From 3a8390ef04bc1c92aec6722ad1cc5c72f94d6899 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Wed, 20 Nov 2024 18:07:54 +0000 Subject: [PATCH 01/17] constrained atoms fix --- apax/md/simulate.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/apax/md/simulate.py b/apax/md/simulate.py index a29108a2..2cb7a64c 100644 --- a/apax/md/simulate.py +++ b/apax/md/simulate.py @@ -255,7 +255,7 @@ def run_sim( dynamics_checks, ) - constraints = [FixAtoms(indices=[6, 8])] + # constraints = [FixAtoms(indices=[6, 8])] apply_constraints = create_constraint_function( constraints, From 29a38268732f99973988aec6bd38c7b5d896d646 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Wed, 20 Nov 2024 18:09:00 +0000 Subject: [PATCH 02/17] callback fix --- apax/train/callbacks.py | 3 +++ apax/train/eval.py | 1 - 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/apax/train/callbacks.py b/apax/train/callbacks.py index 90825977..3acaea5e 100644 --- a/apax/train/callbacks.py +++ b/apax/train/callbacks.py @@ -45,6 +45,9 @@ def on_train_end(self, logs=None): for cb in self.callbacks: cb.on_train_end(logs) + def on_test_batch_end(self, batch, logs=None): + for cb in self.callbacks: + cb.on_test_batch_end(batch, logs) def format_str(k): return f"{k:.5f}" diff --git a/apax/train/eval.py b/apax/train/eval.py index e111a618..984551af 100644 --- a/apax/train/eval.py +++ b/apax/train/eval.py @@ -120,7 +120,6 @@ def predict(model, params, Metrics, loss_fn, test_ds, callbacks, is_ensemble=Fal 0, test_ds.n_data, desc="Structure", ncols=100, disable=False, leave=True ) for batch_idx in range(test_ds.n_data): - callbacks.on_test_batch_begin(batch_idx) batch = next(batch_test_ds) batch_start_time = time.time() From 2bcbdf8a93b16aa6dea45da2bd2d3d1092edc450 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Wed, 20 Nov 2024 18:09:36 +0000 Subject: [PATCH 03/17] current temp in nve kwargs fix --- apax/utils/jax_md_reduced/simulate.py | 1 + 1 file changed, 1 insertion(+) diff --git a/apax/utils/jax_md_reduced/simulate.py b/apax/utils/jax_md_reduced/simulate.py index 4f238887..f590cf81 100644 --- a/apax/utils/jax_md_reduced/simulate.py +++ b/apax/utils/jax_md_reduced/simulate.py @@ -290,6 +290,7 @@ def init_fn(key, R, mass=f32(1.0), **kwargs): @jit def step_fn(state, **kwargs): _dt = kwargs.pop("dt", dt) + _ = kwargs.pop("kT") return velocity_verlet(force_fn, shift_fn, _dt, state, **kwargs) return init_fn, step_fn From 59d8034a575f0b9b4e7d4c67899b2de9e9dcdae1 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Wed, 20 Nov 2024 18:10:23 +0000 Subject: [PATCH 04/17] tutorial overhaul --- examples/01_Model_Training.ipynb | 114 +++++---- examples/02_Molecular_Dynamics.ipynb | 124 +++++++--- examples/03_Transfer_Learning.ipynb | 144 ++++++------ examples/04_Batch_Data_Selection.ipynb | 313 +++++++++++++++---------- 4 files changed, 421 insertions(+), 274 deletions(-) diff --git a/examples/01_Model_Training.ipynb b/examples/01_Model_Training.ipynb index 08d983bf..bdcaa16d 100644 --- a/examples/01_Model_Training.ipynb +++ b/examples/01_Model_Training.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -27,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -107,11 +107,11 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "!apax template train" + "!apax template train --full" ] }, { @@ -126,23 +126,25 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1 validation error for Config\n", + "1 validation errors for config\n", "n_epochs\n", - " Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='', input_type=str]\n", - " For further information visit https://errors.pydantic.dev/2.6/v/int_parsing\n", + " Input should be a valid integer, unable to parse string as an integer\n", + " input_type: str\n", + " input: \n", + "\n", "\u001b[31mConfiguration Invalid!\u001b[0m\n" ] } ], "source": [ - "!apax validate train config.yaml" + "!apax validate train config_full.yaml" ] }, { @@ -185,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -193,14 +195,14 @@ "\n", "from apax.utils.helpers import mod_config\n", "\n", - "config_path = Path(\"config.yaml\")\n", + "config_path = Path(\"config_full.yaml\")\n", "\n", "config_updates = {\n", " \"n_epochs\": 100,\n", " \"data\": {\n", " \"n_train\": 990,\n", " \"n_valid\": 10,\n", - " \"valid_batch_size\": 1,\n", + " \"valid_batch_size\": 10,\n", " \"experiment\": \"ethanol_ccsd_t_cli\",\n", " \"directory\": \"project/models\",\n", " \"data_path\": str(train_file_path),\n", @@ -208,17 +210,17 @@ " \"energy_unit\": \"kcal/mol\",\n", " \"pos_unit\": \"Ang\",\n", " },\n", - " \"model\": {\"descriptor_dtype\": \"fp64\"},\n", "}\n", + "\n", "config_dict = mod_config(config_path, config_updates)\n", "\n", - "with open(\"config.yaml\", \"w\") as conf:\n", + "with open(\"config_full.yaml\", \"w\") as conf:\n", " yaml.dump(config_dict, conf, default_flow_style=False)" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -226,12 +228,12 @@ "output_type": "stream", "text": [ "\u001b[32mSuccess!\u001b[0m\n", - "config.yaml is a valid training config.\n" + "config_full.yaml is a valid training config.\n" ] } ], "source": [ - "!apax validate train config.yaml" + "!apax validate train config_full.yaml" ] }, { @@ -245,32 +247,36 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "INFO | 12:22:53 | Running on [cuda(id=0)]\n", - "INFO | 12:22:53 | Initializing Callbacks\n", - "INFO | 12:22:53 | Initializing Loss Function\n", - "INFO | 12:22:53 | Initializing Metrics\n", - "INFO | 12:22:53 | Running Input Pipeline\n", - "INFO | 12:22:53 | Read data file project/ethanol_ccsd_t-train_mod.xyz\n", - "INFO | 12:22:53 | Loading data from project/ethanol_ccsd_t-train_mod.xyz\n", - "INFO | 12:22:54 | Computing per element energy regression.\n", - "INFO | 12:22:54 | Initializing Model\n", - "INFO | 12:22:54 | initializing 1 models\n", - "INFO | 12:23:03 | Initializing Optimizer\n", - "INFO | 12:23:04 | Beginning Training\n", - "Epochs: 100%|█████████████████████████████████████| 100/100 [00:48<00:00, 2.07it/s, val_loss=0.105]\n", - "INFO | 12:23:52 | Finished training\n" + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1732123698.225144 453396 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732123698.228412 453396 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "INFO | 17:28:20 | Running on [CudaDevice(id=0)]\n", + "INFO | 17:28:20 | Initializing Callbacks\n", + "INFO | 17:28:20 | Initializing Loss Function\n", + "INFO | 17:28:20 | Initializing Metrics\n", + "INFO | 17:28:20 | Running Input Pipeline\n", + "INFO | 17:28:20 | Reading data file project/ethanol_ccsd_t-train_mod.xyz\n", + "INFO | 17:28:20 | Found n_train: 990, n_val: 10\n", + "INFO | 17:28:21 | Computing per element energy regression.\n", + "INFO | 17:28:21 | Building Standard model\n", + "INFO | 17:28:21 | initializing 1 model(s)\n", + "INFO | 17:28:28 | Initializing Optimizer\n", + "INFO | 17:28:28 | Beginning Training\n", + "Epochs: 0%| | 0/100 [00:00" ] @@ -366,6 +376,7 @@ " axes[id].set_ylabel(f\"{key}\")\n", " axes[id].set_xlabel(r\"epoch\")\n", "\n", + "plt.legend()\n", "plt.show()" ] }, @@ -381,14 +392,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Structure: 100%|███████████████████████████████| 999/999 [00:03<00:00, 280.74it/s, test_loss=0.0838]\n" + "Structure: 100%|████████████████████████████████| 999/999 [00:04<00:00, 234.76it/s, test_loss=0.018]\n" ] } ], @@ -400,29 +411,32 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 214.87it/s, test_loss=0.0837]\n" + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1732123824.572919 455329 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732123824.576016 455329 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "Structure: 100%|███████████████████████████████| 999/999 [00:03<00:00, 253.48it/s, test_loss=0.0218]\n" ] } ], "source": [ - "!apax eval config.yaml" + "!apax eval config_full.yaml" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkw0lEQVR4nOzdeVwU9f8H8NeyuLscAipyqCgk3uARyo1KkligEuKZYoZHpWniFeaVFpRKah6h5vVN8UKiRCVRoVBWU5ASRUWDNAW8EhAVZPfz+8PfTozsIovAssv7+XjMA/Yz75n5zM6wvHdmPp+PgDHGQAghhBBCiBJ6mq4AIYQQQghpuChZJIQQQgghKlGySAghhBBCVKJkkRBCCCGEqETJIiGEEEIIUYmSRUIIIYQQohIli4QQQgghRCVKFgkhhBBCiEqULBJCCCGEEJUoWSSEaIytrS0EAgEEAgFmzJhRZeyKFSu4WH19/Xqq4cvl5uZCIBDA1tZW01UhhJA6QckiIaRB2LVrF8rKylTO37p1a61uj5I8QgipHkoWCSEa17t3b9y/fx8//fST0vmpqam4fPky+vTpU881e7nWrVsjKysLx48f13RVCCGkTlCySAjRuPfffx+A6quHW7Zs4cU1JE2aNEHnzp3Rvn17TVeFEELqBCWLhBCNc3R0RO/evXH06FHcunWLN+/Ro0fYt28f2rRpg4EDB6pcR3l5Ob7//nv0798fzZs3h1gshp2dHT788EPcvHmTF/vee+/Bzs4OAPD3339zz0IqJoUlS5ZAIBBgyZIluHHjBkJCQmBjY4MmTZrgvffeA/Dy29mPHz/G6tWr4enpiWbNmkEsFqNdu3YYPHgwoqOjebGFhYVYsGABHB0dYWRkBLFYjFatWsHDwwOLFi3Cs2fPqvuWEkJIrWk4T4kTQhq1999/H+fOncP27dvx2WefceX79u3Do0ePMGPGDOjpKf9+W1xcjCFDhiA5ORnGxsZwcnJCy5YtceHCBURFRWH//v1ITExEr169AACenp549OgRDhw4ACMjIwQFBVVZt+zsbPTq1QsikQgeHh5gjMHc3Pyl+3Tz5k0MGjQIly5dgqGhITw8PNCiRQvcunULKSkpuHDhAsaMGQPgeVLp6emJzMxMtGzZEgMGDICRkRHy8/Nx+fJlpKamIjQ0FGZmZtV8RwkhpJYwQgjRkHbt2jEALCUlhT18+JAZGBgwe3t7XoyHhwcTCATs+vXrLCcnhwFgQqGQFzNmzBgGgPn7+7OCggLevFWrVjEArEOHDqy8vJwrV6yrXbt2Kuu3ePFiBoABYGPHjmVPnz6tFKNqPTKZjPXu3ZsBYAMHDmR37tzhzX/y5Ak7dOgQ93rHjh0MAHvrrbdYWVlZpXUlJyez0tJSlXUlhJC6QrehCSENgqmpKQIDA3Ht2jX8+uuvAIArV67g1KlT6NevH1577TWly2VlZWH37t1o1aoVoqOjYWFhwZv/ySef4O2330Z2djaOHDlSo7o1b94c69atg1gsrvYyBw8exLlz52BtbY0DBw6gZcuWvPkSiQRvv/0297qgoAAA8Oabb6JJkya8WD09PfTr1w8ikahG9SeEkFdBySIhpMF4saGL4mdVDVsOHz4MxhjeeustNG3aVGlM//79ATxvVV0TPj4+MDU1VWuZhIQEAMCYMWNgbGz80nhFS+/ly5fjf//7Hx48eKB+RQkhpA5QskgIaTC8vb1hZ2eHmJgY/Pvvv/jf//4HExOTKp8p/OuvvwA8bzH9YkMVxTR37lwAwN27d2tUr5r0xfj3338DADp37lyt+P79+2PevHm4c+cOxo8fD3Nzc3Tq1Anvv/8+fvrpJ8jlcrXrQAghtYEauBBCGgyBQID33nsPixcvxvjx45Gfn4/JkyfDwMBA5TKKJKpnz57o0aNHlet3cXGpUb2q2n5t+uqrr/DBBx/g4MGDOHnyJE6dOoVt27Zh27Zt6NOnD5KSkmBkZFQvdSGEEAVKFgkhDcp7772Hzz//HAcPHgTw8r4VbWxsAAAeHh5Yt25dndevutq2bQsAuHz5slrL2dra4uOPP8bHH38MADh79izGjh2Ls2fPYvny5fj8889rva6EEFIVug1NCGlQ2rZti6FDh6JFixZwdXV96dXAt956CwDw888/4+nTp9XejqKxSHl5ec0rW4VBgwYBAHbv3o2SkpIar6dPnz746KOPAAAZGRm1UTVCCFELJYuEkAYnNjYW9+7dg1QqfWlsr169MGzYMNy8eROBgYHIzc2tFFNSUoJdu3ZxLY4BoGXLlhCJRMjPz6+TxiRDhgxBr169cPv2bQwfPhz379/nzX/69CmvdfaPP/6I3377rdKzic+ePeMay7Rr167W60kIIS9Dt6EJIVpv27ZtePjwIY4cOYJOnTqhR48esLOzA2MMubm5+OOPP1BWVoasrCxYWloCeD5M35AhQxATE4OePXvC09MThoaGAIDvv//+leukp6eHH3/8Eb6+vjhy5Ajatm0LT09PrlPuP/74A2ZmZlxy++uvv2LNmjUwNzdHr169YGFhgeLiYpw+fRp37txB69atuYY6hBBSnyhZJIRovaZNm+Lo0aPYu3cvdu7cibS0NGRkZMDExATW1tZ49913MWTIkErjN2/cuBEtWrTAkSNHEBMTww2nVxvJIvD8SuC5c+ewYcMGxMTEQCqVoqysDFZWVujXrx83egvw/FlNAwMDnDx5EpcuXcKvv/4KU1NTtG3bFp988gkmT56MFi1a1Eq9CCFEHQLGGNN0JQghhBBCSMNEzywSQgghhBCVKFkkhBBCCCEqUbJICCGEEEJUomSREEIIIYSoRMkiIYQQQghRiZJFQgghhBCiEiWLhBBCCCFEJUoWCSGEEEKISpQsEkIIIYQQlShZJIQQQgghKlGySAghhBBCVKJkkRBCCCGNzvbt2yEQCJCbm6vpqjR4lCwSogXOnj0Ld3d3GBkZQSAQICMjQ9NVIoSHzlFCdJe+pitACKnas2fPMHz4cEgkEqxatQqGhoZo166dpqtFCIfOUUJ0GyWLhDRw169fx99//43Nmzdj4sSJmq4OIZXQOUqIbqPb0FqgpKRE01UgGnTnzh0AgJmZWa2sj84nUtvoHCW6YsOGDejWrRvEYjFatWqFqVOn4uHDh7yY7OxsDBs2DFZWVpBIJGjTpg1GjRqFwsJCLiYxMRGenp4wMzODsbExOnXqhPnz59fz3tQeSharcOvWLbz//vuwtLSEWCxGt27dsHXrVm5+cnIyBAIB9u3bhy+//BJt2rSBRCLBgAEDcO3atUrrO3PmDAYNGgRTU1MYGhqiX79+OHXqFC9myZIlEAgEuHTpEsaMGYNmzZrB09MTACCXy7FkyRK0atUKhoaG8Pb2xqVLl2Bra4v33nsPAPDXX39BIBBg1apVlbafmpoKgUCA3bt3V2v/c3NzIRAIsHLlSqxfvx6vvfYaDA0NMXDgQNy8eROMMSxbtgxt2rSBgYEBhg4digcPHvDW8dNPP8HPzw+tWrWCWCxG+/btsWzZMshkshq9P43Ne++9h379+gEAhg8fDoFAgP79+wMATpw4AS8vLxgZGcHMzAxDhw5FVlYWb/mqzicA2LlzJ5ydnWFoaIhmzZqhb9++OHr0KG8dR44c4bbTtGlT+Pn54eLFi7yY/Px8TJgwAW3atIFYLIa1tTWGDh2q1oPjirpevXoVY8eOhampKVq2bImFCxeCMYabN29i6NChMDExgZWVFSIjIyutY+3atejWrRu3P71790Z0dDQv5mV/10Q9dI5W/xwtKyvDokWL4OTkBFNTUxgZGcHLywtJSUmVtiWXy7F69Wp069YNEokElpaWmDJlCv79999q15eoZ8mSJZg6dSpatWqFyMhIDBs2DBs3bsTAgQPx7NkzAM+Poa+vL06fPo2PP/4Y69evx+TJk/HXX39xSeXFixfh7++P0tJSLF26FJGRkRgyZIh2/z9jRKn8/HzWpk0bZmNjw5YuXcq+++47NmTIEAaArVq1ijHGWFJSEgPAevXqxZycnNiqVavYkiVLmKGhIXN2duat7/jx40wkEjE3NzcWGRnJVq1axbp3785EIhE7c+YMF7d48WIGgHXt2pUNHTqUbdiwga1fv54xxtjcuXMZADZ48GC2bt06NmnSJNamTRtmbm7Oxo8fz63Dw8ODOTk5Vdqnjz76iDVt2pSVlJRU6z3IyclhAFjPnj1Z165d2TfffMMWLFjARCIRc3V1ZfPnz2fu7u7s22+/ZdOnT2cCgYBNmDCBt46AgAA2YsQItmLFCvbdd9+x4cOHMwBs9uzZNXp/GpvU1FQ2f/58BoBNnz6d/fDDD+zo0aMsMTGR6evrs44dO7Lly5ezzz//nJmbm7NmzZqxnJwcbvmqzqclS5YwAMzd3Z2tWLGCrVmzho0ZM4bNmzePW/5///sfEwgEbNCgQWzt2rXs66+/Zra2tszMzIy3HXd3d2ZqasoWLFjAvv/+exYeHs68vb3Zr7/+Wu19VdS1Z8+ebPTo0WzDhg3Mz8+PAWDffPMN69SpE/vwww/Zhg0bmIeHBwPAW/+mTZsYABYUFMQ2btzI1qxZw0JCQtj06dO5mOr8XRP10Dla/XP07t27zNramoWGhrLvvvuOLV++nHXq1Ik1adKEnT9/nretiRMnMn19fTZp0iQWFRXF5s2bx4yMjFifPn1YWVmZegeJKLVt2zYGgOXk5LA7d+4wkUjEBg4cyGQyGRezbt06BoBt3bqVMcbY+fPnGQC2f/9+letdtWoVA8Du3r1b5/tQXyhZVCEkJIRZW1uze/fu8cpHjRrFTE1N2ePHj7lksUuXLqy0tJSLWbNmDQPALly4wBhjTC6Xsw4dOjBfX18ml8u5uMePHzM7Ozv25ptvcmWKD6PRo0fztpufn8/09fVZQEAAr1zxYVoxWdy4cSMDwLKysriysrKySknlyyiSxZYtW7KHDx9y5WFhYQwA69GjB3v27BlXPnr0aCYSidjTp095+/iiKVOmMENDQy5OnfenMVKcZxU/nHr27MksLCzY/fv3ubI//viD6enpseDgYK5M1fmUnZ3N9PT02DvvvMP7YGSMcceguLiYmZmZsUmTJvHm5+fnM1NTU67833//ZQDYihUrXmk/FXWdPHkyV1ZeXs7atGnDBAIB++qrr7jyf//9lxkYGPDO56FDh7Ju3bpVuY3q/F0T9dE5Wr1ztLy8nPe/QhFnaWnJ3n//fa4sJSWFAWC7du3ixSYkJCgtJzVTMVmMjo5mANjhw4d5MaWlpczExIQNGzaMMcbYX3/9xQCwiRMnqrzwoljv999/X+nc1VZ0G1oJxhgOHDiAwYMHgzGGe/fucZOvry8KCwuRnp7OxU+YMAEikYh77eXlBeD5LWEAyMjIQHZ2NsaMGYP79+9z6yopKcGAAQPw22+/QS6X8+rwwQcf8F4fP34c5eXl+Oijj3jlH3/8caX6jxgxAhKJBLt27eLKfvnlF9y7dw9jx45V+/0YPnw4TE1NudcuLi4AgLFjx0JfX59XXlZWhlu3bnFlBgYG3O/FxcW4d+8evLy88PjxY1y+fBlAzd6fxiwvLw8ZGRl477330Lx5c668e/fuePPNN3H48OFKy7x4PsXFxUEul2PRokXQ0+N/DAgEAgDPn7l5+PAhRo8ezfsbEAqFcHFx4W6dGRgYQCQSITk5uVZukVVsICEUCtG7d28wxhASEsKVm5mZoVOnTtzfmKLsn3/+wdmzZ5WuV92/a1JzdI4qP0eFQiH3v0Iul+PBgwcoLy9H7969eefe/v37YWpqijfffJO3X05OTjA2NlZ625q8mr///hsA0KlTJ165SCTCa6+9xs23s7NDaGgovv/+e5ibm8PX1xfr16/nPa84cuRIeHh4YOLEibC0tMSoUaOwb98+rf4/Rq2hlbh79y4ePnyITZs2YdOmTUpj7ty5g2bNmgEA2rZty5unKFd8KGVnZwMAxo8fr3KbhYWF3HLA8xOyIsWJam9vzytv3rw5bzng+YfU4MGDER0djWXLlgEAdu3ahdatW+ONN95QWQdVXtw/ReJoY2OjtLzih/HFixexYMECnDhxAkVFRbx4xR9XTd6fxkzVhxoAdOnSBb/88gtKSkpgZGTElb94Pl2/fh16enro2rWryu0ojouqc8bExAQAIBaL8fXXX2PWrFmwtLSEq6sr/P39ERwcDCsrK/V2DsrPN4lEAnNz80rl9+/f517PmzcPx44dg7OzM+zt7TFw4ECMGTMGHh4eAKr/d01eHZ2j/5VXPEcBYMeOHYiMjMTly5e55+AA/v5nZ2ejsLAQFhYWSrdP56lmRUZG4r333sNPP/2Eo0ePYvr06YiIiMDp06e5Z/h/++03JCUl4dChQ0hISMDevXvxxhtv4OjRoxAKhZreBbVRsqiEIvsfO3asygSme/fuuHTpEgCoPPCMMd76VqxYgZ49eyqNNTY25r2ueEWuJoKDg7F//36kpqbC0dERP//8Mz766KNK39CrQ9X+vWy/Hz58iH79+sHExARLly5F+/btIZFIkJ6ejnnz5nHvS03eH6KempxPiuPyww8/KP2HWvGq8ieffILBgwcjLi4Ov/zyCxYuXIiIiAicOHECvXr1Umu7ys6rl51rwPMk5MqVK4iPj0dCQgIOHDiADRs2YNGiRfj888+r/XdNNKMxnKM7d+7Ee++9h4CAAMyZMwcWFhYQCoWIiIjA9evXeftlYWHBuztUUcuWLdWqL3k5Rb+gV65cwWuvvcaVl5WVIScnBz4+Prx4R0dHODo6YsGCBUhNTYWHhweioqLwxRdfAAD09PQwYMAADBgwAN988w3Cw8Px2WefISkpqdK6tAEli0q0bNkSTZs2hUwmq/KgKpLFl2nfvj2A599ya3qSKE7ka9eu8b6B3r9/X+ltlUGDBqFly5bYtWsXXFxc8PjxY4wbN65G266p5ORk3L9/H7Gxsejbty9XnpOTw4urjfenMan4ofaiy5cvw9zcnHfFRpn27dtDLpfj0qVLKhN0xXGxsLCo1nFp3749Zs2ahVmzZiE7Oxs9e/ZEZGQkdu7c+dJla4uRkRFGjhyJkSNHoqysDIGBgfjyyy8RFhZW7b9r8uroHFUuJiYGr732GmJjY7lb6QCwePHiSvU8duwYPDw8XvnCAakeHx8fiEQifPvttxg0aBB3fLZs2YLCwkL4+fkBAIqKimBoaMj7IuLo6Ag9PT2UlpYCAB48eMB7/AIAdw4rYrQNPbOohFAoxLBhw3DgwAFkZmZWmn/37l211ufk5IT27dtj5cqVePToUY3WN2DAAOjr6+O7777jla9bt05pvL6+PkaPHo19+/Zh+/btcHR0rPerJopv2hW/WZeVlWHDhg28uNp4fxoTa2tr9OzZEzt27OD1/5WZmYmjR4/i7bfffuk6AgICoKenh6VLl1Z6jkZxvHx9fWFiYoLw8HDe7TIFxXF5/Pgxnj59ypvXvn17NG3atF4/GF+83ScSidC1a1cwxvDs2bNa/7smqtE5qpyyz8QzZ85AKpXy4kaMGAGZTMY9RlRReXl5pX7/yKtr2bIlwsLCkJCQgEGDBmH9+vWYPn06Pv74Y/Tp04d73v/EiROwtbXFzJkz8d1332Ht2rUYMGAA9/kCAEuXLsXrr7+OhQsX4vvvv0d4eDgmT56MNm3a8LqF0iZ0ZVGFr776CklJSXBxccGkSZPQtWtXPHjwAOnp6Th27Fil/gSroqenh++//x5vvfUWunXrhgkTJqB169a4desWkpKSYGJigoMHD1a5DktLS8yYMYPrr2nQoEH4448/cOTIEZibm/O+pSoEBwfj22+/RVJSEr7++mu134NX5e7ujmbNmmH8+PGYPn06BAIBfvjhB94HJVA7709js2LFCrz11ltwc3NDSEgInjx5grVr18LU1BRLlix56fL29vb47LPPsGzZMnh5eSEwMBBisRhnz55Fq1atEBERARMTE3z33XcYN24cXn/9dYwaNQotW7bEjRs3cOjQIXh4eGDdunW4evUqBgwYgBEjRqBr167Q19fHjz/+iIKCAowaNaru34z/N3DgQFhZWcHDwwOWlpbIysrCunXr4Ofnh6ZNmwKo3b9rUjU6Ryvz9/dHbGws3nnnHfj5+SEnJwdRUVHo2rUr74tyv379MGXKFERERCAjIwMDBw5EkyZNkJ2djf3792PNmjUICgqqt3o3FkuWLEHLli2xbt06zJw5E82bN8fkyZMRHh6OJk2aAAB69OgBX19fHDx4ELdu3YKhoSF69OiBI0eOwNXVFQAwZMgQ5ObmYuvWrbh37x7Mzc3Rr18/fP7557zGolql/htga4+CggI2depUZmNjw5o0acKsrKzYgAED2KZNmxhjyruLYOy/Lme2bdvGKz9//jwLDAxkLVq0YGKxmLVr146NGDGCHT9+nItRdM2grH+m8vJytnDhQmZlZcUMDAzYG2+8wbKysliLFi3YBx98oHQfunXrxvT09Ng///yj9v4r9uPF7iZU7beiu4CzZ89yZadOnWKurq7MwMCAtWrVis2dO5f98ssvDABLSkriLV+d96cxUvV+Hzt2jHl4eDADAwNmYmLCBg8ezC5dusSLqep8YoyxrVu3sl69ejGxWMyaNWvG+vXrxxITEytt39fXl5mamjKJRMLat2/P3nvvPXbu3DnGGGP37t1jU6dOZZ07d2ZGRkbM1NSUubi4sH379qm1n6rqOn78eGZkZFQpvl+/fryucjZu3Mj69u3LnT/t27dnc+bMYYWFhbzlXvZ3TdRH52j1zlG5XM7Cw8NZu3btmFgsZr169WLx8fFs/PjxrF27dpWW37RpE3NycmIGBgasadOmzNHRkc2dO5fdvn1brXoT8qoEjL1wmYdolYcPH6JZs2b44osv8Nlnn1Wa36tXLzRv3hzHjx/XQO0IIYQQou3omUUt8uTJk0plq1evBgBueK2Kzp07h4yMDAQHB9dxzQghhBCiq+jKohbZvn07tm/fjrfffhvGxsY4efIkdu/ejYEDB+KXX37h4jIzM5GWlobIyEjcu3cPf/31FyQSCTdfJpO99GF+Y2Nj6q6G1IpHjx4pbbhUUcuWLbWy7zGiG+gcJaRq1MBFi3Tv3h36+vpYvnw5ioqKuEYvin