRBAEQRBExkJCiCAIgiCIjIWEEEEQBEEQGQsJIYIgCIIgMhYSQgRBEARBZCwkhOLEf/7zH4wbNw4mkwn5+fm4+OKLg27rcrkwb948jBgxAjk5OaioqMD111+PhoYG2XabNm3CueeeC6vVisLCQtx8883o6OgQ73/jjTfAcZziT1NTk+q133LLLRg0aBBMJhOKi4tx0UUXYceOHRG/BgRBEASR7JAQigP/+Mc/MGvWLNx444349ttvsXr1alx77bVBt7fb7di0aRMeeeQRbNq0CR999BFqa2tx4YUXits0NDRg6tSpGDx4MNauXYslS5Zg27ZtmD17trjNVVddhcOHD8t+zjvvPEyaNAklJSWq1z9mzBgsXLgQ27dvx2effQae5zFt2jR4PJ6oXg+CIAiCSFp4Iqa4XC6+X79+/F//+tde7WfdunU8AH7//v08z/P8K6+8wpeUlPAej0fc5rvvvuMB8Lt27VLcR1NTE6/X6/m33npLdvsnn3zCjxo1ijcajXx1dTX/q1/9ine5XEHX8u233/IA+N27d/fqmAiCIAgi2aCIUIzZtGkTDh06BI1Gg1GjRqG8vBznn38+tm7dGtF+bDYbOI6D1WoFADgcDhgMBmg0/rfMZDIBAL766ivFfbz11lvIzs7G5ZdfLt725Zdf4vrrr8ddd92FH374Aa+88greeOMNPPnkk4r76OzsxMKFC1FdXY2qqqqIjoEgCIIgkh0SQjGmrq4OAPCrX/0Kv/zlL7F48WLk5+dj8uTJaGlpUbWP7u5uzJs3D9dccw3MZjMA4JxzzkFjYyN++9vfwul04vjx45g/fz4A4PDhw4r7ee2113DttdeKggkAHn/8ccyfPx833HADampqcO655+KJJ57AK6+8InvsSy+9hNzcXOTm5uLTTz/F0qVLYTAYIn49CIIgCCKZISGkkvnz5wc1IrOfHTt2wOv1AgAefvhhXHbZZaLfhuM4/P3vfw/7PC6XC1deeSV4nsef//xn8faTTjoJb775Jp5//nlkZ2ejrKwM1dXVKC0tlUWJGGvWrMH27dsxZ84c2e3ffvstfv3rX4siJzc3F3PnzsXhw4dht9vF7WbOnInNmzdj5cqVOOGEE3DllVeiu7s72pePIAiCIJISjud5PtGLSAWOHj2K5ubmkNvU1NRg9erVOOecc/Dll19i4sSJ4n3jxo3D1KlTg6agAL8Iqqurw/Lly1FYWKi43ZEjR5CTkwOO42A2m/Hee+/hiiuukG0zZ84cbNq0CZs3b5bdbjKZ8Pjjj+PSSy9VXL+SqHI6ncjPz8df//pXXHPNNSFfA4IgCIJIJXSJXkCqUFxcjOLi4rDbjRkzBkajEbW1taIQcrlc2LdvHwYMGBD0cUwE7dq1C1988UVQEQQApaWlAIDXX38dWVlZOPfcc2X3d3R04IMPPsCCBQt6PHb06NGora3F4MGDwx4Lg+d58DwPh8Oh+jEEQRAEkQqQEIoxZrMZt956Kx577DFUVVVhwIAB+O1vfwsAsqjN0KFDsWDBAlxyySVwuVy4/PLLsWnTJixevBgejweNjY0AgIKCAtGb86c//QkTJkxAbm4uli5digceeABPP/20aKhmvP/++3C73bjuuut6rO/RRx/FT37yE/Tv3x+XX345NBoNvv32W2zduhW/+c1vUFdXh/fffx/Tpk1DcXExDh48iKeffhomkwkzZsyI06tGEARBEAkioTVraYrT6eTvu+8+vqSkhM/Ly+OnTp3Kb926VbYNAH7hwoU8z/P83r17eQCKP1988YX4mFmzZvEFBQW8wWDgTznllB5l8Yzx48fz1157bdD1LVmyhJ8wYQJvMpl4s9nMn3766fyrr77K8zzPHzp0iD///PP5kpISXq/X85WVlfy1117L79ixo3cvCkEQBEEkIeQRIgiCIAgiY6GqMYIgCIIgMhYSQgRBEARBZCxklg6D1+tFQ0MD8vLywHFcopdDEARBEIQKeJ5He3s7KioqFFvDMEgIhaGhoYFGSxAEQRBEilJfX4/Kysqg95MQCkNeXh4A4YVk4y4IgiAIgkhu2traUFVVJZ7Hg0FCKAwsHWY2m0kIEQRBEESKEc7WQmZpgiAIgiAyFhJCBEEQBEFkLCSECIIgCILIWMgjRBAEQWQ8Xq8XTqcz0csgIkCv10Or1fZ6PySECIIgiIzG6XRi79698Hq9iV4KESFWqxVlZWW96vNHQoggCILIWHiex+HDh6HValFVVRWy8R6RPPA8D7vdjqamJgBAeXl51PsiIUQQBEFkLG63G3a7HRUVFcjOzk70cogIMJlMAICmpiaUlJREnSYj6UsQBEFkLB6PBwBgMBgSvBIiGph4dblcUe+DhBBBEASR8dAsydQkFu8bCSGCIAiCIDIWEkIEQRAEkUHs27cPHMdhy5YtcX2e2bNn4+KLL47rc8QCMksTBEEQBBE1+/btQ3V1NTZv3oxTTz1VvP0Pf/gDeJ5P3MJUQhEhgiCixu3xpsQXHUHEDZsNOHhQ+b6DB4X7MxSLxQKr1ZroZYSFhBBBJCn/3HIIN7y+DjZ79NUQ8WRHYxtOeuwzLPh0R6KXQhCJwWYDpk8HJk0C6uvl99XXC7dPnx43MfThhx9ixIgRMJlMKCwsxNSpU9HZ2QkA+Otf/4phw4YhKysLQ4cOxUsvvRRyX1u3bsX555+P3NxclJaWYtasWTh27Jh4v9frxbPPPovBgwfDaDSif//+ePLJJwEA1dXVAIBRo0aB4zhMnjwZQM/UmMPhwJ133omSkhJkZWVh4sSJWL9+vXj/ihUrwHEcli1bhrFjxyI7OxsTJkxAbW1tLF6uoJAQIogEc7TdgYPH7T1uf331PqzceRSr9xxTeFTiWfztYTjcXny8+RBFhYjMpL0daGoC6uqAyZP9Yqi+Xvi9rk64v7095k99+PBhXHPNNbjpppuwfft2rFixApdeeil4nseiRYvw6KOP4sknn8T27dvx1FNP4ZFHHsGbb76puK/W1lacc845GDVqFDZs2IAlS5bgyJEjuPLKK8VtHnroITz99NN45JFH8MMPP+Cdd95BaWkpAGDdunUAgM8//xyHDx/GRx99pPg8Dz74IP7xj3/gzTffxKZNmzB48GCcd955aGlpkW338MMP4/nnn8eGDRug0+lw0003xeIlCw5PhMRms/EAeJvNluilEGnKhAXL+JMeXcJ3dLtkt5/1zHJ+wLzF/AfrDyRoZaG57KXV/IB5i/kB8xbz+491Jno5BBEVXV1d/A8//MB3dXVFt4MDB3i+pobnAeHf1avlvx+Iz9/vxo0beQD8vn37etw3aNAg/p133pHd9sQTT/Djx4/neZ7n9+7dywPgN2/eLN43bdo02fb19fU8AL62tpZva2vjjUYj/5e//EVxLYH7Y9xwww38RRddxPM8z3d0dPB6vZ5ftGiReL/T6eQrKir4Z599lud5nv/iiy94APznn38ubvOf//yHBxD0/Qn1/qk9f5NZmiASiMvjxaHWLgDAYVs3Bpfkive12oUBkF0uT0LWFooupwffHmwVf994oAX9C6krL5GBVFUBK1b4I0BnnincXlMj3F5VFZenHTlyJKZMmYIRI0bgvPPOw7Rp03D55ZfDYDBgz549mDNnDubOnStu73a7YbFYFPf17bff4osvvkBubm6P+/bs2YPW1lY4HA5MmTIl6vXu2bMHLpcLZ7LXB8LQ1NNPPx3bt2+XbXvKKaeI/2ejM5qamtC/f/+onz8UJIQIIoF0S0QOEz6AYEJu63YDAOzO5BNCmw4ch8vjT4dt2Hccl4yqTOCKCCKBVFUBb7/tF0GA8HucRBAAaLVaLF26FF9//TX+97//4YUXXsDDDz+Mf//73wCAv/zlLxg3blyPxyjR0dGBCy64AM8880yP+8rLy1FXVxf7AwiBXq8X/88aJsZzIC55hAgigUijPcclpmgmgoDkFELf1DUDAApyhLEEG/cfT+RyCCKx1NcDs2bJb5s1q6eBOsZwHIczzzwTjz/+ODZv3gyDwYDVq1ejoqICdXV1GDx4sOyHmZoDGT16NLZt24aBAwf2eExOTg6GDBkCk8mEZcuWKT6ejSdh40qUGDRokLg+hsvlwvr16zF8+PBevAq9h4QQQSSQbqf/Kue4JCIk/X+X041kY22dYG68ccJAAEDtkXa0dSdndRtBxBWpMbqmBli9Wvg30EAdY9auXYunnnoKGzZswIEDB/DRRx/h6NGjGDZsGB5//HEsWLAAf/zjH7Fz5058//33WLhwIX73u98p7uv2229HS0sLrrnmGqxfvx579uzBZ599hhtvvBEejwdZWVmYN28eHnzwQbz11lvYs2cPvvnmG7z22msAgJKSEphMJtFkbVOoksvJycFtt92GBx54AEuWLMEPP/yAuXPnwm63Y86cOXF5jdRCqTGCSCBdQVJjrZLoULJFhLqcHmypbwUAXDCyAh9srEd9Sxe2HGjF2ScUJ3ZxBNGXHDwoF0HMEyT1DE2eDKxcCVTGNnVsNpuxatUq/P73v0dbWxsGDBiA559/Hueffz4AYRjpb3/7WzzwwAPIycnBiBEjcPfddyvuq6KiAqtXr8a8efMwbdo0OBwODBgwANOnT4dGI8RLHnnkEeh0Ojz66KNoaGhAeXk5br31VgCATqfDH//4R/z617/Go48+irPOOgsrVqzo8TxPP/00vF4vZs2ahfb2dowdOxafffYZ8vPzY/raRArH81T3Goq2tjZYLBbYbDaYzeZEL4dIM7bUt+LiF4VQ8W2TB2He9KEAgGXbj2DOmxsAAJeO6offXXVqopbYg693H8O1f12LMnMW1jx0Du794Ft8vPkQ7pwyBPeee0Kil0cQEdHd3Y29e/eiuroaWVlZkT2Y9RFqauppjGaRopISYMkSIIhRmegdod4/tedviggRRALpkkR7jnemRkTom71CWuyMmgJwHIfRA/Lx8eZD2EQ+ISLTsFgEkdPe3jPiU1UlRILy8kgEJTkkhAgigXTLzNISIdQlEUJJVj7PjNLjagoBAGMHCGHtzQeOw+3xQqcl6yGRQVgswYVOjNNhRHygbyyCSCDBqsZak9Qs3e3yYMuBVgDAGT4hdEJpHvKMOnQ6Pag9EvsOugRBEPGEhBDRKw7busQIARE50tRYKpilNx9ohdPjRanZiIG+BopaDYdT+1sBUBk9QRCpBwkholfc9e4WXP3qN9hJkYCoCBYRkpfPJ48Q2tYglMWOGZAvNjpjvwMkhIjUheqGUpNYvG8khNIZm00o71Ti4MGYTERmw0IP27p7va9MJLCzNPujtnUlZ0SIiTKLSS+7fVR/QQhtPRSfKdsEES9Yt2Wn0xlmSyIZsduFc5C0G3WkkFk6Xemjss4Oh+Bf6U4yQ2+qII32uDw8Op0e5Bp1soiQPYk8Qk6P0ADSEGCILsgWOssmk2gjCDXodDpkZ2fj6NGj0Ov1Yt8cIrnheR52ux1NTU2wWq1Bx4eogYRQutLeLogg1tCLiSFpF1S2XZRCiOeFEzdAQihaAgeqHu90Iteok3mEkmnoqsMtCCGjXv6lk6UXTh70OSBSDY7jUF5ejr1792L//v2JXg4RIVarFWVlZb3aBwmhdKWyskd307bX34L5puvlXVB7Ud7pcHvh8QqpHDoBRkcPIWR3oqogWyaEXB4eLo8X+iQoS3e6lSNCWT5hlEyijSDUYjAYMGTIEEqPpRh6vb5XkSAGCaF0RtLqfWH+SXj801b8RVOEc2vQM10WBSwtBgDdrvhNBk5nAgXkcbsLLo9X9toCQsrJYkq8EGIRIYNOvhajGBHygud5mZGaIFIBjUYTeWdpIi1I/DcrEV+qqoC338bmihMBAFtLBwNvv91rEQQAnTIhRJGAaAisCGu1O0WjNMcBGk55u0ThcAvrMAYIIZMkVcbEEkEQRCpAQijdqa8HZs1CuzEHANCtNwKzZsVkInKnw39ypohQdCh5hFg/IXOWHtkGIWibLIZpZ5CIUJZUCNFngSCIFCJlhFBLSwtmzpwJs9kMq9WKOXPmoKOjI+RjbrnlFgwaNAgmkwnFxcW46KKLsGPHjj5acRIgMUa3WYQuwN0FRX4DdS/FUKfk5NztTo6IRarR5RMNzGx83O4S/UH52XqYDILASJZqLCaEjDp5Xl6v1UDrC1+RT4ggiFQiZYTQzJkzsW3bNixduhSLFy/GqlWrcPPNN4d8zJgxY7Bw4UJs374dn332GXiex7Rp0+DxZMAX9cGDfqN0TQ3aTxgGAOi68GLBKM3EULA+QyrooNRYr2GvW4XFBEBIjbHGipZsA7J9QihZXt9gHiEAyNJR5RhBEKlHSgih7du3Y8mSJfjrX/+KcePGYeLEiXjhhRfw3nvvoaGhIejjbr75Zpx99tkYOHAgRo8ejd/85jeor6/Hvn37+m7xiSIvT+gT5KsOa/cIV+vdBpNglK6pEe7Py4v6Kcgj1HtEIWQVhFCL3SWmxvKz9aL3JtkiQkpCiEWvKDpIEEQqkRJVY2vWrIHVasXYsWPF26ZOnQqNRoO1a9fikksuCbuPzs5OLFy4ENXV1agKYRR2OBxwOBzi721tbb1bfKKwWIRmie3tQGUl2rq2AfClLaqqgJUrBRHUi2aKnVQ11muYCbrcIlSrtNqdYmrMatKjzWecThYhFMwsLdzGolf0WSAIInVIiYhQY2MjSkpKZLfpdDoUFBSgsbEx5GNfeukl5ObmIjc3F59++imWLl0Kg8EQdPsFCxbAYrGIP6FEU9JjsQCVlfB4FRofVlb2SgQBgWbp5DhRpxrMT1PuiwgdtzvR2iVEhKzZBtEs3eVKErO0J0RqjJoqEgSRgiRUCM2fPx8cx4X86a25eebMmdi8eTNWrlyJE044AVdeeSW6u4PPxXrooYdgs9nEn/oYVFclmo7u+KSwKDXWe/weISEidLzTb5a2JrNZWqG5IzVVJAgiFUloauy+++7D7NmzQ25TU1ODsrIyNDU1yW53u91oaWkJ21qbRXaGDBmCM844A/n5+fj4449xzTXXKG5vNBphNBojOo5kp607PuMaOpyUGustYmrM6jdLS1NjzCydPH2E2IiN4ELIQUKIIIgUIqFCqLi4GMXFxWG3Gz9+PFpbW7Fx40aMGTMGALB8+XJ4vV6MGzdO9fPxPA+e52UeoExAJoRieEKVRYTIIBsxPM+LwpRFhDqdHjS1CxHL/Bx/1ViyRYQMCm3tmbGbRDFBEKlESniEhg0bhunTp2Pu3LlYt24dVq9ejTvuuANXX301KioqAACHDh3C0KFDsW7dOgBAXV0dFixYgI0bN+LAgQP4+uuvccUVV8BkMmHGjBmJPJw+p707PpEbaqjYO5weL3yj2lBizhK7SO89ZgcAWEx6mPSsoWKSCSHyCBEEkSakhBACgEWLFmHo0KGYMmUKZsyYgYkTJ+LVV18V73e5XKitrYXdLpxEsrKy8OWXX2LGjBkYPHgwrrrqKuTl5eHrr7/uYbxOd9rj5BGiPkK9o9vpF4/ZBi2s2YKJ/1iHELHMl/QR6uqwB+/5dPAgYLPFd7E+xNSYUtUYeYQIgkhBUqJ8HgAKCgrwzjvvBL1/4MCB4Hle/L2iogL//e9/+2JpSQ8rwQZiK1jsThJCvYEJBr2Wg16rgTVbj5ZO//RrmVl68afA/Nd7Dstl3cNLSoR2Cb2sBAxHyIhQmpTP09BYgsgsUiYiRERPe4BZWioYe0MHlc8rcrTdoeo1ZkKImYzzs+VtHaySiJDd7e05GkUyQgVNTULPqDji9fJi+bxSRMhkSP3U2Nq6Zpz666X4eHP0HdcJgkgtSAhlANLUmJf394LpLdRQsScrdx7FaU9+jv9bujPstsy4bhKFkF68T8MBeUadPzU2cZJ8NMrXX8tGqGDFCqE3VByRfm5CRoRS2Di/bm8LbF0ufLnzWKKXQhBEH0FCKAOQVo0BsRMtgVVjsYo0pTKbDxwHAGzYfzzstiwixNJfVklEyGLSQ6PhYGLT57V6cTTKbpsTdy/4CHtaHX4R1AeNP8MKIbF8PnVFscvnXk8WczpBEPGHhFAGII0IAbFLXUjN0nwMI02pzJE2wejc0NoVdlv2PihFhFiaLFsv6SNUVQW8/TbeGTkdn5z0I7w5+gLg7bf7RAQBcoFjUGyoqPGvNUVx+z7Dnc7k6ORNEET8ISGUAQQKoVicqHiel0WEAHkVVKbS1Cb0AGpo7YbXGzpCxt4HVm2VnyOJCPlEkayPUH09MGsWjuVYAQA7i/oDs2b5PUNxRjpeQ8lMzCJCqZwac/ves1QWcwRBRAYJoQygR2osBicqh9vfAyeW+011mtqFiJDT48WxztCNO8XUmC+SIjVLs/+LVWNdDtET1FIodFPfXTqwp4E6joQarwFIhFAKm6VdYkQodY+BIIjIICGUAbTFISIkTYtRIz0/R9r8c+waWoPPtAOkQqhnasxqYhEh39DVY8dFY3Tz8FMBAMeyzGgZOsIvhoL1GYoR4uR5hfEagFQIpW5k0O1hESFKjRFEpkBCKANoj4NZmqXFsg1a8WSdyifAWOD2eMVmiEB4n1B3CLM0+7+YGtMZRWP0ccnbufuND4TbS0qAvLyYHEcw/OM1ggmh1BfEbi9FhAgi00iZhopE9LR1CaJFp+Hg9vIxOVGxiFCOUSeeGFP5BBgLmjudsnRhOCHEInNKfYSsvugQE0ndWj28K1aAq6xES+dWcbtdMOH0lSsFERTnZoqOEM0UAWlDxdT9HLg85BEiiEyDIkIZAIsIFecZAcRmBAKbM5Zr1ImpklQ+AcYCaVoMAA6FE0Ihq8bkZmkA6CopR4fDLavO23WkQ+gfFEYErdx5VCztjxbRI6TrOXAVSKLUmM0W9TgSadUYtYMgiMyAhFCa43R7xSv5Ep8QioVg6RQjQloxEpDpM6ZY6TwjbEQoQAjJ+gj5/p8lER12p0c2ggMAdjWF7yZ9vNOJm95Yj+tfWyeagaMh1HgNQNJZOpGmeZsNmD4dmDSpp4G8vl64ffr0oGKI9RHieX8EjCCI9IaEUJoj9QfFNCLkM5PmGHQSb0hmnzhYRIgJhXBm6W6n3CNk0GmQaxSy1SwipNFwolDqUhJCRzrCr6u9Gx4vj3aHG7WN0Y/hEM3SQYSQMRlSY+3twriRKMeRuCVCkZoqEkRmQEIozWEVYzkGLXJ8J9lY+B86JR4hsaNwhpfPsx5CJ1eYAaiPCLHXDwCqCrIBAJX52eJtomHa5RaFUHVRjvCc7Q7Y7HIzfCCtkvu31LeGPY5ghPUISZs/JorKSrEDdzTjSDwSk1dgnyyCINITEkJpDosImU16Mc0Si5A/G7gqFULkERJSY6P65wMQzNOhXhMWQTNJhNCL147CmzedLgodQNJLyOlBs08I9S/IRrklCwCw+2joKI9UCH3bCyEULjUmRgYTnVKqqhLF0GM15+KSP6+BY/8BVeNImFkaoFQvQWQKJITSHNZVOi9LJ55QYxkRyjVqxRN5pqfGmtqFiNCQklzk+F7rUFGhwFljAFBTnItJJxTLtsuWvG/HfUKoMMeAwSW5AMKnx2xd/nTatwdb1RyKIg7RLB3EI+T7HDjd3rBdteNOVRXaXn8Lb4+agc39hmJXYX9V40hY+TxAESGCyBRICKU5bV1CNCAvSx/T6i4xNWagqjEGiwiVWrJQYTUBCO0TCpw1Fgxx8KrEI1SQY8AJpULfoF1NoYWQNCK0q6lD1gwzEvwRodBVY0ASGI3r67HhF0/DqxHW1GkwqRpHIosIkUeIIDICEkJpDosImbN0ftNtLM3SktRYpqcSWESoNE8qhEJEhJw9PUJKsMGrdqdbTI3l5xgwxBcR2nkkTGqsyy+EeB74LsqokCNsQ0X/cSRUFPuM0WsN/siavX+1qnEkUrM0NVUkiMyAhFCaw+aM5WXpYyuEJH2E/I30Mjc15vJ4caxDECmlZqMohFgvoeYOB85+9gvM+/A78TFKqTElpKmxFklqbEipIIR2RxARAoBv64P30QmF2EcoyIgNrYaDXisMY02YKD54UDRGfzN4jHhzxxNPyQ3UQfoMuSUpPTuN2SCIjICEUJrTJvEIidVdMRAsHbKqMUqNHfUNW9VpOORnG9DPKhiZWUTov1sbcaDFjk+3HhYfE9hHKBhSs7Q0NTa4WEiNHbZ19xijIoWlR/v5xFm0hmmnR1hvsIgQkATdpfPygJISdJwwDFuLBoo3d+Za/NVkIcaRSFNjVD5PEJkBCaE0pz1uESFJQ0Uqnxd7CJXkGaHRcP7UmE0QQsu3HwEgCFMmEsQ+QuFSYwb/+yZGhHINsGTrxSaZoaJCrT6z9Nk+E3a0hmkmoIOZpQEgy5Dg6KDFAixZgo2vfwiJphGEe1UVsHIlsGRJ0E7cydRHqNXu9Jfz96JbNkEQoSEhlOaIHiGTTjxJxbSPkEFHVWPwG6VLzEIkSGqWtjvdWL2nWdyWDWb1p8ZC/xlmi2Zpfx8hNpeMpcdCGaZZamzi4CJoOCGCFDgORA1stEdIISSW0CdQRFgsWNsuXyNL5YYbRyJLjSWwaqy+xY7Tnvwcd7+/pdfdsgmCCA0JoSSD53ms2dMcMtURCdKIUJau50nK5fHik82HIj4xUmpMjmiUNgsRmn4Sj9CXu46J/hphW7kQCmeWZqkxW5dLfN0Lc4TnGVIipHhCRoR8QqjCmiVWmkXTWDFcHyFAkhpLcDRl7d4WAIKXCvCb+8MhHUFiT+DneVdTO1weHtsPt/W6WzZBEKEhIZRkrKg9imv+8g0elJhqewObPG8O0kfof9uO4O73t+CZT3dEtF+WNhCGrlLVWBMrnfdFhErNWeA4QTz8fYM8pXG03QGvl1dsqKgEqxo7dFxIs+k0HMwmIUrEGi/ub+4M+nibzyNkzTZgZKUVQHQ+IUeYoauAZPBqAiNCXU6PWBk3+cQSAFDdMsCdJOXz7LPR7fL06JbdOP0iHFn+lepu2QRBhIaEUJLBrtQ/335EPIH1hnaHr7N0ll7i5fFf9R5qtQMAjgXMsApHh4JHKJMjQiyixoSQQacR/TvLdwj+IItJmB92tN0hew/URoQO+oRQfo4BHCdUZ7H5cc0dyu+fy+MV3yurSY9T+1sBROcTUhURSoK5c5sOHIfLw6PckoVh5UIETG1zRHeSjNhgf0vi58TXLds1aDDOn3I/fvzxPrj27VfVLZsgiNCQEEoy2JW9y8Njmc9g2xtknaUVZkExseWM4Aqe53lJZ2mdP+WWyR4hX7qLCRPA7xPy8sKst2nDSwEIqTFp9CxsHyGfR4gJoQLJlPqiXOH5mO8oEKmYNpv0YkTou3qbbK6WGsLNGgOQFKJ4bZ3gxxpXXSDO1xM9QmGQdpZOZGqMvday17GqCu1/WYjj2RYcy8lHY26hqm7ZBEGEhoRQkrGv2S7+/7/fN/Z6f9LO0kqND/1CSL2I6XZ5wc6h2TRrDIB/4CqLCAF+IQQIFVv98oXfj0qEkEGngVbDhdy3tGoMEErnGYW5wv+PBYkI2cT3XwethsMJpbmwZuvR7nBj4eq96g8Q4afPA1IhlDhR/I3PHzSuplAihCJPjSXSLC1GhKSvY309un9+l/jrYXOxqm7ZBEGEhoRQkiH1eqzadbRXpmme5+VVYwqmZpvPQ+T0qD9xSf0W2XqtmLpJ+FiFBOJPjfkjQv0kQmjKsFIxWnS03SFG5cL5g4CeDRcLcntGhDocbkUhyozS1mwhLafTajBv+lAAwHP/q8UBifAOh7rUWGL9Yh4vL6aXT68uQK7RN2IjGrN0EniEnB7f3DafMdrR4L84ahh8kqpu2QRBhIaEUBJh63LhuN3f/M7p9mL5jqao99ft8oqeB2kfIYdkKCaLGLnc6tMk/tJ5LTQaLvFN9BKMw+0R37fSPElEyDcdnuOAyScWoziXCaFu1XPGAH9EiFEoiQiZs3Rig0PW1FEKG7hqNfkfc/VpVRhfU4hulxfzP/oOPK/uvQ83YgOAJE2amM+C3ekWBVs/qwk5vrSiarO0NzkaKkpfP8d+f3VY98Aa8faGux5U1S2bIIjQkBBKItjVeXGeEZeM6gcA+O/3h0M9JCRsvIaGE0SLNLLAqnrE1FgEESHpnDHAb5DN1KoxVjFm0GrEyAsADK8Q+tWMrylEUa5R7DEkTY2FG68B9BRC+RKPEMdxKBLTYz2FUGBEiD3m6ctGIEuvwdd7mvH+enXRBP+IjeBrFqODCfossNeV44QUXiSpMZ7nZb6pRI7YkFbdOUzZQjfsmhp0v/JX8fYGGFR1yyYIIjQkhJKIfb602ICCbJw/ogyAUE4fbfUKS6vlGnXgOH/kBvCH3tui8AhJ54wByWGQTSSsh1CJ2ShWcwFCauadn47DH68ZBcBvpD7a4RCjDeGM0gBg0utkvxdKUmMAUBSicowJIVaxxhhQmIP7p50IAHjyP9tF0RwKJpZDRoTE8vnEpEm7nf6WBBzHRWSWlo7XABIbEZJ6g7pNuUI37JUr0V1QJN5+uLVbVbdsgiBCQ0IoiWD+oAGFORhebsaAwmw43F58URs6PfbUf7fjlrc3yMYDAP45Y2bfSVCj4UR/B7tyZhGhSPw9nQ55RMgoKZlWm2ZJJ1hEqERSMcaYMLhI9PGwyI3Lw6PRN3rDFGSAqZTAiJDULC3sN3jlWGtXz4gQ48Yzq1GUa0S7w409YQa3An6zdOiGir7PV4JERGCTyhyJRyjcZ1NaMQYkWAhJI0JujyByKitlkaIGm68Japhu2QRBhIaEUBLBKsYGFmaD4zjMGFEOAPg0RPXYkbZuvLqqDp9tO4Lth+WdZf2l8/6ToNTDwfN8VOXz0h5CgDyqkYmG6cAeQsEw6rSiIDnQIrzX0aTGAoUQ8wwpCSEW8ZN6hBhaDSeuR02Vl5gaCyGEjDGIDjLDc6CwV0Og94pFLXk+fOq2Z0QokVVjXsX/SyNFbKAvQRC9g4RQEsE8QgN83YJ/5OuKG2ocwrLt/mgRa47IaJOUTjOk3aXtTo9oDg08CYRCOmcMkBt+YzHZPtVgPYSUIkKBMMP0gRYWEYq8aoyN12Cw1JhSCX2r3WeWVogIAZHNBlMjhHqbGuN5Hne+txkXv7ga72+IvBLKHxES1mjSa8G6E4QzTAcKL5eHl1WR9SUys3RgdMiHrcuV0KaPBJEukBBKIqQeIcA/PqHB1hV0svvnkqaLrOEeQyydl0SETJIrdmmzvWjK51lqTK/198JJ6LDNBNHsi8SwFFUomE/ogO+9VuMRYg0VGfk5clHDnvdoiNSY2RRECOnUm5vVjNgw9TIi9MbX+/Cf74QCgV1HwqfrAgk0oXMcJwr2cD4ht0KDyUSlx6Svnzw6JF/PYRtFhQiit5AQShLsTrc4jHNgoSCAinINyDZowfM9RQ57zOrdx8TfD7UGCiE2XsN/IpU2vJMKIY+XV91pmJ0cmBACEu8NSSRsInyhCiHEokZiakyFENJKvF2AvGoM8HuPjimUz4tVY0GEkCmgWWMoIhuxEfnnYNOB43jyP9vF31k0KxKYoJMWBqitHGNCyKDTQOcT9olKj8nSYW5lUQQADa2RDUsmCKInJISShP2+tJg1Ww+LL43BcRz6+6JDSo3vvtp1TD43LEAstXX3TI1JG94FzjJTWznmH6/hP9kkw7DNRMFSUoHeHSVYRIj1HVLjEQL8PiGLSQ99QNUWS7c1K8yLkw5cVcKo8wvjUHi8vEwoBCPaCsKWTifuWLQJbi8vvo7sNYoEpbYE2b7PqdrUmF7Dia93wiJCQcQPRYQIIvaQEEoSmBAa4IsGMQYUCkJon8J0ceYPYtv0jAjJq8YAec+faIVQYGpM2G/iRyskCn9ESL0QYqiJCEm3K1QQW36PkFJESKVHKIxwkX42QnuEops7939Ld6LB1o3qohw8+pPhAKKLCHX5yuelKcdclREh5pPTaTViOtKuckZZrHGojAgdoogQQfQaEkJJwv4AfxCDCaP9AREhr5fHMl/X6VlnDAAQXAjJzNJBPEKAep+QdOAqozcpkVRHFEIqIkIlefLKMjUeIcAf4chXeA72vK12l8zc6/X6qwKDpsZUjsSQCqF4RIS2NdgAAHdPHYKqAmE0SWtX9BEh6euqtrs0K5/XazkxihTv1Nj2w2247M9f4+s9x2S3B4sIBXoFD1PlGEH0GhJCSYK0dF6KmBprkQuhbw+24liHA3lGHS4bXQlAOBFKr3qlA1cZ7ITa7fKI9zPUCqEO31Wy1MSbqU0Vu10e8QQbWM2lRI+IUISpMaX0W362QTSrS5sqdjjd4nDcoGZplZE8dgLmOIj+mZD7izBFetjXE6eqIBsWX6n/cYVUXzj85fP+rza1TRXZwFWdRtNnqbFPtzZi4/7j+NeWBtnt4SJCZb5WDQ2UGiOIXkNCKEmQNlOUwtJe+wNSY6xa7OwTi5GfYxAN0dKoEEunSaegS+eCRZsaszvlfYSAzE2NsWiQTsPBbNKF2Tr61Fi2r7u0UtRJo+FEgSRNj9mYD0mvDRp5YpG8cFVjDknpvLR7do/9qfQcSXF7vGIvpgqLCfm+NF5btzviXkJKM9xyVUZ3WDRNp+X8qbE4C6EOX9S2M+B5glaN+UQRqyg9TKkxgug1JISSBL9HSB4RYhVk9ce7xEGpgN8fNHWY0GuoX77PJ+QzTHe7PGKUaWiZfwZRlthHyBsDszSlxpgQKsgxhBQIjMBeQ6o9QiEiQoByCb3SnLEe+1WbGlMxXgOQfA4iEBBHOxzw8oKYLM4zysaBsO7oamFVi1mSSBuLCIVPjQl/X3qtPyKkdmp9tHQ4hPeoK+B5gvURYrdXF/tba2RiN3eCiCUkhJIAh9sjhrgDI0LllizoNBycbi8afVfNR9q6saOxXZhqfoJPCPmiPgd9EaE9Rzvg8fKwmPSyk68pBlVjimbpDJ1AzyIwairGAKHqSyomslSmxpjPK1iJPiuhl6bGWn2T5wPnjElR2wmapWoMIXoIAdGlxlgJeKk5C1oNB51WIx7v8QgN0+x5peXz6s3SvoiQxt97SNoOoqXTqRyhstmCT34/eFC4PwgsXRcYeZI2pFTqLF3t+57odnmjqq4jCMIPCaEE8fXuY5jzxnpsPnAc9S1d4HlhQnxRQOWRTqtBZb4gcljUaMO+4wCAoWVm0TzLtmERoZ1HhHEbJ5blySIV0shNtB6hwKGrwn4zUwixiJCaZoqA0BKhWEGYhuOmidW4dFQ/XHBKueL9xQrzxoINXJWiNqXJPhuhKsYA//G4POr7UrES8HKL30jOeiVFWjnGqsZk5fOiWVqlR0irER/PIkL1LXaMe+pz/PzdzfIH2WzA9OnApElAfUAn7Pp64fbp04OKoXafOJMKIZfHK3vtlDpL52XpxM8cjdogiN5BQihBvLhiN5btaMIlL32Nm9/eAECIBimlV/r7rv4OtAienw37WwAApw3MF7dhESHmEdrR6BNCpf60GBCmakxtasx3cpDOwEr01PFeE+VVfXMEPYQYRRIhlKVi6CoAjO6fj99ddSpKgswzE0voJU0VQw1cDXz+cKkx5iEKJ4SkXiS1opj5XMolXjbmE2qNMNqh5BESB69GUjUmGUUDCGNuXB4eWxsCPgft7UBTE1BXB0ye7BdD9fXC73V1wv3t8jmADLYmaeQpcF6fQ2HuWJZei35Wn2GahBBB9AoSQgniiYtOxuVjKqHVcKg7yozS2YrbspJ6FhHauF+ICI0Z4BdC/oiQsE1toz8iJCVkQ0UVESGe55U7SyfAI7T1kA1/XLYr6PgR1fTiqr65M3IhVJwbeUQoHEqDV22sh5DCwNXA5w/bR4h5hMIIIalQUtOtGvBXPlVIIkKW7OiaKnaL5fP+dUTaR0ir6WmWZlGrjkDPUmUlsGIFUFMD1NWhfsaleHvRF3j2judwz7CL8ehlD8K17AthOwXY/uwu/34D3wslj5BRp0G5xeRbGxmmCaI3pIwQamlpwcyZM2E2m2G1WjFnzhx0dKibRcTzPM4//3xwHIdPPvkkvgtVSU1xLp67YiRW3D8ZM8f1R2GOQZw2H4i/cswOu9ONbQ1tAICxAwvEbfrlyyNCO8MIISEiJHz5spOXmoiQUxK2V4wI9WHV2DNLduB3S3fKBs9GRS+u6ls62Zwx9UKoxCyNCMVGCBWJqTF/KsmmKiLEZo2FSY2pGLgKCBVsTCxFHBGSpcZYRCjC1JhSHyGVZmn2udbLyueFxzCx0eFw9zQnV1WJYmjmhFvwyPd2vDRsGj4++Ry8NfhsrHUpX+BI1ySNCAW+bkpVY1l6rVgNSiX0BNE7UkYIzZw5E9u2bcPSpUuxePFirFq1CjfffLOqx/7+979XVdGTCKoKsvHkJSOw8ZFzccHICsVtWC+h/S2d2HKgFR4vjwpLlpgOA/ypsaZ2B451ONDg++I+IUhqrMvlFT1CzLOiZtK2tNOuvI9Q30eEjvrSQIGjRSIm4Kq+a8q5OLD0S/BMBNXUACtWoLu0XJzfxvCnxtR5hICAiJBKs3Q4lLpLix6hWKTGVMwZE/cpCiF1olj0CMlSY/4mkZHQpVg+r64UXl4+L+8jxMSay8P3SF0BAKqqYHvtTRzIFy5mrt+4GFXZwusQyvDdoeARCnzdlPoIGfUaVIipMYoIEURvCN/4JAnYvn07lixZgvXr12Ps2LEAgBdeeAEzZszAc889h4oKZQEBAFu2bMHzzz+PDRs2oLxcOeKS7Ei7S29gaTFJNAgQUjNZeg26XV6srD0KQLjCDjTKsivlVrtTTHcU5xlx8HiXqoiQ3XeiMej8E+eBxFSNsZNkU3sMTgTsqn7yZFwy8Q7sWNYG609+g1Gt9Sj40URs+8de7Gr6HgDw3zvPEiNtzRGM12BEY5YOhzh4VVY1xrpKB1+bWpO7U8XkeYbJoEVbt1v1Z4GJ9gqLXwixz22kVWMssmJSKJ8P6xFSGLHBCgOkM73au909I3n19djzwGPAlHtR2t6MX3/+Mm4uq0J9v5HizL9AeJ73e4RcHvA8D47jQkeEJBEvMTVGHiGC6BUpERFas2YNrFarKIIAYOrUqdBoNFi7dm3Qx9ntdlx77bV48cUXUVZWpuq5HA4H2traZD+JhkWE2rvdWOZrpDhW4g8ChGokFhVaXiukigLTYgBgMghveaPv5KPVcOLVtxoh1KVglAYSUzXGysObFKauR0VVFbxvvYUdJdXC/k1mfFF+Ev6x4zh2NLbD4xUqodZIxiFEMl6DodTOoLewKFNLp0NM8dhU9BFSW+6uZvJ84D7VeLecbq8YxSq3KqXGIosIsWhNloJZWvWIDQ0nPqbL591pkPhweuzHl0Kt821SU10K1NTA3CL8HbY1ysdnSNfKehfxvF/wBL5u8p5CvuPTaSURIRJCBNEbUkIINTY2oqSkRHabTqdDQUEBGhsbgz7unnvuwYQJE3DRRRepfq4FCxbAYrGIP1VVVVGvO1aYDFrx5PntQcGwO3Zgfo/tWFPFVb6IUGDFGOCP3LCTjzlLJ/a1cahJjfmuuLMDTuBZ4uiOvvEIdbs84nM1tcVICNXXw3HjHPHXd959CI9t/hB3n1aKV2aNwVVjhc/CPsnct+YI+wgBARGhGKXG2PN7eX8URU0fIbWdoNnJOVxDRek+WSl7KI60dYPnBYElFZOsLQQ7BrWIESGFWWPqh65y4uM7HR6ZWAMCDNMHD4o+srqakwEANYMqgBUrYPZFotpef1uxIjFQUDE/UqBfy+HuGRESUmPChc+RdofqVgUEQfQkoUJo/vz54Dgu5M+OHTui2ve//vUvLF++HL///e8jetxDDz0Em80m/tQHVhEliIGSRou5Rh2Glpl7bMMiQqw3iVJEiAkW9r1pMenFq3xVqTGF1AMg8YX0toJLJdKKt5ikxnxX9d31/plPp+u7cOP/3sDdD16F88wujKyyAvCPO+l2ecTRCMEaHSpR6iuB12m4sOZjtei0GjGKwk7aavoIibPnwvhnxBEbKsr9I/GLsWhGuSVL5uMTU2Od0XmElMzSnU6PrDt7IG7RI6QRH9Pl9IhijSHzieXlASUlQE0N6n58OQChEAJVVTDPvBoAYLMUCNsFEFiBxv62Av+GZBEhSfl8ca4Rei0Hj5eXpe4IgoiMhHqE7rvvPsyePTvkNjU1NSgrK0NTk7wyyO12o6WlJWjKa/ny5dizZw+sVqvs9ssuuwxnnXUWVqxYofg4o9EIo1H9Sa2v6F+YjXX7hP5Bo/pbZf4cBiuhZwQapYGeqRiLSQ+97ypflVlanDMm/+j0dWpMmjLpdWpMclXffdJoAIJI0X2x3F81NnkyBi5aDMAfEWJpMb2WE2e9qaHCasLPzxmM/Gx1YznUUpRrxHG7C8fanUBZZH2EwglY0SytJiIUQXdpVo0lrRgDom+oGKp8HhA8brlG5fdKHLGh4WQNFQPL09ulkRyLBViyBGhvx96/1wEAanzjL8ylhQCOoG3KecJ2AQRGhJiI62mWFn73eHnR15el00Cj4XBiWR62HmrDhn3HUZkfvDqNIIjgJFQIFRcXo7i4OOx248ePR2trKzZu3IgxY8YAEISO1+vFuHHjFB8zf/58/PSnP5XdNmLECPzf//0fLrjggt4vvo9hvYQAYOyAAsVtpFVkGg4YXJLbY5tAk6c52ohQYGpMUo3WF0hNtO0+Y27Upejsqh5A97vvA4tqhX1JDNQoKcGAigIAdahvscPt8cqaKUYqaO6bdmJ0aw1BUa4Ru5o6cKzDgW6XR3w/rdkhzNI6fydot8cLXRCh44woIqQ+TervISQX8aIQ6lIfEfJ6/RVd0s9nll4DDSdEQTsd7qBCyCUxS0tHbARGW3r0ErJY4MkzY2+zYKYfVCT83Zl9Ua02j/Jno2dqjAkhf/fodonpXOodYq/xmYOLsPVQG77cdQwXj+qn+DwEQYQmJTxCw4YNw/Tp0zF37lysW7cOq1evxh133IGrr75arBg7dOgQhg4dinXr1gEAysrKcPLJJ8t+AKB///6orq5O2LFES39Js0UlfxDg7yUEAAOLchSFgVJEKJI+QqJHqIdZWt0U81gRaKLtlU+IXdWvXInuIkEQiRGFqipg5UpgyRKUV5bAoNPA7eXR0NqN5k7mD0qOCKK0hJ69PsLcrOACUZriDNUV3D90NbzYVFuSD0i7SssjQqzk3+70qG6YKY1ASY+L4zhVvYRYakwfUD4fWJ6utI+GVqHq0qDTiH+HLEoYOMqGEehZ6nLKI0IsPcjEndQ7xP5mzxosXEh+tfsoDV8liChJCSEEAIsWLcLQoUMxZcoUzJgxAxMnTsSrr74q3u9yuVBbWwu73R5iL6kLK6HXajic6vOqBCKNCCkZpQFlISRGhFSkxrpEIZTY1JgtwETba5+QxQJUVko690pep8pKwGKBRsOJkbl9zZ1RVYzFE2kJ/dq9zQCEtFioaJXUoxTqvfMPXY2gakyNEBLnjMkjQuYsnZj+VVs5Jm1KmBVQ5i/2Egoxb8zllXaW9ndgD6zKCuwlBQhDjgFgYGG2uG4xIhSkfL5nakz4nb0PLKXJfmdCT+cbTAsIF0VGnQZH2hzY3aSuwSxBEHJSoo8QABQUFOCdd94Jev/AgQPDXhGl8hXTiH4WXDKqH2qKcnr4cxilZmFSvdvLKxqlgZ6pDYtJD43vRKkmIsTmjAWapU0RpENiQY+IUIxK6P2znJRP+AMKc7CrqQP7mzvFbSPpIRRPWHfpRWv3o92XvlEy1UvhOMGw7XB7Qwohp0fdrDEgsp5SLNpSERAR4jgOVpMezZ1OtNpdosE8FN2SEn9NgIcukoiQTqORCf26Y4LAMOm16HJ55B4hto1vTE5NkT8dbc7yCaEu5ecMmhrzCZ7AiJB0zhgjS6/F6dUF+HLXMXy1+xiGBLkAIggiOCkTEcp0tBoO/3fVqfj5lCEht2EphmARIaNOA2mAQGqWjiQiFJhuUWu6jRWB3pGmtth01xWHdgZJJw30pSj3HrNHNWcsnrCIUHu3G1oNhzkTq/HyrDFhHydWjoUSQhH0ETJF0EohWEQI8KfH1DZVVCqdZ7DPa6gSenHEhpZDlt7/d7KnSRA5zHPXwyMEv1hiRmkAMJt8qbFgEaEgVWOOgNSY0+2F18srGsEBwScEAF/tUu5XRBBEaFImIkSo49ZJg7BsexMmnahsQuc4Dlk6rejfsJj08PLCF3Vk5fPyj46xjztLxy8i5DvZBOmgPLCIdfnuFCNByZIaGzMgHya9FsPK8/DExSfjpIqelUpKCMfqCilcHCpnjQH+qGO4z0KX0yMOVQ00SwPMMN2punJMafI8w19CH1wISc3SHMchW69Fp9ODRp/IHlKai+8P2RSjSmJEqFgSEZIIGSUzf1CPUEBECBAuUhTTtgAm+oTQN3XNcHm84oUNQRDqICGUZswcNwAzxw0IuY3JIBdCrBdO78zS/igAGxUQT5hHqNRsxJE2R+yEkGSopRKsn9M+Xy8hILIeQvFkcEkevn1smqqojRQ1fX/UDl0FJA0VwwghFg3KNmjF6ImUSLtLB4uYACpTY5LO0oAg9jslviMWZW1XigiJQkjS78ugA8cJXaPbul09PlOBKbaeESG/wJY2EA08vuHlZhTmGNDc6cTmA604vVq5qpQgCGXo0iEDkV4xR9pQMfiIDf9HSXEoZYxhJ0fWK6nvPEJCaqy+pUtsXJgsqTFAXeoqEH/rgxBm6ShGbIRLjUl7CCkJZyYEjqs1Sys0U2Tkqpg3Jo0IAf7RHMI+NWKfnsCUVqfDLUaNBkk8QhoNhzzWXVrBJ9QzIiQ3S+cataLx2uH2itVzgREhjYbDBDE9djTo8REEoQwJoQxEapg2m/QwaIUvWzUNFTuDdZaWnHz6Ij3GhNCQEp8QirFHyBgkIlRhNUGv5eD0eLGjsR2A35uTqqgRLhF5hFT6xVg1VoW1Z1oMkEaEIvQIKfi7/PPGgq/JLZk+D8gvGCosJuT5yuEDIzl7jwnRoMIcg+hrYrDflXxCbKAre57APkJZeq0YgQsVEQKAiYMLAQBf7SafEEFECgmhDCRoRCgis7Q8laHXaqDzXb32ReUYG7FxQqlwBX401hGhIB4hrYZDla+EnkVJkqWPULRElhpT00dIXfl8sK7SDHHeWIQRoVAeIXvI1BjrLK2RPQYAyixZyGVCKEDUsNL56qIcBOKvHOt5DExQlZiFz489oLO0Ua+VDLD1R4SUIl4ThwiewG8P2oKaswmCUIaEUAYiE0LZerFJnpqUlj1I+TzQt72EWJSAlQs3dzpVRbTCEcpnwqgulJ/wkik1Fg0mVamxCIauqtgfELpiDJDMG1MZEXIolJczcg1qzNLyiJA0/VtuMYlprkCfkZI/iCEKIQVfEUuNFfs8ZuwiQxQ8Oo1/hp/LI4sUBdLPakJVgQkeL49th9qCHiNBED0hIZSBsC9SjhNOENGM2Aj0CAn77ZsSeqfbK6boqotyxEiUdEJ4tLC1K0UVGAMkQijSOWPJiJoITnRDV0N/noL1EGL45431PiKULYqYUKkxuUdI+hmvsGYhzydqOrrdsp5kdcd6VowxxBJ6hYgQ8xoV+zqC20WPkD8iZJREhML516w+TxVrzEgQhDpICGUg7MRnztJDo+EiM0u7ggshljbpCjPJvLe0+irGOE6IGrATyZHejNnwwaawh5pbNrDIP+4kmjljyYYqj5A4YkNN+by6yCBLZ5YEaZbIOiu3dqn0CIU0S4fvIxRYNSZtqlhuMYmpMbdkphkA7GU9hEKlxhTSVSyyVCIKIXn5fJZOI/MIBTNLM9QKUIIg5JAQykDYFyZLPegjMUuLBs+eUZC++iK2+SIEFpMeWg0nnkhiYZgOd9UNyCNCqe4PAtTNBotkxIZJpRBi4kDaL0eKVWyo2Dfl86xqTKtRSI1Zs5Ct14pNFtnaeZ7HXoUeQgxxzIZC1RhbCxPygbPGsqQRIVf4iFBfj7khiHSBhFAGwk5U7ARkjMgsLXx5S0uLGeIXcZxTY6yrtNW3/uI8IaIQixL6cH2EAH93aSD1K8YAdSdQ9tmIxCwdThCzdBGLmgTiT405VY3HUWOWVtdZWiE1ZjFBo+FErxFLax23u8Q0bf+CbAQSLCLE87y4lhLf59ffR8j/GRQ9Qm6/RyjYe+BvakoRIYKIBBJCGQgzOjMhxMzSgamxLfWtqG/xD7HleV6sbFEyS5tUeE1iAfOMWHwnSlZ1ExMhFKZ8HhCMqcyXlOpGaSD25fNqqtC8Xl6smlJqpgj4I0IuDy+KhFB0hyifV9dHKKB8Xpoa8/mYWAk9i+aw9F5BjkHxtQnmEXK4vWKVmhgREqvG/JEt5YhQuNQYRYQIIhJICGUgWQERISWP0JG2blz60mrc9MZ68TaH2wt2YR44fR7wX3Uf61Dn6YgWVjHGIkIsNXa0txPoIS2fD/6nodNqxBL6wnRIjenCR/L8/pTYDF3tcLrFz1KwiJBJrxU/m2oqx0J5hHLEqrEQZmmfMNGx8nmfoMoxaMWKMeYTYhGhJt9nrjhId/FgVWPSFB0blsvM0g5JqwJZRMgdPPUn3K6++pMgCD8khDIQVuXEZmUxj5BUCB22dcPLA/ub7WJaQnpVrpR+GFkpzLZau7clPgv3wXoIsYgBSy00xcIsHeJkKoV1mE6WyfO9wWTwnWyDiASe5yMascFSSl0uT9CUFouQGHSaoK81x3ERjdkIFTFRExFiDRX1AeXz5VaTaIhn+2HCxm/4DiKETMp9hJiQyjXqkG0M1lAxMCIU+rNJESGCiA4SQhnIFWOr8NOJ1bjpzGoAUGyoyK5OnR6veKXNTiJGnUY0lEphU7C/3n0MXm94T0e0sJNiYEQoNh4h4TUIVT4PAFeMqcKQklycM7Sk18+ZaMJ5u9xeHuztVJMaY6XqXj54dIKZh4NFgxisJFyNEApdPu8XG8E+m4EjNlikZqDEHJ/LSugdLCIkfOaCR4SUJ9Czx+cYtX7hKFaN+QWdNCIUbvCtmsgeQRA9Se0GKERUlJqz8MufDBd/lwohNjBVWgJv63Ih26ATTzTSjrtSRvUXpp83dzpRe6Qdw8rNcVk/K6fu6RGKQWpMRfk8APz4lHL8+JTyXj9fMpAVxmQrjRRGUjUGCOJZ6bVkwiCYP4jhrxwLnxoTp88beq4xV/KZ7XS6xZ5AUgLL588ZVoInLjoJZ/m6NgMSj5Bv/SwixHw+gQSrGmNCKNeoQ7beX5bf5fSIpu0snVbs29Tt8spM1EpkSaJHBEGohyJCBIw+szTP+30S9gAhJL0tWLTEoNPgNN/k69VxnHnUMyIkpMaOdTjFk0i0hPNhpCNZARGJQGRCSEUfIa2G6zE/K5BwFWMMaeVYOMTUkUJVlTSK2RmkqWJgQ0WjTotZ4wdioKQ/EPMKtXcHRITCCaGAiFCnRAhJzd0tkuM06jXisTjcoWeNSW+n1BhBREbmfNsTQZFe5bOTniwiZGdCSHnyvBQ2/PHrPc0xX6e4ngCPUFGuARwnlD+3dPbOqK3WI5ROSNMvSrCUjFbDiSIhHKy9QrCRFkxImIP0EGJYI/AIiWZphc8nx3Gi+TlYLyGXV141pkSuMbBqzGeWDiaEfBEkp9srEyhiRChL6OzOqhCPSz6/Rol/SuYRCtpQkfoIEUQ0kBAiRHMo4C8htktOYKxvj90RvKs0Y8IgwSe0tq45JrO/lBAjQr6TpE6rQaGvjL236TE1DRXTjXDl85EYpRmsqjBY9IVFSPLCjCex+iJCapoqdoWJWIYzTLOIEBu6qriPgAn0LCLEopKB5Bh0YHY6qWFa9Aj5XicWFWJC3qjTgOM48TV3yKrGgvURos7SBBENmfNtTwRFp9WIX9bspNeplBoL0UNI2NCG4d425Gfr0en04Nv6Vv99Bw8CNltM1sv8IhaTv2IrVk0VwzWtS0fY+xkskuD0+AauRiSEWGpMWXSoNUv7q8bUpMZCG93DNVUM7CythHTeGBDeI6TRcOJjpOkxsWrMJ6zY68U+20zsSEUq8/4EE6TGMKZ3giCUISFEAPCf5BwKqTF2JSt2lVboIQSbDZg+HZrJkzGhXCgtX73blx6rrwcmTQKmT4+JGGKpOnaSBCS9hHpRQs/z/hlSmZUaCy2EmMBQ4w9isBN7uIiQWrN0q8LQ0p7rDB0xYftqCSKqRLN0iNSY3yPkQrfLI6b4gpXPA/5jtEkM01KPEOCPoLHUGItIMrO0NCIUrNknpcYIIjpICBEA/Cc5p5gaC2GWVooItbcDTU1AXR0mfPAKAGD1nmOCCJo8GairE+5vb+/VOl0er5iWYGkTAKiwmgAAe5s7o963tNQ7aNQrDQlnshXHa0SQLmTRl2CT0NWapf2pMfUNFYNFhML1m/IEmKWVyJV0lmbRIKNOIwokJSwKhun2ACHE1tziE/liREhS0RfWLE2pMYKIChJCBICe3aWlJ7BWu1wIKXqEKiuBFSuAmhqcuWEZAGDzvhbYp0wTRFBNjXB/ZWWv1in1WZgl/pIR/YRmjt8dbI1639IoWKjO0ukGO+kGG7rqiGtESG3VWOiIEM/zErO08jqLw/SbEs3SIVJjuZKqMeZHKzEbxYaLSojdpSWf3U6xj5DcIyRGhHwCSBYRUlk+TxEhgoiMzPm2J0LCTnKukBEhVjUW5Oq3qgpYsQIDCkzoZzsCFw+sc2f7RVBVVa/XyVIkeVk62ZX7yCqfEKq3Rd3MkaUedBFUR6UDUh+KUidoFhEyROCbYunT8B4hlamxMBEhoQeW8P9gQqHUzHxkyoZ60Swd4r3PU4gIBWumyFAas8HM0nkBHqEWe0BqTBIRcoSdNUYjNggiGjLn254ISWBEKOLUGKOqCtzbb2Pcga0AgO/KTwDefjsmIgjoWTHGOKE0D1l6DdodbtQdiy49Fm6oZboiTbUonUSjqhozxiYixN5nW5crpMDtdkrSmkFTY76IkEJqjOd5/6yxUB6hLGlEKHTFGENp8GqH73URq8Z8a2aCzxgQEepyevwpymCdpamPEEFEBQkhAoCSEPJfvdpEszT78g4hFOrrgVmzUGU7AgA4nFcEzJol3B4DbF1s4Kp8xpdeq8HJFb1Lj0lnPGUSUuGndBJlA1cjqRoLFxES+wipHLHh5Xs2JZTC0mI6DRc0ohOqA7lbIrJCls8b/SM2mKAKVjHGMCtWjQn/zzEGRIQ6hduZAGIpMuljKSJEELEls77xiaCIVWOqzNJB0hkSY3SF79zQUNpf8AhNnhwTMRQsIgQAI6usACAv24+ATCydBwQRyXwxSkbbXvURCtZZ2ndit4SpGjPoNKLwDuUT6g5jlAYkZmkFjxBLiwFhGir6IkIeL4/643bffsMIIYUxGyxSxiJM7G+qNaB8ngkim+TYg/nXwlX/EQShDAkhAoDfF6HYWbpLhVn64EF/dVhNDcp//TAAoPGk0YJHiImhgwd7tU52MrQopFSYENpyMLoS/UxspsgIZbSNRgixztJ2hZ49PM+LaSKlmV+BqKkcYxGhYKXlAFDqiwi12l1ilIvBjNJAaCGUY9CC+aLrjgop2PARoZ6DVzsCzNLsb6q5M6CPkE/csCqzUP41aWpMyetFEIQymfeNTygSzizN83zoERt5eUBJiWiMrhgieIIa7G6xmgwlJcJ2vaC1K3hE6NRKKwBge0NbjxOdGphZOpNK5xnsJKpUOcZSLZGkxkxiQ8We++t0esRp9uFSYwCQnxN+zIZYOh+kYgwQxDM7hkCfkDQiFCo1xnGcWDlWd7QDQOgeQoA0ItRTCOUGCCEmOlnUJ1CUh/KvMRHo5f3NIQmCCA8JIQJAaLO0x8uj0+kJPXTVYgGWLAFWrgSqqlBmEfr6tHe70VFSLty+ZImwXS+w2ZU9QgBQVWBCfrYeTo8XOw5H3q/IEWaWUzqjLiIUTdVYz/0xQaDXcqqib+y9bu0KHhHqDjNeAxBEDKvwCkyPuX0XABwndIMOBesZxNJ+xblhzNIBVWM8z/doqBgovv2pMfntoaJy0tdSbXdpih4RBAkhwocxsI9QgMnV1uXym6WDNY+zWMQ+QblGneh/ONzaJdwepQiSflEfD+ER4jjO7xOKwjDdFaZPSzoTat6YaJaOpo+QgllarBjL0ofsv8Ng7/XxzhAeoTBzuBgsenM0wDDt8oafM8bIDSj5VxsRavcJQIfbK5qzxREbQQRPoB8o1PEZtBoxbafGJ/TdwVYMe3QJfrd0Z9htCSKdISFEAJB4hDxCLxk2V4zNXWq1O2H3NVlUmzqq8EWFDtv8Jx23x4v31x9AU5v64ag3vrEepz35OV78YjcaWrsAKHuEAGCkLz22JQrDdGZ7hIKXXjujSI0xsWxXKJ8XewiFKZ1n+JsqhvAIOdW1PigNYphmEaFQ/iCG1NfEcRAH/gZDLJ/3CcAOiW+KCaDA3lxBI0IhPpuyIa0qukt/tfsYeB54+5v94vETRCaSed/4hCLS1JjQWE+4nVXESCNCoabPSym3Ciedw7Yu8baPNx/CvH98jwf/8Z2qfXi8PFbuPIqj7Q789rNabNh/HID/5BjIqb2oHOtWYbhNV0whUmOOMP1rlAgZERLHa4SuGGOomTcWbrwGg0VvjgQIcbGHUJi0GOBPZwGCCArXfNPfWdoNnuf9A1eNOjEN1zM1FiQiFCY9GUl3aXZR0Wp3Yd3elrDbE0S6QkKIACCfNSbt/VJmEcRMW5dLLPnN1qs7gZX7IkINrf6TzraGNgDAV7uOidVogCC0LvzTV3jsn1tl+xCM2sL/TyjNFW9nXYIDOaVSSL/tOdoZsu+MEmJEKJM9QgreEiaAI0kZihEhBY9Qu0NdM0WGv2qsd+XzQPCmimq6SjOkqbGiMF2lAf9xOj1eONxeScWYf62BFxfstdZpNWJUVrg99Pqks8nCIf27XLKtMez2BJGukBAiAMgjQuzkZdRpxMjLcbtLUpmjMiJk6RkR2t0kVNq4vTy+2NEk3v7J5kP47qAN/9h0SLaPFl85sTlLhyV3nY2Fs0/Ds5edgpP7mRWfszDXiKoCQYB9H2EZfaY2VATkoxwCYdGTcF4YKf5ZY0oRIXXNFBn5KsZsqH3vgvUSckWSGpNEhEqCCHIpOQYtmJZp63L1qBgDev5NSaOS0qhQOMO6mOJUYZZmESEAWLK1MerRNASR6mTeNz6hiFQIMcGTbdDC6rualaYSpFeyofALIf9jmRAChC9fxj82Cf2FOhxuWek7O/nl5xig0XD40dASXHlaVUiTbbQ+IbF8PhNTY74TcZdCBKfR9/4Fi8IpwarGHG4vPAEnWDE1FqaZIkM0S4f0CKkT6f7u0gERITE1Fv4rMU8SEQo3ZwwQvDtmyQT6wIoxQMEjJBU/UlEULiIUQWrskE8IcZzwemyOshEpQaQ6JIQIAJLUmCQilG3QiV/gjRIxozZ1VGGVm6Xbu11olAiqlTuPotvlQW1jO76TRG+k/WL8VWKhDalSTvKN2th5JLIS+nBDLdMZduJViiSw96wsAiEkFSSBYzZYylJNM0XA/96r6SMUtmqMRYQCPUK+iJBeRUSIjdkA1EfJWPTL1uX2R4SypEJIXUQo3PEZQ1T/SWnrdoljTqYMLQUAfEbpMSJDISFEAPBHhFwSj1C2QStWZzX4xIxJrw3bZ4UhRoRau8DzPPb4OvEW5RrRz2pCl8uDVTuPitEgRnOH/8r/uC81VqBQLh+MmuIcAMDeCIev+r0wmfdnEax83u3xilPWmV9MDUad39sS6BNSO3meka9CCKkdmMuES3OnU0yHAf4GhOGMz4BcwKiJCAH+Kse2bn9qLEcSBQqMQgaPCIVJjbGqsTCpscM+f5A1W4/LRvcDIERoqacQkYlk3jc+oYjMLO3wp8bYF/hhXxhdbcUY4DdLdzo9aOt2i2mxwSU5OHe4cBX63+8P4+PNgi+IZbukKRD2/2BVYkrUFAlCqO5oZ0Rf7Gp70aQjLIITmFI51uGElxfaKKgxBjM4jgvqE1I7eZ7B0rMdDrdYyh+I2qqxgmyDWBl2rMOfHnP7RmyoqRqTpsZUR4R8acDPfzgiFgmEighJP4NGWURIbWosdESI+YMqLCZMOrEYRp0GB1rs2B5FI1KCSHVICBEAJENX3V6xh5DJoBX9GSw1Fsn4CenjD9u6JEIoF+edVAYA+Oe3DTja7kBhjgGjfKXvbN4SALRIPEJq6V+YDQ0nnDiPdvQcsBmMTC6fF1NjAUKIpcVK8oyy6iU1BOsuLW2oqAazSS+KZFuQEnq1VWMaDSfOBpNWjkVSNSY1S6uNCE0/uRwAsGjtAfxx2S4AYTxCQaJAqs3SYTxCzB9UYTUh26DDpBOKAQBLth4O+TiCSEdICBEA5ENXu8TUmE6MCLUrhPPVUC5pqrjHN5tpcHEuThuYj/xsvVgaf9Gp/UQz7nGJEGr1dRPOjyA1ZtRpUZmfDcA/GFMN/vL5zPuzMAYx2Tb6Kv4iMUozso1BIkJiQ0V1nyWthhM/h8Eqx8SqMRVCnZXQSwsAWJpMjdiTpcbCDFxlzDpjAP5w9anIMWjFz5lUCGXp/V2h2e8MoyxNFhuzNIsI9fP1+prmuzD5cvexcIdCEGlH5n3jE4oolc+bJKkxRqQDSStEn1A39ogRoTzotBpMHVYqbnf5mEox6tPS2TM1FolZGojOJ9SdwSM2WCSlKyClwiKBkRilGbGKCAH+9FiwXkKiWVqFiC1WKKFnVWPqzNKRlc8zLjq1HxbfeRZOqhBaP1T7UriAkEo0BYkCyf4fLiLku98RJIXIaJBEhACgKl/41xbCh0UQ6YpqIXT55ZdjyZIlZKZLU+RmadY4sacQisQjBPgNtvtbOrG/xQ5ASI0BwAUjKwAITRCHV5jFUQVKQqgggtQY4D/JsAnhauj2nTwysXw+WCShsS1yozQjO8gEelatpNYjBEgrx5QjQmrL5wHlEnqxj5CK8nnmV8s16pAT4d9DdVEOPv7Zmfj0rrNw+ZhK2X3Svy1ZFCiCqjG1qTHWTJEJoRxxkGzPvk8Eke6oznMcP34cP/7xj1FRUYEbb7wRs2fPRk1NTTzXRvQh4tBVj1c2XNWS3TshxL5ov9nTDI+XR65Rh1LfiejsE4qx6KfjRGHETjAtMrN08CGroagpFvYZSWrMkcERoWAnUJY+6o0Qkp5ceZ6XjNhQ/576myr2ziME+OeNSQevsl5HahoqDijMxt1Th2BgYY6qobGBGHQaDCvv2RBUKuKCRoRilBo7FBAREoWQwmw4gkh3VEeEli1bhrq6OsyZMwd/+9vfMGTIEJxzzjl455134HCoN6RGS0tLC2bOnAmz2Qyr1Yo5c+agoyP01f7kyZPBcZzs59Zbb437WlMRaR8hduJSTo1F6hESTjrfHRL6BA0qyZWdPM4cXCT6TwpzfV2sO3uWz0dSNQb4K8eiS41lXsY42Kwx1hU8mtRYtjh41S+EulweMQ2l1iMESMdsBPMIqe8B5Z83Fp1ZmuM43D31BFw8ql/YbSNBOrpGmgKLJCJkFE3vwVNjHi8vmuD7iULIL1op6k9kGhF94w8YMAC/+tWvUFdXh6VLl6KiogJz585FeXk5br/9dmzcuDFe68TMmTOxbds2LF26FIsXL8aqVatw8803h33c3LlzcfjwYfHn2WefjdsaUxm5WdqfGjPqtDJhEGkqgJml2Xfr4OLcoNuKESGf+OF5Xhy0GWlqjHmEDrTYZf1iQqG2KV86EqzsmomFaMzSOWJEyC+umFFaq+EiSkGGG7wayXsnzhuTRIRcEZTPxwtpREhqig5WSq9EMNO7lKb2bni8PHSSCjrme+J5/2tJEJlCZJf3Es455xycc845aG9vxzvvvINf/OIXeOWVV+B2xz7HvH37dixZsgTr16/H2LFjAQAvvPACZsyYgeeeew4VFRVBH5udnY2ysrKYryndkJXPB/gtrCYDGl2Rl88D/ogQY1BJTpAt/WKHCaG2breYsog0NVaalwWTXosulwf1LXYxVRYKf1Qh8yJCRoXUGM/zolk68H1UQ7ZolvZ/J/iN0rqI0kr54TxCEaTG/N2lo4sIxYvYeITY8Nzg4p8ZpcssWWKVnEmvBccJQqjD4e5Rzk8Q6Uyv/ur37t2L5557Dk899RRsNhumTp0aq3XJWLNmDaxWqyiCAGDq1KnQaDRYu3ZtyMcuWrQIRUVFOPnkk/HQQw/BbrfHZY2pjqJZ2vdlKE2PRWuWZoSKCDEhdNzuBM/zYlosx6AN2z8lEI2Gkxim1aXHxD5CGTh93l81JonedLvF36PxCInpFoc0IhRZM0WGOG+sM4xHKAKz9LEOhyi0Ixm6Gi/Ye2DUaWQiMTKPUHiz9KEAozQgpPvEKj/yCREZRsSyv7u7Gx9++CFef/11rFq1ClVVVZgzZw5uvPFGVFVVxWONaGxsRElJiew2nU6HgoICNDYGn49z7bXXYsCAAaioqMB3332HefPmoba2Fh999FHQxzgcDpnnqa2trfcHkAIYpGZpl3/EBhAohCL7yGTptSjMMYhNEpkxWgkmhFweHu0Od9Sl84zq4hz8cLhNlU+I53mx5JhSYwLMKG0x6aN6TUJHhCIVQr6IUFeYPkIqonmFOQZoOMDLA80dDpSYsyIauhovmIgLfK1lESGV5fOhhJC/h5BJdnu2QYsOh38WGkFkCqrPauvWrcPrr7+O999/H93d3bjkkkuwZMkSTJkyJarKCQCYP38+nnnmmZDbbN++Pap9A5B5iEaMGIHy8nJMmTIFe/bswaBBgxQfs2DBAjz++ONRP2eqojx0VfhSlV69R1NaXm7NQnOnEwatBv0LsoNul6XXItughd3pwfFOp3+8Rk5kJ03GIBYROha+hF7adyXS9F86wE6+DskJ9HAveggBoT1CkRilgdBVYy6PV5wVpubzqdNqUJhrxNF2B5rafUIogqGr8SJbFEJyMSbzCKlMjTlCmKX9PYTk72uuUYemdkePdgcEke6o/jY644wzMHLkSDzxxBOYOXMm8vPze/3k9913H2bPnh1ym5qaGpSVlaGpqUl2u9vtRktLS0T+n3HjxgEAdu/eHVQIPfTQQ7j33nvF39va2uIW6UompA0VuwJSY1J/Dkt3REKZ2YSth9owsCg77FDL/GwD7M4uNHc6xTRIpBVjjOpi9akx6RV0JnaWZidfaWrsiE8IlUaRFgP8VWNdkhNre7QRIVPwqjHZe6dSqJfkMSHUDcAiCqlIx4jEEvb3FngMwbpMK8G2DTV0NbCZovj8QTqBE0S6o1oIbdiwAaNHj47pkxcXF6O4uDjsduPHj0drays2btyIMWPGAACWL18Or9crihs1bNmyBQBQXl4edBuj0QijUf1wyXSBRYRcHl5WPg/IU2ORls8D/ivPUGkxRkGOAYdau+QRoSiFUE2Rr5eQitQYSwnpNJyqCeTpBoukuL083B4vdFqNWGJdHmVESGnoahtrphhxaix4RIi9dxwXXigwSvKM2AbgqK+pIhu6mkiztJga0wWmxiKYPq9i6KqSRwjwdwKnpopEpqH6r14qgr788ktcd911GD9+PA4dEiaHv/322/jqq69iv0IAw4YNw/Tp0zF37lysW7cOq1evxh133IGrr75arBg7dOgQhg4dinXr1gEA9uzZgyeeeAIbN27Evn378K9//QvXX389zj77bJxyyilxWWcqoxwRUvAIRZEa+9GJJcgxaMVBq6FgPqFmmRCKLjXGIkJH2x1iJCIYmVw6D8iPm1UcMSEUbURIacSG3ywdYWrM97lwSD6fDOZBytJpVafpWbqXdblmVWOJLJ9nf1uBqTF5Kb1Ks7SKiFCgRyhXbKpIQojILCK+/PnHP/6B8847DyaTCZs3bxaNxTabDU899VTMF8hYtGgRhg4diilTpmDGjBmYOHEiXn31VfF+l8uF2tpasSrMYDDg888/x7Rp0zB06FDcd999uOyyy/Dvf/87bmtMZaRmaVblo2yWjkIIDS3B9786DxedGr4BnVg51ukUu0pHMnleijlLjyLfdPBwhulMbqYIyCMp7LU40kuPkFJn6WjN0jkGrShSAtNjbFSG2gGogP+kz4QQS40lMhrIIkKBVYuRRISMYczSHQ43bD4xGtgSgaUyO6hqjMgwIs5z/OY3v8HLL7+M66+/Hu+99554+5lnnonf/OY3MV2clIKCArzzzjtB7x84cKCsI2pVVRVWrlwZt/WkG9KUQFdAKbLUIxStkVij8kpb7CVkd4o9Y6JNjQFCh+ljHQ7UHe3EKZXWoNtlcuk8IJRPZ+k16Hb5Iy6iWdoSXao4x9izHJuZpfOyIvvq4TgO1mwDjnU40Gp3ydI6LMIRSa+jPJ8QYxVSHm/izdLs9QqcMJ8VpLmiEuFSY4d9r5U5Sye+Boxcn0fIThEhIsOI+PKntrYWZ599do/bLRYLWltbY7EmIgEoeStYasPci/L5SBGFUIdTbKwYaTNFKazDdDifUCY3U2SIFUe+tIo4Z8xsCvqYUISMCEXYRwiQVo7JI0LRNH1kQoylTF1JUD5/5qAinFCaiwtHyhvEGoOM21AiXB+hwBljUtjfdgd5hIgMI+KzWllZGXbv3o2BAwfKbv/qq69oCGsKY1BICTADbW9TY5EgbarIjLGRjteQUq1y5hjzVGRi6TxDMOm60O3ywuH2iL2fommmCEgiQk4PeJ4Hx3FRDVxliE0VAwzT/siVesGWK6aBmEco8Q0V+xdm43/3TOpxOxM3Wg0X1sztF7Ne8TWXwqbOB/qDAOUIHgB4vTw4DlG3SSGIZCfiy5+5c+firrvuwtq1a8FxHBoaGrBo0SLcf//9uO222+KxRqIP0Gg4mVE0S68R01l9KYSk88Zaohy4KoWdxKWTxpUQJ89naGoM8IvALpdHHD9h0GmiNquzz4rHy8PpExpi1VgUEaFgTRXZYNjAvjih8EeE5GbpRKbGgsEiQmraOkgjRg6FMRv1xwUPpVJEKEehys/j5XHBn77CZX/+moaxEmlLxBGh+fPnw+v1YsqUKbDb7Tj77LNhNBpx//334+c//3k81kj0EXqtBm6vvIcQAFgTkRrr9EeEojVLA0BxLhunoNyRmBHJ9PJ0xT+53OOvGDMbo44ESD8rdocHBq0GzR2CwIom3RmsqWJjFKbuwIhQMqTGglFZYEKuUYcTSsO3n5BV/7k8PT7Pu460A1BuZcEiQtJU5rEOB7Y1CN31WzqdKMzNvNYiRPoT8VmN4zg8/PDDeOCBB7B79250dHRg+PDhyM0N/0dKJDcGnUZxeGVhrhHXnF4Fg1YT99QRE0INrd1iFCHaiAQA8Yv7WIcj5HaZXjUGwFdh145XVtbh4lFChV95lP4gQEjlGHUaONxedDrd4OGPCFXlB+8wHgwWEWIz6BgNNuW+OKHI7RERSrxZOhjmLD2+mvcjVSJdr9VAq+Hg8fKKhumdR4Qu60MURJW/fN6fGmMVZoBQnUdCiEhHor68NxgMGD58eCzXQiQYgySsHthBesGlfdN7iQkhJoIMOk1UYz0YRblsarkLLo83qMeCCcBwIwzSmfumnYBNB47jq93H8O3BVgDR9xBi5Bh1cLidsDs9OOJLt5VbsqIS1GJTRcnJ2en2iiI3Ei9TntFXNZZE5fOhiGTeXpZOg06np4dhusvpEVNjJ5Tm9XickrldGn070taNYeXmiNZNEKlAcv7VEwlBapiOpoN0LLCY9JBW2hdkG3pl0szPNoj7a+kMnh4TU2MZ7BEa1T8fr91wGow6jRgpKTP3LgIg7S69v1kwrA8szIlqX8wrJq0aO9LWDZ4XPruFEaRQmUdINEv7yucTOWIjVogl9AFNFXc3dYDnhYuNIoXIjlJDxcCIEEGkIySECBGp0TKaDtKxQKvhZFe/vSmdBwQTeEGO8KV/NMQXOaXGBMYPKsSr148VRXF5BJVYSki7S+/zVe4NLIo8LQb4PUD1LV3ibczLVGbJikgw50qEkNfLJ7VZOlKCDV7d6fMHDQky6iY7XGqsLXTBAUGkKpn9rU/IkKaN4l0dFgqpJ6g3FWMMlh5rDhURcvf0RmUqk04oxuuzT8MVYypx4akV4R8QAukgz73NQlom2ogQM/jWHesQPT2smWKkJf4s+gEIfXNcrHw+Cc3SkWIM0ktoZ5MghJTSYoC/oaI8NSaNvvW8kKBKMiIdUJ3/ePTRR3HRRReJQ0+J9EPqEUpkP53CHCP2+CbG96aHEKM4z4gdje04FiIi5KCqMRkThxRh4pCiXu+HRYS6XNKIUHRCqJ/VhGyDVoguNdsxuCRXrBiriFAIZem1MGg1cHq86Oh2w+1No4gQG7MRUD6/y2eUDlZ9xqr8ZENyZakxeUTooY++w9IfmvDPO86U9SU6eNyOd9YeEMWlyaDDdWf0R0le7/xmBBEvVAuhgwcP4vzzz4fBYMAFF1yACy+8EFOmTIHB0PsTFZEcSIVQQiNCOf6IUG9TYwBE70ioyjFKjcUH9jnqcLhFIVQdpRDSaDgMKcnFtwdt2HWkHYNLcqNqpsjIzdKhpdOJDodfCKVDRChYd2kxNRYkIsTK510eHk63FwadRpYaC4wILdnaiON2F95fdwD3TjtRvP3Rf27D8h1Nsm1dHi/mTR8a5RERRHxR/Vf/+uuvo7GxEe+++y7y8vJw9913o6ioCJdddhneeusttLS0xHOdRB9gkKXGEmOWBiB6eoT/xyI1JuwvZGosw6fPxwt2cq1v6UK7ww2OA/oXROcRAoDBJcJJfFeTEN2Ippkiwz941ZUUnaVjhX/emF8IdTrcOHhceK2CpcZyJBc/LCrUGsQj1OFwix2+P9p8CF6fkDxs68KKWkEE3XRmNU4fWCDsxx66jxdBJJKILn80Gg3OOussPPvss6itrcXatWsxbtw4vPLKK6ioqMDZZ5+N5557DocOHYrXeok4ok+SiFCBLCIUAyHkm0oeKjVG5fPxgaVYfzgsNOUrN2f1SmyytA6LbkTTTJEhnUDvN0unQ0Sop1l6t084FuUagl5c6LQasWCC+YSkEaGjHQ5R8NS32MXbDx7vwob9xwEAH244CC8PnF5dgEcvGI6pw0t6rIUgko1e/dUPGzYMDz74IFavXo36+nrccMMN+PLLL/Huu+/Gan1EH2JIGrO0QfL/3qfGWEToaMjUGCufT/0TYTLBogw/NNgARO8PYrBoBvO7NIgDVyNPjUlL6F1eZpZOh4iQLzUmKZ9nwjFYNIgR2FRRKoRcHh7HfZEdqRACgI82HYTXy+P9DfUAgKtPqwLgHw+iNO6DIJKFmOU/iouLMWfOHMyZMydWuyT6GKMu8X2EAKAwVyKEYpAaY/sLNWaDUmPxgaVY2WvfWyEkrRzrcnpE31d5FKkxUQhJIkLJ2lAxEkSztCQ1xlKJ4YRQtlGL5k5/fyVbwDiTI21Cd+kDPiFUbsnCYVs3/vPdYUwdVoqDx7uQl6XD+SeXA/B/pzgCehoRRDKR+n/1RMxIGrO0LCIUg6ox5hEKFRHyXbFS+XxsCexQXh1l6TyDVY65PDzW7WsRmykWRPE5kafGknfERqT4y+f9URi/UTr0KCR/3yd5aoy9LqxyjPmNLhhZgX5WE9odbsz/6HsAwMWn9hNTomwtFBEikhkSQoRIsqTGCiVm6Vimxpo7naLHIRAHRYTiQqDpvrcRIVY5BgAra48CEHoIaaJIaYnzxhxucehqOnSWNipFhI6oiwjlSLpL8zwvCqGaIuE1b/JVjrHUWP+CbFzim0vHonNX+dJi0rWQR4hIZkgIESJ6nf8kkMiqMWn5fCxSY8wc6vHysioYKVQ+Hx8CI0IDC6OvGGOw8u9Vu/xCKBrysvzzxvwRodR///1VY8IxdTjcOORrPHlCiVoh5EGn0yO2FWCRJBYRYjPLqgqyccnofuLjT+5nxsn9LOLvlBojUoGI/+o7OzvjsQ4iCTBo/SetREaEysxZqCnKwcn9zMgz9l6QGXQaWEzCSS9YeqybGirGBamg5jjhxNlbWESIVUKVRymE5OXzrI9Q6keEAs3Su3xpsZI8IyxhIqzS7tLStBjrBn6kzQGe58UxJ1X5JgwqzsXo/lYAwDWn95ftj8zSRCoQ8VmmtLQUV155JW666SZMnDgxHmsiEkSydJbWaTX47J6zoeG4Xg1clVKUa4Cty4WjHQ7FhnJdFBGKC1JBXWExxURoBqZ3op2HplQ1lk4RIZaOUpsWA6TdpT2iUdpi0qPUN3z3SFs3mjud6HJ5wHFAv3zhtf/D1aOwdm8LLh3VT7Y/8ggRqUDEf/V/+9vf0NLSgnPOOQcnnHACnn76aTQ0NMRjbUQfkyxmaUA4IcXSr1Ho8wkFqxxjqTFjBk+fjwfSiFC0HaUDCTT8RhsRkgohf9VYGkSEdPKIkFqjNCCfQM8iQhaTHiW+Pk1N7Q7RH1SalyX+vVQVZOPyMZU9vFpiasxFqTEieYlYCF188cX45JNPcOjQIdx666145513MGDAAPzkJz/BRx99BLfbHX4nRFJikJwEsvWJ8wjFg1CVYzzPi1eslBqLLVKPULRT5wPpZzXJuiBHnxoT0kRt3ek2YoNFhATxsfuoEBEaHGTqvBR2ASSkxoSLBotJjxJfU9Kmtm7U+yrGqgrCR+IoNUakAlH/1RcXF+Pee+/Fd999h9/97nf4/PPPcfnll6OiogKPPvoo7HZ7+J0QSUWypMbiQVFu8Hlj0i/pdDvuRJMjiQhFO3U+EI7jZCf1aFNjLPohHSyaDuXzgWZp5qUaXBxeCOUEiQiVKkSEqvLDC1u/WZqEEJG8RC2Ejhw5gmeffRbDhw/H/Pnzcfnll2PZsmV4/vnn8dFHH+Hiiy+O4TKJvkBaPh9Y7ZPqiKmx9p6psQ7JtG3qLB1bpCnWWAkhQD44NPqqMeGk3yKZQZcWDRUlQ1e7nB6xYkxNRIhF2jodHlEIWbMNKPZFhNxeHt/WtwIAKlUY38XoFFWNEUlMxPmPjz76CAsXLsRnn32G4cOH42c/+xmuu+46WK1WcZsJEyZg2LBhsVwn0QcYJP6YrDTzyvh7CfWMCC3+VvC4DSrOSYsTYTKRI6n6620PISls5phBq0FhlC0WmBBq6/ZHhNKhaozNy+t2e1B3rAM8D1iz9aoGGIsRIacbrRKztN73Ojd3OrHpgDBXrCpfTWpM+HtyeXh4vHxa9Gki0o+IhdCNN96Iq6++GqtXr8Zpp52muE1FRQUefvjhXi+O6FtYasyk10bVoC6ZYamxowFmaa+Xx8Kv9wEAZk8Y2MerSn+MOg1Ory5AR7c7Jj2EGKwCqtwaXTNFwJ8a4yU9NtOiakznT43tOSq0OxlcnKuqAlPJLG32tZ4oMWehudMpFhz0VxERMkqqMJ1uL6WeiaQkYiF0+PBhZGeH/gMwmUx47LHHol4UkRiYPyLRFWPxINgE+uU7mrC/2Q5zlg6Xjq5MxNLSGo7j8P7NZ4j/jxVnDi7C9eMHYHxNYdT7YJ2lGRyXHp2lpakx5g8apMIfBADZkoaKYmrMJ4RKzUZsP+zfVk1PKGm63eH2kBAikpKIhZDb7UZbW1uP2zmOg9FohMHQ+07ARGJgYex0/LIqyvGnxnieF0/Kr6/eCwC4Zlx/WRqHiB2xFEAMvVaDX190cq/2YdRpYdBp4HSnz+R5QG6W3hNBxRig3FCRNSNllWOAcNHEDNSh0Gk10Gk4uL08GaaJpCXiOLDVakV+fn6PH6vVCpPJhAEDBuCxxx6D10sf+lSDpcbSMyIkCPRulxedTsG4uf1wG77e0wythsP14wcmcHVEopB2Lk+H0nlAXj6/h0WEStT5s2QNFQOEkFT49LOaVEfP/L2E6JxAJCcRXwK/8cYbePjhhzF79mycfvrpAIB169bhzTffxC9/+UscPXoUzz33HIxGI37xi1/EfMFE/Dil0or+Bdk4/+TyRC8l5mQbdMg2aGF3enCs3YFcow6vfyVEg6afXIZ+1uhKsInUJjdLh2Zf1Vg6NFME/MKjy+VB3THmEQrfVRpQ9ghZs3tGhCIZlWLUa9Hp9FDlGJG0RCyE3nzzTTz//PO48sorxdsuuOACjBgxAq+88gqWLVuG/v3748knnyQhlGIU5Rqx6sEfJXoZcaMw1wB7SxeOdTiQbdTin1uEarGbzqxO8MqIRJEriQilg1Ea8EeE3F4e8PIw6DTiKIxwsGhwl8sjthWwSMzSjEoVPYQY1EuISHYi/sv/+uuvMWrUqB63jxo1CmvWrAEATJw4EQcOHOj96ggihhRJxmz8cdkuOD1ejO5vxZgB+QleGZEo8rKkqbH0iAgFzsurKcpRncaS+uTau4X+WkqpMTVdpRk0gZ5IdiIWQlVVVXjttdd63P7aa6+hqqoKANDc3Iz8fDq5EEmCzQYcPCgKoQ37WvDuunoAwLwxhcL9REbCxmwAaRQRCugBNkilURoQREugaDIrmKXVdJX271M+BJYgko2IU2PPPfccrrjiCnz66adiH6ENGzZgx44d+PDDDwEA69evx1VXXRXblRJENNhswPTpQFMTih77GwBg4df74PHymDIwD+Ou/TFQUgIsWQJYLAleLNHXyCJCaeIR0mg4GLQaOD2C8FBbOg8IFX45Bi3afNGgLL1GTLUVR+0RotQYkdxELIQuvPBC1NbW4pVXXkFtbS0A4Pzzz8cnn3yCgQMHAgBuu+22mC6SIKKmvR1oagLq6lD04TvA8OnweHlwAB585RdAXZ1/OxJCGUc6psYAQXwwIaS2dJ6Ra9SJQoilxQAhYnbWkCLsa+7EiaXqzNcApcaI5CciIeRyuTB9+nS8/PLLWLBgQbzWRBCxo7ISWLECmDwZRYf2AcOFmy/b+w1O3LIaqKkR7q+kZoqZSDqapQHBMM08PoOKIxttki15TawmeV+4t246HR4vH9EoGppATyQ7Ef3l6/V6fPfdd/FaC0HEh6oqYMUKccyGwe3EvZ++7BdBPm8bkXnkplNqzOeFA/yGaY4DaopyhdtVeuGkhmlpREjYHxfxPD7qI0QkOxFfAl133XWKZmmCSGqqqjDpiXsxZfc6PPXZn1DRfgx4+20SQRmOtKGiNpUbKjIv3KRJQH29aJjuZzXBdKRBuH36dFViKEfSUNUcIISigXmEuik1RiQpUY3YeP311/H5559jzJgxyMmRh11/97vfxWxxBBEz6uuRe+P1eI15ggBg1iyKCGU4eVkSD0wqe4QkXjhMnoysn/0FADA4TwdMnhyRFy5URCgaqGqMSHYiFkJbt27F6NGjAQA7d+6U3RePmUIE0Wvq6/0ng5oaIRI0a5Z40iAxlLlIPUIpnRqTeOFQV4esH7YCxYMw6PN/+T/3Kr1w0ogQ6yrdG8gsTSQ7EQuhL774Ih7rIIj4cPCgXAQx0SM5aWDyZGDlSjJMZyBSj1DKm6Uln+s8WzNQPAgn7PkuYi9c7CNCVD5PJDdRj9vevXs39uzZg7PPPhsmk0k20Zsgkoa8PKFPECA/GUjFUEmJsB2RcaRd+XxVFfD227jjipswoPUwfrL9S2DFsoginrmxFkJ6qhojkpuIhVBzczOuvPJKfPHFF+A4Drt27UJNTQ3mzJmD/Px8PP/88/FYJ0FEh8UiNEtsb+8Z8amqEiJBeXnUQyhDyZN0lo60Giopqa8HZs3C6IY6jG4Q+rxF6oVjE+iBGKfGXJQaI5KTiP/y77nnHuj1ehw4cADZ2f7uoldddRWWLFkS08URREywWIKnvSorSQRlMPLUWIpHhAK9cKt9fbJY+re+XtVucowxrhqj1BiR5EQcEfrf//6Hzz77DJUBJ5YhQ4Zg//79MVsYQRBEvJGZpVO5fD6GXri4VY2RECKSlIj/8js7O2WRIEZLSwuMRqPCI2JDS0sLZs6cCbPZDKvVijlz5qCjoyPs49asWYNzzjkHOTk5MJvNOPvss9HV1RW3dRIEkToYdBoxYpHSVWPMCxdojGZiqKZGtRcuR9ZZOnZ9hKhqjEhWIhZCZ511Ft566y3xd47j4PV68eyzz+JHP/pRTBcnZebMmdi2bRuWLl2KxYsXY9WqVbj55ptDPmbNmjWYPn06pk2bhnXr1mH9+vW44447oEnlKz+CIGIKM0zrU/l7gXnhVq7s6QViXjiVg4Wl5fMxrRqjPkJEkhJxauzZZ5/FlClTsGHDBjidTjz44IPYtm0bWlpasHr16nisEdu3b8eSJUuwfv16jB07FgDwwgsvYMaMGXjuuedQUVGh+Lh77rkHd955J+bPny/eduKJJ8ZljQRBpCa5Rh2OdThTOyIECCInmNCJoDWENCIUG48QpcaI5CbiS6CTTz4ZO3fuxMSJE3HRRRehs7MTl156KTZv3oxBgwbFY41Ys2YNrFarKIIAYOrUqdBoNFi7dq3iY5qamrB27VqUlJRgwoQJKC0txaRJk/DVV1/FZY0EQaQmrLt0WpTPxwDmm8o16mLSW4kaKhLJTlR9hCwWCx5++OFYryUojY2NKGG9YHzodDoUFBSgsbFR8TF1vpbyv/rVr/Dcc8/h1FNPxVtvvYUpU6Zg69atGDJkiOLjHA4HHA6H+HtbW1uMjoIgiGSEnfjTonw+BgwqzkVNcQ5GVeXHZH9+jxBFhIjkJCoh1NrainXr1qGpqQler/zDff3116vez/z58/HMM8+E3Gb79u3RLFFc1y233IIbb7wRADBq1CgsW7YMr7/+OhYsWKD4uAULFuDxxx+P6jkJgkg9WAl9yqfGYoTJoMWyeyfFrEEuzRojkp2IhdC///1vzJw5Ex0dHTCbzbI/Fo7jIhJC9913H2bPnh1ym5qaGpSVlaGpqUl2u9vtRktLC8rKyhQfV15eDgAYPny47PZhw4bhwIEDQZ/voYcewr333iv+3tbWhiqaQ0UQaQubQJ/SZukYE8spAZQaI5KdiIXQfffdh5tuuglPPfWUYhl9JBQXF6O4uDjsduPHj0drays2btyIMWPGAACWL18Or9eLcePGKT5m4MCBqKioQG1trez2nTt34vzzzw/6XEajMa5tAAiCSC6qi3IAABVWU4JXkp6QWZpIdiIWQocOHcKdd97ZaxEUCcOGDcP06dMxd+5cvPzyy3C5XLjjjjtw9dVXixVjhw4dwpQpU/DWW2/h9NNPB8dxeOCBB/DYY49h5MiROPXUU/Hmm29ix44d+PDDD/ts7QRBJDe3TBqECYOLMLKSOozHA/IIEclOxELovPPOw4YNG1BTUxOP9QRl0aJFuOOOOzBlyhRoNBpcdtll+OMf/yje73K5UFtbC7vdLt529913o7u7G/fccw9aWlowcuRILF26NG7VbQRBpB4GnQZjBsTGGEz0hGaNEckOx/M8H8kDXnvtNfz617/GjTfeiBEjRkCvl/eZuPDCC2O6wETT1tYGi8UCm80Gs9mc6OUQBEGkFI22bpyxYBl0Gg67n5qR6OUQGYTa83fEEaG5c+cCAH7961/3uI/jOHg8pPoJgiAIARYRcnt5uD1ealNAJB0RC6HAcnmCIAiCCAbzCAGAk4QQkYTQJ5IgCIKIGwaJ8KFeQkQyoloIzZgxAzabTfz96aefRmtrq/h7c3Nzj549BEEQRGaj02rE8SVUOUYkI6qF0GeffSYbPfHUU0+hpaVF/N3tdvfo2UMQBEEQ1FSRSGZUC6HA4rIIi80IgiCIDCVLT00VieSFPEIEQRBEXPH3EiIhRCQfqoUQx3E95s/Ech4NQRAEkZ4YxYgQpcaI5EN1+TzP85g9e7Y4h6u7uxu33norcnKEOT1S/xBBEARBMPweIYoIEcmHaiF0ww03yH6/7rrremwTyeR5giAIIjMgszSRzKgWQgsXLoznOgiCIIg0RZxATx4hIgkhszRBEAQRV2gCPZHMkBAiCIIg4gqlxohkhoQQQRAEEVfE1BhFhIgkhIQQQRAEEVeojxCRzJAQIgiCIOKK3yNEqTEi+SAhRBAEQcQVSo0RyQwJIYIgCCKuUENFIpkhIUQQBEHEFb9HiFJjRPJBQoggCIKIK0aaPk8kMSSECIIgiLhCqTEimSEhRBAEQcQVJoS6KTVGJCEkhAiCIIi4Elg1xvM8vt5zDE3t3YlcFkEAICFEEARBxJnAPkKb61tx7V/W4v6/f5fIZREEABJCBEEQRJwJ7Cy960g7AKC2sS1hayIIBgkhgiAIIq4EpsaOtDkAAE3tDjjJQE0kGBJCBEEQRFwJnD7f2CZ4g3geaLSRT4hILCSECIIgiLji9wj5IkIS8XOotSshayIIBgkhgiAIIq6IqTGfR+iIpFqsgYQQkWBICBEEQRBxpUdqzOYQ7yMhRCQaEkIEQRBEXJGapV0eL5o7JULIRkKISCwkhAiCIIi4IvUIHW13gOf99x1qJbM0kVhICBEEQRBxhaXGPF6+RyqMUmNEoiEhRBAEQcQVlhoDgP3NdgBAfrYegCCEeGmIiCD6GBJCBEEQRFwx6PynmgMtghA6tcoKALA7PbB1uRKxLIIAQEKIIAiCiDNaDQe9lgPgF0IDCnNQlGsAQL2EiMRCQoggCIKIOyw9tr+5EwBQYjain9UEAGggwzSRQEgIEQRBEHGHGaYPtAjRnzJzFipEIUQRISJxkBAiCIIg4g4TQsc6hB5CpRIhRKkxIpGQECIIgiDijlGvlf1OQohIFkgIEQRBEHHHqJOfbsosWehnzQJAqTEisZAQIgiCIOKOVAjlGLTINerII0QkBSSECIIgiLgjbapYahEiQUwINbU74HR7E7IugiAhRBAEQcQdNm8MAErzBCFUmGOAQacBzwNH2qiEnkgMJIQIgiCIuCONCJX5IkIcx4m9hMgwTSSKlBFCLS0tmDlzJsxmM6xWK+bMmYOOjo6g2+/btw8cxyn+/P3vf+/DlRMEQRDSiFCJ2Sj+v4IM00SCSRkhNHPmTGzbtg1Lly7F4sWLsWrVKtx8881Bt6+qqsLhw4dlP48//jhyc3Nx/vnn9+HKCYIgCKlZusycJf6/wkKGaSKx6BK9ADVs374dS5Yswfr16zF27FgAwAsvvIAZM2bgueeeQ0VFRY/HaLValJWVyW77+OOPceWVVyI3N7dP1k0QBEEIyMzSUiEkpsbII0QkhpSICK1ZswZWq1UUQQAwdepUaDQarF27VtU+Nm7ciC1btmDOnDkht3M4HGhra5P9EARBEL1DGhGSCqF++RQRIhJLSgihxsZGlJSUyG7T6XQoKChAY2Ojqn289tprGDZsGCZMmBByuwULFsBisYg/VVVVUa+bIAiCEJBVjUk8QmSWJhJNQoXQ/Pnzgxqa2c+OHTt6/TxdXV145513wkaDAOChhx6CzWYTf+rr63v9/ARBEJmONDVWkuePCLEKskYbpcaIxJBQj9B9992H2bNnh9ympqYGZWVlaGpqkt3udrvR0tLSwwekxIcffgi73Y7rr78+7LZGoxFGozHsdgRBEIR6WGqM9Q5iMON0h8ONDocbucaUsK4SaURCP3HFxcUoLi4Ou9348ePR2tqKjRs3YsyYMQCA5cuXw+v1Yty4cWEf/9prr+HCCy9U9VwEQRBE7GFCSOoPAoAcow55Rh3aHW4caetGbjEVsxB9S0p4hIYNG4bp06dj7ty5WLduHVavXo077rgDV199tVgxdujQIQwdOhTr1q2TPXb37t1YtWoVfvrTnyZi6QRBEAQEwQP4+wZJYX2FjlB6jEgAKSGEAGDRokUYOnQopkyZghkzZmDixIl49dVXxftdLhdqa2tht9tlj3v99ddRWVmJadOm9fWSCYIgCB/ThpfiijGVuHXSoB73MZ/QkXYSQkTfw/E8zyd6EclMW1sbLBYLbDYbzGZzopdDEASRdtz7/hZ8tPkQ5k0fitsm9xRKBBENas/fKRMRIgiCINITNo2eBq8SiYCEEEEQBJFQWOUYCSEiEZAQIgiCIBIKa7DYSEKISAAkhAiCIIiEwkrqm9ocCV4JkYmQECIIgiASSqkkNeb1Uv0O0beQECIIgiASSnGeERwHuL08mjudiV4OkWGQECIIgiASil6rQVGur6ki+YSIPoaEEEEQBJFwmGGahBDR15AQIgiCIBKOv4SeDNNE30JCiCAIgkg4JT4hRCX0RF9DQoggCIJIOGViCT0JIaJvISFEEARBJJwyiggRCYKEEEEQBJFwSlh3aRsJIaJvISFEEARBJJwy3+DVpnYySxN9CwkhgiAIIuGU5glCqKXTCYfbk+DVEJkECSGCIAgi4Viz9TDohFMSzRwj+hISQgRBEETC4ThO0kuIfEJE30FCiCAIgkgKWHdpqhwj+hISQgRBEERSUErdpYkEQEKIIAiCSApKKTVGJAASQgRBEERSQB4hIhGQECIIgiCSglJfLyFqqkj0JSSECIIgiKSgNE8wS1NTRaIvISFEEARBJAVlkogQz/MJXg2RKZAQIgiCIJKCcosJOQYtulwebK5vTfRyiAyBhBBBEASRFBh0GkwdXgoA+M93hxO8GiJTICFEEARBJA0/HlEOQBBCXi+lx4j4Q0KIIAiCSBrOPqEYeUYdGtu6senA8UQvh8gASAgRBEEQSUOWXotzfemxxZQeI/oAEkIEQRBEUvGTkUJ67L/fH4aH0mNEnCEhRBAEQSQVEwcXIy9Lh6Z2Bzbsa0n0cog0h4QQQRAEkVQYdBqcd1IZACE95vHyqG+xo4lGbxBxQJfoBRAEQRBEID85pRwfbjyId9cdwHvrD8Dl4cFxwMxx/fHAtKGwZOsTvUQiTaCIEEEQBJF0nDm4COWWLLi9PFweHnotB54H/vbNAZzz/Ap8sL4eTrc30csk0gCOpz7mIWlra4PFYoHNZoPZbE70cgiCIDKGI23d2HusE1UF2SgzZ2Hd3hY8+s+t2NXUAQDIz9bjwpEVuHxMFUZUWhK8WiLZUHv+JiEUBhJCBEEQyYPT7cUbX+/FX7/cKxvOOnVYCX754+EYWJSTwNURyQQJoRhBQoggCCL5cHu8WL2nGf/YeBD//f4w3F4eBq0Gc86qxm2TB8GcRR6iTIeEUIwgIUQQBJHc7G5qx68Xb8eqnUcBAHlGHa4bPwA3njkQJXlZCV4dkShICMUIEkIEQRDJD8/z+Hx7E55dskP0EBl0Gtw2aRB+fs5g6LRUG5RpkBCKESSECIIgUgevl8eyHU14acVubD7QCgAYOyAfv7/6VFTmZyd2cUSfovb8TRKZIAiCSBs0Gg7nDi/FR7dNwB+uPhV5Rh027D+O8//wJRZ/15Do5RFJCAkhgiAIIu3gOA4XndoP/73rLIzqb0V7txt3vLMZD374LexOd6KXRyQRJIQIgiCItKWqIBsf3DIePz9nMDgO+GDDQfzkj19h84HjiV4akSSQECIIgiDSGr1Wg/umnYh3556BcksW6o514pKXvsaNC9dh434SRJkOCSGCIAgiIzijphCf3nUWLhtdCQ0HfFF7FJf9+Wv89M31aLU7E708IkGkjBBqaWnBzJkzYTabYbVaMWfOHHR0dIR8TGNjI2bNmoWysjLk5ORg9OjR+Mc//tFHKyYIgiCSDWu2Ac9fORLL75uMq8ZWQafh8Pn2Jlz4p9XY0diW6OURCSBlhNDMmTOxbds2LF26FIsXL8aqVatw8803h3zM9ddfj9raWvzrX//C999/j0svvRRXXnklNm/e3EerJgiCIJKRgUU5eObyU/Dvn09EVYEJB1rsuPSlr/Hf7w8nemlEH5MSfYS2b9+O4cOHY/369Rg7diwAYMmSJZgxYwYOHjyIiooKxcfl5ubiz3/+M2bNmiXeVlhYiGeeeQY//elPVT039REiCIJIb453OnHHu5uwenczAODXF52E68cPTOyiiF6TVn2E1qxZA6vVKoogAJg6dSo0Gg3Wrl0b9HETJkzA+++/j5aWFni9Xrz33nvo7u7G5MmTgz7G4XCgra1N9kMQBEGkL/k5Brx54+m4YfwAAMCj/9yGF7/YjRSIExAxICWEUGNjI0pKSmS36XQ6FBQUoLGxMejjPvjgA7hcLhQWFsJoNOKWW27Bxx9/jMGDBwd9zIIFC2CxWMSfqqqqmB0HQRAEkZzotBr86sKTcOeUIQCA335Wi6c/3UFiKANIqBCaP38+OI4L+bNjx46o9//II4+gtbUVn3/+OTZs2IB7770XV155Jb7//vugj3nooYdgs9nEn/r6+qifnyAIgkgdOI7DveeegF/+eBgA4JVVdXjz632JXRQRd3SJfPL77rsPs2fPDrlNTU0NysrK0NTUJLvd7XajpaUFZWVlio/bs2cP/vSnP2Hr1q046aSTAAAjR47El19+iRdffBEvv/yy4uOMRiOMRmPkB0MQBEGkBT89qwY8Dzz53+34zX+2Y0SlFWMG5Cd6WUScSKgQKi4uRnFxcdjtxo8fj9bWVmzcuBFjxowBACxfvhxerxfjxo1TfIzdbgcAaDTyoJdWq4XX6+3lygmCIIh05qdnVWPLwVb857vDuH3RJiy+cyKKcukiOR1JCY/QsGHDMH36dMydOxfr1q3D6tWrcccdd+Dqq68WK8YOHTqEoUOHYt26dQCAoUOHYvDgwbjllluwbt067NmzB88//zyWLl2Kiy++OIFHQxAEQSQ7HMfhmctOwaDiHDS2dePOdzfD7aGL6HQkJYQQACxatAhDhw7FlClTMGPGDEycOBGvvvqqeL/L5UJtba0YCdLr9fjvf/+L4uJiXHDBBTjllFPw1ltv4c0338SMGTMSdRgEQRBEipBr1OHl68Yg26DF13ua8evFP5B5Og1JiT5CiYT6CBEEQWQ2n35/GLct2gQA+OWPh+GnZ9UkeEWEGtKqjxBBEARBJIrzR5TjFzOGAhAM1Eu2UvfpdIKEEEEQBEGEYe5ZNbjujP7geeCu97Zg3d6WRC+JiBEkhAiCIAgiDBzH4VcXnIRzhpbA4fbihtfX4evdxxK9LCIGkBAiCIIgCBXotBq8NHM0zj6hGF0uD258Yz1W7jya6GURvYSEEEEQBEGoJEuvxauzxmDqMCEyNPfNDSSGUhwSQgRBEAQRAVl6LV6aOQbnn1wGp8eLn/1tI7YfpgHdqQoJIYIgCIKIEINOgz9cPQrjawrR6fRgzhvr0dTWnehlEVFAQoggCIIgosCg0+Dl68agpjgHDbZuzHlzA+xOd6KXRUQICSGCIAiCiBJLth4LZ5+GghwDvj9kw30ffEvdp1MMEkIEQRAE0QsGFObg1VljoNdy+HRrI15asSfRSyIigIQQQRAEQfSSsQML8PiFJwMAnvtfLVbUNiV4RYRaSAgRBEEQRAy4dlx/XHO60H36znc3Y9+xzkQviVABCSGCIAiCiBG/unA4RvW3oq3bjdkL1+EIVZIlPSSECIIgCCJGGHVavHzdGFTmm7Cv2Y5rXv2GyuqTHBJCBEEQBBFDSs1ZeHfuGehnNaHuWCeu/etaHG13JHpZRBBICBEEQRBEjKkqyMa7c89AuSULu5s6cMlLq/FNXXOil0UoQEKIIAiCIOJA/0JBDFXmm3DweBeu+cs3+PW/f0C3y5PopRESSAgRBEEQRJwYWJSDT+86C9ecXgWeB15fvRfn/X4VPv/hCDVeTBJICBEEQRBEHMnL0mPBpadg4Y2nodRsxP5mO3761gbcsHA9fmhoI0GUYDie3oGQtLW1wWKxwGazwWw2J3o5BEEQRArT3u3Cn77Yjde/2guXRzj9FucZMa66ANVFOWhqc6CxrRscB1w6uhLnn1wGvZZiFtGg9vxNQigMJIQIgiCIWLP3WCee+XQHltc2wen2Bt2uwpKF68YPwPiaQgwrNyNLr0WX04PtjW3Y2diO5k4nWu1OdDjcGFWVjwtPrUCWXtuHR5K8kBCKESSECIIgiHjR7fLg2/pWfFPXgqb2bpSas1BmzsKh1i4sWrsfxzqc4rYaDii3mHDY1gVvkDN3YY4BM8f1x4TBRcg16pBt0MLt5WHrcqHV7oJJr8XJ/cywZhsAAE1t3VhT14wupwcXjKxAjlEXu4Oz2YD2dqCysud9Bw8CeXmAxRK75wuAhFCMICFEEARBJIJulwf/2tKA/3x/GNsabDJRVJRrwLByM8rMWcjPMUCr4fCvLQ041Nqlat+V+SYYtBrUScaAlFuy8NgFw3HeSWXgOA5OtxcNrV3Qajhk6bXINmjVCyWbDZg+HWhqAlasAKqq/PfV1wOTJwMlJcCSJXETQySEYgQJIYIgCCLR8DyPpnYH9jfbMbAwGyXmrB7buD1e/O+HI3h33QEcau2C3eFBp8MNnZaDxaSHxaRHa5cL+5vt4mM4Dhhebkar3SWKqFOrrLA73ag72gl3QOipn9WEUyotGFllxfiaQozoZ4FGw/Vc8MGDwKRJQF0dUFPjF0NMBLHbV66Et6IfeABapf30AhJCMYKEEEEQBJFO2Lpc2NZgg8Plxej++bBk69Hl9OClFbvxyso6OD1+z1KWXgOeBxxBfExFuQZMOqEE+dl6tNidaOl04ninE82dTrS0O5DV2Ybhh3dhuKMFg6+6AMUvPI/iPTvgquqP9Y88h3XHPVi/7zhevHY0Jg4piulxkhCKESSECIIgiExh37FOfLX7GPrlm3BiaR7KLVngOA5eL492hxs/NLTh24Ot2Lj/ONbsaUaHwx2T571ryhDcc+4JMdkXg4RQjCAhRBAEQRA9cbq92LCvBV/uPgaPl0d+tgGFOQYU5BhQkGtAQbYB7d1u/PDlJmx7/QPsyy/HsRwrjvUfDK9ej1Or8jGuugCnVxdgeIU55m0CSAjFCBJCBEEQBBElUk8QQ+oZiiNqz9/UpYkgCIIgiNgTaIxevVr4t65OuL2+PtErBEBCiCAIgiCIWHPwoFwErVgBTJgg/CsVQwcPJnadAGLYOYkgCIIgCAJCs8SSEuH/0jRYVZXwO+sjlJeXoAX6ISFEEARBEERssViEZolKnaWrqoCVK+PeWVotJIQIgiAIgog9FktwoaM0diNBkEeIIAiCIIiMhYQQQRAEQRAZCwkhgiAIgiAyFhJCBEEQBEFkLCSECIIgCILIWEgIEQRBEASRsZAQIgiCIAgiYyEhRBAEQRBExkJCiCAIgiCIjIU6S4eB53kAQFtbW4JXQhAEQRCEWth5m53Hg0FCKAzt7e0AgCo2MI4gCIIgiJShvb0dlhAzzTg+nFTKcLxeLxoaGpCXlweO42K237a2NlRVVaG+vh5mszlm+00FMvXY6bjpuDOBTD1uIHOPPVmPm+d5tLe3o6KiAhpNcCcQRYTCoNFoUBnH4XBmszmpPjh9SaYeOx13ZkHHnXlk6rEn43GHigQxyCxNEARBEETGQkKIIAiCIIiMhYRQgjAajXjsscdgNBoTvZQ+J1OPnY6bjjsTyNTjBjL32FP9uMksTRAEQRBExkIRIYIgCIIgMhYSQgRBEARBZCwkhAiCIAiCyFhICCWIF198EQMHDkRWVhbGjRuHdevWJXpJMWXBggU47bTTkJeXh5KSElx88cWora2VbdPd3Y3bb78dhYWFyM3NxWWXXYYjR44kaMXx4emnnwbHcbj77rvF29L1uA8dOoTrrrsOhYWFMJlMGDFiBDZs2CDez/M8Hn30UZSXl8NkMmHq1KnYtWtXAlfcezweDx555BFUV1fDZDJh0KBBeOKJJ2Qt/dPluFetWoULLrgAFRUV4DgOn3zyiex+NcfZ0tKCmTNnwmw2w2q1Ys6cOejo6OjDo4icUMftcrkwb948jBgxAjk5OaioqMD111+PhoYG2T7S7bgDufXWW8FxHH7/+9/Lbk+V4yYhlADef/993HvvvXjsscewadMmjBw5Eueddx6ampoSvbSYsXLlStx+++345ptvsHTpUrhcLkybNg2dnZ3iNvfccw/+/e9/4+9//ztWrlyJhoYGXHrppQlcdWxZv349XnnlFZxyyimy29PxuI8fP44zzzwTer0en376KX744Qc8//zzyM/PF7d59tln8cc//hEvv/wy1q5di5ycHJx33nno7u5O4Mp7xzPPPIM///nP+NOf/oTt27fjmWeewbPPPosXXnhB3CZdjruzsxMjR47Eiy++qHi/muOcOXMmtm3bhqVLl2Lx4sVYtWoVbr755r46hKgIddx2ux2bNm3CI488gk2bNuGjjz5CbW0tLrzwQtl26XbcUj7++GN88803qKio6HFfyhw3T/Q5p59+On/77beLv3s8Hr6iooJfsGBBAlcVX5qamngA/MqVK3me5/nW1lZer9fzf//738Vttm/fzgPg16xZk6hlxoz29nZ+yJAh/NKlS/lJkybxd911F8/z6Xvc8+bN4ydOnBj0fq/Xy5eVlfG//e1vxdtaW1t5o9HIv/vuu32xxLjw4x//mL/ppptkt1166aX8zJkzeZ5P3+MGwH/88cfi72qO84cffuAB8OvXrxe3+fTTT3mO4/hDhw712dp7Q+BxK7Fu3ToeAL9//36e59P7uA8ePMj369eP37p1Kz9gwAD+//7v/8T7Uum4KSLUxzidTmzcuBFTp04Vb9NoNJg6dSrWrFmTwJXFF5vNBgAoKCgAAGzcuBEul0v2OgwdOhT9+/dPi9fh9ttvx49//GPZ8QHpe9z/+te/MHbsWFxxxRUoKSnBqFGj8Je//EW8f+/evWhsbJQdt8Viwbhx41L6uCdMmIBly5Zh586dAIBvv/0WX331Fc4//3wA6Xvcgag5zjVr1sBqtWLs2LHiNlOnToVGo8HatWv7fM3xwmazgeM4WK1WAOl73F6vF7NmzcIDDzyAk046qcf9qXTcNGusjzl27Bg8Hg9KS0tlt5eWlmLHjh0JWlV88Xq9uPvuu3HmmWfi5JNPBgA0NjbCYDCIXxaM0tJSNDY2JmCVseO9997Dpk2bsH79+h73petx19XV4c9//jPuvfde/OIXv8D69etx5513wmAw4IYbbhCPTelzn8rHPX/+fLS1tWHo0KHQarXweDx48sknMXPmTABI2+MORM1xNjY2oqSkRHa/TqdDQUFB2rwW3d3dmDdvHq655hpx5la6HvczzzwDnU6HO++8U/H+VDpuEkJE3Ln99tuxdetWfPXVV4leStypr6/HXXfdhaVLlyIrKyvRy+kzvF4vxo4di6eeegoAMGrUKGzduhUvv/wybrjhhgSvLn588MEHWLRoEd555x2cdNJJ2LJlC+6++25UVFSk9XETPXG5XLjyyivB8zz+/Oc/J3o5cWXjxo34wx/+gE2bNoHjuEQvp9dQaqyPKSoqglar7VEldOTIEZSVlSVoVfHjjjvuwOLFi/HFF1+gsrJSvL2srAxOpxOtra2y7VP9ddi4cSOampowevRo6HQ66HQ6rFy5En/84x+h0+lQWlqalsddXl6O4cOHy24bNmwYDhw4AADisaXb5/6BBx7A/PnzcfXVV2PEiBGYNWsW7rnnHixYsABA+h53IGqOs6ysrEdBiNvtRktLS8q/FkwE7d+/H0uXLpVNYE/H4/7yyy/R1NSE/v37i99z+/fvx3333YeBAwcCSK3jJiHUxxgMBowZMwbLli0Tb/N6vVi2bBnGjx+fwJXFFp7ncccdd+Djjz/G8uXLUV1dLbt/zJgx0Ov1stehtrYWBw4cSOnXYcqUKfj++++xZcsW8Wfs2LGYOXOm+P90PO4zzzyzR3uEnTt3YsCAAQCA6upqlJWVyY67ra0Na9euTenjttvt0GjkX6NarRZerxdA+h53IGqOc/z48WhtbcXGjRvFbZYvXw6v14tx48b1+ZpjBRNBu3btwueff47CwkLZ/el43LNmzcJ3330n+56rqKjAAw88gM8++wxAih13ot3amch7773HG41G/o033uB/+OEH/uabb+atVivf2NiY6KXFjNtuu423WCz8ihUr+MOHD4s/drtd3ObWW2/l+/fvzy9fvpzfsGEDP378eH78+PEJXHV8kFaN8Xx6Hve6det4nU7HP/nkk/yuXbv4RYsW8dnZ2fzf/vY3cZunn36at1qt/D//+U/+u+++4y+66CK+urqa7+rqSuDKe8cNN9zA9+vXj1+8eDG/d+9e/qOPPuKLior4Bx98UNwmXY67vb2d37x5M79582YeAP+73/2O37x5s1gdpeY4p0+fzo8aNYpfu3Yt/9VXX/FDhgzhr7nmmkQdkipCHbfT6eQvvPBCvrKykt+yZYvsu87hcIj7SLfjViKwaoznU+e4SQgliBdeeIHv378/bzAY+NNPP53/5ptvEr2kmAJA8WfhwoXiNl1dXfzPfvYzPj8/n8/OzuYvueQS/vDhw4lbdJwIFELpetz//ve/+ZNPPpk3Go380KFD+VdffVV2v9fr5R955BG+tLSUNxqN/JQpU/ja2toErTY2tLW18XfddRffv39/Pisri6+pqeEffvhh2UkwXY77iy++UPybvuGGG3ieV3eczc3N/DXXXMPn5ubyZrOZv/HGG/n29vYEHI16Qh333r17g37XffHFF+I+0u24lVASQqly3DR9niAIgiCIjIU8QgRBEARBZCwkhAiCIAiCyFhICBEEQRAEkbGQECIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgkgpZs+ejYsvvjjRyyAIIk0gIUQQBEEQRMZCQoggiJRl8uTJ+PnPf467774b+fn5KC0txV/+8hd0dnbixhtvRF5eHgYPHoxPP/1UfIzH48GcOXNQXV0Nk8mEE088EX/4wx9k+3W73bjzzjthtVpRWFiIefPm4YYbbpBForxeLxYsWCDuZ+TIkfjwww/76tAJgogRJIQIgkhp3nzzTRQVFWHdunX4+c9/jttuuw1XXHEFJkyYgE2bNmHatGmYNWsW7HY7AEHAVFZW4u9//zt++OEHPProo/jFL36BDz74QNznM888g0WLFmHhwoVYvXo12tra8Mknn8ied8GCBXjrrbfw8ssvY9u2bbjnnntw3XXXYeXKlX15+ARB9BKaPk8QREoxe/ZstLa24pNPPsHkyZPh8Xjw5ZdfAhCiPRaLBZdeeineeustAEBjYyPKy8uxZs0anHHGGYr7vOOOO9DY2ChGdMrKynD//ffj/vvvF/dbU1ODUaNG4ZNPPoHD4UBBQQE+//xzjB8/XtzPT3/6U9jtdrzzzjvxfAkIgoghukQvgCAIojeccsop4v+1Wi0KCwsxYsQI8bbS0lIAQFNTk3jbiy++iNdffx0HDhxAV1cXnE4nTj31VACAzWbDkSNHcPrpp8v2O2bMGHi9XgDA7t27Ybfbce6558rW4nQ6MWrUqJgfI0EQ8YOEEEEQKY1er5f9znGc7DaO4wBAFDHvvfce7r//fjz//PMYP3488vLy8Nvf/hZr165V/ZwdHR0AgP/85z/o16+f7D6j0RjVcRAEkRhICBEEkVGsXr0aEyZMwM9+9jPxtj179oj/t1gsKC0txfr163H22WcDEFJjmzZtEqNGw4cPh9FoxIEDBzBp0qQ+XT9BELGFhBBBEBnFkCFD8NZbb+Gzzz5DdXU13n77baxfvx7V1dXiNj//+c+xYMECDB48GEOHDsULL7yA48ePi9GlvLw83H///bjnnnvg9XoxceJE2Gw2rF69GmazGTfccEOiDo8giAghIUQQREZxyy23YPPmzbjqqqvAcRyuueYa/OxnP5OV2M+bNw+NjY24/vrrodVqcfPNN+O8886DVqsVt3niiSdQXFyMBQsWoK6uDlarFaNHj8YvfvGLRBwWQRBRQlVjBEEQYfB6vRg2bBiuvPJKPPHEE4leDkEQMYQiQgRBEAHs378f//vf/zBp0iQ4HA786U9/wt69e3HttdcmemkEQcQYaqhIEAQRgEajwRtvvIHTTjsNZ555Jr7//nt8/vnnGDZsWKKXRhBEjKHUGEEQBEEQGQtFhAiCIAiCyFhICBEEQRAEkbGQECIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgiAIgshY/h+6rpmmxGqdlQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -429,17 +394,33 @@ "\n", "ax.plot(energies)\n", "ax.scatter(\n", - " selected_indices, selection_energies, marker=\"x\", color=\"red\", label=\"selection\"\n", + " selected_indices[0], selection_energies, marker=\"x\", color=\"red\", label=\"selection\"\n", ")\n", "ax.set_ylabel(\"Energy / eV\")\n", "ax.set_xlabel(\"Image\")\n", "ax.legend()" ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "!rm -rf project config_full.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "apax311", + "display_name": "new_defaults", "language": "python", "name": "python3" }, @@ -453,7 +434,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/tests/regression_tests/apax_config.yaml b/tests/regression_tests/apax_config.yaml index 9021702c..71971c1a 100644 --- a/tests/regression_tests/apax_config.yaml +++ b/tests/regression_tests/apax_config.yaml @@ -10,7 +10,7 @@ data: n_train: 1000 n_valid: 100 - batch_size: 32 + batch_size: 4 valid_batch_size: 100 shift_method: "per_element_regression_shift" @@ -22,22 +22,22 @@ data: model: name: gmnn basis: - name: gaussian - n_basis: 7 + name: bessel + n_basis: 16 r_max: 6.5 - r_min: 0.5 + n_radial: 5 - nn: [512, 512] + nn: [256, 256] calc_stress: false empirical_corrections: - name: exponential r_max: 2.0 - b_init: normal + b_init: zeros descriptor_dtype: fp32 readout_dtype: fp32 - scale_shift_dtype: fp32 + scale_shift_dtype: fp64 metrics: - name: energy @@ -54,15 +54,15 @@ metrics: loss: - name: energy - atoms_exponent: 2 + atoms_exponent: 1 weight: 1.0 - name: forces atoms_exponent: 1 - weight: 8.0 - - loss_type: cosine_sim - atoms_exponent: 1 - name: forces - weight: 0.1 + weight: 4.0 + # - loss_type: cosine_sim + # atoms_exponent: 1 + # name: forces + # weight: 0.1 # - loss_type: structures # name: stress # weight: 1.0 @@ -70,11 +70,13 @@ loss: optimizer: name: adam kwargs: {} - emb_lr: 0.02 - nn_lr: 0.03 + emb_lr: 0.01 + nn_lr: 0.01 scale_lr: 0.001 - shift_lr: 0.05 + shift_lr: 0.03 zbl_lr: 0.001 + schedule: + name: linear callbacks: - name: csv diff --git a/tests/regression_tests/test_apax_training.py b/tests/regression_tests/test_apax_training.py index 2615f78d..895eda9e 100644 --- a/tests/regression_tests/test_apax_training.py +++ b/tests/regression_tests/test_apax_training.py @@ -39,13 +39,14 @@ def test_regression_model_training(get_md22_stachyose, get_tmp_path): current_metrics = load_csv(working_dir / "test/log.csv") comparison_metrics = { - "val_energy_mae": 0.24696787788040334, - "val_forces_mae": 0.09672525137916232, - "val_forces_mse": 0.017160819058234304, - "val_loss": 0.45499257304743396, + "val_energy_mae": 0.075, + "val_forces_mae": 0.045, + "val_forces_mse": 0.004, + "val_loss": 0.045, } for key in comparison_metrics.keys(): - assert ( - abs((np.array(current_metrics[key])[-1] / comparison_metrics[key]) - 1) < 1e-3 - ) + print((np.array(current_metrics[key])[-1])) + + for key in comparison_metrics.keys(): + assert abs((np.array(current_metrics[key])[-1] - comparison_metrics[key])) < 0.01