6dFGJiYrB06VJ06tQJu3fv5iWKAHDz5s1KHeC+aPHixdV6CJ2Ql1m5ciU+//zzKmNycnJga2tbPxUi5AV0jhJSNbqy2Ag9ffoUJ0+erDLmtdde43VMSkhN/fXXX7whz5Tx9PSs9KWGkPpC5yghVaNkkRBCCCGEqES3oSuQy+W4ffs2mjZtqrTfQqIZjDEUFxejVatWNRquUFvQ+dcwNZbzrzroHG2YGvo5SudNw1Xdc4eSxQpu374NGxsbTVeDqHDz5k20adNG09WoM3T+NWy6fv5VB52jDVtDPUfpvGn4XnbuULJYgWKUh5s3b8LExETDtSEKRUVFsLGx4Y6PrqLzr2FqLOdfddA52jA19HOUzpuGq7rnDiWLFSguj5uYmNAJ3QDp+u0LOv8aNl0//6qDztGGraGeo3TeNHwvO3ca3sMNhBBCCCGkwaBkkRBCCCGEqETJIiGEEEIIUYmSRUIIIYQQohIli4QQQgghRCVKFgkhhBBCiEqULBJCCCGEEJUoWSSEEEIIISpRskgIIYQQQlSiZJEQQgghhKhEw/3pIJlMhpSUFOTl5cHa2hpeXl4QCoWarhYhhDQI9BlJaqIxnzd0ZVHHxMbGwt7eHt7e3hgzZgy8vb1hb2+P2NhYTVeNEEI0jj4jSU009vOGkkUdEhsbi6CgIDg6OkIqlaK4uBhSqRSOjo4ICgpqNCc1IYQoQ5+RpCbovAEEjDGm6Uo0FEVFRTA1NUVhYSFMTEw0XR21yGQy2Nvbw9HREXFxcdDT++97gFwuR0BAADIzM5Gdna11l821+bioo7Hsp7ah4/IfbX4v6DNScxp6/aqiy+cNUP1jQ88s6oiUlBTk5uZi9+7dvJMZAPT09BAWFgZ3d3ekpKSgf//+mqkk0VmPHz/G5cuXuddPnjxBbm4ubG1tYWBgwJV37twZhoaGmqgiaeToM5LUBJ03z1GyqCPy8vIAAA4ODkrnK8oVcYTUpsuXL8PJyemlcWlpaXj99dfroUaE8NFn5HO//fYbVqxYgbS0NOTl5eHHH39EQEBAlcskJycjNDQUFy9ehI2NDRYsWID33nuvXuqraXTePEfPLOoIa2trAEBmZqbS+YpyRRwhtalz585IS0vjpp07dwIAdu7cySvv3LmzhmtKGiv6jHyupKQEPXr0wPr166sVn5OTAz8/P3h7eyMjIwOffPIJJk6ciF9++aWOa9ow0HnzHD2zWAE9V9EwafNxUYcu7Wd6ejqcnJx04kqiLh2XV6XN7wV9RlYmEAheemVx3rx5OHToEC9ZGjVqFB4+fIiEhASly5SWlqK0tJRXPxsbGzpvGqDqnjt0ZVFHCIVCREZGIj4+HgEBAbwWWwEBAYiPj8fKlSu18mQmhJBXRZ+RNSOVSuHj48Mr8/X1hVQqVblMREQETE1NucnGxqauq1ln6Lx5jpJFHRIYGIiYmBhcuHAB7u7uMDExgbu7OzIzMxETE4PAwEBNV5EQQjSGPiPVl5+fD0tLS16ZpaUlioqK8OTJE6XLhIWFobCwkJtu3rxZH1WtM3TeUAMXnRMYGIihQ4c22l7mCSGkKvQZWffEYjHEYrGmq1GrGvt5Q8miDhIKhTrdhJ8QQl4FfUZWn5WVFQoKCnhlBQUFMDEx4XWL1Rg05vOGbkMTnbR+/XrY2tpCIpHAxcUFv//+e5Xx+/fvR+fOnSGRSODo6IjDhw/z5jPGsGjRIlhbW8PAwAA+Pj7Izs7mxaSnp+PNN9+EmZkZWrRogcmTJ+PRo0e1vm+EEFJf3NzccPz4cV5ZYmIi3NzcNFQjogmULBKds3fvXoSGhmLx4sVIT09Hjx494Ovrizt37iiNT01NxejRoxESEoLz588jICCAa+GmsHz5cnz77beIiorCmTNnYGRkBF9fXzx9+hQAcPv2bfj4+MDe3h5nzpxBQkICLl682Gj6IiOEaIdHjx4hIyMDGRkZAJ53jZORkYEbN24AeP68YXBwMBf/wQcf4K+//sLcuXNx+fJlbNiwAfv27cPMmTM1UX2iKYxwCgsLGQBWWFio6aqQCtQ9Ls7Ozmzq1Knca5lMxlq1asUiIiKUxo8YMYL5+fnxylxcXNiUKVMYY4zJ5XJmZWXFVqxYwc1/+PAhE4vFbPfu3YwxxjZu3MgsLCyYTCbjYv78808GgGVnZyvd7tOnT1lhYSE33bx5U2fOv7S0NAaApaWlaboqr4w+F/5D70XDpM5xSUpKYgAqTePHj2eMMTZ+/HjWr1+/Ssv07NmTiUQi9tprr7Ft27bVWf1I/arusaFnFolOKSsrQ1paGsLCwrgyPT09+Pj4qOzqQSqVIjQ0lFfm6+uLuLg4AM+/eefn5/O6jzA1NYWLiwukUilGjRqF0tJSiEQiXh9ciud5Tp48CXt7+0rbjYiIwOeff17jfSWEEHX1798frIrulbdv3650mfPnz9dhrUhDR7ehiU65d+8eZDKZ0q4e8vPzlS6jqmsIRbziZ1Uxb7zxBvLz87FixQqUlZXh33//xaeffgpA9TBQuta9BCGEEN1EySIhtaBbt27YsWMHIiMjYWhoCCsrK9jZ2cHS0rLS4PMKYrEYJiYmvIkQQghpaChZ1EEymQzJycnYvXs3kpOTIZPJNF2lemNubg6hUKi0qwcrKyuly6jqGkIRr/j5snWOGTMG+fn5uHXrFu7fv48lS5bg7t27eO211155vwghhBBNoWRRx8TGxsLe3h7e3t4YM2YMvL29YW9vj9jYWE1XrV6IRCI4OTnxunqQy+U4fvy4yq4eXtY1hJ2dHaysrHgxRUVFOHPmjNJ1WlpawtjYGHv37oVEIsGbb75ZG7tGCCGEaESNksXa7MPu2bNnmDdvHhwdHWFkZIRWrVohODgYt2/f5q3D1tYWAoGAN3311Ve8mD///BNeXl6QSCSwsbHB8uXLa7J7Wis2NhZBQUFwdHTkjV/p6OiIoKCgRpMwhoaGYvPmzdixYweysrLw4YcfoqSkBBMmTAAABAcH8xrAzJgxAwkJCYiMjMTly5exZMkSnDt3DtOmTQMACAQCfPLJJ/jiiy/w888/48KFCwgODkarVq0QEBDArWfdunVIT0/H1atXsX79ekybNg0REREwMzOrz90nhBBCape6zaz37NnDRCIR27p1K7t48SKbNGkSMzMzYwUFBUrjT506xYRCIVu+fDm7dOkSW7BgAWvSpAm7cOECY+x5FyQ+Pj5s79697PLly0wqlTJnZ2fm5OTEW0+7du3Y0qVLWV5eHjc9evSI1/zb0tKSvfvuuywzM5Pt3r2bGRgYsI0bN1Z737S5eX95eTmztbVlgwcP5nXfwtjzrmMGDx7M7OzsWHl5uYZqWHM1OS5r165lbdu2ZSKRiDk7O7PTp09z8/r168d1E6Gwb98+1rFjRyYSiVi3bt3YoUOHePPlcjlbuHAhs7S0ZGKxmA0YMIBduXKFFzNu3DjWvHlzJhKJWPfu3dn//ve/Ot/Phoq6ztFN9F40TA39uDT0+jVm1T02aieLtd2HnTK///47A8D+/vtvrqxdu3Zs1apVKpfZsGEDa9asGSstLeXK5s2bxzp16vSyXeJo8wmt6DtLKpUqnZ+amsoAsKSkpPqtWC3Q5uOiDl3aT0oWdRO9Fw1TQz8uDb1+jVl1j41at6EVfdhV7G+uOn3YVYwHnvdhpyoeAAoLCyEQCCrdvvvqq6/QokUL9OrVCytWrEB5eTlvO3379oVIJOJt58qVK/j333+Vbqe0tBRFRUW8SVspumdxcHBQOl9RrqobF0IIIYQQZdRKFuuiD7sXPX36FPPmzcPo0aN5XYlMnz4de/bsQVJSEqZMmYLw8HDMnTv3pdtRzFMmIiICpqam3GRjY6Nizxs+a2trAOANUVeRolwRRwghhBBSHQ2qNfSzZ88wYsQIMMbw3Xff8eaFhoaif//+6N69Oz744ANERkZi7dq1KC0trfH2dKlTZC8vL9ja2iI8PBxyuZw3Ty6XIyIiAnZ2dvDy8tJQDQkhhBCijdRKFuuiDzsFRaL4999/IzEx8aUdFLu4uKC8vBy5ublVbkcxTxld6hRZKBQiMjIS8fHxCAgI4LWGDggIQHx8PFauXAmhUKjpqhJCCCFEi6iVLNZFH3bAf4lidnY2jh07hhYtWry0LhkZGdDT04OFhQW3nd9++w3Pnj3jbadTp05o1qyZOruptQIDAxETE4MLFy7A3d0dJiYmcHd3R2ZmJmJiYhAYGKjpKhLSKNRm92IAKnUbpphWrFjBxTx48ADvvvsuTExMYGZmhpCQEDx69Ii3nsbevRghpIbUbTmzZ88eJhaL2fbt29mlS5fY5MmTmZmZGcvPz2eMPe8+5NNPP+XiT506xfT19dnKlStZVlYWW7x4Ma/rnLKyMjZkyBDWpk0blpGRwesaR9GyOTU1la1atYplZGSw69evs507d7KWLVuy4OBgbjsPHz5klpaWbNy4cSwzM5Pt2bOHGRoaNpqucyoqLy9nSUlJLDo6miUlJWlldzkV6cpxeRld2s/G3Bq6trsXY4zxPhfz8vLY1q1bmUAgYNevX+diBg0axHr06MFOnz7NUlJSmL29PRs9ejRvPxpz92K6rKEfl4Zev8aszrrOYax2+7DLyclhAJROim5e0tLSmIuLCzM1NWUSiYR16dKFhYeHs6dPn/K288cffzBPT08mFotZ69at2VdffaXWftEJ3TA1luOiS/vZmJPF+uhebOjQoeyNN97gXl+6dIkBYGfPnuXKjhw5wgQCAbt16xZjrGbdiz19+pQVFhZy082bN3XmHNUlDf2zo6HXrzGr02RRV9EJ3TA1luOiS/vZWJPF0tJSJhQK2Y8//sgrDw4OZkOGDFG6jI2NTaU+ZBctWsS6d++uND4/P5/p6+uzXbt2cWVbtmxhZmZmvLhnz54xoVDIYmNjGWPP7/oMHTqUF3PixAkGgD148EDpthYvXqz0i7wunKO6pKF/djT0+jVmddLPItEOMpkMycnJ2L17N5KTkyGTyTRdJUIahfroXmzHjh1o2rQp7xnk/Px87vltBX19fTRv3pxbT026F9OlHiMIITWnr+kKkNoVGxuLWbNmca3EgefjakdGRlIDF0J0wNatW/Huu+9CIpHU+bbEYjHEYnGdb4cQ0rDRlUUdEhsbi6CgIKVdCAUFBSE2NlZDNSOkcajL7sUAICUlBVeuXMHEiRMrrePOnTu8svLycjx48IBbT026FyOEEICSRZ0hk8nw4YcfgjGmtFNuxhg+/PBDuiVNSB2qq+7FFLZs2QInJyf06NGj0joePnyItLQ0ruzEiROQy+VwcXHhYhp792KEkJqhZFFHJCcnc1cWXhzVRvH6zp07SE5Oru+qEdKohIaGYvPmzdixYweysrLw4YcfoqSkBBMmTAAABAcHIywsjIufMWMGEhISEBkZicuXL2PJkiU4d+4cpk2bxltvUVER9u/fX+mqIgB06dIFgwYNwqRJk/D777/j1KlTmDZtGkaNGoVWrVoBAMaMGQORSISQkBBcvHgRe/fuxZo1axAaGlqH7wYhRBfQM4s64sSJE9zvenp6vKuLFV+fOHECAwYMqPf6EdJYjBw5Enfv3sWiRYuQn5+Pnj17IiEhgWtMcuPGDejp/fc93d3dHdHR0ViwYAHmz5+PDh06IC4uDg4ODrz17tmzB4wxjB49Wul2d+3ahWnTpmHAgAHQ09PDsGHD8O2333LzTU1NcfToUUydOhVOTk4wNzfHokWLMHny5Dp4FwghuoSSRR2Rk5PD/a7sNrSyOEJI3Zg2bVqlK4MKyq7uDx8+HMOHD69ynZMnT64ysWvevDmio6OrXEf37t2RkpJSZQwhhLyIbkPriBcfbu/Tpw8+//xz9OnTp8o4QgghhJCq0JVFHVFxDFiJRIKzZ8/i7Nmz3OunT59WiiOEEEIIeRm6sqgjrl+/zv3+YgOXsrIypXGEEEIIIS9DVxZ1EGOM9/rFZxgJIYQQoh6ZTIaUlBTk5eXB2toaXl5eEAqFmq5WvaArizrixWG8XjWOEEIIIc/FxsbC3t4e3t7eGDNmDLy9vWFvb99oBrugZFFHzJgxo1bjCCGEEPLf6GiOjo6QSqUoLi6GVCqFo6NjoxkdjZJFHVFSUlKrcYQQQkhjJ5PJMGvWLPj7+yMuLg6urq4wNjaGq6sr4uLi4O/vj9mzZ+v86GiULOqI6g7XRcN6EUIIIdWTkpKC3NxczJ8/n9eZPvB8wIuwsDDk5OTofP+llCzqiNOnT3O/m5ubo3379rC2tkb79u1hbm6uNI4QQgghquXl5QFApRGVFBTlijhdRa2hdcQff/wBABCLxTAyMuJ1kWNra4vi4mKUlpZycYTUhuzsbBQXF1cqz8rK4v1UpmnTpujQoUOd1Y0QQl6VtbU1ACAzMxOurq6V5mdmZvLidBUlizpC8Q+7tLQU3bp1Q+/evfHvv/+iWbNmePLkCXJzc3lxhLyq7OxsdOzYscqYsWPHVjn/6tWrlDASQhosLy8v2NraIjw8HHFxcbxb0XK5HBEREbCzs4OXl5cGa1n3KFnUEQ4ODsjMzIRQKMThw4crzRcKhZDJZCovpROiLsUXj507d6JLly68eYovKLa2tjAwMKi0bFZWFsaOHUtfXgghDZpQKERkZCSCgoIQEBCAsLAw7v9tREQE4uPjERMTo/P9LVKyqCMmTJiAPXv2qGyRpSifMGFCfVaLNAJdunTB66+/Xqncw8NDA7UhhJDaFRgYiJiYGMyaNQvu7u5cuZ2dHWJiYhAYGKjB2tUPShZ1RHUvgev6pXJCCCGktgUGBmLo0KGNdgQXShZ1xPr166sdN3v27DquDSGEEKJbhEIh+vfvr+lqaAR1naMj4uLiuN/FYjFvnkQiURpHCCGEEPIylCzqmNatW8PCwoJX1rJlS7Rq1UpDNSKEEEKINqNkUUcoWjnfunULN2/e5M27efMmbt++zYsjhBBCCKkOShZ1hJubW63GEUIIIYQAlCzqDMWVw9qKI4QQQggBKFnUGTExMbUaRwghhBACULKoM+jKIiGEEELqAiWLOsLS0rJW4wghhBBCAEoWdUZ1u8ahLnQIIYQQog5KFnXE9evXazWOEEIIIQSgZFFn6OlV71BWN44QQgghBKBkUWcwxmo1jhBCCCEEoGRRZ9y5c6dW4wghhBBCAEoWdcaTJ09qNY4QQgghBAD0NV0BUjuePXtWq3GEVIeVsQAGD68Ct9X73mnw8CqsjAV1VCtCCCG1iZJFHSGTyWo1jpDqmOIkQpffpgC/qbdcl/9flhBCSMNHySIhpMY2ppVh5KLt6NK5s1rLZV2+jI2RYzCkjupFCCG1TSaTISUlBXl5ebC2toaXlxeEQqGmq1UvavTM4vr162FrawuJRAIXFxf8/vvvVcbv378fnTt3hkQigaOjIw4fPszNe/bsGebNmwdHR0cYGRmhVatWCA4O5g1Ll5ubi5CQENjZ2cHAwADt27fH4sWLUVZWxosRCASVptOnT9dkF7UOdZ1DNCH/EcMTs45Aq55qTU/MOiL/EbXMJ4Roh9jYWNjb28Pb2xtjxoyBt7c37O3tERsbq+mq1Qu1M4e9e/ciNDQUixcvRnp6Onr06AFfX1+VrWxTU1MxevRohISE4Pz58wgICEBAQAAyMzMBAI8fP0Z6ejoWLlyI9PR0xMbG4sqVKxgy5L9rDpcvX4ZcLsfGjRtx8eJFrFq1ClFRUZg/f36l7R07dgx5eXnc5OTkpO4uaiWRqHq39KobRwghhJDniWJQUBAcHR0hlUpRXFwMqVQKR0dHBAUFNY6EkanJ2dmZTZ06lXstk8lYq1atWEREhNL4ESNGMD8/P16Zi4sLmzJlispt/P777wwA+/vvv1XGLF++nNnZ2XGvc3JyGAB2/vz5au5JZYWFhQwAKywsrPE6NEUgEDAAL50EAoGmq6o2bT4u6tC2/UxLS2MAWFpaWr0uW9+07bjUJXovGqaGflwaev2qUl5ezmxtbdngwYOZTCbjzZPJZGzw4MHMzs6OlZeXa6iGr6a6x0atK4tlZWVIS0uDj48PV6anpwcfHx9IpVKly0ilUl48APj6+qqMB4DCwkIIBAKYmZlVGdO8efNK5UOGDIGFhQU8PT3x888/V7k/paWlKCoq4k3aSiCoXsvS6sYRQgghjV1KSgpyc3Mxf/78So9x6enpISwsDDk5OUhJSdFQDeuHWsnivXv3IJPJYGlpySu3tLREfn6+0mXy8/PVin/69CnmzZuH0aNHw8TERGnMtWvXsHbtWkyZMoUrMzY2RmRkJPbv349Dhw7B09MTAQEBVSaMERERMDU15SYbGxuVsYQQQghpXPLy8gAADg4OSucryhVxuqpBtYZ+9uwZRowYAcYYvvvuO6Uxt27dwqBBgzB8+HBMmjSJKzc3N0doaCj3uk+fPrh9+zZWrFjBe/6xorCwMN4yRUVFlDASQgghBABgbW0NAMjMzISrq2ul+Yr2F4o4XaXWlUVzc3MIhUIUFBTwygsKCmBlZaV0GSsrq2rFKxLFv//+G4mJiUqvKt6+fRve3t5wd3fHpk2bXlpfFxcXXLt2TeV8sVgMExMT3qSt5HJ5rcYRQgghjZ2XlxdsbW0RHh5e6f+nXC5HREQE7Ozs4OXlpaEa1g+1kkWRSAQnJyccP36cK5PL5Th+/Djc3NyULuPm5saLB4DExERevCJRzM7OxrFjx9CiRYtK67l16xb69+8PJycnbNu2rVpdwGRkZOh8tq9AzywSQgghtUsoFCIyMhLx8fEICAjgtYYOCAhAfHw8Vq5cqfP9LarddU5oaCg2b96MHTt2ICsrCx9++CFKSkowYcIEAEBwcDDCwsK4+BkzZiAhIQGRkZG4fPkylixZgnPnzmHatGkAnieKQUFBOHfuHHbt2gWZTIb8/Hzk5+dz/SgqEsW2bdti5cqVuHv3LhejsGPHDuzevRuXL1/G5cuXER4ejq1bt+Ljjz9+pTdIW1DXOYQQQqpD3b6SV69ejU6dOsHAwAA2NjaYOXMmnj59Wk+11bzAwEDExMTgwoULcHd3h4mJCdzd3ZGZmYmYmBgEBgZquop1ryZNrdeuXcvatm3LRCIRc3Z2ZqdPn+bm9evXj40fP54Xv2/fPtaxY0cmEolYt27d2KFDh7h5ii5vlE1JSUmMMca2bdumMkZh+/btrEuXLszQ0JCZmJgwZ2dntn//frX2S5ub96t6f6p6z7SFNh8XdWjbflLXOaqtW7eOtWvXjonFYubs7MzOnDlTZfy+fftYp06dmFgsZg4ODrzPSIVLly6xwYMHMxMTE2ZoaMh69+7NdS9W1efovn37uHUom7979+5q75e2naONhTrHZc+ePUwkErGtW7eyixcvskmTJjEzMzNWUFCgNH7Xrl1MLBazXbt2sZycHPbLL78wa2trNnPmzDqpX0NWXl7OkpKSWHR0NEtKStLa7nIqqu6x0b7MoQ5p8wlNyaL207b9pGRROXX/GZ86dYoJhUK2fPlydunSJbZgwQLWpEkTduHCBS7m2rVrrHnz5mzOnDksPT2dXbt2jf3000/cOsvLy1leXh5v+vzzz5mxsTErLi7m1gOAbdu2jRf35MmTOnsvSP1Q57io21fy1KlT2RtvvMErCw0NZR4eHiq38fTpU1ZYWMhNN2/epPOmgaqTfhYJIYRU7ZtvvsGkSZMwYcIEdO3aFVFRUTA0NMTWrVuVxq9ZswaDBg3CnDlz0KVLFyxbtgyvv/461q1bx8V89tlnePvtt7F8+XL06tUL7du35/qUBZ4/V2VlZcWbfvzxR4wYMQLGxsa87ZmZmfHiJBJJ3b0ZpEGpSV/J7u7uSEtL425V//XXXzh8+DDefvttlduhbul0DyWLOqJZs2a812KxGMbGxhCLxVXG6araHL8cABhjWLRoEaytrWFgYAAfHx9kZ2fzYq5evYqhQ4fC3NwcJiYm8PT0RFJSUq3vW0Px+PFjAEB6enql6dSpU9i1axdOnTqldH5WVpaGa1836mLgArlcjkOHDqFjx47w9fWFhYUFXFxcEBcXp7IeaWlpyMjIQEhISKV5U6dOhbm5OZydnbF161YwpnqMbl0auIDUrK/kMWPGYOnSpfD09ESTJk3Qvn179O/fX+lwuwphYWEoLCzkpps3b9bqfhANqJfrnFpCm2+xvPPOO9W6Bf3OO+9ouqpqawi3Ab/66itmamrK4uLi2B9//MGGDBnC7OzseLfwOnTowN5++232xx9/sKtXr7KPPvqIGRoasry8vDrZT03bvHmzWo8/KJuuXr2q6d14KXWOy61btxgAlpqayiufM2cOc3Z2VrpMkyZNWHR0NK9s/fr1zMLCgjHGWF5eHgPADA0N2TfffMPOnz/PIiIimEAgYMnJyUrX+eGHH7IuXbpUKl+6dCk7efIkS09PZ1999RUTi8VszZo1Kvdn8eLFSo+btpyjjUV1z9GanJ9JSUnM0tKSbd68mf35558sNjaW2djYsKVLl9Z6/Uj9o2cWa0CbT+gBAwZU65/zgAEDNF1Vtal7XGp7/HK5XM6srKzYihUruPkPHz5kYrGYaxxw9+5dBoD99ttvXExRUREDwBITE+tkPzXt7t27bPPmzSwlJYWlpaXxpp07dzIAbOfOnZXmKSZtSBQZ03yyqFjn6NGjeTGDBw9mo0aNqrS+x48fM1NTU7Zy5cqX1nfhwoWsTZs2KufTs2faobrnaGlpKRMKhezHH3/klQcHB7MhQ4YoXcbT05PNnj2bV/bDDz8wAwODSmMlv2r9SP2r7rFpUCO4kJp78bmkV43TVorbgBW7b6rObcCKI/kAz28DKm7z5eTkID8/n3er0NTUFC4uLpBKpRg1ahRatGiBTp064X//+x9ef/11iMVibNy4ERYWFnByclK63dLSUpSWlnKvte0Wn7m5OSZOnFhlTJcuXfD666/XU400ry4GLjA3N4e+vj66du3Ki+nSpQtOnjxZaX0xMTF4/PgxgoODX1pfFxcXLFu2DKWlpZUeWQGeP86irJxop4p9JQcEBAD4r69kRXd2L3r8+HGlfo0VfQqyKh5hILqFnlnUERV7j9fX538HqPha13uZr4vxyxU/q4oRCAQ4duwYzp8/j6ZNm0IikeCbb75BQkKCyudE6SFw3VMXAxeIRCL06dMHV65c4cVcvXoV7dq1q7S+LVu2YMiQIWjZsuVL65uRkYFmzZpRQtiIqNtX8uDBg/Hdd99hz549yMnJQWJiIhYuXIjBgwfrfEfU5D90ZVFHhISEYO7cuUqH81OM2qKnp6f0gXfy6hhjmDp1KiwsLJCSkgIDAwN8//33GDx4MM6ePat0JCEam1w3hYaGYvz48ejduzecnZ2xevXqSv+MW7dujYiICADPBy7o168fIiMj4efnhz179uDcuXO8IU3nzJmDkSNHom/fvvD29kZCQgIOHjyI5ORk3ravXbuG3377rVIDLQA4ePAgCgoK4OrqColEgsTERISHh2P27Nl192aQBmfkyJG4e/cuFi1ahPz8fPTs2RMJCQncl+EbN27wriQuWLAAAoEACxYswK1bt9CyZUsMHjwYX375paZ2gWgAJYs64q+//uISxfLyct68Z8+eAXh+heOvv/7S6duCdXEbUPGzoKCAl/QVFBSgZ8+eAIATJ04gPj4e//77LzfG+IYNG5CYmIgdO3bg008/rbRdusWnm9T9Z+zu7o7o6GgsWLAA8+fPR4cOHRAXFwcHBwcu5p133kFUVBQiIiIwffp0dOrUCQcOHICnpydv21u3bkWbNm0wcODASvVq0qQJ1q9fj5kzZ4IxBnt7e66bn8bg8ePHuHz5Mvf6yZMnyM3Nha2tLQwMDLjyzp07w9DQUBNVrDfTpk1Tedv5xS8g+vr6WLx4MRYvXlwPNSMNVn08QKkttPkh3JKSEpaWlsaCg4OZUCjkNWoRCoUsODiYpaWlsZKSEk1XVW01aeAybdo07rVMJmOtW7eusoGLv78/r8zNza1SA5eKDQYKCwt5DVx+/vlnpqenx+sAmTHGOnbsyL788stq1Vubz78XaVOn2y+jS8flVWnze6E4J182aeM529CPS0OvX2NGDVwaGUNDQ7z++uvYsWMHNm/ejLCwMHzzzTcIDQ1FREREoxoTurZvAwoEAnzyySf44osv0KFDB9jZ2WHhwoVo1aoV95C4m5sbmjVrhvHjx2PRokUwMDDA5s2bkZOTAz8/P428D4SQ/3Tu3BlpaWnc66ysLIwdOxY7d+5Ely5deHGEED5KFnWQSCTCu+++i2+++Qbvvvtuo0oUgbq5DTh37lyUlJRg8uTJePjwITw9PZGQkMCNfmFubo6EhAR89tlneOONN/Ds2TN069YNP/30E3r06FG/bwAhpBLFF+oXNbYW+4TUBCWLRCep80wOAAwfPhzDhw9XuT6BQIClS5di6dKlKmN69+6NX375Re26EkIIIQ0ZdZ1DCCGEEEJUomSREEIIIYSoRMkiIYQQQghRiZJFQgghhBCiEiWLhBBCCCFEJUoWCSGEEEKISpQsEkIIIYQQlaifRS2XnZ2N4uLiSuVZWVm8n8o0bdoUHTp0qLO6EUIIIUT7UbKoxbKzs9GxY8cqY8aOHVvl/KtXr1LCSAghhBCVKFnUYoorii+ObQoAT548QW5uLmxtbWFgYFBpWcW4qMquShJCCCGEKFCyqANUjW3q4eGhgdoQQgghRJdQAxdCCCGEEKISJYuEEEIIIUQlug2t5ayMBTB4eBW4rV7eb/DwKqyMBXVUK0IIIYToCkoWtdwUJxG6/DYF+E295br8/7KEEEIIIVWhZFHLbUwrw8hF29Glc2e1lsu6fBkbI8dgSB3VixBCCCG6gZJFLfb48WPkP2I49dcjPDGT8+a9tOucPBnyH7H6qiohhBBCtBQli1rs8uXLAIBJkybVeB1NmzatreoQQgghRAdRsqjFAgICAACdO3eGoaEhb56i021lHXYr0HB/hBBCSPXIZDKkpKQgLy8P1tbW8PLyglAo1HS16gUli1rM3NwcEydOrDJGVYfdhBBCCKme2NhYzJo1C7m5uVyZra0tIiMjERgYqLmK1RPqZ5EQQgghRIXY2FgEBQXB0dERUqkUxcXFkEqlcHR0RFBQEGJjYzVdxTpHySIhhBBCiBIymQyzZs2Cv78/4uLi4OrqCmNjY7i6uiIuLg7+/v6YPXs2ZDKZpqtap+g2NCGEEJ2UnZ2N4uJipfOysrJ4P5Wh57pJSkoKcnNzsXv3bujp8a+v6enpISwsDO7u7khJSUH//v01U8l6QMkiIYQQnZOdnY2OHTu+NG7s2LFVzr969SoljI1YXl4eAMDBwUHpfEW5Ik5XUbJICCFE5yiuKKrqEeKlfdH+f48Sqq5MksbB2toaAJCZmQlXV9dK8zMzM3lxuoqSRUIIITqrqh4hPDw86rk2RNt4eXnB1tYW4eHhiIuL492KlsvliIiIgJ2dHby8vDRYy7pHDVx00KNHjxAaGgoACA0NxaNHjzRcI0IIIUT7CIVCREZGIj4+HgEBAbzW0AEBAYiPj8fKlSt1vr/FGiWL69evh62tLSQSCVxcXPD7779XGb9//3507twZEokEjo6OOHz4MDfv2bNnmDdvHhwdHWFkZIRWrVohODgYt2/f5q3jwYMHePfdd2FiYgIzMzOEhIRUSoL+/PNPeHl5QSKRwMbGBsuXL6/J7mk1Z2dnNG3aFL/++isA4Ndff0XTpk3h7Oys4ZoRQggh2icwMBAxMTG4cOEC3N3dYWJiAnd3d2RmZiImJob6WVRm7969CA0NxeLFi5Geno4ePXrA19cXd+7cURqfmpqK0aNHIyQkBOfPn0dAQAACAgK4+/yPHz9Geno6Fi5ciPT0dMTGxuLKlSsYMmQIbz3vvvsuLl68iMTERMTHx+O3337D5MmTuflFRUUYOHAg2rVrh7S0NKxYsQJLlizBpk2b1N1FreXs7IyzZ88qnXf27FlKGAkhhJAaCAwMxLVr15CUlITo6GgkJSUhOzu7USSKAACmJmdnZzZ16lTutUwmY61atWIRERFK40eMGMH8/Px4ZS4uLmzKlCkqt/H7778zAOzvv/9mjDF26dIlBoCdPXuWizly5AgTCATs1q1bjDHGNmzYwJo1a8ZKS0u5mHnz5rFOnTpVe98KCwsZAFZYWFjtZRqK4uJiBuClU3FxsaarqjZtPi7q0KX9TEtLYwBYWlqapqvyynTpuLwqbXovXvUc1KZzuKEfl4Zev8asusdGrSuLZWVlSEtLg4+PD1emp6cHHx8fSKVSpctIpVJePAD4+vqqjAeAwsJCCAQCmJmZceswMzND7969uRgfHx/o6enhzJkzXEzfvn0hEol427ly5Qr+/fdfpdspLS1FUVERb9JWQ4cO5b3u3r0776eqOEIIIYSQqqiVLN67dw8ymQyWlpa8cktLS+Tn5ytdJj8/X634p0+fYt68eRg9ejRMTEy4dVhYWPDi9PX10bx5c249qrajmKdMREQETE1NucnGxkZpnDY4ceIE7/Wff/7J+6kqjhBCCCGkKg2q65xnz55hxIgRYIzhu+++q/PthYWFca2GgefPPWpzwggARkZG+O233yr1Iebl5YXHjx9runqEEEII0TJqJYvm5uYQCoUoKCjglRcUFMDKykrpMlZWVtWKVySKf//9N06cOMFdVVSs48UGNOXl5Xjw4AG3HlXbUcxTRiwWQywWq9pdrVRSUoKuXbtCIpFwfYg9ffqUEkVCCCGE1Ihat6FFIhGcnJxw/Phxrkwul+P48eNwc3NTuoybmxsvHgASExN58YpEMTs7G8eOHUOLFi0qrePhw4dIS0vjyk6cOAG5XA4XFxcu5rfffsOzZ8942+nUqROaNWumzm5qJScnJ+53AwMDjB07Funp6Rg7dixvdIKKcYQQQgghL6N21zmhoaHYvHkzduzYgaysLHz44YcoKSnBhAkTAADBwcEICwvj4mfMmIGEhARERkbi8uXLWLJkCc6dO4dp06YBeJ4oBgUF4dy5c9i1axdkMhny8/ORn5+PsrIyAM974B80aBAmTZqE33//HadOncK0adMwatQotGrVCgAwZswYiEQihISE4OLFi9i7dy/WrFnDu82sy15MyHft2gUnJyfs2rWryjhCCCGEkKqo/cziyJEjcffuXSxatAj5+fno2bMnEhISuMYkN27c4A2H4+7ujujoaCxYsADz589Hhw4dEBcXxw2+fevWLfz8888AgJ49e/K2lZSUhP79+wN4nvxMmzYNAwYMgJ6eHoYNG4Zvv/2WizU1NcXRo0cxdepUODk5wdzcHIsWLeL1xajLTE1N0b59e1y/fl1lTPv27WFqalqPtSKEEEKItqtRA5dp06ZxVwZflJycXKls+PDhGD58uNJ4W1tbMMZeus3mzZsjOjq6ypju3bsjJSXlpevSVdeuXYO9vb3ShLF9+/a4du2aBmpFCCGEEG1GY0PrmGvXruHhw4fw8PCAjY0NPDw88PDhQ0oUSb2RyWQ4d+4cAODcuXOQyWQarlH9q80hURWysrIwZMgQmJqawsjICH369MGNGze4+f3794dAIOBNH3zwAW8dN27cgJ+fHwwNDWFhYYE5c+agvLy8dnaaEB0nk8mQnJyM3bt3Izk5uVF9tlGyqINMTU1x8uRJ3LhxAydPnqRbz6TOKYbtXLlyJWxsbDBlyhQAwJQpU2BjY4OVK1ciPT29UbTKr+0hUQHg+vXr8PT0ROfOnZGcnIw///wTCxcuhEQi4a1r0qRJyMvL46bly5dz82QyGfz8/FBWVobU1FTs2LED27dvx6JFi+rmjSBEh8TGxsLe3h7e3t4YM2YMvL29YW9vj9jYWE1XrX7Uy3gyWoKGJGqYGstx0eb9VAyN9rJJG4ZOe5G6x6UuhkQdOXIkGzt2bJXb7devH5sxY4bK+YcPH2Z6enosPz+fK/vuu++YiYkJb5jUqmjTOUrD/TUcDb1+L3PgwAEmEAjY4MGDmVQqZcXFxUwqlbLBgwczgUDADhw4oOkq1lidDPdHCCHKdOjQAcbGxgCAZs2aYe7cuVi3bh3mzp3LdV1lbGyMDh06aLKada4uhkSVy+U4dOgQOnbsCF9fX1hYWMDFxQVxcXGV1rVr1y6Ym5vDwcEBYWFhvCu5UqkUjo6OvJGufH19UVRUhIsXLyqtmy4NiUpITchkMsyaNQv+/v6Ii4uDq6srjI2N4erqiri4OPj7+2P27Nk6f0uakkVCyCs7ffo0Hj16hGbNmuHOnTv4+uuvMXXqVHz99de4c+cOmjVrhkePHuH06dOarmqdqoshUe/cuYNHjx7hq6++wqBBg3D06FG88847CAwMxK+//sotM2bMGOzcuRNJSUkICwvDDz/8gLFjx750O4p5yujSkKiE1ERKSgpyc3Mxf/58Xk8vwPMvgmFhYcjJydH5xrUNarg/Qoh2+uGHHwAAS5cuhUAgQHJyMvLy8mBtbQ0vLy8sWbIEM2bMwA8//IA333xTw7XVLnK5HAAwdOhQzJw5E8DzbsZSU1MRFRWFfv36AQCvmzBHR0dYW1tjwIABuH79Otq3b1+jbWv7kKhWxgIYPLwK3Fb/uojBw6uwMhbUQa2INsnLywMArru/FynKFXG6ipJFQsgrKy4uBgDcvn0b9vb2yM3N5ebZ2tpi1KhRvDhdVRdDopqbm0NfXx9du3blxXTp0gUnT55UWRfF6FbXrl1D+/btYWVlValVtq4PiTrFSYQuv00BflN/2S7/vzxp3KytrQEAmZmZcHV1rTRf0RBNEaer6DY0IeSVeXl5AXh+29LBwQFSqRTFxcWQSqVwcHDAV199xYvTVXUxJKpIJEKfPn1w5coVXszVq1fRrl07lXXJyMgA8N8/MTc3N1y4cIHXKjsxMREmJiaVElFdsTGtDFl9NwKTf1V7yuq7ERvTyjS9C0TDvLy8YGtri/DwcO4qv4JcLkdERATs7Ox0/rONWkNXoO0ttnRVYzku2ryfjx8/5lo8+/n5sdTUVFZUVMRSU1OZn58fN+/x48earqra1D0ue/bsYWKxmG3fvp1dunSJTZ48mZmZmXGtkMeNG8c+/fRTLv7UqVNMX1+frVy5kmVlZbHFixezJk2asAsXLnAxsbGxrEmTJmzTpk0sOzubrV27lgmFQpaSksIYY+zatWts6dKl7Ny5cywnJ4f99NNP7LXXXmN9+/bl1lFeXs4cHBzYwIEDWUZGBktISGAtW7ZkYWFhdfZeaBK1hm44Gnr9XqZia+iKn22NqTU0JYsVaPsJrasay3HR5v1MSkriEkI9PT1edzlCoZD7PSkpSdNVVVtNjsvatWtZ27ZtmUgkYs7Ozuz06dPcvH79+rHx48fz4vft28c6duzIRCIR69atGzt06FCldW7ZsoXZ29sziUTCevToweLi4rh5N27cYH379mXNmzdnYrGY2dvbszlz5lSqc25uLnvrrbeYgYEBMzc3Z7NmzWLPnj2r9n5p0zlKyWLD0dDrVx0HDhxgtra2vM82Ozs7rU4UGav+saFnFgkhr0zxcPeMGTOwbt26SvNnzJiBNWvW6PxD4Aq1OSSqwvvvv4/3339f6TwbGxtey2hV2rVrp3R0GEJI1QIDAzF06FCkpKTwGu8JhUJNV61eULJICHlliufiRo0aheXLl2PDhg1cK9yPPvoIaWlpWLNmjc4/BE4I0V1CoRD9+/fXdDU0gpJFQsgrq/gQeFxcHD755BNuXqN6CJwQQnQQJYuEkFcmFAoRGRmJoKAgDB06FIMGDYKBgQGePHmChIQEHDp0CDExMY3mlg0hhOgSShYJIbUiMDAQs2fPxqpVqxAfH8+V6+vrY/bs2QgMDNRg7QghhNQUJYuEkFoRGxuLlStXws/PD2+99RZ3ZfHIkSNYuXIlXF1dKWEkhBAtRMkiIeSVyWQyzJo1C/7+/oiLi+ONofrBBx8gICAAs2fPxtChQ+lWNCGEaBlKFgkhrywlJQW5ubnYvXs3GGOVxoYOCwuDu7s7UlJSGm1rQlK/Hj9+DABIT09XOv/JkyfIzc2Fra0tDAwMKs3Pysqq0/oRok0oWSSEvDJF/4nXr1/H6NGjK40N/cUXX/DiCKlrly9fBgBMmjTpldbTtGnT2qgOIVqNkkVCyCtT9J84btw4+Pv7Y/fu3XBwcEBmZibCw8Mxbtw4XhwhdS0gIAAA0LlzZxgaGlaan5WVhbFjx2Lnzp3o0qWL0nU0bdoUHTp0qMtqasT69euxYsUK5Ofno0ePHli7di2cnZ1Vxj98+BCfffYZYmNj8eDBA7Rr1w6rV6/G22+/XY+11jyZTEadchNCSE25u7tDX18fLVq0QGxsLPT1n3+0uLq6IjY2Fm3atMH9+/fh7u6u4ZqSxsLc3BwTJ058aVyXLl3w+uuv10ONGoa9e/ciNDQUUVFRcHFxwerVq+Hr64srV67AwsKiUnxZWRnefPNNWFhYICYmBq1bt8bff/8NMzOz+q+8BsXGxmLWrFmV7ppERkY2ioZ7ei8PIUT7rF+/Hra2tpBIJHBxccHvv/9eZfz+/fvRuXNnSCQSODo6VhoSjTGGRYsWwdraGgYGBvDx8UF2djY3Pzk5GQKBQOl09uzZOtnHhiQ1NRXl5eUoKChAYGAgpFIpiouLIZVKERgYiIKCApSXlyM1NVXTVSWkUfvmm28wadIkTJgwAV27dkVUVBQMDQ2xdetWpfFbt27FgwcPEBcXBw8PD9ja2qJfv37o0aNHPddcc2JjYxEUFARHR0feZ5ujoyOCgoIQGxur6SrWOUoWic5RfHNevHgx0tPT0aNHD/j6+uLOnTtK41NTUzF69GiEhITg/PnzCAgIQEBAADIzM7mY5cuX49tvv0VUVBTOnDkDIyMj+Pr64unTpwCeX1nLy8vjTRMnToSdnR169+5dL/utSYpnEXfu3IkLFy7A3d0dJiYmcHd3R2ZmJnbu3MmLI4TUv7KyMqSlpcHHx4cr09PTg4+PD6RSqdJlfv75Z7i5uWHq1KmwtLSEg4MDwsPDIZPJVG6ntLQURUVFvElbvdjTg6urK4yNjeHq6oq4uDj4+/tj9uzZVb4fOoERTmFhIQPACgsLNV0VUoG6x8XZ2ZlNnTqVey2TyVirVq1YRESE0vgRI0YwPz8/XpmLiwubMmUKY4wxuVzOrKys2IoVK7j5Dx8+ZGKxmO3evVvpOsvKyljLli3Z0qVLq1VnxrT7/EtKSmIAmFQqZeXl5SwpKYlFR0ezpKQkVl5ezlJTUxkAlpSUpOmqqk2bj0tt06X3Ii0tjQFgaWlpmq7KK6vucbl16xYDwFJTU3nlc+bMYc7OzkqX6dSpExOLxez9999n586dY3v27GHNmzdnS5YsUbmdxYsXMwCVJm08b3T5s42x6p87dGWR6JSafHOWSqW8eADw9fXl4nNycpCfn8+LMTU1hYuLS5Xfxu/fv48JEyaorKsuffuuODa0QCBA//79MXr0aPTv3x8CgYDGhiZES8nlclhYWGDTpk1wcnLCyJEj8dlnnyEqKkrlMmFhYSgsLOSmmzdv1mONa1fFnh7s7e3h7e2NMWPGwNvbG/b29vjrr794cbqKkkWiU+7duweZTAZLS0teuaWlJfLz85Uuk5+fX2W84qc669yyZQt8fX3Rpk0blXWNiIiAqakpN9nY2FS9cw2YYmzo+Ph4BAQE8J7rCQgIQHx8PFauXNloWg4S0hCZm5tDKBSioKCAV15QUAArKyuly1hbW6Njx468v90uXbogPz8fZWVlSpcRi8UwMTHhTdpK0YPD2LFjlT6zOHbsWF6crqJkkZBa9s8//+CXX35BSEhIlXG69O0beD42dExMjNJnFmNiYhpFi0FCGjKRSAQnJyccP36cK5PL5Th+/Djc3NyULuPh4YFr165BLpdzZVevXoW1tTVEIlGd11nTFD09WFpaIjY2lvfMYmxsLCwtLaGvr6/zPT1Qskh0Sk2+OVtZWVUZr/hZ3XVu27YNLVq0wJAhQ6qsqy59+1YIDAzEtWvXkJSUhOjoaCQlJSE7O5sSRUIaiNDQUGzevBk7duxAVlYWPvzwQ5SUlHCPzAQHByMsLIyL//DDD/HgwQPMmDEDV69exaFDhxAeHo6pU6dqahfqlaKnhzt37ijt6eHOnTuNoqcHShaJTqnJN2c3NzdePAAkJiZy8XZ2drCysuLFFBUV4cyZM5XWyRjDtm3bEBwcjCZNmtTWbmkVoVDIe2aRbj0T0nCMHDkSK1euxKJFi9CzZ09kZGQgISGBe8zmxo0bvOfvbGxs8Msvv+Ds2bPo3r07pk+fjhkzZuDTTz/V1C7UK8V78cMPPyi9a/LDDz/w4nQVdcpNdE5oaCjGjx+P3r17w9nZGatXr670zbl169aIiIgAAMyYMQP9+vVDZGQk/Pz8sGfPHpw7dw6bNm0CAAgEAnzyySf44osv0KFDB9jZ2WHhwoVo1aoVN0qEwokTJ5CTk1OtzoAJIUQTpk2bhmnTpimdl5ycXKnMzc0Np0+fruNaNUyKZxHbt2+Pa9euVRrBRdGHr64/s0jJItE5I0eOxN27d7Fo0SLk5+ejZ8+elb456+n9d1Hd3d0d0dHRWLBgAebPn48OHTogLi4ODg4OXMzcuXNRUlKCyZMn4+HDh/D09ERCQgIkEglv21u2bIG7uzs6d+5cPztLCCGkzlTs6SEuLg79+/fn5snl8kbT04OAMcY0XYmGoqioCKampigsLNSJ58d0RWM5Lo1lP7UNHZf/6NJ7kZ6eDicnJ6SlpWn9cH8N/bg09Pq9jGIEF39/f4SFhXHj3kdERCA+Pl6rG/BV99jQlUVCCCGEEBUUPT3MmjWL1+rZzs5OqxNFdVCySAghhBBShcDAQAwdOrTSM4uNpQEfJYuEEEIIIS+h6OmhMaKucwghhBBCiEqULBJCCCGEEJUoWSSEEEIIISrRM4uEkFolk8ka7UPghBCii2p0ZXH9+vWwtbWFRCKBi4sL14O5Kvv370fnzp0hkUjg6OiIw4cP8+bHxsZi4MCBaNGiBQQCATIyMnjzc3NzIRAIlE779+/n4pTN37NnT012kRBSA7GxsbC3t4e3tzfGjBkDb29v2NvbIzY2VtNVI4QQUkNqJ4t79+5FaGgoFi9ejPT0dPTo0QO+vr64c+eO0vjU1FSMHj0aISEhOH/+PAICAhAQEIDMzEwupqSkBJ6envj666+VrsPGxgZ5eXm86fPPP4exsTHeeustXuy2bdt4cS8Ox0YIqRuKjmsdHR0hlUpRXFwMqVQKR0dHBAUFUcJICCFaSu1k8ZtvvsGkSZMwYcIEdO3aFVFRUTA0NMTWrVuVxq9ZswaDBg3CnDlz0KVLFyxbtgyvv/461q1bx8WMGzcOixYtgo+Pj9J1CIVCWFlZ8aYff/wRI0aMgLGxMS/WzMyMF/ficGyEkNonk8kwa9Ys+Pv748CBA3j69CkOHjyIp0+f4sCBA/D398fs2bMhk8k0XVVCCCFqUitZLCsrQ1paGi+p09PTg4+PD6RSqdJlpFJppSTQ19dXZXx1pKWlISMjAyEhIZXmTZ06Febm5nB2dsbWrVtR1WiGpaWlKCoq4k2EEPWlpKQgNzcX7u7u6NixI+82dMeOHeHm5oacnBykpKRouqqEEFIjZWVlWL16NT7++GOsXr0aZWVlmq5SvVErWbx37x5kMhksLS155ZaWlsjPz1e6TH5+vlrx1bFlyxZ06dKFN+wOACxduhT79u1DYmIihg0bho8++ghr165VuZ6IiAiYmppyk42NTY3rREhjlpeXBwCYP3++0tvQn332GS+OEEK0ydy5c2FkZISZM2di3bp1mDlzJoyMjDB37lxNV61eaF3XOU+ePEF0dLTSq4oLFy6Eh4cHevXqhXnz5mHu3LlYsWKFynWFhYWhsLCQm27evFmXVSdEZ1lYWAAAPDw8EBcXB1dXVxgbG8PV1RVxcXHw8PDgxRFCiLZQ5BItWrTA5s2bkZeXh82bN6NFixZYsWJFo0gY1UoWzc3NIRQKUVBQwCsvKCiAlZWV0mWsrKzUin+ZmJgYPH78GMHBwS+NdXFxwT///IPS0lKl88ViMUxMTHgTIaT2VfU4CCGENFRlZWVYtWoVLC0t8c8//2DixImwsrLCxIkT8c8//8DS0hKrVq3S+VvSaiWLIpEITk5OOH78OFcml8tx/PhxuLm5KV3Gzc2NFw8AiYmJKuNfZsuWLRgyZAhatmz50tiMjAw0a9YMYrG4RtsihFSPojeEkydPIiAggHcbOiAgAKdOneLFEUKINtiwYQPKy8vxxRdfQF+f3zW1vr4+li5divLycmzYsEFDNawfanfKHRoaivHjx6N3795wdnbG6tWrUVJSggkTJgAAgoOD0bp1a0RERAAAZsyYgX79+iEyMhJ+fn7Ys2cPzp07h02bNnHrfPDgAW7cuIHbt28DAK5cuQIAXItmhWvXruG3336r1E8jABw8eBAFBQVwdXWFRCJBYmIiwsPDMXv2bHV3kRCiJmtrawDPnwPeuHEj73liOzs7hIeHY/78+VwcIYRog+vXrwMA/P39lc5XlCvidJXayeLIkSNx9+5dLFq0CPn5+ejZsycSEhK4Riw3btyAnt5/Fyzd3d0RHR2NBQsWYP78+ejQoQPi4uLg4ODAxfz8889csgkAo0aNAgAsXrwYS5Ys4cq3bt2KNm3aYODAgZXq1aRJE6xfvx4zZ84EYwz29vZcNz+EkLrl5eUFW1tbpKam4urVqzh16hQ3gouHhweGDRsGOzs7eHl5abqqhBBSbe3btwcAxMfHY+LEiZXmx8fH8+J0lYDRw0ScoqIimJqaorCwkJ5fbEAay3HR9v1UdMrt7++PsLAwODg4IDMzExEREYiPj0dMTAwCAwM1XU21aftxqU269F6kp6fDyckJaWlpeP311zVdnVfS0I9LQ69fVcrKymBkZIQWLVrg77//hlQq5b4Iu7m5oV27drh//z5KSkogEok0XV21VffY0NjQhJBaERgYiJiYGMyaNavSbWhtTRQJIY2bSCTCzJkzsWLFChgaGkIul3Pz9PT0IJfLMWfOHK1MFNVBySIhpNYEBgZi6NChSElJ4b59e3l5QSgUarpqhBBSI66urgAq9+qgeK2Yr8u0rp9FQkjDJhQK0b9/f4wePRr9+/dvlIni+vXrYWtrC4lEAhcXF/z+++9Vxu/fvx+dO3eGRCKBo6Oj0kZ8WVlZGDJkCExNTWFkZIQ+ffrgxo0bAJ43Evz444/RqVMnGBgYoG3btpg+fToKCwt56xAIBJWmPXv21N6OE6JjFEOZDh48GI8fP8aqVaswbdo0rFq1Co8fP8bgwYMbxVCmdGWREEJq0d69exEaGoqoqCi4uLhg9erV8PX1xZUrV5R2Sp6amorRo0cjIiIC/v7+iI6ORkBAANLT07mGgNevX4enpydCQkLw+eefw8TEBBcvXoREIgEA3L59G7dv38bKlSvRtWtX/P333/jggw9w+/ZtxMTE8La3bds2DBo0iHttZmZWd28GIVpOMZTp7t27IZFI8Mknn/Dmh4WFwd3dHSkpKejfv79G6lgfKFkkhJBapOiFQdHDQ1RUFA4dOoStW7fi008/rRS/Zs0aDBo0CHPmzAEALFu2DImJiVi3bh2ioqIAAJ999hnefvttLF++nFuuYutLBwcHHDhwgDfvyy+/xNixY1FeXs7rH87MzKzGgyIQ0tgohiit2INLRYpyXR/KlG5DE0JILSkrK0NaWhp8fHy4Mj09Pfj4+EAqlSpdRiqV8uIBwNfXl4uXy+U4dOgQOnbsCF9fX1hYWMDFxQVxcXFV1kXRuvHFjoSnTp0Kc3NzODs7Y+vWrVWOrlNaWoqioiLeREhjougbNjMzEzKZDMnJydi9ezeSk5Mhk8mQmZnJi9NVdGVRB8lkMmpgQIgG3Lt3DzKZjOt3VsHS0hKXL19Wukx+fr7S+Pz8fADPR7159OgRvvrqK3zxxRf4+uuvkZCQgMDAQCQlJaFfv35K67Fs2TJMnjyZV7506VK88cYbMDQ0xNGjR/HRRx/h0aNHmD59utK6RURE4PPPP6/2/hOiaxR9yH788ce4d+8ecnNzuXm2trYwNzdvFH3IUrKoY2JjYzFr1qxKJ3RkZCR1XUKIFlJ01TF06FDMnDkTANCzZ0+kpqYiKiqqUrJYVFQEPz8/dO3alTeoAQAsXLiQ+71Xr14oKSnBihUrVCaLYWFhCA0N5a3bxsamNnaLEK0gFAoxfPhwrFixgjfgCPB8EJLc3FzMmTNH5y/I0G1oHaLoFNnR0ZE3Nq+joyOCgoIQGxur6SoSotPMzc0hFApRUFDAKy8oKFD5nKCVlVWV8ebm5tDX10fXrl15MV26dOFaQysUFxdj0KBBaNq0KX788Uc0adKkyvq6uLjgn3/+QWlpqdL5YrEYJiYmvImQxkQmk2HHjh0AUKkvRbFYDADYsWOHzreGpmRRRyia9/v7+yMuLg6urq4wNjaGq6sr4uLi4O/v3yia9xOiSSKRCE5OTjh+/DhXJpfLcfz4cbi5uSldxs3NjRcPAImJiVy8SCRCnz59cOXKFV7M1atX0a5dO+51UVERBg4cCJFIhJ9//plrKV2VjIwMNGvWjPunRwjhS05Oxp07d+Dp6Yl///2X13XOgwcP4OHhgTt37iA5OVnTVa1TdBtaR1Rs3v/ipXI9Pb1G07yfEE0LDQ3F+PHj0bt3bzg7O2P16tUoKSnhWkcHBwejdevWiIiIAADMmDED/fr1Q2RkJPz8/LBnzx6cO3cOmzZt4tY5Z84cjBw5En379oW3tzcSEhJw8OBB7h+UIlF8/Pgxdu7cyWuM0rJlSwiFQhw8eBAFBQVwdXWFRCJBYmIiwsPDMXv27Pp9gzTk8ePHvOdGs7KyeD8VOnfuDENDw3qtG2m4FH9jPj4+6NKlC+8RrzVr1mD8+PE4deoUkpOTMWDAAM1Usj4wwiksLGQAWGFhoaarorbo6GgGgBUXFyudX1RUxACw6Ojoeq7Zq9Pm46KOxrKf2qYmx2Xt2rWsbdu2TCQSMWdnZ3b69GluXr9+/dj48eN58fv27WMdO3ZkIpGIdevWjR06dKjSOrds2cLs7e2ZRCJhPXr0YHFxcdy8pKQkBkDplJOTwxhj7MiRI6xnz57M2NiYGRkZsR49erCoqCgmk8nq9L1oKNLS0lS+RxWntLQ0TVdVbQ39uDT0+lVlwYIF3LkxePBgJpVKWXFxMZNKpWzw4MHcvAULFmi6qjVS3WMjYKyKfhMaGW0e7Dw5ORne3t6QSqVKhx6SSqVwd3dHUlKS1l1Z1Objoo7Gsp/aho7Lf7T5vXjxyuKTJ0+Qm5sLW1tbGBgYcOXaeGWxoR+Xhl6/qhw9ehS+vr5o3rw5CgoKeF1RlZeXw9LSEg8ePMAvv/yCgQMHarCmNVPdY0O3oXWEonl/eHg44uLieLei5XI5IiIiGkXzfkIIUcbQ0BCvv/46r8zDw0NDtSHaQtHK+cGDB3jnnXcwf/58ODg4IDMzE+Hh4Xjw4AEvTldRsqgjhEIhIiMjERQUhICAAISFhXEndEREBOLj4xETE6PzJzQhhBBSW+7cucP9fvz4ccTHx3OvK16Brhini6g1tA4JDAxETEwMLly4AHd3d5iYmMDd3R2ZmZmIiYmhfhYJIYQQNShGZnn33XdRVlbGm1daWooxY8bw4nQVXVnUMYGBgRg6dCiN4EIIIYS8Ii8vL1hYWGDXrl14++230aFDBzx58gQGBgbIzs5GdHQ0LCwsdP4RL0oWdZBQKNS6RiyEEFJfaEhUog5FO+CkpCQcPnyYK6/YMErX0W1oQgghjUZsbCzs7e3h7e2NMWPGwNvbG/b29jTCFVEqJSUFd+/eVTpPIBAAeP68YkpKSn1Wq95RskgIIaRRoCFRibpu3boFAHjrrbdQWFiIpKQkREdHIykpCQ8fPsRbb73Fi9NVdBuaEEKIzntxSFRF92KKIVEDAgIwe/ZsDB06lG5JE47iqmJgYCCaNGlS6RGvgIAAHDlyROXVR11BVxYJIYToPMWQqPPnz1c5JGpOTo7O304k6mnZsiWA51el5XI5b55cLkdcXBwvTldRskgIIUTn5eXlAQAcHByUzleUK+IIAYDWrVsDAI4cOYKAgADe4wuKq4oV43QV3YYmhBCi8xT94GVmZiodEjUzM5MXRwjw3+ho5ubm+OOPP+Du7s7Na9euHXr37o379+/rfNc5dGWREEKIzqs4JKqy24k0JCpRRjE62rlz5yo9l3jnzh2cO3cOK1eu1PnnXClZJIQQovMU//Tj4+OV3k6Mj49vFP/0Sc0ousl5sUxZuS6iZJEQQkijQEOiEnVVbEX/4MEDrFq1CtOmTcOqVatw//59+Pv7Y/bs2ZDJZJquap2iZxYJIYQ0GjQkKlGHohX9lClT0KVLF+Tm5nLz1qxZg8mTJ+PgwYNISUnR6ZHT6MoiIYSQRkUxJOro0aPRv39/ShSJSorW8fPnz1famftnn33Gi9NVdGWREEIIIUQJCwsLAICHh4fSztz79euHkydPcnG6ipJFQgghjUpZWRk2bNiA69evo3379vjoo48gEok0XS2ihRhjmq5CvaBkkRBCSKMxd+5crFq1CuXl5VzZnDlzMHPmTCxfvlyDNSMN0Z07dwAAJ0+exNChQzFo0CAYGBjgyZMnSEhIwKlTp3hxuoqSRUIIIY3C3LlzsWLFClhaWuKLL76Av78/4uPjsWDBAqxYsQIAKGEkPIpO2t99913s3bsX8fHx3Dx9fX2MGTMG0dHROt+Zu4A1lmuo1VBUVARTU1MUFhbCxMRE09Uh/6+xHJfGsp/aho7Lf7T5vSgrK4ORkRFatGiBf/75B/r6/10rKS8vR5s2bXD//n2UlJRo3S3phn5cGnr9qiKTydCqVSvcuXMHfn5+ePvtt7kri4cPH8ahQ4dgYWGB27dva2VDqeoeG2oNTQghROdt2LAB5eXl+OKLL3iJIvD8CtHSpUtRXl6ODRs2aKiGpKFSXFMTCATo1asXgoKC0KtXr0bTITdAySIhhJBG4Pr16wAAf39/pfMV5Yo4QoDn/SzevXsXERERyMzM5HXmfvHiRYSHh+POnTtISUnRdFXrFCWLhBBCdF779u0BgPfMWUWKckUcIcB//SdOmzYNV65c4Y3gcvnyZUybNo0Xp6soWSSEEKLzPvroI+jr62PBggW8ltDA82cWFy1aBH19fXz00UcaqiFpiBQNV9atW4dOnTph5syZWLduHWbOnIlOnTph3bp1vDhdRckiIYQQnScSiTBz5kwUFBSgTZs22LRpE27fvo1NmzahTZs2KCgowMyZM7WucQupW15eXrCwsEBYWBgcHBx4I7g4ODhg/vz5sLCwgJeXl6arWqdqlCyuX78etra2kEgkcHFxwe+//15l/P79+9G5c2dIJBI4Ojri8OHDvPmxsbEYOHAgWrRoAYFAgIyMjErr6N+/PwQCAW/64IMPeDE3btyAn58fDA0NYWFhgTlz5lT6BkkIIaRxWr58OebMmYP79+9jypQpaN26NaZMmYL79+9jzpw51G0OUapipzGMMW5qTNROFvfu3YvQ0FAsXrwY6enp6NGjB3x9fVV2SJmamorRo0cjJCQE58+fR0BAAAICApCZmcnFlJSUwNPTE19//XWV2540aRLy8vK4qeIftkwmg5+fH8rKypCamoodO3Zg+/btWLRokbq7SAghREctX74cJSUlvGfPSkpKKFEkSlEDl//H1OTs7MymTp3KvZbJZKxVq1YsIiJCafyIESOYn58fr8zFxYVNmTKlUmxOTg4DwM6fP19pXr9+/diMGTNU1uvw4cNMT0+P5efnc2XfffcdMzExYaWlpS/Zq+cKCwsZAFZYWFiteFI/anJc1q1bx9q1a8fEYjFzdnZmZ86cqTJ+3759rFOnTkwsFjMHBwd26NAh3ny5XM4WLlzIrKysmEQiYQMGDGBXr16ttJ74+Hjm7OzMJBIJMzMzY0OHDq12nen8a5jouPyH3ouGqaEfl4Zev6pER0czAKy4uJiVl5ezpKQkFh0dzZKSklh5eTkrKipiAFh0dLSmq1oj1T02al1ZLCsrQ1paGnx8fLgyPT09+Pj4QCqVKl1GKpXy4gHA19dXZXxVdu3aBXNzczg4OCAsLAyPHz/mbcfR0RGWlpa87RQVFeHixYtK11daWoqioiLeRLRfXVz9Xr58Ob799ltERUXhzJkzMDIygq+vL54+fcrFHDhwAOPGjcOECRPwxx9/4NSpUxgzZkyd7y8hhKhD3UfJFPbs2QOBQICAgIC6rWADomi4UvH/QUWKcl1v4KLWlcVbt24xACw1NZVXPmfOHObs7Kx0mSZNmlTKuNevX88sLCwqxVZ1ZXHjxo0sISGB/fnnn2znzp2sdevW7J133uHmT5o0iQ0cOJC3TElJCQPADh8+rLRuixcvZgAqTdr47UeXqfuttLavfsvlcmZlZcVWrFjBzX/48CETi8Vs9+7djDHGnj17xlq3bs2+//57tfatIm3+9q3L6Lj8h96Lhkmd47Jnzx4mEonY1q1b2cWLF9mkSZOYmZkZKygoqHK5nJwc1rp1a+bl5aXWHRN169fQlJeXM1tbW9a7d29ma2vLyxUU5XZ2dqy8vFzTVa2ROrmyqEmTJ0+Gr68vHB0d8e677+J///sffvzxx1fqQDUsLAyFhYXcdPPmzVqsMdGEurj6nZOTg/z8fF6MqakpXFxcuJj09HTcunULenp66NWrF6ytrfHWW2+p/DYK0JVtQkj9++abbzBp0iRMmDABXbt2RVRUFAwNDbF161aVy8hkMrz77rv4/PPP8dprr9VjbTVPKBRi+PDhOHfuHJ48ecJrRf/kyROcO3cOQUFBWjnUnzrUShbNzc0hFApRUFDAKy8oKICVlZXSZaysrNSKry4XFxcAwLVr16rcjmKeMmKxGCYmJryJaLd79+5BJpPxHkcAAEtLS+Tn5ytdJj8/v8p4xc+qYv766y8AwJIlS7BgwQLEx8ejWbNm6N+/Px48eKB0uxERETA1NeUmGxsbNfeWEEKqryZfpgFg6dKlsLCwQEhISLW2o0tfhGUyGfbv34/evXtDLBZj8uTJaNWqFSZPngyJRILevXsjJiYGMplM01WtU2oliyKRCE5OTjh+/DhXJpfLcfz4cbi5uSldxs3NjRcPAImJiSrjq0vRvY7iOQE3NzdcuHCB91xaYmIiTExM0LVr11faFiEvI5fLAQCfffYZhg0bBicnJ2zbtg0CgQD79+9Xugxd2SaE1KeafJk+efIktmzZgs2bN1d7O7r0RTglJQW5ubkYNmwY9PT4KZNAIEBgYCBycnJ0vjW02rehQ0NDsXnzZuzYsQNZWVn48MMPUVJSggkTJgAAgoODERYWxsXPmDEDCQkJiIyMxOXLl7FkyRKcO3eOGyIHAB48eICMjAxcunQJAHDlyhVkZGRwJ+/169exbNkypKWlITc3Fz///DOCg4PRt29fdO/eHQAwcOBAdO3aFePGjcMff/yBX375BQsWLMDUqVMhFotr/g4RrVIXV78VP6uKUXxpqfjFRCwW47XXXsONGzeUbpeubBNCGrLi4mKMGzcOmzdvhrm5ebWX06Uvwoph/ObPnw9HR0dep9yOjo747LPPeHE6qyYPRK5du5a1bduWiUQi5uzszE6fPs3N69evHxs/fjwvft++faxjx45MJBKxbt26VeqWZNu2bUobmixevJgxxtiNGzdY3759WfPmzZlYLGb29vZszpw5lR7IzM3NZW+99RYzMDBg5ubmbNasWezZs2fV3i9tfghXl9Wkgcu0adO41zKZjLVu3brKBi7+/v68Mjc3t0oNXFauXMmrU8UGLorXFRu4lJWVMQsLC7Zx48Y62U9SP+i4/Ifei4apuseltLSUCYVC9uOPP/LKg4OD2ZAhQyrFnz9/ngFgQqGQmwQCARMIBEwoFLJr167Vav0aomPHjjEAzNPTk8lkMt48mUzGPD09GQB27NgxDdXw1VT32NQoWdRV2nxC6zJ1j8uePXuYWCxm27dvZ5cuXWKTJ09mZmZmXB+c48aNY59++ikXf+rUKaavr89WrlzJsrKy2OLFi1mTJk3YhQsXuJivvvqKmZmZsZ9++on9+eefbOjQoczOzo49efKEi5kxYwZr3bo1++WXX9jly5dZSEgIs7CwYA8ePKiT/ST1g47Lf+i9aJjUOS7qfJl+8uQJu3DhAm8aOnQoe+ONN9iFCxcaRR/GL0sWPTw8GkWyqF9fVzAJqS8jR47E3bt3sWjRIuTn56Nnz55ISEjgntO5ceMG79kTd3d3REdHY8GCBZg/fz46dOiAuLg4ODg4cDFz585FSUkJJk+ejIcPH8LT0xMJCQmQSCRczIoVK6Cvr49x48bhyZMncHFxwYkTJ9CsWbP623lCCKlCaGgoxo8fj969e8PZ2RmrV6+u9ChZ69atERERAYlEwvscBAAzMzMAqFSuqxTtIE6ePImAgABujOjMzExERETg1KlTvDhdRcki0UnTpk3jPRdbUXJycqWy4cOHY/jw4SrXJxAIsHTpUixdulRlTJMmTbBy5UqsXLlS7foSQkh9UPfLdGOneB49IiICGzduhLu7OzfPzs4O4eHhmD9/vs53yk3JIiGEENKIqPtluqLt27fXfoUaMC8vL9ja2iI1NRVXr17FqVOnkJeXB2tra3h4eGDYsGGws7ODl5eXpqtap+jrAyGEEEKIEkKhEJGRkYiPj8ewYcMgFovh7+8PsViMYcOGIT4+HitXrqROuQkhhKhH3bF39+/fj86dO0MikcDR0RGHDx+uFJOVlYUhQ4bA1NQURkZG6NOnD69bpqdPn2Lq1Klo0aIFjI2NMWzYsErdPd24cQN+fn4wNDSEhYUF5syZg/Ly8trZaUJ0VGBgIGJiYnDhwgW4u7vDxMQE7u7uyMzMRExMDAIDAzVdxTpHySIhhNSivXv3IjQ0FIsXL0Z6ejp69OgBX19flQ/Ap6amYvTo0QgJCcH58+cREBCAgIAA3lCR169fh6enJzp37ozk5GT8+eefWLhwIa+B1cyZM3Hw4EHs378fv/76K27fvs37JyaTyeDn54eysjKkpqZix44d2L59OxYtWlR3bwYhOiIwMBDXrl1DUlISoqOjkZSUhOzs7EaRKAKoWT+Lukqbm/frssZyXBrLfmqbmvTzOXXqVO61TCZjrVq1qrKfTz8/P16Zi4sL188nY4yNHDmSjR07VuU2Hz58yJo0acL279/PlWVlZTEATCqVMsYYO3z4MNPT0+O6kGKMse+++46ZmJg0ii5QdFlDPy4NvX6NWXWPDV1ZJITUKplMhuTkZOzevRvJyck6P2ZqRTUZe1cqlfLiAcDX15eLl8vlOHToEDp27AhfX19YWFjAxcUFcXFxXHxaWhqePXvGW0/nzp3Rtm1bbj2KEScqDvXm6+uLoqIiXLx4UWnddGmMX0Je1ZMnTzBt2jT4+vpi2rRpePLkiaarVG8oWSSE1JrY2FjY29vD29sbY8aMgbe3N+zt7REbG6vpqtWLmoy9m5+fX2X8nTt38OjRI3z11VcYNGgQjh49infeeQeBgYH49ddfuXWIRCKuDzxl61G1HcU8ZXRpjF9CXkVAQAAMDQ2xfv16HD16FOvXr4ehoSECAgI0XbV6QckiIaRWxMbGIigoSOn4qUFBQY0mYaxtcrkcADB06FDMnDkTPXv2xKeffgp/f39ERUXV6bZ1aYxfQmoqICAAP/30E0QiET799FNcu3YNn376KUQiEX766adGkTBSskgIeWUymQyzZs2Cv78/4uLi4OrqCmNjY7i6uiIuLg7+/v6YPXu2zt+SNjc3h1AorNQKuaCgAFZWVkqXsbKyqjLe3Nwc+vr66Nq1Ky+mS5cuXGtoKysrlJWV4eHDhyrXo2o7innKiMVimJiY8CZCGpMnT55wiWJxcTEiIiLQvn17REREoLi4mEsYdf2WNCWLhJBXlpKSgtzcXMyfP7/S6A96enoICwtDTk4OUlJSNFTD+iESieDk5ITjx49zZXK5HMePH4ebm5vSZdzc3HjxAJCYmMjFi0Qi9OnTB1euXOHFXL16Fe3atQMAODk5oUmTJrz1XLlyBTdu3ODW4+bmhgsXLvBaZScmJsLExKRSIkoIeW7OnDkAng+TKBKJePNEIhE++eQTXpyuohFcCCGvLC8vD4Dq8WIV5Yo4XabO2LsAMGPGDPTr1w+RkZHw8/PDnj17cO7cOWzatIlb55w5czBy5Ej07dsX3t7eSEhIwMGDB7nRNkxNTRESEoLQ0FA0b94cJiYm+Pjjj+Hm5gZXV1cAwMCBA9G1a1eMGzcOy5cvR35+PhYsWICpU6dCLBbX75tEiJbIzs4GAEycOFHp/JCQECxfvpyL01V0ZZEQ8soU46JW7BuwIkW5ro+fCjwfe3flypVYtGgRevbsiYyMjEpj71ZMmt3d3REdHY1NmzahR48eiImJQVxcHC/xfueddxAVFYXly5fD0dER33//PQ4cOABPT08uZtWqVfD398ewYcPQt29fWFlZ8Z4TFQqFiI+Ph1AohJubG8aOHYvg4OAqxzsnpLHr0KEDAOD7779XOn/Lli28OF0lYIwxTVeioSgqKoKpqSkKCwvp2ZwGpLEcF23eT5lMBnt7ezg6OiIuLo53K1oul3OdTGdnZ2vdsFjafFxqG70XDVNDPy4NvX5VefLkCQwNDSESiXD//n18//33uH79Otq3b4+JEyeiRYsWKCsrw+PHj2FgYKDp6qqtuseGbkMTQl6ZYvzUoKAgBAQEICwsDA4ODsjMzERERATi4+MRExOjdYkiIaRxMzAwwNChQ/HTTz+hadOmvHkzZ84E8LynAm1MFNVBySIhpFYoxk+dNWsW3N3duXI7O7tGM34qIUT3dOzY8ZXm6wK6DV2BNl8q12WN5bjoyn7KZDKkpKQgLy8P1tbW8PLy0uorirpyXGoDvRcNU0M/Lg29flUpKyuDgYEB5HI53nrrLRgaGuLff/9Fs2bN8PjxYxw5cgR6enp48uRJpdbS2oBuQxNCNEIoFKJ///6argYhhLyytWvXQi6Xo3v37oiPj6/0PHavXr3w559/Yu3atZg1a5YGa1q3qDU0IYQQQogSJ0+eBACEh4eDMcYb954xhmXLlvHidBVdWSSEEEIIUcLY2BgA8OOPP2Lq1Kn4+++/uXnt2rXDgAEDeHG6iq4sEkIIIYQoMW7cOADP+1NUNlzm1q1beXG6iq4sEkIIIYQoUfH5a7lcjtGjR6N37944d+4cDhw4oDROF1GySAghhBCiRMXx7MvKyrB7927s3r1baZzilrQuotvQhBBCCCFKKMZfB1BpDPWKryvG6SJKFgkhhBBClJDL5QCej2tfXl7Om1deXs6Nd6+I01V0G5oQQgghRInmzZsDAPLy8irNk8lkXLkiTldRskgIIYQQooS5uTn3e5MmTRAUFMQ1cImJicGzZ88qxekiShYJIYQQQpSQSqXc78+ePVPZwEUqlWL8+PH1WbV6Rc8sEkIIIYQoceHCBe53iUTCm2dgYKA0ThfRlUVCCCGEECUEAgH3+4ABA2Bvb48nT57AwMAA165dw6FDhyrF6SJKFgkhhBBClOjWrRtOnToFfX19HDlyhNfqWSgUQl9fH+Xl5ejWrZsGa1n36DY0IYQQQogSnp6eAJ53kyMUCvHGG29g7NixeOONN6Cnp8d1p6OI01V0ZZEQQgghRIlWrVpxvz979gwnTpx4aZwuoiuLhBBCCCFEJUoWCSGEEEKUyM/Pr9U4bUXJIiGEEEKIEgUFBbUap60oWSSEEEIIUeLOnTu1GqetKFkkhBBCCFEiLS2tVuO0VY2SxfXr18PW1hYSiQQuLi74/fffq4zfv38/OnfuDIlEAkdHRxw+fJg3PzY2FgMHDkSLFi0gEAiQkZHBm//gwQN8/PHH6NSpEwwMDNC2bVtMnz4dhYWFvDiBQFBp2rNnT012kRBCCCGNXElJCfe7WCzmzav4umKcLlI7Wdy7dy9CQ0OxePFipKeno0ePHvD19VV5CTY1NRWjR49GSEgIzp8/j4CAAAQEBCAzM5OLKSkpgaenJ77++mul67h9+zZu376NlStXIjMzE9u3b0dCQgJCQkIqxW7btg15eXncFBAQoO4uEkIIIYTg6dOn3O8vjtJS8XXFOF2kdj+L33zzDSZNmoQJEyYAAKKionDo0CFs3boVn376aaX4NWvWYNCgQZgzZw4AYNmyZUhMTMS6desQFRUFABg3bhwAIDc3V+k2HRwccODAAe51+/bt8eWXX2Ls2LEoLy+Hvv5/u2FmZgYrKyt1d4sQQgghhKfi+M9lZWW8eRVfV4zTRWpdWSwrK0NaWhp8fHz+W4GeHnx8fCCVSpUuI5VKefEA4OvrqzK+ugoLC2FiYsJLFAFg6tSpMDc3h7OzM7Zu3QrGmMp1lJaWoqioiDcRQgghhABA27Ztud8rDvX34uuKcbpIrWTx3r17kMlksLS05JVbWlqq7GMoPz9frfjq1mPZsmWYPHkyr3zp0qXYt28fEhMTMWzYMHz00UdYu3atyvVERETA1NSUm2xsbGpcJ0IIIYToltdff71W47SV1g33V1RUBD8/P3Tt2hVLlizhzVu4cCH3e69evVBSUoIVK1Zg+vTpStcVFhaG0NBQ3ropYSSEEEIIgGo/1qbrj7+pdWXR3NwcQqGwUueTBQUFKt8oKysrteKrUlxcjEGDBqFp06b48ccf0aRJkyrjXVxc8M8//6C0tFTpfLFYDBMTE95ECCGEEAI8b2Bbm3HaSq1kUSQSwcnJCcePH+fK5HI5jh8/Djc3N6XLuLm58eIBIDExUWW8KkVFRRg4cCBEIhF+/vlnSCSSly6TkZGBZs2aVWruTgghhBDyMkePHuV+b926NW9emzZtlMbpIrVvQ4eGhmL8+PHo3bs3nJ2dsXr1apSUlHCto4ODg9G6dWtEREQAAGbMmIF+/fohMjISfn5+2LNnD86dO4dNmzZx63zw4AFu3LjBZeZXrlwB8PyqpJWVFZcoPn78GDt37uQ1RmnZsiWEQiEOHjyIgoICuLq6QiKRIDExEeHh4Zg9e/arvUOEEEIIaZSys7O53x88eMCbd//+faVxukjtZHHkyJG4e/cuFi1ahPz8fPTs2RMJCQlcI5YbN25AT++/C5bu7u6Ijo7GggULMH/+fHTo0AFxcXFwcHDgYn7++Wcu2QSAUaNGAQAWL16MJUuWID09HWfOnAEA2Nvb8+qTk5MDW1tbNGnSBOvXr8fMmTPBGIO9vT3XzQ8hhBBCiLqq+3iarj/GJmBV9S3TyBQVFcHU1JTrloc0DI3luDSW/dQ2dFz+Q+9Fw9TQj0tDr19VvvrqK4SFhQF43s6hYhuIiq8jIiKU9jXd0FX32NDY0IQQQgghSjg5OXG/v9hYtuLrinG6iJJFQgghhBAlVA1lXNM4bUXJIiGEEEKIEnfv3gUA9OjRQ+l8RbkiTldpXafc5OVkMhlSUlKQl5cHa2treHl5QSgUarpahBBCiFZp2bIlAOCPP/6ARCLB06dPuXkSiQR//PEHL05X0ZVFHRMbGwt7e3t4e3tjzJgx8Pb2hr29PWJjYzVdNUIIIUSrVBxApKysjDev4msawYVojdjYWAQFBcHR0RFSqRTFxcWQSqVwdHREUFAQJYyEEEKIGmQyGff7iwN8VHxdMU4XUbKoI2QyGWbNmgV/f3/ExcXB1dUVxsbGcHV1RVxcHPz9/TF79mydP6EJaQjWr18PW1tbSCQSuLi44Pfff68yfv/+/ejcuTMkEgkcHR1x+PBh3vz33nsPAoGANw0aNIibn5ycXGm+Yjp79iwAIDc3V+n806dP1/4bQIiO+PXXX7nf33jjDaxbtw5btmzBunXr8MYbbyiN00X0zKKOSElJQW5uLnbv3s3rFB0A9PT0EBYWBnd3d6SkpKB///6aqSQhjcDevXsRGhqKqKgouLi4YPXq1fD19cWVK1dgYWFRKT41NRWjR49GREQE/P39ER0djYCAAKSnp/MGLxg0aBC2bdvGva54VcPd3R15eXm89S5cuBDHjx9H7969eeXHjh1Dt27duNctWrR45X0mRFfdvHkTADBx4kQcO3YMhw4d4ubZ2dnh/fffx9atW7k4XUXJoo5Q/KOo+M+lIkX5i/9QCCG1SzFylGJUqqioKBw6dAhbt25V2mnvmjVrMGjQIMyZMwcAsGzZMiQmJmLdunWIiori4sRiscrnokQiEW/es2fP8NNPP+Hjjz+GQCDgxbZo0ULnn68ipLbY2NgAADIzM3H16lWcOnWKazzq4eGBvn378uJ0Fd2G1hHW1tYAnp/QyijKFXGEkNpXVlaGtLQ0+Pj4cGV6enrw8fGBVCpVuoxUKuXFA4Cvr2+l+OTkZFhYWKBTp0748MMPeePSvujnn3/G/fv3ecOoKgwZMgQWFhbw9PTEzz//XOX+lJaWoqioiDcR0pgobjWfPn0aAwYMwJUrV1BSUoIrV65gwIAB3GMc7u7umqxmnaMrizrCy8sLtra2CA8PR1xcHO9WtFwuR0REBOzs7ODl5aXBWhKi2+7duweZTAZLS0teuaWlJS5fvqx0mfz8fKXx+fn53OtBgwYhMDAQdnZ2uH79OubPn4+33noLUqlUabdYW7Zsga+vL9q0acOVGRsbIzIyEh4eHtDT08OBAwcQEBCAuLg4DBkyRGndIiIi8Pnnn1d7/7UFdS9Gqqt///5o1qwZ/v33X6SkpCAlJUVpnLJHTHQKI5zCwkIGgBUWFmq6KjVy4MABJhAI2ODBg1lqaiorKipiqampbPDgwUwgELADBw5ouoo1UpPjsm7dOtauXTsmFouZs7MzO3PmTJXx+/btY506dWJisZg5ODiwQ4cO8ebL5XK2cOFCZmVlxSQSCRswYAC7evUqL6Zdu3YMAG+KiIio0/0kdU+d43Lr1i0GgKWmpvLK58yZw5ydnZUu06RJExYdHc0rW79+PbOwsFC5nevXrzMA7NixY5Xm3bx5k+np6bGYmJiX1nfcuHHM09NT5fynT5+ywsJCbrp586bWn6MHDhxgtra2vL9TW1tbrf18ZKzhf3Y09Pq9THR0NAPAxGIx77yRSCQMAFuxYgUrKSnRdDVrpLrHhm5D65DAwEDExMTgwoULcHd3h4mJCdzd3ZGZmYmYmBgEBgZquor1QtHAYPHixUhPT0ePHj3g6+urcjgmRQODkJAQnD9/HgEBAQgICODd0l++fDm+/fZbREVF4cyZMzAyMoKvry+vg1YAWLp0KfLy8rjp448/rtN9JQ2Lubk5hEIhCgoKeOUFBQUqnxO0srJSKx4AXnvtNZibm+PatWuV5m3btg0tWrRQebWwIhcXF6XrUBCLxTAxMeFN2oy6FyM1MXr0aBw4cKDS36SVlRUOHDiA2bNnw9DQUEO1qyf1lLxqBW3/9qNQXl7OkpKSWHR0NEtKSmLl5eWartIrUfe4ODs7s6lTp3KvZTIZa9WqlcqrfCNGjGB+fn68MhcXFzZlyhTG2POrilZWVmzFihXc/IcPHzKxWMx2797NlbVr146tWrWqurtVia6cf7qmJufftGnTuNcymYy1bt26yvPP39+fV+bm5sadf8rcvHmTCQQC9tNPP/HK5XI5s7OzY7NmzapWXSdOnMh69epVrVjGtPscLS8vZ7a2tmzw4MFMJpPx5slkMjZ48GBmZ2enlZ+XDf24NPT6VVd5eTnbuHEjA8A2btyolefKi6p7bChZrEBXTmhdo85xKS0tZUKhkP3444+88uDgYDZkyBCly9jY2FRK8hYtWsS6d+/OGPvvlt/58+d5MX379mXTp0/nXrdr145ZWlqy5s2bs549e7Lly5ezZ8+eqayrLt7i00Xqfi7s2bOHicVitn37dnbp0iU2efJkZmZmxvLz8xljz2/9fvrpp1z8qVOnmL6+Plu5ciXLyspiixcvZk2aNGEXLlxgjDFWXFzMZs+ezaRSKcvJyWHHjh1jr7/+OuvQoQN7+vQpb9vHjh1jAFhWVlalem3fvp1FR0ezrKwslpWVxb788kump6fHtm7dWmfvRUOSlJTEADCpVKp0fmpqKgPAkpKS6rditaChH5eGXj91pKWlMQAsLS1N01WpFXQbmjRKVTUwqNhgoKKXNTBQ/HzZOqdPn449e/YgKSkJU6ZMQXh4OObOnauyrhERETA1NeUmXe96obEYOXIkVq5ciUWLFqFnz57IyMhAQkICd/7cuHGD14WVu7s7oqOjsWnTJvTo0QMxMTGIi4vjursSCoX4888/MWTIEHTs2BEhISFwcnJCSkpKpREltmzZAnd3d3Tu3Flp3ZYtWwYnJye4uLjgp59+wt69e5W2mNZF1L3Yf9TpNH7z5s3w8vJCs2bN0KxZM/j4+Ly0k3mie6g1NCG1JDQ0lPu9e/fuEIlEmDJlCiIiIir9UweAsLAw3jJFRUWUMOqIadOmYdq0aUrnJScnVyobPnw4hg8f/n/t3X1QFPf9B/A3nN4dKmKUyonV3LWiaEQJUPCs1joyosOoNz5ETQnE8alWE/U62sIgEE16+EBiHmz8mcTINBKQiaXWOFhDpDrx1PEQrQafWihm9PChhUNUEPj+/jCcrtwajoJ33L1fMzvKfj+7+93bz+DHvf1+12G8n58fDh482Kbj5uTkyLYlJSUhKSmpTfvxRI9PLzZmzJhW7d4yvZizk8YXFxdj/vz5GDt2LNRqNTZu3IjJkyfj/PnzGDhwoAvOgFyBdxbJo3TGAIOWP50dhBATE4PGxkZUVFQ4bPe0wQNE7uzx6cWam5slbd40vdjjk8aPGDEC27dvR48ePbBz506H8bt378ZvfvMbhIeHIzQ0FB9//DGam5tRVFT0jHtOrsRikTyKUqlEZGSk5BdZyy82vV7vcBu9Xt/qF9+hQ4fs8TqdDhqNRhJjs9lw4sQJ2X0CQGlpKXx9fT1//i2iLkChUCArKwv79++HwWCQjIY2GAzYv38/tmzZ4tHzLbZn0vgn3b17Fw8ePEDfvn1lYziZu+fh19DkcYxGI5KSkhAVFYXo6Ghs3boVdXV19mezEhMTMXDgQJhMJgDAypUrMWHCBGRlZSE+Ph65ubk4deoUduzYAQDw8fHBqlWr8OabbyIkJAQ6nQ7r1q1DcHAwDAYDgIdv4Thx4gQmTpwIf39/mM1mrF69GgkJCXjuuedc8jkQkVTL9GK//e1vJW/c0Ol0XjG9WHsmjX/S7373OwQHB7d669DjPHUyd2/GYpE8zty5c3Hz5k2kpaXBarUiPDy81QCDx99w0zLAIDU1FSkpKQgJCZEMMACAtWvXoq6uDkuWLEF1dTXGjRuHwsJCqNVqAA+/Us7NzUVGRgbq6+uh0+mwevVqyTOJROR6M2fOxIwZM/gGl3bIzMxEbm4uiouL7b/7HOHz2J6HxSJ5pI4cYAA8vLu4fv16rF+/3mF7RESE/R2hROTeFAoFfvnLX7q6G89ce57pbrFlyxZkZmbiq6++wqhRo54aq1KpHA7qo66LzywSERF5gfY80w08fIPVhg0bUFhYiKioqGfRVXIzvLNIRETkJZx9pnvjxo1IS0tDTk4OtFqtfW7ZXr16oVevXi47D3q2WCwSERF5CWef6f7www/R0NCA2bNnS/aTnp6OjIyMZ9l1ciEWi0RERF7EmWe65eaJJe/CZxaJiIiISBaLRSIiIiKSxWKRiIiIiGSxWCQiIiIiWSwWiYiIiEgWi0UiIiIiksVikYiIiIhksVgkIiIiIlksFomIiIhIFotFIiIiIpLFYpGIiIiIZLFYJCIiIiJZLBaJiIiISFa7isVt27ZBq9VCrVYjJiYGJ0+efGp8fn4+QkNDoVarERYWhgMHDkja9+7di8mTJ6Nfv37w8fFBaWlpq33cv38fy5cvR79+/dCrVy/MmjULVVVVkpjKykrEx8ejR48e6N+/P9asWYPGxsb2nCIRERERoR3FYl5eHoxGI9LT01FSUoLRo0cjLi4ON27ccBh/7NgxzJ8/HwsXLsTp06dhMBhgMBhw7tw5e0xdXR3GjRuHjRs3yh539erV+Otf/4r8/Hz8/e9/x7Vr1zBz5kx7e1NTE+Lj49HQ0IBjx44hOzsbu3btQlpamrOnSEREREQthJOio6PF8uXL7T83NTWJ4OBgYTKZHMa/9NJLIj4+XrIuJiZGLF26tFVseXm5ACBOnz4tWV9dXS26d+8u8vPz7evKysoEAGE2m4UQQhw4cED4+voKq9Vqj/nwww9F7969RX19fZvOraamRgAQNTU1bYqnZ8Nbrou3nGdXw+vyCD8L9+Tu18Xd++cMi8UiAAiLxeLqrnSItl4bp+4sNjQ0wGKxIDY21r7O19cXsbGxMJvNDrcxm82SeACIi4uTjXfEYrHgwYMHkv2EhoZi8ODB9v2YzWaEhYUhKChIchybzYbz58873G99fT1sNptkISIiIqJHnCoWb926haamJklBBgBBQUGwWq0Ot7FarU7Fy+1DqVSiT58+svuRO05LmyMmkwkBAQH2ZdCgQW3uExEREZE38OrR0MnJyaipqbEvV69edXWXiIiIiNxKN2eCAwMDoVAoWo1CrqqqgkajcbiNRqNxKl5uHw0NDaiurpbcXXx8PxqNptWo7Jbjyh1LpVJBpVK1uR9ERERE3sapYlGpVCIyMhJFRUUwGAwAgObmZhQVFWHFihUOt9Hr9SgqKsKqVavs6w4dOgS9Xt/m40ZGRqJ79+4oKirCrFmzAAAXL15EZWWlfT96vR5vvfUWbty4gf79+9uP07t3b4wYMcKZ0yQiIiIvdvnyZdTW1rZaX1ZWJvnTEX9/f4SEhHRa31zBqWIRAIxGI5KSkhAVFYXo6Ghs3boVdXV1WLBgAQAgMTERAwcOhMlkAgCsXLkSEyZMQFZWFuLj45Gbm4tTp05hx44d9n3+5z//QWVlJa5duwbgYSEIPLwjqNFoEBAQgIULF8JoNKJv377o3bs3XnvtNej1eowZMwYAMHnyZIwYMQKvvPIKNm3aBKvVitTUVCxfvpx3D4mIiKhNLl++jKFDhz41JiEh4antly5d8qiC0elice7cubh58ybS0tJgtVoRHh6OwsJC+2CSyspK+Po+ehRy7NixyMnJQWpqKlJSUhASEoKCggKMHDnSHrNv3z57sQkA8+bNAwCkp6cjIyMDAPDOO+/A19cXs2bNQn19PeLi4vDHP/7Rvo1CocD+/fuxbNky6PV69OzZE0lJSVi/fr2zp0hERERequWO4meffYbhw4dL2u7du4eKigpotVr4+fm12rasrAwJCQkO70p2ZT5CCOHqTrgLm82GgIAA1NTUoHfv3q7uDn3PW66Lt5xnV8Pr8gg/C/fk7tfF3fv3pJKSEkRGRsJisSAiIuKZbesKbb02Xj0amoiIiIiejsUiEREREclisUhEREREslgsEhEREZEsFotEREREJIvFIhERERHJYrFIRERERLJYLBIRERGRLBaLREQdbNu2bdBqtVCr1YiJicHJkyefGp+fn4/Q0FCo1WqEhYXhwIEDkvZXX30VPj4+kmXKlCmSGK1W2yomMzNTEnP27FmMHz8earUagwYNwqZNmzrmhInIo7FYJCLqQHl5eTAajUhPT0dJSQlGjx6NuLg43Lhxw2H8sWPHMH/+fCxcuBCnT5+GwWCAwWDAuXPnJHFTpkzB9evX7cvnn3/eal/r16+XxLz22mv2NpvNhsmTJ+P555+HxWLB5s2bkZGRgR07dnTsB0BEHofFIhFRB3r77bexePFiLFiwACNGjMD27dvRo0cP7Ny502H8u+++iylTpmDNmjUYPnw4NmzYgIiICHzwwQeSOJVKBY1GY1+ee+65Vvvy9/eXxPTs2dPetnv3bjQ0NGDnzp144YUXMG/ePLz++ut4++23O/YDICKPw2KRiKiDNDQ0wGKxIDY21r7O19cXsbGxMJvNDrcxm82SeACIi4trFV9cXIz+/ftj2LBhWLZsGW7fvt1qX5mZmejXrx9efPFFbN68GY2NjZLj/OIXv4BSqZQc5+LFi/jvf//rsG/19fWw2WyShYi8TzdXd4CIyFPcunULTU1NCAoKkqwPCgrChQsXHG5jtVodxlutVvvPU6ZMwcyZM6HT6fDPf/4TKSkpmDp1KsxmMxQKBQDg9ddfR0REBPr27Ytjx44hOTkZ169ft985tFqt0Ol0rY7T0uboTqXJZMIbb7zh5KdA1PVpevnAr/oScM25e2p+1Zeg6eXTSb1yHRaLRERubt68efa/h4WFYdSoUfjpT3+K4uJiTJo0CQBgNBrtMaNGjYJSqcTSpUthMpmgUqnaddzk5GTJfm02GwYNGtTOsyDqOpZGKjH8yFLgiHPbDf9+W0/DYpGIqIMEBgZCoVCgqqpKsr6qqgoajcbhNhqNxql4APjJT36CwMBAXLlyxV4sPikmJgaNjY2oqKjAsGHDZI/T0gdHVCpVuwtNoq7s/ywNmJu2C8NDQ53aruzCBfxf1suY3kn9chU+s0hE1EGUSiUiIyNRVFRkX9fc3IyioiLo9XqH2+j1ekk8ABw6dEg2HgC+++473L59GwMGDJCNKS0tha+vL/r3728/zpEjR/DgwQPJcYYNG+bwK2gib2a9I3Cvz1AgONyp5V6fobDeES7qdedhsUhE1IGMRiM++ugjZGdno6ysDMuWLUNdXR0WLFgAAEhMTERycrI9fuXKlSgsLERWVhYuXLiAjIwMnDp1CitWrAAA3LlzB2vWrMHx48dRUVGBoqIizJgxA0OGDEFcXByAh4NXtm7dijNnzuBf//oXdu/ejdWrVyMhIcFeCL788stQKpVYuHAhzp8/j7y8PLz77ruSr5mJiBzh19BERB1o7ty5uHnzJtLS0mC1WhEeHo7CwkL7YJLKykr4+j76f/rYsWORk5OD1NRUpKSkICQkBAUFBRg5ciQAQKFQ4OzZs8jOzkZ1dTWCg4MxefJkbNiwwf4VsUqlQm5uLjIyMlBfXw+dTofVq1dLCsGAgAD87W9/w/LlyxEZGYnAwECkpaVhyZIlz/DTIaKuiMUiEVEHW7Fihf3O4JOKi4tbrZszZw7mzJnjMN7Pzw8HDx586vEiIiJw/PjxH+zXqFGjcPTo0R+MIyJ6HL+GJiIiIiJZLBaJiIiISBa/hiYiIiL63t27dwEAJSUlrdru3buHiooKaLVa+Pn5tWovKyvr9P65AotFIiIiou+1vG1p8eLF7d6Hv79/R3XHLbBYJCIiIvqewWAAAISGhqJHjx6StrKyMiQkJOCzzz7D8OHDHW7v7++PkJCQzu7mM8VikYiIiOh7gYGBWLRo0VNjhg8fjoiIiGfUI9fjABciIiIiksVikYiIiIhksVgkIiIiIlksFomIiIhIFotFIiIiIpLF0dAeqKmpCUePHsX169cxYMAAjB8/HgqFwtXdIi/B/CN3xxwlcg7vLHqYvXv3YsiQIZg4cSJefvllTJw4EUOGDMHevXtd3bVnatu2bdBqtVCr1YiJicHJkyefGp+fn4/Q0FCo1WqEhYXhwIEDknYhBNLS0jBgwAD4+fkhNjYWly9fdriv+vp6hIeHw8fHB6WlpR11Sl0C84/cHXOUyHksFj3I3r17MXv2bISFhcFsNqO2thZmsxlhYWGYPXu21/wyzMvLg9FoRHp6OkpKSjB69GjExcXhxo0bDuOPHTuG+fPnY+HChTh9+jQMBgMMBgPOnTtnj9m0aRPee+89bN++HSdOnEDPnj0RFxeH+/fvt9rf2rVrERwc3Gnn566Yf+TumKNE7STIrqamRgAQNTU1ru6K0xobG4VWqxXTpk0TTU1NkrampiYxbdo0odPpRGNjo4t62H7OXpfo6GixfPly+89NTU0iODhYmEwmh/EvvfSSiI+Pl6yLiYkRS5cuFUII0dzcLDQajdi8ebO9vbq6WqhUKvH5559Ltjtw4IAIDQ0V58+fFwDE6dOn29RnIZh/7qorX5eO1pU/C+ao67h7/5xhsVgEAGGxWFzdlQ7R1mvDO4se4ujRo6ioqEBKSgp8faWX1dfXF8nJySgvL8fRo0dd1MNno6GhARaLBbGxsfZ1vr6+iI2NhdlsdriN2WyWxANAXFycPb68vBxWq1USExAQgJiYGMk+q6qqsHjxYvzpT39q9YooR+rr62Gz2SRLV8X8I3fHHKX2unv3LkpKSlBSUoKysjIAD1/717KupKQEd+/edXEvOxcHuHiI69evAwBGjhzpsL1lfUucp7p16xaampoQFBQkWR8UFGR/OfyTrFarw3ir1Wpvb1knFyOEwKuvvopf//rXiIqKQkVFxQ/21WQy4Y033mjTebk75h+5O+YotdeFCxcQGRkpWZeQkCD52WKxePTr/1gseogBAwYAAM6dO4cxY8a0am95/q4ljjrW+++/j9raWiQnJ7d5m+TkZBiNRvvPNpsNgwYN6ozudTrmH7k75ii1V2hoKCwWCwDg3r17qKiogFarhZ+fnyTGk7FY9BDjx4+HVqvFH/7wBxQUFEi+ZmlubobJZIJOp8P48eNd2MvOFxgYCIVCgaqqKsn6qqoqaDQah9toNJqnxrf8WVVVJfmHpKqqCuHh4QCAr7/+GmazGSqVSrKfqKgo/OpXv0J2dnar46pUqlbxXRXzj9wdc5Taq0ePHpK7hj//+c9d2BvX4DOLHkKhUCArKwv79++HwWCQjPQzGAzYv38/tmzZ4vFziSmVSkRGRqKoqMi+rrm5GUVFRdDr9Q630ev1kngAOHTokD1ep9NBo9FIYmw2G06cOGGPee+993DmzBmUlpaitLTUPvVOXl4e3nrrrQ49R3fE/CN3xxx9pKOnFiMv0J7RMx988IF4/vnnhUqlEtHR0eLEiRNPjd+zZ48YNmyYUKlUYuTIkeLLL7+UtDc3N4t169YJjUYj1Gq1mDRpkrh06ZK9/fDhwwKAw+XkyZNCCCHKy8sdtpvN5jaflyeM2Priiy+EVquVfAY6nU588cUXru5auzl7XXJzc4VKpRK7du0S3377rViyZIno06ePsFqtQgghXnnlFfH73//eHv/NN9+Ibt26iS1btoiysjKRnp4uunfvLv7xj3/YYzIzM0WfPn3EX/7yF3H27FkxY8YModPpxL179xz2oSUfvWU0dAvmn2fzhM/C23M0NzdXKJVKsXPnTnH+/HmxePFi0adPH1FVVeUw/ptvvhEKhUJs2rRJfPvttyI1NbXV78eO7B89W229Nk4Xi52RaJmZmSIgIEAUFBSIM2fOiOnTp0v+Ia6vrxfXr1+XLIsWLRI6nU40NzcLIR794/zVV19J4hoaGtp8bp6S0I2NjeLw4cMiJydHHD58uEtOBfG49lyX999/XwwePFgolUoRHR0tjh8/bm+bMGGCSEpKksTv2bNHDB06VCiVSvHCCy/I/ocmKChIqFQqMWnSJHHx4kXZ43trsSgE88+Tecpn4c052tFTi3V0/+jZ6rRi0ZVz2LVoaGgQP/rRj8T69evt69rzj/OTmNDuyVuui7ecZ1fD6/IIPwv31NbrUl9fLxQKhfjzn/8sWZ+YmCimT5/ucJtBgwaJd955R7IuLS1NjBo1SvY49+/fFzU1Nfbl6tWrzBs31SnzLLpyDrvH7du3D7dv38aCBQtatU2fPh39+/fHuHHjsG/fvqeejyfNc0dERPQ0T5tarGUasCf90NRijphMJgQEBNiXrjrLAz3iVLHYGYnWljnsnvTJJ58gLi4OP/7xj+3revXqhaysLOTn5+PLL7/EuHHjYDAYnlowMqGJiIg6VnJyMmpqauzL1atXXd0l+h91ualzvvvuOxw8eBB79uyRrA8MDJTMWfezn/0M165dw+bNmzF9+nSH+/Kkee6IiIiepjOmFnPEk6YFo4ecurPY2XPYtWWfn376Kfr16ydbAD4uJiYGV65ckW1XqVTo3bu3ZCEiIvJEnTG1GHkHp4pFV81h10IIgU8//RSJiYno3r37D/a3tLSUs/ETERF9z2g04qOPPkJ2djbKysqwbNky1NXV2ccAJCYmSt5EtXLlShQWFiIrKwsXLlxARkYGTp06hRUrVrjqFMgFnP4a2mg0IikpCVFRUYiOjsbWrVtbJdrAgQNhMpkAPEy0CRMmICsrC/Hx8cjNzcWpU6ewY8cOAICPjw9WrVqFN998EyEhIdDpdFi3bh2Cg4NhMBgkx/76669RXl6ORYsWtepXdnY2lEolXnzxRQDA3r17sXPnTnz88cfOniIREZFHmjt3Lm7evIm0tDRYrVaEh4ejsLDQPm6gsrJS8nabsWPHIicnB6mpqUhJSUFISAgKCgpk37FNnsnpYrEzEm3t2rWoq6vDkiVLUF1djXHjxqGwsBBqtVpy7E8++QRjx46VfQfjhg0b8O9//xvdunVDaGgo8vLyMHv2bGdPkYiIyGOtWLFC9s5gcXFxq3Vz5szBnDlzOrlX5M58hBDC1Z1wFzabDQEBAaipqeHzi27EW66Lt5xnV8Pr8gg/C/fk7tfF3fvnzdp6bfhuaCIiIiKSxWKRiIiIiGR1uXkWO1PLN/J8k4t7abkenv7EBPPPPXlL/rUFc9Q9uXuOMm/cV1tzh8XiY2prawGAE3O7qdraWgQEBLi6G52G+efePD3/2oI56t7cNUeZN+7vh3KHA1we09zcjGvXrsHf3x8+Pj6u7s7/pOVtNFevXu3yDxQLIVBbW4vg4GDJSHtPw/xzT96Sf23BHHVP7p6jzBv31dbcYbHooTj6jFyJ+UfujjlK7eGteeN+/wUhIiIiIrfBYpGIiIiIZLFY9FAqlQrp6elQqVSu7gp5IeYfuTvmKLWHt+YNn1kkIiIiIlm8s0hEREREslgsEhEREZEsFotEREREJIvFIhERERHJYrFIRERERLJYLHqYI0eOYNq0aQgODoaPjw8KCgpc3SXyIsw/cnfMUWovb84dFosepq6uDqNHj8a2bdtc3RXyQsw/cnfMUWovb86dbq7uAHWsqVOnYurUqa7uBnkp5h+5O+YotZc35w7vLBIRERGRLBaLRERERCSLxSIRERERyWKxSERERESyWCwSERERkSyOhvYwd+7cwZUrV+w/l5eXo7S0FH379sXgwYNd2DPyBsw/cnfMUWovb84dHyGEcHUnqOMUFxdj4sSJrdYnJSVh165dz75D5FWYf+TumKPUXt6cOywWiYiIiEgWn1kkIiIiIlksFomIiIhIFotFIiIiIpLFYpGIiIiIZLFYJCIiIiJZLBaJiIiISBaLRSIiIiKSxWKRiIiIiGSxWCQiIiIiWSwWiYiIiEgWi0UiIiIikvX/PMdOkHu5c7kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwEUlEQVR4nOzdfVyN9/8H8NepdLrRHdGNuyLkJiIq0Wia2or65t7XXeuLmTaEWUZuZnJTMsrCMJuVm2ptX6wtqa2thNSIIiYSJ2KK0M05n98f/c717dKJ7k/n9H4+HtdD57re13U+n3Nd6n2u63MjYIwxEEIIIYQQIoOKvAtACCGEEEJaL0oWCSGEEEJIrShZJIQQQgghtaJkkRBCCCGE1IqSRUIIIYQQUitKFgkhhBBCSK0oWSSEEEIIIbWiZJEQQgghhNSKkkVCCCGEEFIrShYJIXJjZmYGgUAAgUCAxYsXvzZ227ZtXKyamloLlfDN8vLyIBAIYGZmJu+iEEJIs6BkkRDSKnz//fcoLy+vdfuBAwea9P0oySOEkLqhZJEQInfDhg3Do0eP8OOPP8rcnpKSgpycHAwfPryFS/ZmXbp0QXZ2NhISEuRdFEIIaRaULBJC5O79998HUPvdw/379/PiWpN27drB0tISvXr1kndRCCGkWVCySAiROysrKwwbNgy//vorCgoKeNuePXuGY8eOoWvXrhg3blytx6isrMTXX3+NMWPGoEOHDhAKhTA3N8fChQuRn5/Pi507dy7Mzc0BALdv3+baQkoXqXXr1kEgEGDdunW4c+cOfHx80K1bN7Rr1w5z584F8ObH2c+fP8eOHTswatQoGBgYQCgUokePHhg/fjwiIiJ4scXFxVi9ejWsrKygra0NoVAIU1NTjBw5EgEBAaioqKjrR0oIIU2m9bQSJ4S0ae+//z4uXLiAb775Bp999hm3/tixY3j27BkWL14MFRXZ32+fPn2KCRMmICkpCe3bt4eNjQ06deqEy5cvIzw8HMePH0d8fDyGDBkCABg1ahSePXuG6OhoaGtrY9KkSa8tW25uLoYMGQJ1dXWMHDkSjDEYGhq+sU75+flwdXXF1atXoaWlhZEjR6Jjx44oKChAcnIyLl++jBkzZgCoSipHjRqFrKwsdOrUCWPHjoW2tjZEIhFycnKQkpICPz8/6Ovr1/ETJYSQJsIIIUROevTowQCw5ORk9uTJE6apqcksLCx4MSNHjmQCgYDdvHmT3bp1iwFgqqqqvJgZM2YwAMzd3Z0VFhbytoWEhDAArHfv3qyyspJbLz1Wjx49ai3f2rVrGQAGgM2cOZO9fPmyRkxtxxGLxWzYsGEMABs3bhx78OABb/uLFy/YyZMnudeHDh1iANi7777LysvLaxwrKSmJlZWV1VpWQghpLvQYmhDSKujp6cHLyws3btzAb7/9BgC4du0a/vzzT4wePRo9e/aUuV92djYiIyNhamqKiIgIdO7cmbd9yZIleO+995Cbm4uff/65QWXr0KEDQkNDIRQK67zPf//7X1y4cAEmJiaIjo5Gp06deNs1NDTw3nvvca8LCwsBAO+88w7atWvHi1VRUcHo0aOhrq7eoPITQkhjULJICGk1Xu3oIv33dR1bTp06BcYY3n33Xejo6MiMGTNmDICqXtUN4ezsDD09vXrtExcXBwCYMWMG2rdv/8Z4aU/vrVu34ttvv8Xjx4/rX1BCCGkGlCwSQloNJycnmJubIyoqCv/88w++/fZb6OrqvrZN4d9//w2gqsf0qx1VpMsnn3wCAHj48GGDytWQsRhv374NALC0tKxT/JgxY7By5Uo8ePAAc+bMgaGhIfr27Yv3338fP/74IyQSSb3LQAghTYE6uBBCWg2BQIC5c+di7dq1mDNnDkQiEebPnw9NTc1a95EmUdbW1hg8ePBrj29nZ9egcr3u/ZvS5s2b8cEHH+C///0v/vjjD/z55584ePAgDh48iOHDhyMxMRHa2totUhZCCJGiZJEQ0qrMnTsX69evx3//+18Abx5bsVu3bgCAkSNHIjQ0tNnLV1fdu3cHAOTk5NRrPzMzM3z00Uf46KOPAADnz5/HzJkzcf78eWzduhXr169v8rISQsjr0GNoQkir0r17d3h4eKBjx46wt7d/493Ad999FwDw008/4eXLl3V+H2lnkcrKyoYX9jVcXV0BAJGRkSgtLW3wcYYPH44PP/wQAJCZmdkURSOEkHqhZJEQ0urExMSgqKgIqampb4wdMmQIJk6ciPz8fHh5eSEvL69GTGlpKb7//nuuxzEAdOrUCerq6hCJRM3SmWTChAkYMmQI7t27h8mTJ+PRo0e87S9fvuT1zv7hhx/w+++/12ibWFFRwXWW6dGjR5OXkxBC3oQeQxNCFN7Bgwfx5MkT/Pzzz+jbty8GDx4Mc3NzMMaQl5eHv/76C+Xl5cjOzoaRkRGAqmn6JkyYgKioKFhbW2PUqFHQ0tICAHz99deNLpOKigp++OEHuLi44Oeff0b37t0xatQoblDuv/76C/r6+lxy+9tvv+HLL7+EoaEhhgwZgs6dO+Pp06c4e/YsHjx4gC5dunAddQghpCVRskgIUXg6Ojr49ddfcfToURw+fBjp6enIzMyErq4uTExM8O9//xsTJkyoMX/znj170LFjR/z888+IioriptNrimQRqLoTeOHCBezevRtRUVFITU1FeXk5jI2NMXr0aG72FqCqraampib++OMPXL16Fb/99hv09PTQvXt3LFmyBPPnz0fHjh2bpFyEEFIfAsYYk3chCCGEEEJI60RtFgkhhBBCSK0oWSSEEEIIIbWiZJEQQgghhNSKkkVCCCGEEFIrShYJIYQQQkitKFkkhBBCCCG1omSREEIIIYTUipJFQgghhBBSK0oWCSGEEEJIrShZJIQQQgghtaJkkRBCCCGE1IqSRUIIIYS0Od988w0EAgHy8vLkXZRWj5JFQhTE+fPn4eDgAG1tbQgEAmRmZsq7SKSNoGuPkLZNTd4FIIS8WUVFBSZPngwNDQ2EhIRAS0sLPXr0kHexSBtA1x4hhJJFQhTAzZs3cfv2bezbtw//+c9/5F0c0obQtUcIocfQclZaWirvIhAF8ODBAwCAvr5+kxyPrjtSV3TtkbZk9+7dGDBgAIRCIUxNTbFo0SI8efKEF5Obm4uJEyfC2NgYGhoa6Nq1K6ZNm4bi4mIuJj4+HqNGjYK+vj7at2+Pvn37YtWqVS1cm6bTZpPFgoICvP/++zAyMoJQKMSAAQNw4MABbntSUhIEAgGOHTuGL774Al27doWGhgbGjh2LGzdu1DheWloaXF1doaenBy0tLYwePRp//vknL2bdunUQCAS4evUqZsyYAQMDA4waNQoAIJFIsG7dOpiamkJLSwtOTk64evUqzMzMMHfuXADA33//DYFAgJCQkBrvn5KSAoFAgMjIyDrVPy8vDwKBAEFBQQgLC0PPnj2hpaWFcePGIT8/H4wxfP755+jatSs0NTXh4eGBx48f847x448/ws3NDaamphAKhejVqxc+//xziMXiBn0+RLa5c+di9OjRAIDJkydDIBBgzJgxAIAzZ87A0dER2tra0NfXh4eHB7Kzs3n7v+66A4DDhw/D1tYWWlpaMDAwwFtvvYVff/2Vd4yff/6Zex8dHR24ubnhypUrvBiRSARvb2907doVQqEQJiYm8PDwqFfjcWlZr1+/jpkzZ0JPTw+dOnXCmjVrwBhDfn4+PDw8oKurC2NjYwQHB9c4xq5duzBgwACuPsOGDUNERAQv5k3//0kVuvbqfu2Vl5cjICAANjY20NPTg7a2NhwdHZGYmFjjvSQSCXbs2IEBAwZAQ0MDRkZGWLBgAf755586l5c0vXXr1mHRokUwNTVFcHAwJk6ciD179mDcuHGoqKgAUHWeXVxccPbsWXz00UcICwvD/Pnz8ffff3NJ5ZUrV+Du7o6ysjJs2LABwcHBmDBhgmL/zWNtkEgkYl27dmXdunVjGzZsYF999RWbMGECA8BCQkIYY4wlJiYyAGzIkCHMxsaGhYSEsHXr1jEtLS1ma2vLO15CQgJTV1dnI0aMYMHBwSwkJIQNGjSIqaurs7S0NC5u7dq1DADr378/8/DwYLt372ZhYWGMMcY++eQTBoCNHz+ehYaGsnnz5rGuXbsyQ0NDNmfOHO4YI0eOZDY2NjXq9OGHHzIdHR1WWlpap8/g1q1bDACztrZm/fv3Z9u3b2erV69m6urqzN7enq1atYo5ODiwnTt3so8//pgJBALm7e3NO4anpyebMmUK27ZtG/vqq6/Y5MmTGQC2fPnyBn0+RLaUlBS2atUqBoB9/PHH7LvvvmO//vori4+PZ2pqaqxPnz5s69atbP369czQ0JAZGBiwW7ducfu/7rpbt24dA8AcHBzYtm3b2JdffslmzJjBVq5cye3/7bffMoFAwFxdXdmuXbvYli1bmJmZGdPX1+e9j4ODA9PT02OrV69mX3/9Ndu0aRNzcnJiv/32W53rKi2rtbU1mz59Otu9ezdzc3NjANj27dtZ37592cKFC9nu3bvZyJEjGQDe8ffu3csAsEmTJrE9e/awL7/8kvn4+LCPP/6Yi6nL/39Sha69ul97Dx8+ZCYmJszPz4999dVXbOvWraxv376sXbt2LCMjg/de//nPf5iamhqbN28eCw8PZytXrmTa2tps+PDhrLy8vH4niTTYwYMHGQB269Yt9uDBA6aurs7GjRvHxGIxFxMaGsoAsAMHDjDGGMvIyGAA2PHjx2s9bkhICAPAHj582Ox1aCltMln08fFhJiYmrKioiLd+2rRpTE9Pjz1//pxLFvv168fKysq4mC+//JIBYJcvX2aMMSaRSFjv3r2Zi4sLk0gkXNzz58+Zubk5e+edd7h10l9G06dP572vSCRiampqzNPTk7de+su0erK4Z88eBoBlZ2dz68rLy2sklW8iTRY7derEnjx5wq339/dnANjgwYNZRUUFt3769OlMXV2dvXz5klfHVy1YsIBpaWlxcfX5fEjtpNdj9V9Q1tbWrHPnzuzRo0fcur/++oupqKiw2bNnc+tqu+5yc3OZiooK+9e//sX75cgY487V06dPmb6+Pps3bx5vu0gkYnp6etz6f/75hwFg27Zta1Q9pWWdP38+t66yspJ17dqVCQQCtnnzZm79P//8wzQ1NXnXvYeHBxswYMBr36Mu///J/9C1V7drr7Kykve3QhpnZGTE3n//fW5dcnIyA8C+//57XmxcXJzM9aT5VE8WIyIiGAB26tQpXkxZWRnT1dVlEydOZIwx9vfffzMA7D//+U+tN2ekx/36669rXN+Kqs09hmaMITo6GuPHjwdjDEVFRdzi4uKC4uJiXLx4kYv39vaGuro699rR0RFA1SNhAMjMzERubi5mzJiBR48ecccqLS3F2LFj8fvvv0MikfDK8MEHH/BeJyQkoLKyEh9++CFv/UcffVSj/FOmTIGGhga+//57bt0vv/yCoqIizJw5s96fx+TJk6Gnp8e9trOzAwDMnDkTampqvPXl5eUoKCjg1mlqanI/P336FEVFRXB0dMTz58+Rk5MDoGGfD3mz+/fvIzMzE3PnzkWHDh249YMGDcI777yDU6dO1djn1esuNjYWEokEAQEBUFHh/yoQCAQAqtrdPHnyBNOnT+f9X1FVVYWdnR33iE1TUxPq6upISkpqkkdp1TtSqKqqYtiwYWCMwcfHh1uvr6+Pvn37cv8Xpevu3r2L8+fPyzxuff//k5ro2pN97amqqnJ/KyQSCR4/fozKykoMGzaMd00dP34cenp6eOedd3j1srGxQfv27WU+tibN7/bt2wCAvn378tarq6ujZ8+e3HZzc3P4+fnh66+/hqGhIVxcXBAWFsZrrzh16lSMHDkS//nPf2BkZIRp06bh2LFjCv23rs31hn748CGePHmCvXv3Yu/evTJjHjx4AAMDAwBA9+7deduk66W/lHJzcwEAc+bMqfU9i4uLuf2AqoutOulFaGFhwVvfoUMH3n5A1S+p8ePHIyIiAp9//jkA4Pvvv0eXLl3w9ttv11qG2rxaP2ni2K1bN5nrq/8yvnLlClavXo0zZ86gpKSEFy/9j9OQz4e8WW2/2ACgX79++OWXX1BaWgptbW1u/avX3c2bN6GiooL+/fvX+j7S81fbtaWrqwsAEAqF2LJlC5YtWwYjIyPY29vD3d0ds2fPhrGxcf0qB9nXpYaGBgwNDWusf/ToEfd65cqVOH36NGxtbWFhYYFx48ZhxowZGDlyJIC6//8ntaNr73/rq197AHDo0CEEBwcjJyeHa+MG8Oufm5uL4uJidO7cWeb70/XX+gUHB2Pu3Ln48ccf8euvv+Ljjz9GYGAgzp49y7Xz//3335GYmIiTJ08iLi4OR48exdtvv41ff/0Vqqqq8q5CvbW5ZFGa2c+cObPWBGbQoEG4evUqANR6UhljvONt27YN1tbWMmPbt2/Pe139jlxDzJ49G8ePH0dKSgqsrKzw008/4cMPP6zxDb0uaqvfm+r95MkTjB49Grq6utiwYQN69eoFDQ0NXLx4EStXruQ+l4Z8PqR5NOS6k56/7777TuYf3up3n5csWYLx48cjNjYWv/zyC9asWYPAwECcOXMGQ4YMqdf7yrr+3nRNAlXJyrVr13DixAnExcUhOjoau3fvRkBAANavX1/n//+kabWFa+/w4cOYO3cuPD09sWLFCnTu3BmqqqoIDAzEzZs3efXq3Lkz7+lQdZ06dapXeUnTkI4deu3aNfTs2ZNbX15ejlu3bsHZ2ZkXb2VlBSsrK6xevRopKSkYOXIkwsPDsXHjRgCAiooKxo4di7Fjx2L79u3YtGkTPvvsMyQmJtY4liJoc8lip06doKOjA7FY/NoTJk0W36RXr14Aqr7lNvQCkF6kN27c4H0DffTokczHKq6urujUqRO+//572NnZ4fnz55g1a1aD3ruhkpKS8OjRI8TExOCtt97i1t+6dYsX1xSfD6mp+i+2V+Xk5MDQ0JB3Z0eWXr16QSKR4OrVq7Um8tLz17lz5zqdv169emHZsmVYtmwZcnNzYW1tjeDgYBw+fPiN+zYVbW1tTJ06FVOnTkV5eTm8vLzwxRdfwN/fv87//0nt6NqTLSoqCj179kRMTAz3KB0A1q5dW6Ocp0+fxsiRIxt944A0HWdnZ6irq2Pnzp1wdXXlzuH+/ftRXFwMNzc3AEBJSQm0tLR4X1asrKygoqKCsrIyAMDjx495TTQAcNe5NEbRtLk2i6qqqpg4cSKio6ORlZVVY/vDhw/rdTwbGxv06tULQUFBePbsWYOON3bsWKipqeGrr77irQ8NDZUZr6amhunTp+PYsWP45ptvYGVl1eJ3Q6TftKt/sy4vL8fu3bt5cU3x+ZCaTExMYG1tjUOHDvHGAMvKysKvv/6K9957743H8PT0hIqKCjZs2FCjLY30vLq4uEBXVxebNm3iPVaTkp6/58+f4+XLl7xtvXr1go6OTov+cnz1saC6ujr69+8PxhgqKiqa/P9/W0TXnmyyfiempaUhNTWVFzdlyhSIxWKuGVF1lZWVNcb0Iy2jU6dO8Pf3R1xcHFxdXREWFoaPP/4YH330EYYPH871CThz5gzMzMywdOlSfPXVV9i1axfGjh3L/W4BgA0bNmDo0KFYs2YNvv76a2zatAnz589H165deUNHKZI2d2cRADZv3ozExETY2dlh3rx56N+/Px4/foyLFy/i9OnTNcYTfB0VFRV8/fXXePfddzFgwAB4e3ujS5cuKCgoQGJiInR1dfHf//73tccwMjLC4sWLubGYXF1d8ddff+Hnn3+GoaEh71uq1OzZs7Fz504kJiZiy5Yt9f4MGsvBwQEGBgaYM2cOPv74YwgEAnz33Xe8X5RA03w+RLZt27bh3XffxYgRI+Dj44MXL15g165d0NPTw7p16964v4WFBT777DN8/vnncHR0hJeXF4RCIc6fPw9TU1MEBgZCV1cXX331FWbNmoWhQ4di2rRp6NSpE+7cuYOTJ09i5MiRCA0NxfXr1zF27FhMmTIF/fv3h5qaGn744QcUFhZi2rRpzf9h/L9x48bB2NgYI0eOhJGREbKzsxEaGgo3Nzfo6OgAaNr//20VXXs1ubu7IyYmBv/617/g5uaGW7duITw8HP379+d9UR49ejQWLFiAwMBAZGZmYty4cWjXrh1yc3Nx/PhxfPnll5g0aVKLlZv8z7p169CpUyeEhoZi6dKl6NChA+bPn49NmzahXbt2AIDBgwfDxcUF//3vf1FQUAAtLS0MHjwYP//8M+zt7QEAEyZMQF5eHg4cOICioiIYGhpi9OjRWL9+Pa9DqUJp+Q7YrUNhYSFbtGgR69atG2vXrh0zNjZmY8eOZXv37mWMyR4ugrH/DTlz8OBB3vqMjAzm5eXFOnbsyIRCIevRowebMmUKS0hI4GKkQzPIGnupsrKSrVmzhhkbGzNNTU329ttvs+zsbNaxY0f2wQcfyKzDgAEDmIqKCrt792696y+tx6vDTdRWb+lQAOfPn+fW/fnnn8ze3p5pamoyU1NT9sknn7BffvmFAWCJiYm8/evy+ZDa1XZeTp8+zUaOHMk0NTWZrq4uGz9+PLt69Sov5nXXHWOMHThwgA0ZMoQJhUJmYGDARo8ezeLj42u8v4uLC9PT02MaGhqsV69ebO7cuezChQuMMcaKiorYokWLmKWlJdPW1mZ6enrMzs6OHTt2rF71rK2sc+bMYdra2jXiR48ezRsqZ8+ePeytt97irrNevXqxFStWsOLiYt5+b/r/T/6Hrr26XXsSiYRt2rSJ9ejRgwmFQjZkyBB24sQJNmfOHNajR48a++/du5fZ2NgwTU1NpqOjw6ysrNgnn3zC7t27V69yE9ISBIy9ciuItBpPnjyBgYEBNm7ciM8++6zG9iFDhqBDhw5ISEiQQ+kIIYQQ0ha0uTaLrdWLFy9qrNuxYwcAcNNrVXfhwgVkZmZi9uzZzVwyQgghhLRldGexlfjmm2/wzTff4L333kP79u3xxx9/IDIyEuPGjcMvv/zCxWVlZSE9PR3BwcEoKirC33//DQ0NDW67WCx+YyP99u3b03A1pEU9e/ZMZgen6jp16qSQ44+R1o2uPUIar012cGmNBg0aBDU1NWzduhUlJSVcpxfpmE1SUVFR2LBhA/r27YvIyEheoggA+fn5NQbAfdXatWvr1AidkKYSFBSE9evXvzbm1q1bMDMza5kCkTaDrj1CGo/uLCqZly9f4o8//nhtTM+ePXmDjhLS3P7++2/e1GiyjBo1qsaXH0Iai649QhqPkkVCCGliYWFh2LZtG0QiEQYPHoxdu3bB1ta21vjjx49jzZo1yMvLQ+/evbFlyxbeeIXr1q3DkSNHkJ+fD3V1ddjY2OCLL77g5nKvrqysDHZ2dvjrr7+QkZFR66DXhBBSV23mMbREIsG9e/ego6Mjc9xCIj+MMTx9+hSmpqYNmrJQWdA12jrV9/o8evQo/Pz8EB4eDjs7O+zYsQMuLi64du2azPmAU1JSMH36dAQGBsLd3R0RERHw9PTExYsXMXDgQABAnz59EBoaip49e+LFixcICQnBuHHjcOPGjRrTw33yyScwNTXFX3/9Va960vXXOinD70e6tlqvOl9f8hmxp+Xl5+czALS04iU/P1/el4lc0TXaupe6Xp+2trZs0aJF3GuxWMxMTU1ZYGCgzPgpU6YwNzc33jo7Ozu2YMGCWt+juLiYAWCnT5/mrT916hSztLRkV65cYQBYRkZGncrMGF1/rX1R5N+PdG21/uVN11ebubMonb0hPz8furq6ci4Nqa6kpATdunXjzlFbRddo61Sf67O8vBzp6enw9/fn1qmoqMDZ2bnGtG9Sqamp8PPz461zcXFBbGxsre+xd+9e6OnpYfDgwdz6wsJCzJs3D7GxsdDS0npjWcvKynjT4bH/b5FE11/rogy/H+l3W+tV1+urzSSL0lvfurq6dLG2Um398QRdo61bXa7PoqIiiMViGBkZ8dYbGRkhJydH5j4ikUhmvEgk4q07ceIEpk2bhufPn8PExATx8fEwNDQEUJXozZ07Fx988AGGDRuGvLy8N5Y1MDBQZi9huv5aJ0X+/Ui/21q/N11fitkAghBC2hgnJydkZmYiJSUFrq6umDJlCh48eAAA2LVrF54+fcq7o/km/v7+KC4u5pb8/PzmKjppYWFhYTAzM4OGhgbs7Oxw7ty5WmNjYmIwbNgw6OvrQ1tbG9bW1vjuu+94MXPnzoVAIOAtrq6uzV0N0opQskgIIU3E0NAQqqqqKCws5K0vLCyEsbGxzH2MjY3rFK+trQ0LCwvY29tj//79UFNTw/79+wEAZ86cQWpqKoRCIdTU1GBhYQEAGDZsGObMmSPzfYVCIXenh+74KA9pB6u1a9fi4sWLGDx4MFxcXLgvFq/q0KEDPvvsM6SmpuLSpUvw9vaGt7c3bzIIAHB1dcX9+/e5JTIysiWqQ1oJShYJIaSJSIe1qT5fu0QiQUJCAkaMGCFznxEjRtSY3z0+Pr7W+OrHlbY53LlzJ/766y9kZmYiMzMTp06dAlCVOHzxxReNqRJRMNu3b8e8efPg7e2N/v37Izw8HFpaWjhw4IDM+DFjxuBf//oX+vXrh169emHx4sUYNGhQjfF6hUIhjI2NucXAwKAlqkNaiTbTZpEQQlqCn58f5syZg2HDhsHW1hY7duxAaWkpvL29AQCzZ89Gly5dEBgYCABYvHgxRo8ejeDgYLi5ueHIkSO4cOEC9u7dCwAoLS3FF198gQkTJsDExARFRUUICwtDQUEBJk+eDADo3r07rwzS6Tx79eqFrl27tlTViZw1pINVdYwxnDlzBteuXcOWLVt425KSktC5c2cYGBjg7bffxsaNG9GxY0eZx3m181RJSUkDa0RaC0oWCSGkCU2dOhUPHz5EQEAARCIRrK2tERcXx3ViuXPnDm88MwcHB0RERGD16tVYtWoVevfujdjYWG6MRVVVVeTk5ODQoUMoKipCx44dMXz4cCQnJ2PAgAFyqSNpnRrSwQoAiouL0aVLF5SVlUFVVRW7d+/GO++8w213dXWFl5cXzM3NcfPmTaxatQrvvvsuUlNTZc6pXVvnKaLAWmKMpdZAOi5ZcXGxvItCXlHfcxMaGsp69OjBhEIhs7W1ZWlpaa+NP3bsGOvbty8TCoVs4MCB7OTJk7ztEomErVmzhhkbGzMNDQ02duxYdv36dW77rVu32Pvvv8/MzMyYhoYG69mzJwsICGBlZWUy3y83N5e1b9+e6enp1ak+UnSNtk5t5by0lXoqmvqcl4KCAgaApaSk8NavWLGC2dra1rqfWCxmubm5LCMjgwUFBTE9PT2WmJhYa/zNmzcZUHOcT6mXL1+y4uJibpGOs0jXVutT1+uL2iwShVLfxtvS2TF8fHyQkZEBT09PeHp6Iisri4vZunUrdu7cifDwcKSlpUFbWxsuLi54+fIlACAnJwcSiQR79uzBlStXEBISgvDwcKxatarG+1VUVGD69OlwdHRsng+AEEJq0ZAOVkDVo2oLCwtYW1tj2bJlmDRpEtdMQpaePXvC0NAQN27ckLmdOk8pH0oWiUKpb+PtL7/8Eq6urlixYgX69euHzz//HEOHDkVoaCiAqjY6O3bswOrVq+Hh4YFBgwbh22+/xb1797hBkV1dXXHw4EGMGzcOPXv2xIQJE7B8+XLExMTUeL/Vq1fD0tISU6ZMabbPgBBCZGlIBytZqneekuXu3bt49OgRTExMGlVeojgoWSQKQ9p429nZmVtXl9kxqscDVbNjSONv3boFkUjEi9HT04Odnd1rG4QXFxejQ4cOvHVnzpzB8ePHERYWVqf6lJWVoaSkhLcQQkhj+Pn5Yd++fTh06BCys7OxcOHCGh2sqneACQwMRHx8PP7++29kZ2cjODgY3333HWbOnAkAePbsGVasWIGzZ88iLy8PCQkJ8PDwgIWFBVxcXORSR9LyqIMLURjNMTuG9N+6zKAhdePGDezatQtBQUHcukePHmHu3Lk4fPhwnR+5UCNwQkhTq28Hq9LSUnz44Ye4e/cuNDU1YWlpicOHD2Pq1KkAqjpYXbp0CYcOHcKTJ09gamqKcePG4fPPP4dQKJRLHUnLo2RRwYjFYiQnJ+P+/fswMTGBo6OjzN5opHkUFBTA1dUVkydPxrx587j18+bNw4wZM/DWW2/V+Vj+/v68OYGlc3QqOrpGiTzR9Qf4+vrC19dX5rakpCTe640bN2Ljxo21HktTU7PGAN1tVVu+tugxtAKJiYmBhYUFnJycMGPGDDg5OcHCwkJm2zll1ByzY0j/rcsx7927BycnJzg4OHBj4EmdOXMGQUFBUFNTg5qaGnx8fFBcXAw1NbVa21MqYyPwtn6NEvmi6480l7Z+bVGyqCBiYmIwadIkWFlZITU1FU+fPkVqaiqsrKwwadKkNnHBNsfsGObm5jA2NubFlJSUIC0tjXfMgoICjBkzBjY2Njh48CDvMQ5Q1TZSOntGZmYmNmzYAB0dHWRmZuJf//pXo+uuCOgaJfJE1x9pLnRtgcZZVASVlZXMzMyMjR8/nonFYt42sVjMxo8fz8zNzVllZaWcStg49Tk3R44cYUKhkH3zzTfs6tWrbP78+UxfX5+JRCLGGGOzZs1in376KRf/559/MjU1NRYUFMSys7PZ2rVrWbt27djly5e5mM2bNzN9fX32448/skuXLjEPDw9mbm7OXrx4wRhj7O7du8zCwoKNHTuW3b17l92/f59banPw4ME2Nc6iMl+jinxe6kOR60nXX+umyHVQ5muLsbqfG0oWFUBiYiIDwFJTU2VuT0lJYQBeO4hqa1bfc7Nr1y7WvXt3pq6uzmxtbdnZs2e5baNHj2Zz5szhxR87doz16dOHqaurswEDBtQ6KLeRkRETCoVs7Nix7Nq1a9z2gwcPMgAyl9q0tWRRma9RRT4v9aHI9aTrr3VT5Doo87XFWN3PDXVwUQD3798HAG76r1dJ10vjlF19Gm8DwOTJk7k5dGURCATYsGEDNmzYIHP73LlzMXfu3HqVsSH7KDK6Rok80fVHmgtdW1WozaICkA58Wn3Wkeqk62mAVCIvdI0SeaLrjzQXuraqULKoABwdHWFmZoZNmzZBIpHwtkkkEgQGBsLc3JymmCNyQ9cokSe6/khzoWurCiWLCkBVVRXBwcE4ceIEPDw8EBYWhgMHDiAsLAweHh44ceIEgoKC2sx4T6T1qX6Nenp68noMenp60jVKmhVdf6S50LX1/1qoDaXcKXIDW6kVK1YwNTU1XgcLNTU1tmLFCnkXrVGU4dw0BWX4HKKjo5mZmRnvGjU3N2fR0dHyLlqDKcN5qQtlqCddf62TMtRBGa8txqiDi9KJiYlBUFAQ3Nzc8O6770JTUxMvXrzAzz//jKCgINjb28PLy0vexSRtnJeXFzw8PNrsLAdEvuj6I82JMcZ7/epjaWVGyaICEIvFWLZsGdzd3REbG8sbEPqDDz6Ap6cnli9fDg8PD/qlSOROVVUVY8aMkXcxSBtF1x9patJBud3d3XHkyBEMHDgQWVlZ2LRpEyZNmoSoqCilv1lDbRYVQHJyMvLy8rBq1aoaM4eoqKjA398ft27dQnJyspxKSAghhCifV2/W2Nvbo3379rC3t0dsbCzc3d2xfPlyiMVieRe1WVGyqABonCdCCCGk5dHNmiqULCoAGueJEEIIaXl0s6YKJYsKoPo4TxUVFUhKSkJkZCSSkpJQUVHRZsZ5IoQQQloS3aypQh1cFIB0nKeJEydCT08PL1684LZJe0VHR0dT5xZCCCGkCVW/WfNqB1MalJu0SgKBQOY6WesJIYQQ0jg0KHcVShYVQPXeWMXFxUhMTERERAQSExPx5MmTNtMbixBCCGlpXl5eiIqKwuXLl+Hg4ABdXV04ODggKyurTQybA9BjaIUg7Y0VGRlZa28sBwcHJCcn0/hihBBCSBNr6wO+U7KoAKS9rG7evIkpU6YgPz+f29atWzcEBgby4gghhBDStNrygO+ULCoAaS+rmTNn1tiWn5/PrVf23liEEEIIaXmULCoABwcHCAQCMMagqqqK0aNHo0uXLigoKMBvv/0GsVgMgUAABwcHeReVEEIIIUqGkkUFkJCQwE1gLpFIcObMGW6btCc0YwwJCQl499135VJGQgghhCgn6g2tALZv3879LE0aZb2uHkcIIYQQ0hTozqICePz4Mfdzx44dYWVlBcYYBAIBLl++jEePHtWII4QQQghpCpQsKgB1dXXu53/++QdJSUnc6+pD6VSPI4QQQghpCg16DB0WFgYzMzNoaGjAzs4O586de2388ePHYWlpCQ0NDVhZWeHUqVO87TExMRg3bhw6duwIgUCAzMxM3vbHjx/jo48+Qt++faGpqYnu3bvj448/RnFxcUOKr3Cqz9AikUh426q/pplcCCGEENLU6p0sHj16FH5+fli7di0uXryIwYMHw8XFBQ8ePJAZn5KSgunTp8PHxwcZGRnw9PSEp6cnb1Lu0tJSjBo1Clu2bJF5jHv37uHevXsICgpCVlYWvvnmG8TFxcHHx6e+xSeEEEIIIfVQ78fQ27dvx7x58+Dt7Q0ACA8Px8mTJ3HgwAF8+umnNeK//PJLuLq6YsWKFQCAzz//HPHx8QgNDUV4eDgAYNasWQCAvLw8me85cOBAREdHc6979eqFL774AjNnzkRlZSXU1GpWo6ysDGVlZdzrkpKS+la11ejYsWOTxhFCCCGE1FW97iyWl5cjPT0dzs7O/zuAigqcnZ2Rmpoqc5/U1FRePAC4uLjUGl9XxcXF0NXVlZkoAkBgYCD09PS4pVu3bo16P3mq3i5RIBDA0NAQnTt3hqGhIe/R86tTARJCCCGENFa9souioiKIxWIYGRnx1hsZGUEkEsncRyQS1Su+ruX4/PPPMX/+/Fpj/P39UVxczC3Vp8hTNNra2tzPjDEUFRXhwYMHKCoq4g2dUz2OECI/Td2ue926dbC0tIS2tjYMDAzg7OyMtLQ0XsyECRPQvXt3aGhowMTEBLNmzcK9e/eavG6EkLZH4W5FlZSUwM3NDf3798e6detqjRMKhdDV1eUtikpPT69J4wghzac52nX36dMHoaGhuHz5Mv744w+YmZlh3LhxePjwIRfj5OSEY8eO4dq1a4iOjsbNmzcxadKkZq8vIUT51StZNDQ0hKqqKgoLC3nrCwsLYWxsLHMfY2PjesW/ztOnT+Hq6godHR388MMPaNeuXb2PQQghzal6u+7+/fsjPDwcWlpaOHDggMz46u26+/Xrh88//xxDhw5FaGgoFzNjxgw4OzujZ8+eGDBgALZv346SkhJcunSJi1m6dCns7e3Ro0cPODg44NNPP8XZs2dRUVHR7HUmhCi3eiWL6urqsLGxQUJCArdOIpEgISEBI0aMkLnPiBEjePEAEB8fX2t8bUpKSjBu3Dioq6vjp59+goaGRr32V2R3795t0jhCSPNoiXbd5eXl2Lt3L/T09DB48GCZMY8fP8b3338PBweHWr9Ul5WVoaSkhLcQQogs9X4M7efnh3379uHQoUPIzs7GwoULUVpayvWOnj17Nvz9/bn4xYsXIy4uDsHBwcjJycG6detw4cIF+Pr6cjGPHz9GZmYmrl69CgC4du0aMjMzuXaN0kSxtLQU+/fvR0lJCUQiEUQiEcRicaM+AEVw48aNJo0jhDSP5mzXfeLECbRv3x4aGhoICQlBfHw8DA0NeTErV66EtrY2OnbsiDt37uDHH3+stazK1AmwOrFYjKSkJERGRiIpKalN/I0gpLnVO1mcOnUqgoKCEBAQAGtra2RmZiIuLo77ZXfnzh3cv3+fi3dwcEBERAT27t2LwYMHIyoqCrGxsRg4cCAX89NPP2HIkCFwc3MDAEybNg1Dhgzhhta5ePEi0tLScPnyZVhYWMDExIRbFLnjSl3duXOnSeMIIYrHyckJmZmZSElJgaurK6ZMmVKjHeSKFSuQkZGBX3/9Faqqqpg9e3aN+eSllKkToFRMTAwsLCzg5OSEGTNmwMnJCRYWFoiJiZF30QhRbKyNKC4uZgBYcXGxvItSb+3atWMA3ri0a9dO3kVtEEU+N02JPofWqT7npaysjKmqqrIffviBt3727NlswoQJMvfp1q0bCwkJ4a0LCAhggwYNeu17WVhYsE2bNtW6PT8/nwFgKSkpbyw3Y4p//UVHRzOBQMDGjx/PUlNT2dOnT1lqaiobP348EwgELDo6Wt5FbBBFPy+MKUcdlFVdz43C9YZui1RVVZs0jhDSPFqyXbdEIuFNPCBrO4DXxigLsViMZcuWwd3dHbGxsbC3t0f79u1hb2+P2NhYuLu7Y/ny5fRImpAGqvcMLqTlqaur4+XLl3WKI4TIl5+fH+bMmYNhw4bB1tYWO3bsqNGuu0uXLggMDARQ1a579OjRCA4OhpubG44cOYILFy5g7969AKqmQ/3iiy8wYcIEmJiYoKioCGFhYSgoKMDkyZMBAGlpaTh//jxGjRoFAwMD3Lx5E2vWrEGvXr3q3ZlQESUnJyMvLw+RkZE1JidQUVGBv78/HBwckJycjDFjxsinkIQoMEoWFUBd7wy0hTsIhLR2U6dOxcOHDxEQEACRSARra+sa7bqrJzTSdt2rV6/GqlWr0Lt3b167blVVVeTk5ODQoUMoKipCx44dMXz4cCQnJ2PAgAEAAC0tLcTExGDt2rUoLS2FiYkJXF1dsXr1agiFwpb/EFqYtJ189bbw1UnXV29PTwipO0oWFYD0cVJTxRFCmpevry9vxIfqkpKSaqybPHkyd5fwVRoaGm/soGFlZYUzZ87Uu5zKwsTEBACQlZUFe3v7GtulA5xL4wgh9UNtFhWAjo5Ok8YRQogycXR0hJmZGTZt2lTjS7NEIkFgYCDMzc3h6OgopxISotgoWVQAdZ3zmeaGJoS0RaqqqggODsaJEyfg6emJ1NRUPH36FKmpqfD09MSJEycQFBREnQAJaSBKFhXAs2fPmjSOEEKUjZeXF6KionD58mU4ODhAV1cXDg4OyMrKQlRUFLy8vORdxBYTFhYGMzMzaGhowM7ODufOnas1NiYmBsOGDYO+vj60tbVhbW2N7777jhfDGENAQABMTEygqakJZ2dn5ObmNnc1SCtCyaICoA4uhBDyZl5eXrhx4wYSExMRERGBxMRE5ObmtqlE8ejRo/Dz88PatWtx8eJFDB48GC4uLjUGcJfq0KEDPvvsM6SmpuLSpUvw9vaGt7c3fvnlFy5m69at2LlzJ8LDw5GWlgZtbW24uLjUaZQOohwEjNUyvL+SKSkpgZ6eHoqLi6Grqyvv4tRLt27d6jTvc9euXRVyFgZFPjdNiT6H1qmtnJe2Uk9FU9/zYmdnh+HDhyM0NBRAVZvNbt264aOPPsKnn35ap/ccOnQo3Nzc8Pnnn4MxBlNTUyxbtgzLly8HABQXF8PIyAjffPMNpk2b1uR1IC2nrueG7iwqgIqKiiaNI4QQonzKy8uRnp4OZ2dnbp2KigqcnZ2Rmpr6xv0ZY0hISMC1a9fw1ltvAQBu3boFkUjEO6aenh7s7OxqPWZZWRlKSkp4C1FslCwqgI4dOzZpHCGEEOVTVFQEsVjMjekpZWRkBJFIVOt+xcXFaN++PdTV1eHm5oZdu3bhnXfeAQBuv/ocMzAwEHp6etzSrVu3xlSLtAKULCoAPT29Jo0jhBBCpHR0dJCZmYnz58/jiy++gJ+fn8zxQOvK398fxcXF3KKIzaMIHw3KrQC6detWp0cI9O2NEELaLkNDQ6iqqqKwsJC3vrCwEMbGxrXup6KiAgsLCwCAtbU1srOzERgYiDFjxnD7FRYW8gY1LywshLW1tczjCYXCNjFzUFtCdxYVwL1797ifBQIBDA0N0blzZxgaGkIgEHDb6NsbIYS0Xerq6rCxsUFCQgK3TiKRICEhoV5zhEskEm50DXNzcxgbG/OOWVJSgrS0tDYx7zipQncWFUCPHj3wxx9/AKhqgFxUVCQzTl9fvwVLRQghpLXx8/PDnDlzMGzYMNja2mLHjh0oLS2Ft7c3AGD27Nno0qULAgMDAVS1Lxw2bBh69eqFsrIynDp1Ct999x2++uorAFU3KJYsWYKNGzeid+/eMDc3x5o1a2BqagpPT095VZO0MEoWFcDs2bPx/fffAwDs7e3xzz//4Nq1a+jbty8MDAxw9uxZAMAHH3wgz2ISQgiRs6lTp+Lhw4cICAiASCSCtbU14uLiuA4qd+7cgYrK/x4qlpaW4sMPP8Tdu3ehqakJS0tLHD58GFOnTuViPvnkE5SWlmL+/Pl48uQJRo0ahbi4OGhoaLR4/Yh80DiLCkAsFqNDhw4oKSmBiooKb+5T6WtdXV08fvxYIaezUuRz05Toc2id2sp5aSv1VDTKcF6UoQ7KisZZVCKqqqo4ePAggKrH0NVJXx88eFAhE0VCCCGEtG6ULCoILy8vREdH1+jx3L17d0RHR7ep6awIIYQQ0nIoWVQgXl5e+Pvvv7Fnzx4AwJ49e3Dz5s02lyiGhYXBzMwMGhoasLOzw7lz514bf/z4cVhaWkJDQwNWVlY4deoUbztjDAEBATAxMYGmpiacnZ2Rm5vLbc/Ly4OPjw/Mzc2hqamJXr16Ye3atSgvL+dikpKS4OHhARMTE2hra8Pa2pprZ0oIIYQoMkoWFYyqqiqGDRsGABg2bFibe/R89OhR+Pn5Ye3atbh48SIGDx4MFxcXPHjwQGZ8SkoKpk+fDh8fH2RkZMDT0xOenp7IysriYrZu3YqdO3ciPDwcaWlp0NbWhouLC16+fAkAyMnJgUQiwZ49e3DlyhWEhIQgPDwcq1at4r3PoEGDEB0djUuXLsHb2xuzZ8/GiRMnmvcDIYQQQpobayOKi4sZAFZcXCzvojRaeno6A8DS09PlXZQmUZ9zY2tryxYtWsS9FovFzNTUlAUGBsqMnzJlCnNzc+Ots7OzYwsWLGCMMSaRSJixsTHbtm0bt/3JkydMKBSyyMjIWsuxdetWZm5u/tqyvvfee8zb2/uNdZJSlmu0srKSJSYmsoiICJaYmMgqKyvlXaRGUZbz8iZtpZ6KRhnOizLUQVnV9dzQnUWiMMrLy5Gens6b0F5FRQXOzs61znCTmprKiwcAFxcXLv7WrVsQiUS8GD09PdjZ2b121pzi4mJ06NDhteV9U0xZWRlKSkp4i6KLiYmBhYUFnJycMGPGDDg5OcHCwgIxMTHyLhohhJAGomSRKIyioiKIxeJ6TWgvEoleGy/9tz7HvHHjBnbt2oUFCxbUWtZjx47h/Pnz3EC4sgQGBkJPT49bFH26xpiYGEyaNAlWVlZITU3F06dPkZqaCisrK0yaNIkSRkIIUVA0KHcrlpubi6dPn9ZYn52dzftXFh0dHfTu3bvZytZWFRQUwNXVFZMnT8a8efNkxiQmJsLb2xv79u3DgAEDaj2Wv78//Pz8uNclJSUKmzCKxWIsW7YM7u7uiI2N5Qb9tbe3R2xsLDw9PbF8+XJ4eHi0uXa2hBCi6ChZbKVyc3PRp0+f18bMnDnztduvX7+uVAmjoaEhVFVVUVhYyFtfWFjITXb/KmNj49fGS/8tLCyEiYkJL8ba2pq337179+Dk5AQHBwfs3btX5vv99ttvGD9+PEJCQjB79uzX1kcoFEIoFL42RlEkJycjLy8PkZGRvNkhgKqmAv7+/nBwcEBycjLGjBkjn0ISQghpEEoWWynpHcXDhw+jX79+vG0vXrxAXl4ezMzMoKmpWWPf7OxszJw5U+ZdSUWmrq4OGxsbJCQkcHOSSiQSJCQkwNfXV+Y+I0aMQEJCApYsWcKti4+Px4gRIwAA5ubmMDY2RkJCApcclpSUIC0tDQsXLuT2KSgogJOTE2xsbHDw4MEaCRFQNXyOu7s7tmzZgvnz5zdNpRXE/fv3AQADBw6UuV26XhpHCCFEcVCy2IoZtxdgqIkq+hm/mphoY6R57Y83NZ+owri9oHkLJyd+fn6YM2cOhg0bBltbW+zYsQOlpaVc28DZs2ejS5cuCAwMBAAsXrwYo0ePRnBwMNzc3HDkyBFcuHCBuzMoEAiwZMkSbNy4Eb1794a5uTnWrFkDU1NTLiEtKCjAmDFj0KNHDwQFBeHhw4dceaR3JhMTE+Hu7o7Fixdj4sSJXHtHdXX1N3aEUQbSu7JZWVkYOnQodu/ejZs3b6JXr1748MMPuaGKqt+9JYQQohgoWWzFFtioo9/vC4Df67dfv//fVxlNnToVDx8+REBAAEQiEaytrREXF8d1ULlz5w7vrp+DgwMiIiKwevVqrFq1Cr1790ZsbCzvDtgnn3yC0tJSzJ8/H0+ePMGoUaMQFxcHDQ0NAFV3Im/cuIEbN26ga9euvPKw/59u8dChQ3j+/DkCAwO5RBUARo8ejaSkpOb6OFoNR0dHmJmZYebMmbh9+zYqKyu5bStWrECPHj1gbm4OR0dHOZaSEEJIQwgYe2WyYSWlaBOZX7x4EW6jh+HMjxHoZ2lZr32zc3LwtscMnPztAoYOHdpMJWw6inZumouifw6enp748ccfoa6uDj8/P/j4+GD//v3Yvn07ysvL4eHhgdjYWHkXs94U/bzUVVupp6JRhvOiDHVQVnU9N3RnsRUTPWN4od8HMLWu134vRBKInrWJ7wCklSgvL8fJkyehp6cHHR0dbN68GZs3bwYAdOvWDSUlJTh58iTKy8uhrq6cd70JIURZUbLYSj1//hxA1R3GV9WlgwshLWn37t2orKyEvb09EhISeNvu378PJycnxMfHY/fu3bzORoQ0NbFYjOTkZNy/fx8mJiZwdHSk4ZoIaSRKFlupnJwcAKh1LL+60NHRaariEPJaN2/eBAD88ssvMDIywsaNG+Hu7o4TJ05g9erViI+P58UR0hxiYmKwbNky5OXlcevMzMwQHBwMLy8v+RWMEAVHyWIrJe2Ja2lpCS0tLd426dA4sobVkaJBuUlL6tGjBwBAV1cXt2/fRmpqKhITE2FhYYHbt2+jU6dOePr0KRdHSFOTziDk7u6OyMhIDBw4EFlZWdi0aRMmTZqEqKgoShgJaSBKFlspQ0ND/Oc//3ltTL9+/RSiAwtpO8rLy2FpaVnjzk5FRYX8CkWUHs0gREjzormhCSGNdvv2bQDAy5cvce/ePaxcuRLXr1/HypUrce/ePbx8+ZIXR0hTks4gtGrVqlpnELp16xaSk5PlVEJCFBvdWSSENJq5uTkAoFOnTigqKsKWLVuwZcsWAFUDnxsaGqKoqIiLI6Qp0QxChDQvurNICGk0KysrAFVjdgkE/NmDBAIBN/WkNI6QplR9BiFZaAYhQhqHkkUF8+zZM/j5+QGomvru2bNnci4RIUBRUREAoKysDIwxzJo1CxkZGZg1axYYYygrK+PFEdKUpDMIbdq0CRKJhLdNIpEgMDCQZhAipBEoWVQgtra20NHRwW+//QYA+O2336CjowNbW1s5l4y0dYaGhgAAoVAIxhi+++47DBkyBN999x0YYxAKhbw4QpqSqqoqgoODceLECXh6eiI1NRVPnz5FamoqPD09ceLECQQFBVHnFkIaiJJFBWFra4vz58/L3Hb+/HlKGIlcXb58GUBVb2hZpOulccouLCwMZmZm0NDQgJ2dHc6dO/fa+OPHj8PS0hIaGhqwsrLCqVOneNvXrVsHS0tLaGtrw8DAAM7OzkhLS+O25+XlwcfHB+bm5tDU1ESvXr2wdu3aWs+HMvLy8kJUVBQuX74MBwcH6OrqwsHBAVlZWTRsDiGNRMmiAnj27FmtiaLU+fPn6ZE0kZtbt24BAKRTzZuYmODbb7/l2ohJ10vjlNnRo0fh5+eHtWvX4uLFixg8eDBcXFzw4MEDmfEpKSmYPn06fHx8kJGRAU9PT3h6evLa3/Xp0wehoaG4fPky/vjjD5iZmWHcuHF4+PAhgKpB/CUSCfbs2YMrV64gJCQE4eHhWLVqVYvUubXw8vLCjRs3kJiYiIiICCQmJiI3N5cSRUIaiZJFBTBt2jTuZwcHB8yZMwcAMGfOHDg4OHDbJk+e3OJlIwQAOnTowP1sbGyM+/fvY/bs2dyUa7LilNX27dsxb948eHt7o3///ggPD4eWlhYOHDggM/7LL7+Eq6srVqxYgX79+uHzzz/H0KFDERoaysXMmDEDzs7O6NmzJwYMGIDt27ejpKQEly5dAgC4urri4MGDGDduHHr27IkJEyZg+fLliImJqbWcZWVlKCkp4S2EECILJYsK4Pfff+d+TklJwaFDhwAAhw4dQkpKisw4QlrSnj17uJ9FIhFvW/XhSqrHKaPy8nKkp6fD2dmZW6eiogJnZ2ekpqbK3Cc1NZUXDwAuLi61xpeXl2Pv3r3Q09PD4MGDay1LcXHxa5PzwMBA6OnpcUu3bt1eVzWFEBMTAwsLCzg5OWHGjBlwcnKChYXFa5NmQsibUbKoACorK7mfHR0dsXTpUsybNw9Lly7l9e57tRcgIS3lyZMnvNdmZmY4evQozMzMXhunbIqKiiAWi2FkZMRbb2RkVCOJlhKJRHWKP3HiBNq3bw8NDQ2EhIQgPj6+1g5DN27cwK5du7BgwYJay+rv74/i4mJuyc/Pr0sVWy3pdH9WVla8Di5WVlaYNGkSJYyENAINyq0A+vTpg7/++gsAasxC0LVrV+7nvn37tnjZCAGq5iKXDo8DVHW4mDp1qsw40jBOTk7IzMxEUVER9u3bhylTpiAtLQ2dO3fmxRUUFMDV1RWTJ0/GvHnzaj2eUCjkeqkrOpruj5DmRXcWFUD1Not3796Fi4sLkpOT4eLigrt378qMI6Ql1bUtorK3WTQ0NISqqioKCwt56wsLC2FsbCxzH2Nj4zrFa2trw8LCAvb29ti/fz/U1NSwf/9+Xsy9e/fg5OQEBwcH7N27twlqpBhouj9CmhcliwqgS5cuvNe//PILHB0d8csvv7w2jpCW8upg21paWti0aRO0tLReG6ds1NXVYWNjg4SEBG6dRCJBQkICRowYIXOfESNG8OIBID4+vtb46setfje3oKAAY8aMgY2NDQ4ePFgjaVJmNN0fIc2r7fw2UWCPHj1q0jhCmtqrj0KfP3+OVatW4fnz56+NU0Z+fn7Yt28fDh06hOzsbCxcuBClpaXw9vYGAMyePRv+/v5c/OLFixEXF4fg4GDk5ORg3bp1uHDhAnx9fQEApaWlWLVqFc6ePYvbt28jPT0d77//PgoKCrgREKSJYvfu3REUFISHDx9CJBLV2k5S2dB0f4Q0L2qzqAA6deoEABgyZAgePXqEO3fucNt69OiBDh06ICMjg4sjpKWZm5sjJyenTnHKburUqXj48CECAgIgEolgbW2NuLg4rhPLnTt3eHf9HBwcEBERgdWrV2PVqlXo3bs3YmNjubthqqqqyMnJwaFDh1BUVISOHTti+PDhSE5OxoABAwBU3Ym8ceMGbty4wWvHDPxvjEtlVn26v+ptFgGa7o+QJsEaIDQ0lPXo0YMJhUJma2vL0tLSXht/7Ngx1rdvXyYUCtnAgQPZyZMnedujo6PZO++8wzp06MAAsIyMjBrHePHiBfvwww9Zhw4dmLa2NvPy8mIikajOZS4uLmYAWHFxcZ33aS0SExMZAAaAubu7s9DQULZ//34WGhrK3N3duW2JiYnyLmqDKPK5aUqK/DlYWVlx1yEAZmxszA4ePMiMjY15662srORd1HpT5PNSH4pez+joaCYQCNj48eNZSkoKKykpYSkpKWz8+PFMIBCw6OhoeRexQRT9vDCmHHVQVnU9N/V+DN0csxOUlpZi1KhR2LJlS63vu3TpUvz3v//F8ePH8dtvv+HevXttZlR+6bfmYcOG4fLly/D19YWPjw98fX2RlZWFYcOG0bdmIlc9evTgvRaJRPD29q7xGPTVOEKainS6v0uXLvGm+7t8+TJN90dII9U7WWyO2QlmzZqFgICAGgPTShUXF2P//v3Yvn073n77ba4Bd0pKCs6ePVvfKigcVVVVBAcHIz09vUZSXlhYiPT0dAQFBdGQEERuqvfcvXXrFoyMjCAUCmFkZMSb4q+2HsGENBfWBh7DE9Lc6pUstsTsBLKkp6ejoqKCdxxLS0t079691uMo41RWsn7pCQQC+mVI5K56O1pzc3MUFhairKwMhYWFvHaK1eMIaUrSQbllDUNEg3KTpiAWi5GUlITIyEgkJSVBLBbLu0gtpl7JYnPOTvA6IpEI6urq0NfXr/NxlGkqK+mAs+PHj8fjx48REhICX19fhISE4NGjRxg/fjyWL1/epi5c0rr07t27SeMIqQ+xWIyFCxeCMQaBQMDbJv1CvXDhQvodSRqsrU8lqbRD5yjTVFbSAWcdHBzQr18/LF26FKGhoVi6dCn69euHESNG0ICzRK6++OIL7uf8/HwMHDgQHTp0wMCBA3n/96rHEdJUkpKSuCY6Y8eO5U33N3bsWADAgwcPkJSUJMdSEkVFU0nWM1lsztkJXsfY2Bjl5eU15pV93XGEQiF0dXV5i6KSDiTr7+8v82JdtWoVL46Qlnbw4EHu527duiErKwuPHz9GVlYW765+9ThCmsqZM2cAVA1wHhMTg5cvX+K///0vXr58iZiYGNjb2/PiCKmrV6eStLe3R/v27bmpJN3d3dvEk716JYstOTtBdTY2NmjXrh3vONeuXcOdO3fqdRxFJR3IeNSoUTIv1pEjR/LiCGlpN2/ebNI4QupD2ha2f//+6N27N+9RYe/evdGvXz9eHCF1RVNJVqn3oNx+fn6YM2cOhg0bBltbW+zYsaPG7ARdunRBYGAggKrZCUaPHo3g4GC4ubnhyJEjuHDhAm/e0sePH+POnTu4d+8egKpEEKi6o2hsbAw9PT34+PjAz88PHTp0gK6uLj766COMGDGC+8bYlr3aRoeQliYdEkdXVxe3b9+Gt7c3bt68iV69euHgwYPo3r07nj59SkPnkGbRvXt3AKgxVzYA3L59m7ujLY0jpK5oKskq9W6zOHXqVAQFBSEgIADW1tbIzMysMTtB9Q9NOjvB3r17MXjwYERFRfFmJwCAn376CUOGDIGbmxsAYNq0aRgyZAjCw8O5mJCQELi7u2PixIl46623YGxs3CbaCQDg2uL8+eef8PDwQFhYGA4cOICwsDB4eHjgzz//5MURIi/l5eUYMmQIYmNjcfnyZcTGxmLIkCGoqKiQd9GIEhszZkyTxim6sLAwmJmZQUNDA3Z2djh37lytsfv27YOjoyMMDAxgYGAAZ2fnGvFz586FQCDgLa6urs1djVaBppL8f80/PnjroMgjyEtncPn3v//N1NTUeDNiqKmpsRkzZtAMLkpAkT8HX19f7ppUV1dnK1euZNevX2crV65k6urq3DZfX195F7XeFPm81Ici1/PUqVO834u1LadOnZJ3UeutvuflyJEjTF1dnR04cIBduXKFzZs3j+nr67PCwkKZ8TNmzGBhYWEsIyODZWdns7lz5zI9PT129+5dLmbOnDnM1dWV3b9/n1seP37cbHVoTSorK5mZmRkbP348E4vFvG1isZiNHz+emZubs8rKSjmVsHHqem4oWVQAlZWVrFOnTgwAc3NzY2FhYezAgQMsLCyMubm5MQCsc+fOSn+xKjtF/hyCg4MZANapUycmEAh4f6BVVFSYoaEhA8CCg4PlXdR6U+TzUh+KXE/pF2YANa6/6q9nzJgh76LWW33Pi62tLVu0aBH3WiwWM1NTUxYYGFin/SsrK5mOjg47dOgQt27OnDnMw8OjXuWuTpGvLcaUdypJxppxuj8iH9XbJbKqJJ8G4yathpWVFQCgpKSkRiNwgUCAp0+f8uIIaUq3b98GAHTo0EFmJ4QOHTrw4pRVQybOeNXz589RUVHBfWZSSUlJ6Ny5M/r27YuFCxfi0aNHtR5D2SbFkE4lefnyZd5UkllZWW1mKsl6d3AhLS85ORkPHjzAv//9bxw9ehQnT57ktqmpqWHGjBmIiIhAcnJym2mTQ1qXoqIiAFV/JAQCAWbOnIlly5YhODgY33//PcrKynhxhDQlDQ0NAFWdJTU0NHjDmLRr1w6PHz/mxSmr102ckZOTU6djrFy5EqampryE09XVFV5eXjA3N8fNmzexatUqvPvuu0hNTZU5zWxgYCDWr1/fuMq0Ml5eXvDw8EBycjLu378PExMTODo6tplpdilZVADSDkPff/893N3d8e6770JTUxMvXrzAzz//jIiICF4cIS2tY8eOAKr+GJeXl+Pw4cM4fPgwgKo7G0KhEC9fvuTiCGlKw4YN44ZWk34xkar+etiwYS1aLkWzefNmHDlyBElJSbzEetq0adzPVlZWGDRoEHr16oWkpCRu0PPq/P394efnx70uKSlR6FnUpFRVVdvsDRlKFhVA9XEWf/zxR95jlg8++ABvvfUW/vzzTxpnkcjN5cuXAYC7o1H9cZ/0j8Tt27dx+fJljBs3ruULSJSaoaEh9/OrzXOqv64ep4waMnGGVFBQEDZv3ozTp09j0KBBr43t2bMnDA0NcePGDZnJolAohFAorH8FSKtFbRaVAI2zSOQtLy8PQFVC+PLlS+zduxf37t3D3r178fLlSy55lMYR0pSkj5mbKk5RNWTiDADYunUrPv/8c8TFxdXp7uvdu3fx6NEj5R8uhnAoWVQA1cdZ9PT05E335+npSeMsErkzNzcHUDU4t1AoxPz582Fqaor58+dDQ0ODG4xbGkdIU6rrl5C28GXFz88P+/btw6FDh5CdnY2FCxfWmDjD39+fi9+yZQvWrFmDAwcOwMzMDCKRCCKRCM+ePQMAPHv2DCtWrMDZs2eRl5eHhIQEeHh4wMLCAi4uLnKpI2l5lCwqAOm3t02bNsnsjfXFF1/w4ghpadJezkVFRTLvdEs7tlBvaNIcCgoKuJ9fffxZ/XX1OGVV34kzvvrqK5SXl2PSpEkwMTHhlqCgIABV7fQuXbqECRMmoE+fPvDx8YGNjQ2Sk5PpUXMbQm0WFYCjoyPMzMyQkpKC69ev488//+R6Y40cORITJ06Eubk5HB0d5V1U0kZJk8HS0lJUVFRg5cqV8PHxwf79+xESEoLy8nJeHCFNSTpFLACMHTsW7733HtcJ8NSpUzh16lSNOGXm6+sLX19fmduSkpJ4r990t1VTUxO//PJLE5WMKCpKFhWAqqoqgoODMWnSJEycOBH+/v5wd3dHVlYWJk6ciBMnTiAqKqrNdOEnrY+0c1WXLl1w//59bNmyBVu2bAFQ1Ru6S5cuKCgooE5YpFlIv4wAQEJCApccAvw7i9XjCCF1R4+hFQQNCkoUgY6OTo0hMrp16wYdHR05lYi0BdW/hLxu6Bz6skJIw1CyqEC8vLxw48YNJCYmIiIiAomJicjNzaVEkcidtHNVTk6OzN7Q0gGBqRMWaQ6bNm1q0jhCCB89hlYwbXlQUNJ6Se/Y9OvXD6WlpZg/fz63rUePHrC0tEROTg7d2SHNwsPDA+rq6q99zKyurg4PD48WLBUhyoPuLBJCmkxJSUmNHqd3797l5oYmpDmoqqoiMjLytTGRkZHUrpuQBqJkkRDSaNLHywUFBVBVVcWnn36K3NxcfPrpp1BVVeUSSHoMTZqLl5cXoqOj0b17d976Hj16IDo6mprrENIIlCwSQhpNOudz+/btYWxsjM2bN6N3797YvHkzTExM0L59e14cIc3By8sLf//9N/bs2QMA2LNnD27evEmJIiGNRMkiIaTRpHNDd+zYkTd3OVA1HaU0SZTGEdJcVFVVuSnrhg0bRo+eCWkClCwSQhqt+tzQL1684PWGfvHiBc0NTQghCox6QxNCGq363NCMsRq9oXv06IHbt2/T3NCEEKKAKFkkhDSadM5nkUiEyspK3ra7d+9CTU2NF0cIIURx0GNoonDCwsJgZmYGDQ0N2NnZ4dy5c6+NP378OCwtLaGhoQErKyveVGAAwBhDQEAATExMoKmpCWdnZ+Tm5nLb8/Ly4OPjA3Nzc2hqaqJXr15Yu3ZtjTHdLl26BEdHR2hoaKBbt27YunVr01W6lZPO+VxWVgaJRIKZM2ciIyMDM2fOhEQi4WbRoLmhCSFE8VCySBTK0aNH4efnh7Vr1+LixYsYPHgwXFxcah2SJSUlBdOnT4ePjw8yMjLg6ekJT09PZGVlcTFbt27Fzp07ER4ejrS0NGhra8PFxQUvX74EUDUriUQiwZ49e3DlyhWEhIQgPDwcq1at4o5RUlKCcePGoUePHkhPT8e2bduwbt067N27t3k/kFZC2oFFQ0MDAHD48GEMGTIEhw8fhkAg4NZTb2hCCFFArI0oLi5mAFhxcbG8i0JeUZ9zY2tryxYtWsS9FovFzNTUlAUGBsqMnzJlCnNzc+Ots7OzYwsWLGCMMSaRSJixsTHbtm0bt/3JkydMKBSyyMjIWsuxdetWZm5uzr3evXs3MzAwYGVlZdy6lStXsr59+9Z6jJcvX7Li4mJuyc/PV9hrNCgoiAFgnTp1YqqqqgwAt6iqqrJOnToxACwoKEjeRa23tvK7Q5nqmZ6ezgCw9PR0eRel0ZThvChDHZRVXc8N3VkkCqO8vBzp6elwdnbm1qmoqMDZ2Rmpqaky90lNTeXFA4CLiwsXf+vWLYhEIl6Mnp4e7Ozsaj0mABQXF6NDhw6893nrrbegrq7Oe59r167hn3/+kXmMwMBA6OnpcUu3bt1eU/vWTdrL+eHDhzIH5X748CEvjhBCiOKgZJEojKKiIojFYhgZGfHWGxkZQSQSydxHJBK9Nl76b32OeePGDezatQsLFix44/tUf49X+fv7o7i4mFvy8/NlxikC6awZmpqaMDEx4Q3KbWpqCk1NTV4cIYQQxUHJIiH1UFBQAFdXV0yePBnz5s1r1LGEQiF0dXV5i6Jr164dMjMz4enpCSsrK3h6eiIjI4PrDd1WNHUnrHXr1sHS0hLa2towMDCAs7Mz0tLSeDFffPEFHBwcoKWlBX19/aauEiGkDaNkkSgMQ0NDqKqqorCwkLe+sLAQxsbGMvcxNjZ+bbz037oc8969e3BycoKDg0ONjiu1vU/191Bmd+7cAVDV0cfAwACxsbG4fPkyYmNjYWBggKdPn/LilFlzdMLq06cPQkNDcfnyZfzxxx8wMzPDuHHjuMf7QFUzjcmTJ2PhwoXNXkdCSNtCySJRGOrq6rCxsUFCQgK3TiKRICEhASNGjJC5z4gRI3jxABAfH8/Fm5ubw9jYmBdTUlKCtLQ03jELCgowZswY2NjY4ODBgzWmtBsxYgR+//13VFRU8N6nb9++MDAwaHilFUSvXr2aNE6Rbd++HfPmzYO3tzf69++P8PBwaGlp4cCBAzLjv/zyS7i6umLFihXo168fPv/8cwwdOhShoaFczIwZM+Ds7IyePXtiwIAB2L59O0pKSnDp0iUuZv369Vi6dCmNZUkIaXKULBKF4ufnh3379uHQoUPIzs7GwoULUVpaCm9vbwDA7Nmz4e/vz8UvXrwYcXFxCA4ORk5ODtatW4cLFy7A19cXQNW8xUuWLMHGjRvx008/4fLly5g9ezZMTU3h6ekJ4H+JYvfu3REUFISHDx9CJBLx2iLOmDED6urq8PHxwZUrV3D06FF8+eWX8PPza7kPR46knz9Q1YnFzMwM2traMDMz43VqqR6njJqjE5as99i7dy/09PQwePDgBpe1rKwMJSUlvIUQQmRpWw2JiMKbOnUqHj58iICAAIhEIlhbWyMuLo7rTHLnzh3eXT8HBwdERERg9erVWLVqFXr37o3Y2FgMHDiQi/nkk09QWlqK+fPn48mTJxg1ahTi4uK4sQHj4+Nx48YN3LhxA127duWVhzEGoKoH9a+//opFixbBxsYGhoaGCAgI4E17p8w+++wz7mczMzPu59LSUt7rzz77jHfHTNm8rhNWTk6OzH3e1AlL6sSJE5g2bRqeP38OExMTxMfHw9DQsMFlDQwMxPr16xu8PyGk7aBkkSgcX19f7s7gq5KSkmqsmzx5MiZPnlzr8QQCATZs2IANGzbI3D537lzMnTv3jeUaNGgQkpOT3xinjKrPeNMUcaQmJycnZGZmoqioCPv27cOUKVOQlpaGzp07N+h4/v7+vDvfJSUlCj18EyGk+VCySAhptOp3XP/55x988803uHnzJnr16oW5c+dy7TZfvTOrbJqjE5aUtrY2LCwsYGFhAXt7e/Tu3Rv79+/nNbuoD6FQCKFQ2KB9CSFtC7VZJIQ02tWrVwFU3aXV0tLCkiVLsGvXLixZsgRaWlo14pRVc3TCqk31ObcJIaQ5UbJICGm0goICAFVtOHV0dLBy5Upcv34dK1euhI6OTo04ZdbUnbBKS0uxatUqnD17Frdv30Z6ejref/99FBQU8JpX3LlzB5mZmbhz5w7EYjEyMzORmZmJZ8+etewHQAhROvQYmhDSaN27d0d+fj46deqEhw8fYuvWrdi6dSu33dDQEEVFRW1iBpem7oSlqqqKnJwcHDp0CEVFRejYsSOGDx+O5ORkDBgwgDtOQEAADh06xL0eMmQIACAxMRFjxoxpgZq3vNzcXG4Mz+qys7N5/8qio6OD3r17N1vZCFEmAibtzqnkSkpKoKenh+LiYqWYKUOZ0Lmposifw/3792FqagoA+PXXX/HVV18hNzcXvXv3xsKFCzFu3DgAVQObm5iYyLOo9abI56U+FK2eubm56NOnT6OOcf369VafMCraeZFFGeqgrOp6bujOIiGk0e7fv8/9LE0MASArKws//PADL07RkkXSOknvKB4+fBj9+vXjbXvx4gU33qd0XvLqsrOzMXPmTJl3JQkhNVGySAhpNEtLS6Snp8PDwwN3796tsb1r16748ccfYWlpKYfSEWXWr18/DB06tMb6kSNHyqE0hCgn6uBCCGk0LS0tDB06FPn5+Xjy5Ak3s8jgwYPx5MkT5OfnY+jQobye0YQQQhQDJYuEkCalp6fHzYN84MAB6OnpyblEhBBCGoOSRUIIIYQQUitKFgkhhBBCSK0oWSSEEEIIIbWiZJEQQgghhNSKhs4hhBCikIzbC6D55Dpwr373PTSfXIdxe0EzlYoQ5UPJIiGEEIW0wEYd/X5fAPxev/36/f++hJC6oWSREEKIQtqTXo6pAd+gXz0He8/OycGe4BmY0EzlIkTZULJICCFEIYmeMbzQ7wOYWtdrvxciCUTPWPMUihAlRB1cCCGEEEJIrShZJIQQQgghtWpQshgWFgYzMzNoaGjAzs4O586de2388ePHYWlpCQ0NDVhZWeHUqVO87YwxBAQEwMTEBJqamnB2dkZubi4v5vr16/Dw8IChoSF0dXUxatQoJCYmNqT4hBBCCCGkjurdZvHo0aPw8/NDeHg47OzssGPHDri4uODatWvo3LlzjfiUlBRMnz4dgYGBcHd3R0REBDw9PXHx4kUMHDgQALB161bs3LkThw4dgrm5OdasWQMXFxdcvXoVGhoaAAB3d3f07t0bZ86cgaamJnbs2AF3d3fcvHkTxsbGjfwYCCGEKJLnz58DAC5evFhj24sXL5CXlwczMzNoamrW2J6dnd3s5SNEqbB6srW1ZYsWLeJei8ViZmpqygIDA2XGT5kyhbm5ufHW2dnZsQULFjDGGJNIJMzY2Jht27aN2/7kyRMmFApZZGQkY4yxhw8fMgDs999/52JKSkoYABYfH1+nchcXFzMArLi4uG4VJS2Gzk0VZfoc0tPTGQCWnp4u76I0mjKdl9dRtHru27ePAWjUcv36dXlX440acl5CQ0NZjx49mFAoZLa2tiwtLa3W2L1797JRo0YxfX19pq+vz8aOHVsjXiKRsDVr1jBjY2OmoaHBxo4dW6/PTtGurbakruemXncWy8vLkZ6eDn9/f26diooKnJ2dkZqaKnOf1NRU+Pn58da5uLggNjYWAHDr1i2IRCI4Oztz2/X09GBnZ4fU1FRMmzYNHTt2RN++ffHtt99i6NChEAqF2LNnDzp37gwbGxuZ71tWVoaysjLudUlJSX2qSgghpBXz9PQEAFhaWkJLS4u3LTs7GzNnzsThw4fRr18/mfvr6Oigd+/ezV3MFlffp39JSUmYPn06HBwcoKGhgS1btmDcuHG4cuUKunTpAqBuT/+IcqtXslhUVASxWAwjIyPeeiMjI+Tk5MjcRyQSyYwXiUTcdum62mIEAgFOnz4NT09P6OjoQEVFBZ07d0ZcXBwMDAxkvm9gYCDWr19fn+oRQghREIaGhvjPf/7z2ph+/fph6NChLVSi1mH79u2YN28evL29AQDh4eE4efIkDhw4gE8//bRG/Pfff897/fXXXyM6OhoJCQmYPXs2GGPYsWMHVq9eDQ8PDwDAt99+CyMjI8TGxmLatGk1jkk3a5SPQvSGZoxh0aJF6Ny5M5KTk3Hu3Dl4enpi/PjxuH//vsx9/P39UVxczC35+fktXGpCCCGk5Uif/lV/Uvemp3+vev78OSoqKtChQwcAb376J0tgYCD09PS4pVu3bo2oFWkN6nVn0dDQEKqqqigsLOStLywsrLWTibGx8Wvjpf8WFhbCxMSEF2NtbQ0AOHPmDE6cOIF//vkHurq6AIDdu3cjPj4ehw4dkvltSSgUQigU1qd6hJB6ys3NxdOnT2usl3YgeF1HAmV9DEiIvDTk6d+rVq5cCVNTUy45rMvTv1f5+/vzmp+VlJRQwqjg6pUsqqurw8bGBgkJCVx7EYlEgoSEBPj6+srcZ8SIEUhISMCSJUu4dfHx8RgxYgQAwNzcHMbGxkhISOCSw5KSEqSlpWHhwoUA/tfrTUWFfyNURUUFEomkPlUghDSR3Nxc9OnT57UxM2fOfO3269evU8JISCuxefNmHDlyBElJSY1qi0g3a5RPvYfO8fPzw5w5czBs2DDY2tpix44dKC0t5dpHzJ49G126dEFgYCAAYPHixRg9ejSCg4Ph5uaGI0eO4MKFC9i7dy+AqvaIS5YswcaNG9G7d2+u8aypqSmXkI4YMQIGBgaYM2cOAgICoKmpiX379uHWrVtwc3Nroo+CEFIf0juKsjoR1GXokpkzZ8q8K0kIaZiGPP2TCgoKwubNm3H69GkMGjSIW1+Xp39E+dU7WZw6dSoePnyIgIAAiEQiWFtbIy4ujrtFfefOHd4dQAcHB0RERGD16tVYtWoVevfujdjYWG6MRQD45JNPUFpaivnz5+PJkycYNWoU4uLiuG82hoaGiIuLw2effYa3334bFRUVGDBgAH788UcMHjy4sZ8BIaQRautEMHLkSDmUhpC2qyFP/4Cq3s5ffPEFfvnlFwwbNoy3rS5P/4jyq3eyCAC+vr61XnhJSUk11k2ePBmTJ0+u9XgCgQAbNmzAhg0bao0ZNmwYfvnll3qXlRBCCGkr6vv0b8uWLQgICEBERATMzMy4dojt27dH+/bt6/T0jyi/BiWLhBBCCGl96vv076uvvkJ5eTkmTZrEO87atWuxbt06AG9++keUHyWLhBBCiBKpz9O/vLy8Nx6vLk//iHJTiHEWCSGEEEKIfFCySAghhBBCakXJIiGEEEIIqRW1WSSENJhxewE0n1wH7tXve6fmk+swbi9oplIRQghpSpQsEkIabIGNOvr9vgD4vX779fv/fQkhhLR+lCwSQhpsT3o5pgZ8g36WlvXaLzsnB3uCZ2BCM5WLEEJI06FkkRDSYKJnDC/0+wCm1vXa74VIAtEz1jyFIoQQ0qSogwshhBBCCKkVJYuEENLEwsLCYGZmBg0NDdjZ2eHcuXOvjT9+/DgsLS2hoaEBKysrnDp1ird93bp1sLS0hLa2NgwMDODs7Iy0tDRezOPHj/Hvf/8burq60NfXh4+PD549e9bkdWuNnj9/josXL3JLdnY2ACA7O5u3/vnz53IuKSGKiR5DE0IaRPqH9+LFizW2vXjxAnl5eTAzM4OmpmaN7dI/5sro6NGj8PPzQ3h4OOzs7LBjxw64uLjg2rVr6Ny5c434lJQUTJ8+HYGBgXB3d0dERAQ8PT1x8eJFDBw4EADQp08fhIaGomfPnnjx4gVCQkIwbtw43LhxA506dQIA/Pvf/8b9+/cRHx+PiooKeHt7Y/78+YiIiGjR+stDTk4ObGxsaqyfOXMm73V6ejqGDh3aUsUiRGkIGGNtouFQSUkJ9PT0UFxcDF1dXXkXh1RD56aKon0OX3/9NebNm9eoY1y/fh29e/duohI1j/qeFzs7OwwfPhyhoaEAAIlEgm7duuGjjz7Cp59+WiN+6tSpKC0txYkTJ7h19vb2sLa2Rnh4+GvLdPr0aYwdOxbZ2dno378/zp8/j2HDhgEA4uLi8N577+Hu3bswNTVt8nq2Js+fP0dOTg73urYvK5aWltDS0pJHERtMkc+LlDLUQVnV9dzQnUVCSIN4enoCkP0HODs7GzNnzsThw4fRr18/mfvr6Oi0+kSxvsrLy5Geng5/f39unYqKCpydnZGamipzn9TUVPj5+fHWubi4IDY2ttb32Lt3L/T09DB48GDuGPr6+lyiCADOzs5QUVFBWloa/vWvf9U4TllZGcrKyrjXJSUlda5na6OlpVXjjuHIkSPlVBpClA8li4SQBjE0NMR//vOf18b069evTT32KyoqglgshpGREW+9kZER785XdSKRSGa8SCTirTtx4gSmTZuG58+fw8TEBPHx8TA0NOSO8eojbjU1NXTo0KHGcaQCAwOxfv36etWPENI2UQcXQghRAE5OTsjMzERKSgpcXV0xZcoUPHjwoMHH8/f3R3FxMbfk5+c3YWkJIcqEkkVCCGkihoaGUFVVRWFhIW99YWEhjI2NZe5jbGxcp3htbW1YWFjA3t4e+/fvh5qaGvbv388d49XEsbKyEo8fP671fYVCIXR1dXkLIYTIQskiIYQ0EXV1ddjY2CAhIYFbJ5FIkJCQgBEjRsjcZ8SIEbx4AIiPj681vvpxpW0OR4wYgSdPniA9PZ3bfubMGUgkEtjZ2TW0OoQQAoDaLBJCSJPy8/PDnDlzMGzYMNja2mLHjh0oLS2Ft7c3AGD27Nno0qULAgMDAQCLFy/G6NGjERwcDDc3Nxw5cgQXLlzA3r17AQClpaX44osvMGHCBJiYmKCoqAhhYWEoKCjA5MmTAVS1DXV1dcW8efMQHh6OiooK+Pr6Ytq0aXXqCU0IeTOxWIzk5GTcv38fJiYmcHR0hKqqqryL1SIoWSSEkCY0depUPHz4EAEBARCJRLC2tkZcXBzXieXOnTtQUfnfQx0HBwdERERg9erVWLVqFXr37o3Y2FhujEVVVVXk5OTg0KFDKCoqQseOHTF8+HAkJydjwIAB3HG+//57+Pr6YuzYsVBRUcHEiROxc+fOlq08IUoqJiYGy5YtQ15eHrfOzMwMwcHB8PLykl/BWgprI4qLixkAVlxcLO+ikFfU99yEhoayHj16MKFQyGxtbVlaWtpr448dO8b69u3LhEIhGzhwIDt58iRvu0QiYWvWrGHGxsZMQ0ODjR07ll2/fp0Xs3HjRjZixAimqanJ9PT0ZL7PuXPn2Ntvv8309PSYvr4+GzduHMvMzKxTnRhTrms0PT2dAWDp6enyLkqjKdN5eZ22Uk9FowznRdHrEB0dzQQCARs/fjxLTU1lT58+ZampqWz8+PFMIBCw6OhoeRexwep6bqjNIlEo0tkx1q5di4sXL2Lw4MFwcXGptVeodHYMHx8fZGRkwNPTE56ensjKyuJitm7dip07dyI8PBxpaWnQ1taGi4sLXr58ycWUl5dj8uTJWLhwocz3efbsGVxdXdG9e3ekpaXhjz/+gI6ODlxcXFBRUdG0HwIhpFZisRhJSUmIjIxEUlISxGKxvItEFJhYLMayZcvg7u6O2NhY2Nvbo3379rC3t0dsbCzc3d2xfPly5b/OWih5lTtF/2ajzOpzbmxtbdmiRYu412KxmJmamrLAwECZ8VOmTGFubm68dXZ2dmzBggWMsaq7isbGxmzbtm3c9idPnjChUMgiIyNrHO/gwYMy7yyeP3+eAWB37tzh1l26dIkBYLm5uW+sF2PKdY3SnUXFowz1jI6OZmZmZgwAt5iZmbWJOz+tmSLXITExkQFgqampMrenpKQwACwxMbFlC9ZE6M4iUTrS2TGcnZ25dXWZHaN6PFA1O4Y0/tatWxCJRLwYPT092NnZ1XpMWfr27YuOHTti//79KC8vx4sXL7B//37069cPZmZmMvcpKytDSUkJbyGENExMTAwmTZoEKysrpKam4unTp0hNTYWVlRUmTZqEmJgYeReRKKD79+8DAAYOHCjzrrW0bbE0TllRskgUxutmx6htloo3zY4h/bc+x5RFR0cHSUlJOHz4MDQ1NdG+fXvExcXh559/hpqa7H5kgYGB0NPT45Zu3brV+f0IIf9DjwpJczExMQEAhIaGwsLCAk5OTpgxYwacnJxgYWHBzQEvjVNWlCwS0gRevHgBHx8fjBw5EmfPnsWff/6JgQMHws3NDS9evJC5D82gQUjTSE5ORl5eHlatWsXraQ5UPX3w9/fHrVu3kJycLKcSEkXl6OiITp06wd/fHwMHDuTdtR44cCBWrVqFzp07w9HRUd5FbVY0dA5RGM0xO4b038LCQt43w8LCQlhbW9e5bBEREcjLy0Nqair3xyoiIgIGBgb48ccfMW3atBr7CIVCCIXCOr8HIUS26o8KZWkrjwpJ8xAIBNzPjDFuaUvoziJRGM0xO4a5uTmMjY15MSUlJUhLS3vjDBrVPX/+HCoqKrxfKtLXEomkzschhNSf9Ite9VEOqpOuV/ZHhaTpJScn48GDBwgMDERWVhYcHBygq6sLBwcHXLlyBZs2bcKDBw+U/q41JYtEofj5+WHfvn04dOgQsrOzsXDhwhqzY/j7+3PxixcvRlxcHIKDg5GTk4N169bhwoUL8PX1BVD1jXHJkiXYuHEjfvrpJ1y+fBmzZ8+GqakpPD09uePcuXMHmZmZuHPnDsRiMTIzM5GZmYlnz54BAN555x38888/WLRoEbKzs3HlyhV4e3tDTU0NTk5OLfcBEdIGOTo6wszMDJs2barx5UwikSAwMBDm5uZK/6iQND3p3WhfX1/cuHEDiYmJiIiIQGJiInJzc7m/JUp/17oluma3BorcdV/Z1ffc7Nq1i3Xv3p2pq6szW1tbdvbsWW7b6NGj2Zw5c3jxx44dY3369GHq6upswIABtQ7KbWRkxIRCIRs7diy7du0aL2bOnDm84TikS/XhEn799Vc2cuRIpqenxwwMDNjbb79d63ALTfE5tGY0dI7iUfR6Vh84OSUlhZWUlLCUlBSFHzhZ0c8LY4pdBxo6p4qAsbbx4L2kpAR6enooLi6Grq6uvItDqqFzU0WZPoeLFy/CxsYG6enpGDp0qLyL0yjKdF5eRxnqKWtKNnNzcwQFBSnslGzKcF4UuQ5isRgWFhawsrJCbGwsrwOVRCLhJnnIzc1VyHmi63pu6DE0IaRJPXv2DH5+fgCqmg1IH9UT0ty8vLxkPipU1ESRyJ+qqiqCg4Nx4sQJeHp68npDe3p64sSJEwgKClLIRLE+qDc0IaTRnj9/jpycHMyaNQtXr17l1v/222/Q0dFB//798d1338HS0hJaWlpyLClRdqqqqhgzZoy8i0GUiJeXF6KiorBs2TI4ODhw683NzREVFdUmvoxQskgIabScnBzY2NjUuv3q1atK81iaENL2eHl5wcPDA8nJybh//z5MTEzg6Oio9HcUpShZJIQ0WteuXQFU9S7/448/wBhDXl4ezMzMIBAIMGrUKDDGuDhCCFE0bfmuNbVZJIQ02oIFCwAAM2fOxJAhQxAZGYlvv/0WkZGRGDJkCGbMmMGLI4QQojjoziIhpNFu3rwJAMjPz+e1Sfz1118RFhaG0aNH8+IIIYQoDrqzSAhptF69egEAkpKSoK6ujk8//RQ3btzAp59+CnV1dfz222+8OEKai1gsRlJSEiIjI5GUlASxWCzvIhGi8ChZJIQ02t69e7mfCwoKYGRkhB07dsDIyAgFBQUy4whpajExMbCwsICTkxNmzJgBJycnWFhYICYmRt5FI0ShUbJICGm09evXcz936tQJS5cuRWhoKJYuXYpOnTrJjCOkKcXExGDSpEmwsrLijYVnZWWFSZMmUcJISCNQskgIabTc3NwmjSOkPsRiMZYtWwZ3d3fExsbC3t4e7du3h729PWJjY+Hu7o7ly5fTI2lCGoiSRUJIo5mbmwMAtLS0UFRUhJEjR6Jbt24YOXIkioqKuE4v0jhCmlJycjLy8vKwatUq3nRsAKCiogJ/f3/cunULycnJciohIYqNekMTQhpNmgS+fPkSNjY2uH37NoCq3tE2NjZ4+fIlL46QpnT//n0AwMCBA2Vul66XxhFC6ofuLBJCGu3u3bsAAIlEgjt37mDmzJm4ePEiZs6ciTt37kAikfDiCGlKJiYmAICsrCyZ26XrpXGEkPqhZJEQ0mhmZmYAAF1dXTDGcPjwYQwdOhSHDx8GYww6Ojq8OEKakqOjI8zMzLBp0ybui4mURCJBYGAgzM3N4ejoKKcStqywsDCYmZlBQ0MDdnZ2OHfuXK2xV65cwcSJE7nZlnbs2FEjZt26dRAIBLzF0tKyGWtAWhtKFgkhjWZlZQUAUFNTQ0lJCRYtWoRx48Zh0aJFKCkpgZqaGi+OkKakqqqK4OBgnDhxAp6enrze0J6enjhx4gSCgoLaxDy+R48ehZ+fH9auXYuLFy9i8ODBcHFxwYMHD2TGP3/+HD179sTmzZthbGxc63EHDBiA+/fvc8sff/zRXFUgrRAli4SQRnv06BEA4PHjx+jduzcGDRqEgwcPYtCgQejduzf++ecfXhwhTc3LywtRUVG4fPkyHBwcoKurCwcHB2RlZSEqKgpeXl7yLmKL2L59O+bNmwdvb2/0798f4eHh0NLSwoEDB2TGDx8+HNu2bcO0adMgFAprPa6amhqMjY25xdDQsLmqQFoh6uBCCGk0aVuwf//73zh69ChvDmg1NTXMmDEDERER1GaMNCsvLy94eHggOTkZ9+/fh4mJCRwdHdvEHUUAKC8vR3p6Ovz9/bl1KioqcHZ2RmpqaqOOnZubC1NTU2hoaGDEiBEIDAxE9+7dZcaWlZWhrKyMe11SUtKo9ybyR8kiIaTRpG3GSkpK8PTpU4SHh+PmzZvo1asXPvjgA0yZMqVNtRkj8qOqqooxY8bIuxhyUVRUBLFYDCMjI956IyMj5OTkNPi4dnZ2+Oabb9C3b1/cv38f69evh6OjI7Kysrj2yNUFBgbSAPxKhpJFQkijSduMTZo0CVOmTIG/vz98fHyQlZWFKVOm4MSJE4iKimozd3iI/IjF4jZ7Z7G5vPvuu9zPgwYNgp2dHXr06IFjx47Bx8enRry/vz/8/Py41yUlJejWrVuLlJU0jwa1WaxPTysAOH78OCwtLaGhoQErKyucOnWKt50xhoCAAJiYmEBTUxPOzs4yZ3o4efIk7OzsoKmpCQMDA3h6ejak+ISQZiBtM3bp0iVem7HLly+3qTZjRH7a+tzQhoaGUFVVRWFhIW99YWHhazuv1Je+vj769OmDGzduyNwuFAqhq6vLW4hiq3eyWN+eVikpKZg+fTp8fHyQkZEBT09PeHp68sbD2rp1K3bu3Inw8HCkpaVBW1sbLi4u3EC+ABAdHY1Zs2bB29sbf/31F/7880/MmDGjAVUmhDSXs2fP1hhLMT8/H2fPnpVTiUhbQXNDA+rq6rCxsUFCQgK3TiKRICEhASNGjGiy93n27Blu3rxJbZDbElZPtra2bNGiRdxrsVjMTE1NWWBgoMz4KVOmMDc3N946Ozs7tmDBAsYYYxKJhBkbG7Nt27Zx2588ecKEQiGLjIxkjDFWUVHBunTpwr7++uv6FpdTXFzMALDi4uIGH4M0Dzo3VRT9c1ixYgUDwIyMjNi+ffvY/fv32b59+5iRkREDwFasWCHvIjaIop+XulLkelZWVjIzMzM2fvx4JhaLedvEYjEbP348Mzc3Z5WVlXIqYcPV97wcOXKECYVC9s0337CrV6+y+fPnM319fSYSiRhjjM2aNYt9+umnXHxZWRnLyMhgGRkZzMTEhC1fvpxlZGSw3NxcLmbZsmUsKSmJ3bp1i/3555/M2dmZGRoasgcPHjRLHUjLqeu5qVeyWFZWxlRVVdkPP/zAWz979mw2YcIEmft069aNhYSE8NYFBASwQYMGMcYYu3nzJgPAMjIyeDFvvfUW+/jjjxljjKWlpTEA7MCBA8za2poZGxszV1dXdvny5VrL+vLlS1ZcXMwt+fn5dLG2UvSLpIoifw5lZWVMTU2NGRkZsYqKCt62iooKZmRkxNTU1FhZWZmcSthwinxe6kOR65mYmMgAsNTUVJnbU1JSGACWmJjYsgVrAg05L7t27WLdu3dn6urqzNbWlp09e5bbNnr0aDZnzhzu9a1btxiAGsvo0aO5mKlTpzITExOmrq7OunTpwqZOncpu3LjRrHUgLaOu56ZeHVwa0tNKJBLJjBeJRNx26braYv7++28AVaPIb9++HWZmZggODsaYMWNw/fp1dOjQocb7Um8sQlrO7t27UVlZiY0bN3IDcEupqalhw4YNWLBgAXbv3o0lS5bIp5BEadHc0Hy+vr7w9fWVuS0pKYn32szMDIyx1x7vyJEjTVU0oqAUYlBu6fRNn332GSZOnAgbGxscPHgQAoEAx48fl7mPv78/iouLuSU/P78li0xIm3Lz5k0AgLu7u8zt0vXSOEKaEs0NTUjzqley2JCeVsbGxq+Nl/77uhjpf/D+/ftz24VCIXr27Ik7d+7IfF/qjUVIy+nVqxcA4MSJEzK3S9dL4whpSjQ3NCHNq17JYkN6Wo0YMYIXDwDx8fFcvLm5OYyNjXkxJSUlSEtL42JsbGwgFApx7do1LqaiogJ5eXno0aNHfapACGkGH374IdTU1LB69WpUVlbytlVWViIgIABqamr48MMP5VTCltWUw4tVVFRg5cqVsLKygra2NkxNTTF79mzcu3ePd4yLFy/inXfegb6+Pjp27Ij58+fj2bNnzVK/1obmhiYtQSwWIykpCZGRkUhKSoJYLJZ3kVpOfRtD1ren1Z9//snU1NRYUFAQy87OZmvXrmXt2rXjdU7ZvHkz09fXZz/++CO7dOkS8/DwYObm5uzFixdczOLFi1mXLl3YL7/8wnJycpiPjw/r3Lkze/z4cZ3KTQ1sWy86N1UU/XOo3ht6z549rKCggO3Zs6fN9YY+cuQIU1dXZwcOHGBXrlxh8+bNY/r6+qywsFBm/J9//slUVVXZ1q1b2dWrV9nq1at5vyOfPHnCnJ2d2dGjR1lOTg5LTU1ltra2zMbGhjtGQUEBMzAwYB988AHLyclh586dYw4ODmzixInNVs/WKDo6mpmZmfE6apibm7Po6Gh5F63BlOG8KEMdZF1bZmZmCn1tMdZMvaGl6tPTijHGjh07xvr06cPU1dXZgAED2MmTJ3nbJRIJW7NmDTMyMmJCoZCNHTuWXbt2jRdTXl7Oli1bxjp37sx0dHSYs7Mzy8rKqnOZleFiVVZ0bqoow+ewYsUKpqamxvuFqqamprCJImP1Py9NPbyYLOfOnWMA2O3btxljjO3Zs4d17tyZN2zMpUuXGADeECjVKeOIEdHR0axHjx68669Hjx4K/QddGX4vKHodoqOjmUAgYOPHj2epqans6dOnLDU1lY0fP54JBII2cX01KFlURIp+sSozOjdVlOVzKCsrYyEhIczX15eFhIQo5HA51dXnvDTH8GKyxMfHM4FAwJVp586drGvXrryY3NxcBoAdPHhQ5jHWrl0rc8gURb3+lPUPujL8XlDkOijzGJ6M1f3cKERvaEKI4lBXV8eSJUuwa9cuLFmyBOrq6vIuUot53fBi0qHAXvWm4cVe9fLlS6xcuRLTp0/nOu69/fbbEIlE2LZtG8rLy/HPP//g008/BVD7cDHKNGKEWCzGsmXL4O7ujtjYWNjb26N9+/awt7dHbGws3N3dsXz58rbVxow0ieTkZOTl5WHVqlVQUeGnTCoqKvD398etW7eQnJwspxK2DEoWCSFEQVRUVGDKlClgjOGrr77i1g8YMACHDh1CcHAwtLS0YGxsDHNzcxgZGdX4AyelTCNG0B900lxoDM8qlCwSQkgTaY7hxaSkieLt27cRHx9fI7mbMWMGRCIRCgoK8OjRI6xbtw4PHz5Ez549m6BmrRv9QSfNhcbwrELJIiGENJHmGF4M+F+imJubi9OnT6Njx461lsHIyAjt27fH0aNHoaGhgXfeeaeRtWr96A86aS40hmcVShYJIU2qTY9FBsDPzw/79u3DoUOHkJ2djYULF6K0tBTe3t4AgNmzZ8Pf35+LX7x4MeLi4hAcHIycnBysW7cOFy5c4KZrq6iowKRJk3DhwgV8//33EIvFEIlEEIlEKC8v544TGhqKixcv4vr16wgLC4Ovry8CAwOhr6/fovWXB/qDTpoLjeH5/1qmv438KXJvLGVH56aKMnwOyjgWWUPOS1MOL3br1i2ZvZYBsMTERC5u1qxZrEOHDkxdXZ0NGjSIffvtt81ez9akem/olJQUVlJSwlJSUqg3dCugDHVQxjE8Gav7uREw9oYZxJVESUkJ9PT0UFxcrNANuZURnZsqiv45xMTEYNKkSXB3d8eqVaswcOBAZGVlYdOmTThx4gSioqLg5eUl72LWm6Kfl7pShnrGxMRg2bJlyMvL49aZm5sjKChIIa89QDnOizLUAah6apKcnIz79+/DxMQEjo6OCn9Hsa7nhpJFInd0bqoo8ucgFothYWEBKysrxMbG8nqkSiQSeHp6IisrC7m5uQr3y1WRz0t9KEs9le0PujKcF2Wog7Kq67lRa8EyEUKUlHToksjIyFqHLnFwcEBycjLGjBkjn0KSNkFVVZWuMdIslO2LSH1QBxdCSKPR0CWEEGUWExMDCwsLODk5YcaMGXBycoKFhQViYmLkXbQWQckiIaTRaOgSQoiykrbHtrKy4vWGtrKywqRJk9pEwkjJIiGk0WjoEkKIMqKpJKtQskgIaTQai4wQooyqTyXJGOONIcsYazNTSVIHF0JIk/Dy8kJUVBSWLVsGBwcHbr25ubnCDptDCGnbpO2sb968ienTp/OGZTIzM8PGjRt5ccqK7iwSQpqMl5cXbty4gcTERERERCAxMRG5ubmUKBJCFJK0nfWsWbNktlmcNWsWL05Z0Z1FQkiToqFLCCHKwsHBAWpqaujYsSNiYmKgplaVNtnb2yMmJgZdu3bFo0ePeE9TlBHdWSSEEEIIkSElJQWVlZUoLCyEl5cX786il5cXCgsLUVlZiZSUFHkXtVlRskgIIYQQIoO0LeLhw4dx6dIlODg4QFdXFw4ODrh8+TIOHz7Mi1NWlCwSQgghhMggbYuYn58PgUBQY/udO3d4ccqKkkVCCCGEEBkcHR3RqVMn+Pv7Y+DAgbzH0AMHDsSqVavQuXNnpR9DlpJFQgghhJBaVL+jyBjjlraEkkWicMLCwmBmZgYNDQ3Y2dnh3Llzr40/fvw4LC0toaGhASsrK5w6dYq3nTGGgIAAmJiYQFNTE87OzsjNzeXFfPHFF3BwcICWlhb09fVrfa9vvvkGgwYNgoaGBjp37oxFixY1uJ6EEELkKzk5GQ8ePEBgYCCysrJ4bRavXLmCTZs24cGDB0o/KDcli0ShHD16FH5+fli7di0uXryIwYMHw8XFBQ8ePJAZn5KSgunTp8PHxwcZGRnw9PSEp6cnbw7jrVu3YufOnQgPD0daWhq0tbXh4uKCly9fcjHl5eWYPHkyFi5cWGvZtm/fjs8++wyffvoprly5gtOnT8PFxaXpKk8IIaRFSTuu+Pr6yhxD1tfXlxentFgbUVxczACw4uJieReFvKI+58bW1pYtWrSIey0Wi5mpqSkLDAyUGT9lyhTm5ubGW2dnZ8cWLFjAGGNMIpEwY2Njtm3bNm77kydPmFAoZJGRkTWOd/DgQaanp1dj/ePHj5mmpiY7ffr0G+tQG7pGW6e2cl7aSj0VjTKcF0WuQ2JiIgPAUlNTWVlZGQsJCWG+vr4sJCSElZWVsZSUFAaAJSYmyruoDVLXc0ODchOFUV5ejvT0dPj7+3PrVFRU4OzsjNTUVJn7pKamws/Pj7fOxcUFsbGxAIBbt25BJBLB2dmZ266npwc7OzukpqZi2rRpdSpbfHw8JBIJCgoK0K9fPzx9+hQODg4IDg5Gt27dZO5TVlaGsrIy7nVJSUmd3osQQkjLcHR0hJmZGWbOnInbt2+jsrKS27ZixQr06NED5ubm1MGFkNaiqKgIYrEYRkZGvPVGRkYQiUQy9xGJRK+Nl/5bn2PK8vfff0MikWDTpk3YsWMHoqKi8PjxY7zzzjsoLy+XuU9gYCD09PS4pbakkhBCiHyoqqpi8ODBuHnzJlRUVDB9+nQEBwdj+vTpUFFRwc2bNzFo0CCoqqrKu6jNiu4sEtIEJBIJKioqsHPnTowbNw4AEBkZCWNjYyQmJspsu+jv78+761lSUkIJIyGEtCLl5eU4efIktLS08PLlS0RGRiIyMhJA1ZMtLS0tnDx5EuXl5VBXV5dzaZsPJYtEYRgaGkJVVRWFhYW89YWFhTA2Npa5j7Gx8Wvjpf8WFhbyBlUtLCyEtbV1ncsm3bd///7cuk6dOsHQ0JAbtPVVQqEQQqGwzu9BCCGkZe3evRuVlZWorKyEm5sbLCws8OLFC2hqauLGjRs4efIkF7dkyRL5FrYZ0WNoojDU1dVhY2ODhIQEbp1EIkFCQgJGjBghc58RI0bw4oGq9oXSeHNzcxgbG/NiSkpKkJaWVusxZRk5ciQA4Nq1a9y6x48fo6ioCD169KjzcQghhLQe0mHUBg0ahKysLHz55ZfYu3cvvvzyS2RlZWHQoEG8OGVFySJRKH5+fti3bx8OHTqE7OxsLFy4EKWlpfD29gYAzJ49m9cBZvHixYiLi0NwcDBycnKwbt06XLhwgRvuQCAQYMmSJdi4cSN++uknXL58GbNnz4apqSk8PT2549y5cweZmZm4c+cOxGIxMjMzkZmZiWfPngEA+vTpAw8PDyxevBgpKSnIysrCnDlzYGlpCScnp5b7gAghhDQZ6YDcly5dwqBBg3gzuAwaNAiXLl3ixSkregxNFMrUqVPx8OFDBAQEQCQSwdraGnFxcVwHlTt37kBF5X/fgRwcHBAREYHVq1dj1apV6N27N2JjYzFw4EAu5pNPPkFpaSnmz5+PJ0+eYNSoUYiLi4OGhgYXExAQgEOHDnGvhwwZAgBITEzEmDFjAADffvstli5dCjc3N6ioqGD06NGIi4tDu3btmvMjIYQQ0kyGDx8OoOrJVlRUFNcu0d7eHlFRUdDR0UF5eTkXp6wEjLWNOWtKSkqgp6eH4uJi6Orqyrs4pBo6N1Xoc2id2sp5aSv1VDTKcF4UuQ47duzA0qVLAVSNkrFhwwa4u7vjxIkTCAgI4NrEh4SEKGSbxbqeG7qzSAghhBAiQ6dOnQBUtW/Pz8/HggULuG1qamowNzfHrVu3uDhlRckiIYQQQogMXbp0AQDk5eXhvffeQ69evfDy5UtoaGjg5s2bOHXqFC9OWVGySAghhBAig3QGF0NDQ1y5coUbKgeouttoY2ODR48eKf0MLpQsEkIIIYTIoKqqiuDgYEyaNAlubm5Yvnw5NDU18eLFC8TFxeHkyZOIiopS+hlcaOgcQgghRImEhYXBzMwMGhoasLOzw7lz52qNvXLlCiZOnAgzMzMIBALs2LGj0cdUNl5eXoiKikJWVhZ8fX3h4+MDX19fXLlyBVFRUfDy8pJ3EZsdJYuEEEKIkjh69Cj8/Pywdu1aXLx4EYMHD4aLiwsePHggM/758+fo2bMnNm/eXOtMWPU9pjLy8vLCtWvXEBISAl9fX4SEhCAnJ6dNJIoAJYuEEEKI0ti+fTvmzZsHb29v9O/fH+Hh4dDS0sKBAwdkxg8fPhzbtm3DtGnTap1+tL7HVEYxMTHo27cvli5ditDQUCxduhR9+/ZFTEyMvIvWIihZJIQQQpRAeXk50tPT4ezszK1TUVGBs7MzUlNTW+yYZWVlKCkp4S2KLCYmBpMmTeLGVJQqLCzEpEmT2kTCSMkiIYQQogSKioogFou5Ga2kjIyMIBKJWuyYgYGB0NPT45Zu3bo16L1bA7FYjIULF4IxhrFjx/Km+xs7diwYY1i4cCHEYrG8i9qsKFkkhBBCSJPx9/dHcXExt+Tn58u7SA2WlJSEBw8eYNSoUfjxxx9hb2+P9u3bw97eHj/++CNGjhyJBw8eICkpSd5FbVaULBJCSBOrb8/R48ePw9LSEhoaGrCysuIG+gWAiooKrFy5ElZWVtDW1oapqSlmz56Ne/fu8Y5x/fp1eHh4wNDQELq6uhg1ahQSExObpX6kdTI0NISqqqrMx6W1dV5pjmMKhULo6uryFkUlTQLXr18PFRV+yqSiooJ169bx4pQVJYuEENKE6ttzNCUlBdOnT4ePjw8yMjLg6ekJT09PZGVlAajqrXrx4kWsWbMGFy9eRExMDK5du4YJEybwjuPu7o7KykqcOXMG6enpGDx4MNzd3Rv8+JEoHnV1ddjY2CAhIYFbJ5FIkJCQgBEjRrSaYyqq8vJy7NixAx999BF27NiB8vJyeRep5bA2ori4mAFgxcXF8i4KeQWdmyr0ObRO9T0vtra2bNGiRdxrsVjMTE1NWWBgoMz4KVOmMDc3N946Ozs7tmDBglrf49y5cwwAu337NmOMsYcPHzIA7Pfff+diSkpKGAAWHx9fp3LT9dc61fe8HDlyhAmFQvbNN9+wq1evsvnz5zN9fX0mEokYY4zNmjWLffrpp1x8WVkZy8jIYBkZGczExIQtX76cZWRksNzc3Dofs6nr0JqcPn2aAWBdunRhqqqqDAC3qKqqsi5dujAA7PTp0/IuaoPU9dzQDC6EENJEpD1H/f39uXVv6jmampoKPz8/3joXFxfExsbW+j7FxcUQCATQ19cHAHTs2BF9+/bFt99+i6FDh0IoFGLPnj3o3LkzbGxsZB6jrKwMZWVl3GtF77FKqkydOhUPHz5EQEAARCIRrK2tERcXx3VQuXPnDu9x6r179zBkyBDudVBQEIKCgjB69Gju0eqbjqnMxowZA01NTRQUFKBdu3aYMmUKhg8fjvPnzyMqKgoFBQXQ1NTEmDFj5F3UZkXJIiGENJHX9RzNycmRuY9IJKpXT9OXL19i5cqVmD59OtcWTCAQ4PTp0/D09ISOjg5UVFTQuXNnxMXFwcDAQOZxAgMDsX79+vpWkSgAX19f+Pr6ytz2ats6MzMzMMYadUxlJhaLuS9VlZWViIyMRGRkJPB/7d17XFRl/gfwzzDGgLexNB0wlSkxLFECA6FYbxSZt3mxXrJcyTU11zZd1ExXQVtz9qVSrpdy7eJljTSNqBe2FKK+lnJCAXHF8NaieGFMLQZCBZt5fn/wm5MTM8TowHBmPu/X67xozvmew/PM8zh9eeY8z0Hdvzug7g8vs9ns0Y/84z2LREQycfPmTYwbNw5CCLz99tvSfiEEZs6cic6dOyM3NxcHDx6ETqfDyJEjUV5ebvdanjRjlaipvPXWW7BYLAAAPz8/m2PW1xaLBW+99Vazl605MVkkInKR25k5qtFoGhVvTRTPnj2L7Oxsmxmme/fuRWZmJrZv347HHnsM4eHheOutt+Dv748tW7bY/b2eNGOVqKmcOnUKANCvXz/ce++9Nsfuvfde9OvXzybOUzFZJCJykduZORodHW0TDwDZ2dk28dZE8dSpU9izZw86duxoE3/t2jUAsLu0h3VUhIicZ/2q+ciRI+jbty/Wr1+P999/H+vXr0ffvn1x5MgRmzhPdVvJoivXEAPqvkJJTk5GQEAA/P39ERcX5zBLr6mpQVhYGBQKBYqKim6n+ERETSYpKQnvvPMOtmzZgpKSEsyYMQPV1dWYPHkyAGDSpEk2E2BmzZqFrKwspKam4vjx41iyZAny8/Ol+8Nu3ryJMWPGID8/Hx988AHMZjOMRiOMRqO0dEd0dDTuvvtuJCYm4siRIzh58iTmzZuH0tJSDB8+vPnfBCIP8eijjwIAlEoljh49ipkzZ+KPf/wjZs6ciaNHj0r3KVrjPJXTyaKr1xADgBUrVmDNmjXYsGED8vLy0KZNG8THx+PGjRv1rvfKK68gMDDQ2WITETWL8ePHY9WqVUhOTkZYWBiKiorqzUa99T7CmJgYpKWlYePGjejXrx927dqFjIwM9OnTBwBw4cIFfPbZZzh//jzCwsIQEBAgbQcOHABQ9/V3VlYWfvrpJwwZMgT9+/fHV199hU8//VT6moyInPfjjz8CqJvoUl5ejvnz5+PkyZOYP38+ysvLpcf8WeM8lrNr8rh6DTGLxSI0Go1YuXKldLyiokKoVCrx4Ycf2pz3+eefi5CQEHHs2DEBQBw+fLjR5ZbzOk+ejm1Th+9Dy+Qt7eIt9ZQbT2gXOddh69atAoBo3bq18PHxsVln0cfHR7Ru3VoAEFu3bnV3UW9Lk6yz2BRriJWWlsJoNCIuLk46rlarERUVBYPBgGeeeQZA3Q3fU6dORUZGBlq3bv2bZeUaYkRERHQnrl69CgC4fv06nn76afTs2RPXr1+Hv78/Tp8+Ld1WZ43zVE4li02xhpj1Z0MxQgg8//zzePHFF9G/f3+cOXPmN8vKNcSIiIjoTlhnQIeFheHYsWPYvXu3dEyr1SIsLAyHDx+uN1Pa08hiNvTatWtRVVVlM6L5W7iGGBEREd2Jrl27AgAOHz6M3r17IzY2Fg899BBiY2MREhKCw4cP28R5KqdGFptiDTHrz0uXLiEgIMAmJiwsDEDdGmIGgwEqlcrmOv3798dzzz1ndx0xlUpVL56IiIiosWJjYxEUFIQff/wR//73v+sdV6vVuOeeexAbG+uG0jUfp0YWm2INMa1WC41GYxNTWVmJvLw8KWbNmjU4cuQIioqKUFRUJN0jsGPHDrz++uvOVIGIiIioUZRKJe69917peexPPPEEli9fjieeeAIKhQImk0kaSPNkTj8bOikpCYmJiejfvz8iIyOxevXqemuIde3aFXq9HkDdGmIDBw5Eamoqhg8fju3btyM/Px8bN24EULeQ5ezZs7Fs2TIEBwdDq9Vi8eLFCAwMhE6nAwB0797dpgxt27YFADzwwAO47777brvyRERERI5cv34dhw4dQqtWraDRaJCdnY3s7GwAQLdu3VBeXo5Dhw5Jk148ldPJ4vjx43H58mUkJyfDaDQiLCys3hpitz5FwLqG2KJFi7Bw4UIEBwfbrCEG1K2dWF1djWnTpqGiogKPP/44srKy6j2HkYiIiKi5zJs3D0DdbXjnz5+3OXbu3DloNBoYjUbMmzcP69atc0cRm4VCCCHcXYjmUFlZCbVaDZPJxGegtjBsmzp8H1omb2kXb6mn3HhCu8i5DvHx8fjyyy8B1H0TOnHiRMydOxerVq3Ctm3bYE2hnnzySXzxxRfuLOptaWzbOD2ySEREROQNbr0N7tq1a9I3nlu3bsXGjRulr55/fbucp2GySERERGSH9dGcPj4+EEJg//79KC8vR0BAAKKiouDj4wOLxWLzCE9PxGSRiIiIyI6ysjIAdSu/NPT0OGucp5LFotxEREREze2BBx5waZxccWSRiIg8htlsRm5urvRVYWxsrMevgUdNZ/PmzejQoUOj4jwZRxaJiMgjpKeno2fPnhg8eDCeffZZDB48GD179kR6erq7i0YylZ+f79I4uWKySEREspeeno4xY8YgNDQUBoMBVVVVMBgMCA0NxZgxY5gw0m2xLpvjqji5YrJIRESyZjabMWfOHIwYMQIZGRkYMGAA2rZtiwEDBiAjIwMjRozA3LlzYTab3V1UkplPPvnEpXFyxWSRiIhkLTc3F2fOnMHChQttniAG1C15smDBApSWliI3N9dNJSS5unz5skvj5IrJIhERyZp1jbtbHyN7K+t+T18Lj1zv1qea2PtDxF6cJ2KySEREshYQEAAAKC4utnvcut8aR9RYGo3GpXFyxWSRiIhkLTY2FkFBQVi+fDksFovNMYvFAr1eD61Wi9jYWDeVkOTq5s2b0n/b61v24jwRk0UiIpI1pVKJ1NRUZGZmQqfT2cyG1ul0yMzMxKpVq7jeIjnt118932mcXHl27YiIyCskJCRg165dOHr0KGJiYtC+fXvExMSguLgYu3btQkJCgruLSDI0dOhQl8bJFZ/gQkREHiEhIQGjR4/mE1zIZTp16uTSOLliskhERB5DqVRi0KBB7i4GeYgrV664NE6u+DU0ERERkR15eXkujZMrJotEREREdpSUlLg0Tq6YLBIRERHZUVtb69I4uWKySERERGTHr9dWvNM4uWKySERERGSHr6+vS+PkiskiERERkR1MFuswWSTZWb9+PYKCguDn54eoqCgcPHiwwfidO3ciJCQEfn5+CA0Nxeeff25zXAiB5ORkBAQEwN/fH3FxcTh16pRNzOuvv46YmBi0bt0aHTp0aPD3Xb16Fffddx8UCgUqKipup4pERNQCdOvWzaVxcsVkkWRlx44dSEpKQkpKCgoLC9GvXz/Ex8fj+++/txt/4MABTJgwAVOmTMHhw4eh0+mg0+lQXFwsxaxYsQJr1qzBhg0bkJeXhzZt2iA+Ph43btyQYmprazF27FjMmDHjN8s4ZcoU9O3b984rS0REbnXr/wdcESdXTBZJVt544w1MnToVkydPxkMPPYQNGzagdevWeP/99+3G/+Mf/8BTTz2FefPmoXfv3vjb3/6G8PBwrFu3DkDdqOLq1auxaNEijB49Gn379sXWrVtx8eJFZGRkSNdZunQp/vKXvyA0NLTB8r399tuoqKjA3LlzXVZnIiJyD6PR6NI4uWKySLJRW1uLgoICxMXFSft8fHwQFxcHg8Fg9xyDwWATDwDx8fFSfGlpKYxGo02MWq1GVFSUw2s68u233+K1117D1q1bG/VQ+ZqaGlRWVtpsRETUctTU1Lg0Tq6YLJJsXLlyBWazGV26dLHZ36VLF4d/1RmNxgbjrT+duaY9NTU1mDBhAlauXInu3bs36hy9Xg+1Wi1tnn7PCxGR3HTs2NGlcXLFZJHIBRYsWIDevXtj4sSJTp1jMpmk7dy5c01YQmpOrpyEdfPmTcyfPx+hoaFo06YNAgMDMWnSJFy8eFGK2b9/PxQKhd3t0KFDTVZPIk/Xv39/l8bJFZNFko1OnTpBqVTi0qVLNvsvXboEjUZj9xyNRtNgvPWnM9e0Z+/evdi5cydatWqFVq1aYejQoVKZU1JS7J6jUqnQvn17m43kz9WTsK5du4bCwkIsXrwYhYWFSE9Px4kTJzBq1CjpGjExMSgvL7fZXnjhBWi1Wo//nxhRU+rRo4dL4+SKySLJhq+vLyIiIpCTkyPts1gsyMnJQXR0tN1zoqOjbeIBIDs7W4rXarXQaDQ2MZWVlcjLy3N4TXs+/vhjHDlyBEVFRSgqKsK7774LAMjNzcXMmTMbfR2SP1dPwlKr1cjOzsa4cePw4IMPYsCAAVi3bh0KCgpQVlYGoO7fhkajkbaOHTvi008/xeTJk6FQKJqt7tQyuHp5seeff77eiPVTTz3VlFVoMUwmk0vj5KqVuwtA5IykpCQkJiaif//+iIyMxOrVq1FdXY3JkycDACZNmoSuXbtCr9cDAGbNmoWBAwciNTUVw4cPx/bt25Gfn4+NGzcCABQKBWbPno1ly5YhODgYWq0WixcvRmBgIHQ6nfR7y8rK8MMPP6CsrAxmsxlFRUUAgJ49e6Jt27Z44IEHbMp55coVAEDv3r1/c11G8hzWSVgLFiyQ9jVmElZSUpLNvvj4eJvZ+L9mMpmgUCgc9q3PPvsMV69elf5d2FNTU2NzUz4nWHkG68j2hg0bEBUVhdWrVyM+Ph4nTpxA586d68VbR7b1ej1GjBiBtLQ06HQ6FBYWok+fPlLcU089hU2bNkmvVSpVs9TH3W693cMVcbIlvITJZBIAhMlkcndR6FecbZu1a9eK7t27C19fXxEZGSm++eYb6djAgQNFYmKiTfxHH30kevXqJXx9fcXDDz8sdu/ebXPcYrGIxYsXiy5dugiVSiWGDh0qTpw4YROTmJgoANTb9u3bZ7eM+/btEwDEjz/+2Kg6CcE+2lI50y4XLlwQAMSBAwds9s+bN09ERkbaPeeuu+4SaWlpNvvWr18vOnfubDf++vXrIjw8XDz77LMOyzFs2DAxbNiwBsuakpJit0+z/7Uszn4uREZGipkzZ0qvzWazCAwMFHq93m78uHHjxPDhw232RUVFienTp0uvExMTxejRo50v/P+T82fbI488Iv3b8PPzs/m3cuvrRx55xN1FvS2NbRt+DU2y89JLL+Hs2bOoqalBXl4eoqKipGP79+/H5s2bbeLHjh2LEydOoKamBsXFxXj66adtjisUCrz22mswGo24ceMG9uzZg169etnEbN68GUKIetugQYPslnHQoEEQQnBUkVzq5s2bGDduHIQQePvtt+3GnD9/Hl988QWmTJnS4LU4wcrzNMXyYlb79+9H586d8eCDD2LGjBm4evWqw3J40rJgtbW1AOpu9fj1qhkajUZ6zJ81zlPxa2giIhdpiklYVtZE8ezZs9i7d6/DCVGbNm1Cx44dbSbA2KNSqbzmq0Rv0dDyYsePH7d7zm8tLwbUfQWdkJAArVaL7777DgsXLsSwYcNgMBigVCrrXVOv12Pp0qUuqJH7Wf/gr62tRVVVFcaPHw+VSoWamhpkZ2dLSWK7du3cWMqmx5FFIiIXaYpJWMAvieKpU6ewZ88eh2u6CSGwadMmTJo0CXfddZcLakQEPPPMMxg1ahRCQ0Oh0+mQmZmJQ4cOYf/+/XbjPWnU+tZ713/44Qfs2LEDW7duxY4dO/DDDz9Ix279hssTMVkkInKhpKQkvPPOO9iyZQtKSkowY8aMepOwbp0AM2vWLGRlZSE1NRXHjx/HkiVLkJ+fj5deeglAXaI4ZswY5Ofn44MPPoDZbIbRaITRaKz31dfevXtRWlqKF154ofkqTC1GU45s3+r+++9Hp06dcPr0abvHPWlZsJdffvk3VxRQKBRYsmRJ8xTITZgsEhG50Pjx47Fq1SokJycjLCwMRUVFyMrKkr7qKysrQ3l5uRQfExODtLQ0bNy4Ef369cOuXbuQkZEhzUS9cOECPvvsM5w/fx5hYWEICAiQtgMHDtj87vfeew8xMTEICQlpvgpTi9FUI9u/dv78eVy9ehUBAQGuKXgL5uvri7lz5zYYM3fuXM+/P72JJ9q0GHKejeXp2DZ1+D60TN7SLt5ST7lxtl22b98uVCqV2Lx5s/j222/FtGnTRIcOHYTRaBRCCPGHP/xBvPrqq1L8119/LVq1aiVWrVolSkpKREpKirjrrrvE0aNHhRBCVFVViblz5wqDwSBKS0vFnj17RHh4uAgODhY3btxokjq0RPPmzRNKpdJmNnSrVq3EvHnz3F20O8LZ0ERERF7G1SPbSqUS//3vfzFq1Cj06tULU6ZMQUREBHJzc71qgtSKFStw7do1aU3UpKQkVFdXY8WKFW4uWfNQCCGEuwvRHCorK6FWq2EymWR9/4QnYtvU4fvQMnlLu3hLPeXGE9rFE+pgVVhYiIiICBQUFCA8PNzdxbljjW0bjiwSERERkUNMFomIiIjIISaLREREROQQk0UiIiIicojJIhERERE5xGSRiIiIiBxiskhEREREDjFZJCIiIiKHmCwSERERkUNMFomIiIjIodtKFtevX4+goCD4+fkhKioKBw8ebDB+586dCAkJgZ+fH0JDQ/H555/bHBdCIDk5GQEBAfD390dcXBxOnTolHT9z5gymTJkCrVYLf39/PPDAA0hJSUFtbe3tFJ+IiIiIGsnpZHHHjh1ISkpCSkoKCgsL0a9fP8THx+P777+3G3/gwAFMmDABU6ZMweHDh6HT6aDT6VBcXCzFrFixAmvWrMGGDRuQl5eHNm3aID4+Hjdu3AAAHD9+HBaLBf/85z9x7NgxvPnmm9iwYQMWLlx4m9UmIiIiokYRToqMjBQzZ86UXpvNZhEYGCj0er3d+HHjxonhw4fb7IuKihLTp08XQghhsViERqMRK1eulI5XVFQIlUolPvzwQ4flWLFihdBqtY0ut8lkEgCEyWRq9DnUPNg2dfg+tEze0i7eUk+58YR28YQ6WBUUFAgAoqCgwN1FcYnGto1TI4u1tbUoKChAXFyctM/HxwdxcXEwGAx2zzEYDDbxABAfHy/Fl5aWwmg02sSo1WpERUU5vCYAmEwm3HPPPQ6P19TUoLKy0mYjIiIiIuc4lSxeuXIFZrMZXbp0sdnfpUsXGI1Gu+cYjcYG460/nbnm6dOnsXbtWkyfPt1hWfV6PdRqtbR169at4coRERERUT2ymw194cIFPPXUUxg7diymTp3qMG7BggUwmUzSdu7cuWYsJREREZFncCpZ7NSpE5RKJS5dumSz/9KlS9BoNHbP0Wg0DcZbfzbmmhcvXsTgwYMRExODjRs3NlhWlUqF9u3b22xERERE5JxWzgT7+voiIiICOTk50Ol0AACLxYKcnBy89NJLds+Jjo5GTk4OZs+eLe3Lzs5GdHQ0AECr1UKj0SAnJwdhYWEAgMrKSuTl5WHGjBnSORcuXMDgwYMRERGBTZs2wcdHdoOiREREJAOnTp1CVVVVvf0lJSU2P+1p164dgoODm6xs7uBUsggASUlJSExMRP/+/REZGYnVq1ejuroakydPBgBMmjQJXbt2hV6vBwDMmjULAwcORGpqKoYPH47t27cjPz9fGhlUKBSYPXs2li1bhuDgYGi1WixevBiBgYFSQnrhwgUMGjQIPXr0wKpVq3D58mWpPI5GNInIPcxmM3Jzc1FeXo6AgADExsZCqVS6u1hERI1y6tQp9OrVq8GYiRMnNnj85MmTHpUwOp0sjh8/HpcvX0ZycjKMRiPCwsKQlZUlTVApKyuzGfWLiYlBWloaFi1ahIULFyI4OBgZGRno06ePFPPKK6+guroa06ZNQ0VFBR5//HFkZWXBz88PQN1I5OnTp3H69Gncd999NuURQtxWxYnI9dLT0zFnzhycOXNG2hcUFITU1FQkJCS4r2BERI1kHVHctm0bevfubXPs+vXrOHPmDIKCguDv71/v3JKSEkycONHuqKScKYSXZFuVlZVQq9UwmUy8f7GFYdvUkfv7kJ6ejjFjxmDEiBFYuHAh+vTpg+LiYixfvhyZmZnYtWuXLBNGubdLY3lLPeXGE9pFbnUoLCxEREQECgoKEB4e3mznukNj24Y3/hHRHTObzZgzZw5GjBiBjIwMDBgwAG3btsWAAQOQkZGBESNGYO7cuTCbze4uKhEROYnJIhHdsdzcXJw5cwYLFy6sN/nMx8cHCxYsQGlpKXJzc91UQiIiul1MFonojpWXlwOAzb3It7Lut8YREZF8MFkkojsWEBAAACguLrZ73LrfGkdERPLBZJGI7lhsbCyCgoKwfPlyWCwWm2MWiwV6vR5arRaxsbFuKiEREd0uJotEdMeUSiVSU1ORmZkJnU4Hg8GAqqoqGAwG6HQ6ZGZmYtWqVVxvkYhIhpxeZ5GIyJ6EhATs2rULc+bMQUxMjLRfq9XKdtkcIvJOmrYK+FecBC46N6bmX3ESmraKJiqV+zBZJCKXSUhIwOjRo/kEFyKStekRvuj9n+nAf5w7r/f/n+tpmCwSkUsplUoMGjTI3cUgIrpt/yyoxfjkzegdEuLUeSXHj+Ofqc9iVBOVy12YLBIRERHdwviTwPUOvYDAMKfOu260wPiT5z0YjxNciIiIiMghJotERERE5BCTRSIiF1u/fj2CgoLg5+eHqKgoHDx4sMH4nTt3IiQkBH5+fggNDcXnn38uHbt58ybmz5+P0NBQtGnTBoGBgZg0aRIuXrxY7zq7d+9GVFQU/P39cffdd0On07m6akTkhXjPIhGRC+3YsQNJSUnYsGEDoqKisHr1asTHx+PEiRPo3LlzvfgDBw5gwoQJ0Ov1GDFiBNLS0qDT6VBYWIg+ffrg2rVrKCwsxOLFi9GvXz/8+OOPmDVrFkaNGoX8/HzpOh9//DGmTp2K5cuXY8iQIfj5558dPlGHiBy7du0aAKCwsLDesevXr+PMmTMICgqCv79/veMlJSVNXj53UAghPO9OTDsqKyuhVqthMpnQvn17dxeHbsG2qcP3oWVytl2ioqLw6KOPYt26dQDqnmDTrVs3/PnPf8arr75aL378+PGorq5GZmamtG/AgAEICwvDhg0b7P6OQ4cOITIyEmfPnkX37t3x888/IygoCEuXLsWUKVOapZ7UPDyhXeRWh3fffRdTp069o2ucPHkSwcHBLipR02ls23BkkYjIRWpra1FQUIAFCxZI+3x8fBAXFweDwWD3HIPBgKSkJJt98fHxyMjIcPh7TCYTFAoFOnToAKBuBOTChQvw8fHBI488AqPRiLCwMKxcuRJ9+vSxe42amhrU1NRIrysrKxtZSyLPZr19IyQkBK1bt7Y5VlJSgokTJ2Lbtm3o3bu33fPbtWsni0TRGUwWiYhc5MqVKzCbzejSpYvN/i5duuD48eN2zzEajXbjjUaj3fgbN25g/vz5mDBhgjQS8L///Q8AsGTJErzxxhsICgpCamoqBg0ahJMnT+Kee+6pdx29Xo+lS5c6XUciT9epUye88MILDcb07t0b4eHhzVQi9+MEFyIimbh58ybGjRsHIQTefvttab/FYgEA/PWvf8Xvf/97REREYNOmTVAoFNi5c6fday1YsAAmk0nazp071yx1ICL54ciizJjNZj5KjVo0b+6jnTp1glKpxKVLl2z2X7p0CRqNxu45Go2mUfHWRPHs2bPYu3evzf1FAQEBAICHHnpI2qdSqXD//fejrKzM7u9VqVRQqVSNr5xMeHP/I2oqHFmUkfT0dPTs2RODBw/Gs88+i8GDB6Nnz55IT093d9GIALCP+vr6IiIiAjk5OdI+i8WCnJwcREdH2z0nOjraJh4AsrOzbeKtieKpU6ewZ88edOzY0SY+IiICKpUKJ06csDnnzJkz6NGjhyuqJgve3v+ImgqTRZlIT0/HmDFjEBoaCoPBgKqqKhgMBoSGhmLMmDH8MCS3Yx+tk5SUhHfeeQdbtmxBSUkJZsyYgerqakyePBkAMGnSJJsJMLNmzUJWVhZSU1Nx/PhxLFmyBPn5+XjppZcA1CV9Y8aMQX5+Pj744AOYzWYYjUYYjUbU1tYCANq3b48XX3wRKSkp+PLLL3HixAnMmDEDADB27Nhmfgfcg/2PqAkJL2EymQQAYTKZ3F0Up/38888iKChIjBw5UpjNZptjZrNZjBw5Umi1WvHzzz+7qYR3Rs5t40pyfh88uY/eTrusXbtWdO/eXfj6+orIyEjxzTffSMcGDhwoEhMTbeI/+ugj0atXL+Hr6ysefvhhsXv3bulYaWmpAGB327dvnxRXW1sr5syZIzp37izatWsn4uLiRHFxcZPWs6Vg/7O1bt060aNHD6FSqURkZKTIy8trMP6jjz4SDz74oFCpVKJPnz42/U8IISwWi1i8eLHQaDTCz89PDB06VJw8ebJJ69BSFRQUCACioKDA3UVxica2DZNFGdi3b58AIAwGg93jBw4cqPc/Djlxtm3c8UG4bNkyER0dLfz9/YVara73O4qKisQzzzwj7rvvPuHn5ydCQkLE6tWrG1UfK/bRlknO7eIMOdeT/e8X27dvF76+vuL9998Xx44dE1OnThUdOnQQly5dshv/9ddfC6VSKVasWCG+/fZbsWjRInHXXXeJo0ePSjF///vfhVqtFhkZGeLIkSNi1KhRQqvViuvXrzdJHVqa6upqUVBQIAoKCsS2bdsEALFt2zZpX0FBgaiurnZ3MW8Lk8VfkXNnTUtLEwBEVVWV3eOVlZUCgEhLS2vmkrmGM23jrg/C5ORk8cYbb4ikpCS7yeJ7770nXn75ZbF//37x3XffiX/961/C399frF27tkneh5bGk/uonNvFGXKuJ/vfLyIjI8XMmTOl12azWQQGBgq9Xm83fty4cWL48OE2+6KiosT06dOFEHV/TGs0GrFy5UrpeEVFhVCpVOLDDz9skjq0NNbRxIY2uY40Mln8FTl3Vk/+q1kI59rG3R+EmzZtspss2vOnP/1JDB48uFGxQrCPtlRybhdnyLme7H91ampqhFKpFJ988onN/kmTJolRo0bZPadbt27izTfftNmXnJws+vbtK4QQ4rvvvhMAxOHDh21ifve734mXX37Z7jVv3LghTCaTtJ07d062fUsI25HFr776Smzbtk189dVXXjWyyAkuMhAbG4ugoCAsX75cWk/NymKxQK/XQ6vVIjY21k0lbB7Wp2PExcVJ+xrzdIxb44G6p2NY40tLS2E0Gm1i1Go1oqKiHF6zsUwmk93FkK1qampQWVlps8kV+yi5E/tfnYYWhXe0yPtvLQpv/enMNfV6PdRqtbR169btturTUrRu3Rrh4eEIDw/HY489hueeew6PPfaYtC88PLzek148DZNFGVAqlUhNTUVmZiZ0Op3NTD+dTofMzEysWrXK49cSaykfhI1x4MAB7NixA9OmTXMY40kfqOyj5E7sfy0LF3z3PEwWZSIhIQG7du3C0aNHERMTg/bt2yMmJgbFxcXYtWsXEhIS3F1E+n/FxcUYPXo0UlJS8OSTTzqM87QPVPZRcif2v6ZZFN7605lrqlQqtG/f3mYjeeMTXGQkISEBo0eP9tqnEzT1B6H1KRjW12FhYU6X8dtvv8XQoUMxbdo0LFq0qMFYT3yChrf3UXIvb+9/ty4Kr9PpAPyyKLx13c5fsy4KP3v2bGnfrYvCa7VaaDQa5OTkSJ+JlZWVyMvLk9byJM/HZFFmlEolBg0a5O5iuEVL/yA8duwYhgwZgsTERLz++utO189TeHMfJffz9v6XlJSExMRE9O/fH5GRkVi9enW9ReG7du0KvV4PoG5R+IEDByI1NRXDhw/H9u3bkZ+fj40bNwIAFAoFZs+ejWXLliE4OBharRaLFy9GYGCg9DlMno/JIsmKuz4Iy8rK8MMPP6CsrAxmsxlFRUUAgJ49e6Jt27YoLi7GkCFDEB8fj6SkJOl+R6VSiXvvvbf53iAi8mrjx4/H5cuXkZycDKPRiLCwMGRlZUn3ZZeVlcHH55c70GJiYpCWloZFixZh4cKFCA4ORkZGBvr06SPFvPLKK6iursa0adNQUVGBxx9/HFlZWfDz82v2+pGbNNPsbLeT87IQns7ZtnHl0zGE+GVR7i5dugiVSiWGDh0qTpw4YROTmJjY4BM0UlJS7B7v0aNHk70P1Dy8pV28pZ5y4wnt4gl18FSNbRuFEEI0d4LqDpWVlVCr1TCZTLzZtoVh29Th+9AyeUu7eEs95cYT2sUT6uCpGts2nA1NRERERA4xWSQiIiIih5gsEhEREZFDTBaJiIiIyCEmi0RERETkEJNFIiIiInKIySIREREROeQ1T3CxLidZWVnp5pLQr1nbxEuW/HSIfbRl8pb+yf7XMnlC/2Pfarka27+8JlmsqqoCAHTr1s3NJSFHqqqqoFar3V0Mt2Efbdk8vX+y/7Vscu5/7Fst32/1L695govFYsHFixfRrl07KBQKdxfnjlRWVqJbt244d+6cR6yGL4RAVVUVAgMDbZ5Z6m3YR1smb+mf7H8tkyf0P/atlqux/ctrkkVPwkcnUUvHPkruxP5HTcVb+5Y8/0whIiIiombBZJGIiIiIHGKyKEMqlQopKSlQqVTuLgqRXeyj5E7sf9RUvLVv8Z5FIiIiInKII4tERERE5BCTRSIiIiJyiMkiERERETnEZJGIiIiIHGKySEREREQOMVmUmf/85z8YOXIkAgMDoVAokJGR4e4iEUnYP8md2P+oKXlz/2KyKDPV1dXo168f1q9f7+6iENXD/knuxP5HTcmb+1crdxeAnDNs2DAMGzbM3cUgsov9k9yJ/Y+akjf3L44sEhEREZFDTBaJiIiIyCEmi0RERETkEJNFIiIiInKIySIREREROcTZ0DLz008/4fTp09Lr0tJSFBUV4Z577kH37t3dWDIi9k9yL/Y/akre3L8UQgjh7kJQ4+3fvx+DBw+utz8xMRGbN29u/gIR3YL9k9yJ/Y+akjf3LyaLREREROQQ71kkIiIiIoeYLBIRERGRQ0wWiYiIiMghJotERERE5BCTRSIiIiJyiMkiERERETnEZJGIiIiIHGKySEREREQOMVkkIiIiIoeYLBIRERGRQ0wWiYiIiMih/wPK1D2JP8oV0QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -472,11 +486,11 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "!rm -rf project config.yaml eval.log" + "!rm -rf project config_full.yaml eval.log\n" ] }, { @@ -489,7 +503,7 @@ ], "metadata": { "kernelspec": { - "display_name": "apax311", + "display_name": "new_defaults", "language": "python", "name": "python3" }, @@ -503,7 +517,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/examples/02_Molecular_Dynamics.ipynb b/examples/02_Molecular_Dynamics.ipynb index 83b414e8..35d5f1a2 100644 --- a/examples/02_Molecular_Dynamics.ipynb +++ b/examples/02_Molecular_Dynamics.ipynb @@ -38,7 +38,7 @@ "metadata": {}, "outputs": [], "source": [ - "!apax template train # generating the config file in the cwd" + "!apax template train --full # generating the config file in the cwd" ] }, { @@ -50,7 +50,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "Epochs: 100%|█████████████████████████████████████| 100/100 [00:47<00:00, 2.09it/s, val_loss=0.105]\n" + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1732124364.370900 457478 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732124364.374063 457478 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "Epochs: 0%| | 0/100 [00:00" ] @@ -236,7 +239,7 @@ "\n", "Open the config and specify the starting structure and simulation parameters.\n", "If you specify the data set file itself, the first structure of the data set is going to be used as the initial structure.\n", - "Your `md_config_minimal.yaml` should look similar to this:\n", + "Your `md_config.yaml` should look similar to this:\n", "\n", "```yaml\n", "ensemble:\n", @@ -266,7 +269,10 @@ " ), # if the model from example 01 is used change this\n", " \"duration\": 5000, # fs\n", " \"ensemble\": {\n", - " \"temperature\": 300,\n", + " \"temperature_schedule\": {\n", + " \"T0\": 300,\n", + " 'name': \"constant\",\n", + " },\n", " },\n", "}\n", "config_dict = mod_config(md_config_path, config_updates)\n", @@ -319,22 +325,86 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO | 21:44:19 | reading structure\n", - "INFO | 21:44:19 | Unable to initialize backend 'rocm': NOT_FOUND: Could not find registered platform with name: \"rocm\". Available platform names are: CUDA\n", - "INFO | 21:44:19 | Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory\n", - "INFO | 21:44:20 | initializing model\n", - "INFO | 21:44:20 | loading checkpoint from /home/linux3_i1/segreto/uni/dev/apax/examples/project/models/etoh_md/best\n", - "INFO | 21:44:20 | Initializing new trajectory file at md/md.h5\n", - "INFO | 21:44:20 | initializing simulation\n", - "INFO | 21:44:23 | running simulation for 5.0 ps\n", - "Simulation: 0%| | 0/10000 [00:00" ] @@ -377,11 +447,11 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ - "!rm -rf project md config.yaml example.traj md_config.yaml" + "!rm -rf project md config_full.yaml example.traj md_config.yaml" ] }, { @@ -394,7 +464,7 @@ ], "metadata": { "kernelspec": { - "display_name": "apax", + "display_name": "new_defaults", "language": "python", "name": "python3" }, @@ -408,7 +478,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/examples/03_Transfer_Learning.ipynb b/examples/03_Transfer_Learning.ipynb index 36c2ad6e..cda9a8cd 100644 --- a/examples/03_Transfer_Learning.ipynb +++ b/examples/03_Transfer_Learning.ipynb @@ -114,18 +114,9 @@ "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/ms/miniconda3/envs/apax311/lib/python3.11/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", - " pid, fd = os.forkpty()\n" - ] - } - ], + "outputs": [], "source": [ - "!apax template train" + "!apax template train --full" ] }, { @@ -134,7 +125,7 @@ "metadata": {}, "outputs": [], "source": [ - "config_path = Path(\"config.yaml\")\n", + "config_path = Path(\"config_full.yaml\")\n", "\n", "config_updates = {\n", " \"n_epochs\": 100,\n", @@ -152,7 +143,7 @@ "}\n", "config_dict = mod_config(config_path, config_updates)\n", "\n", - "with open(\"config.yaml\", \"w\") as conf:\n", + "with open(\"config_full.yaml\", \"w\") as conf:\n", " yaml.dump(config_dict, conf, default_flow_style=False)" ] }, @@ -165,26 +156,29 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO | 16:25:57 | Running on [cuda(id=0)]\n", - "INFO | 16:25:57 | Initializing Callbacks\n", - "INFO | 16:25:57 | Initializing Loss Function\n", - "INFO | 16:25:57 | Initializing Metrics\n", - "INFO | 16:25:57 | Running Input Pipeline\n", - "INFO | 16:25:57 | Read data file project/benzene_mod.xyz\n", - "INFO | 16:25:57 | Loading data from project/benzene_mod.xyz\n", - "INFO | 16:26:06 | Computing per element energy regression.\n", - "INFO | 16:26:06 | Initializing Model\n", - "INFO | 16:26:06 | initializing 1 models\n", - "INFO | 16:26:10 | Initializing Optimizer\n", - "INFO | 16:26:10 | Beginning Training\n", - "Epochs: 0%| | 0/100 [00:00= n_epochs: \u001b[31m│\u001b[0m\n", + "\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m 90 \u001b[2m│ │ \u001b[0m\u001b[94mraise\u001b[0m \u001b[96mValueError\u001b[0m( \u001b[31m│\u001b[0m\n", + "\u001b[31m│\u001b[0m \u001b[2m 91 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[33mf\u001b[0m\u001b[33m\"\u001b[0m\u001b[33mn_epochs <= current epoch from checkpoint (\u001b[0m\u001b[33m{\u001b[0mn_epochs\u001b[33m}\u001b[0m\u001b[33m <=\u001b[0m \u001b[31m│\u001b[0m\n", + "\u001b[31m│\u001b[0m \u001b[2m 92 \u001b[0m\u001b[2m│ │ \u001b[0m) \u001b[31m│\u001b[0m\n", + "\u001b[31m│\u001b[0m \u001b[2m 93 \u001b[0m \u001b[31m│\u001b[0m\n", + "\u001b[31m╰──────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n", + "\u001b[1;91mValueError: \u001b[0mn_epochs <= current epoch from checkpoint \u001b[1m(\u001b[0m\u001b[1;36m200\u001b[0m <= \u001b[1;36m200\u001b[0m\u001b[1m)\u001b[0m\n" ] } ], "source": [ - "!apax train config.yaml" + "!apax train config_full.yaml" ] }, { @@ -167,7 +202,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -178,66 +213,72 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Energy per atom: Epot = -524.783eV Ekin = 0.042eV (T=322K) Etot = -524.741eV\n", - "Energy per atom: Epot = -524.784eV Ekin = 0.032eV (T=246K) Etot = -524.752eV\n", - "Energy per atom: Epot = -524.786eV Ekin = 0.037eV (T=287K) Etot = -524.749eV\n", - "Energy per atom: Epot = -524.784eV Ekin = 0.033eV (T=252K) Etot = -524.752eV\n", - "Energy per atom: Epot = -524.786eV Ekin = 0.040eV (T=307K) Etot = -524.746eV\n", - "Energy per atom: Epot = -524.781eV Ekin = 0.036eV (T=275K) Etot = -524.746eV\n", - "Energy per atom: Epot = -524.783eV Ekin = 0.038eV (T=295K) Etot = -524.745eV\n", - "Energy per atom: Epot = -524.777eV Ekin = 0.031eV (T=242K) Etot = -524.745eV\n", - "Energy per atom: Epot = -524.772eV Ekin = 0.038eV (T=292K) Etot = -524.735eV\n", - "Energy per atom: Epot = -524.776eV Ekin = 0.039eV (T=305K) Etot = -524.736eV\n", - "Energy per atom: Epot = -524.788eV Ekin = 0.055eV (T=427K) Etot = -524.733eV\n", - " Step Time Energy fmax\n", - "FIRE: 0 18:31:17 -6297.460205 2.9797\n", - "FIRE: 1 18:31:17 -6297.640137 0.9522\n", - "FIRE: 2 18:31:17 -6297.634888 2.8176\n", - "FIRE: 3 18:31:17 -6297.690125 2.0002\n", - "FIRE: 4 18:31:17 -6297.744812 0.7309\n", - "FIRE: 5 18:31:17 -6297.752930 1.0354\n", - "FIRE: 6 18:31:17 -6297.754883 0.9791\n", - "FIRE: 7 18:31:17 -6297.759338 0.8737\n", - "FIRE: 8 18:31:17 -6297.764954 0.7249\n", - "FIRE: 9 18:31:17 -6297.770813 0.5532\n", - "FIRE: 10 18:31:17 -6297.776001 0.4649\n", - "FIRE: 11 18:31:17 -6297.780212 0.4568\n", - "FIRE: 12 18:31:17 -6297.783813 0.4434\n", - "FIRE: 13 18:31:17 -6297.788879 0.5014\n", - "FIRE: 14 18:31:17 -6297.794434 0.5313\n", - "FIRE: 15 18:31:17 -6297.801697 0.4645\n", - "FIRE: 16 18:31:17 -6297.810730 0.3380\n", - "FIRE: 17 18:31:17 -6297.818176 0.2703\n", - "FIRE: 18 18:31:17 -6297.823425 0.2700\n", - "FIRE: 19 18:31:17 -6297.829163 0.3942\n", - "FIRE: 20 18:31:17 -6297.834229 0.3305\n", - "FIRE: 21 18:31:17 -6297.838928 0.2279\n", - "FIRE: 22 18:31:17 -6297.841248 0.3689\n", - "FIRE: 23 18:31:17 -6297.845642 0.3514\n", - "FIRE: 24 18:31:17 -6297.849121 0.2314\n", - "FIRE: 25 18:31:17 -6297.850342 0.3102\n", - "FIRE: 26 18:31:17 -6297.850586 0.2551\n", - "FIRE: 27 18:31:17 -6297.851562 0.1678\n", - "FIRE: 28 18:31:17 -6297.852051 0.1254\n", - "FIRE: 29 18:31:17 -6297.852356 0.1746\n", - "FIRE: 30 18:31:17 -6297.853149 0.2219\n", - "FIRE: 31 18:31:17 -6297.853760 0.2102\n", - "FIRE: 32 18:31:17 -6297.854919 0.1454\n", - "FIRE: 33 18:31:17 -6297.855469 0.0630\n", - "FIRE: 34 18:31:17 -6297.856812 0.1301\n", - "FIRE: 35 18:31:17 -6297.857239 0.1528\n", - "FIRE: 36 18:31:17 -6297.857483 0.0839\n", - "FIRE: 37 18:31:17 -6297.857483 0.0878\n", - "FIRE: 38 18:31:17 -6297.857605 0.0763\n", - "FIRE: 39 18:31:17 -6297.857544 0.0549\n", - "FIRE: 40 18:31:17 -6297.857056 0.0411\n" + "Energy per atom: Epot = -524.783eV Ekin = 0.035eV (T=273K) Etot = -524.747eV\n", + "Energy per atom: Epot = -524.784eV Ekin = 0.039eV (T=303K) Etot = -524.745eV\n", + "Energy per atom: Epot = -524.789eV Ekin = 0.040eV (T=310K) Etot = -524.749eV\n", + "Energy per atom: Epot = -524.786eV Ekin = 0.037eV (T=285K) Etot = -524.749eV\n", + "Energy per atom: Epot = -524.792eV Ekin = 0.039eV (T=305K) Etot = -524.753eV\n", + "Energy per atom: Epot = -524.778eV Ekin = 0.039eV (T=301K) Etot = -524.739eV\n", + "Energy per atom: Epot = -524.780eV Ekin = 0.053eV (T=413K) Etot = -524.727eV\n", + "Energy per atom: Epot = -524.771eV Ekin = 0.046eV (T=353K) Etot = -524.726eV\n", + "Energy per atom: Epot = -524.775eV Ekin = 0.051eV (T=393K) Etot = -524.724eV\n", + "Energy per atom: Epot = -524.776eV Ekin = 0.049eV (T=382K) Etot = -524.726eV\n", + "Energy per atom: Epot = -524.763eV Ekin = 0.039eV (T=301K) Etot = -524.724eV\n", + " Step Time Energy fmax\n", + "FIRE: 0 18:03:10 -6297.160709 4.643667\n", + "FIRE: 1 18:03:10 -6297.568402 1.215557\n", + "FIRE: 2 18:03:10 -6297.416246 3.988612\n", + "FIRE: 3 18:03:10 -6297.546911 2.973441\n", + "FIRE: 4 18:03:10 -6297.678424 1.334519\n", + "FIRE: 5 18:03:10 -6297.695949 1.463297\n", + "FIRE: 6 18:03:10 -6297.700549 1.363753\n", + "FIRE: 7 18:03:10 -6297.708687 1.175066\n", + "FIRE: 8 18:03:10 -6297.718344 0.913409\n", + "FIRE: 9 18:03:10 -6297.727659 0.727679\n", + "FIRE: 10 18:03:10 -6297.736589 0.619541\n", + "FIRE: 11 18:03:10 -6297.742862 0.511749\n", + "FIRE: 12 18:03:10 -6297.748436 0.697062\n", + "FIRE: 13 18:03:10 -6297.755050 0.857826\n", + "FIRE: 14 18:03:10 -6297.763414 0.924485\n", + "FIRE: 15 18:03:10 -6297.775700 0.863180\n", + "FIRE: 16 18:03:10 -6297.790781 0.655139\n", + "FIRE: 17 18:03:10 -6297.805233 0.349130\n", + "FIRE: 18 18:03:10 -6297.816560 0.393361\n", + "FIRE: 19 18:03:10 -6297.826240 0.583213\n", + "FIRE: 20 18:03:10 -6297.836858 0.470288\n", + "FIRE: 21 18:03:10 -6297.846426 0.208600\n", + "FIRE: 22 18:03:10 -6297.847673 0.452071\n", + "FIRE: 23 18:03:10 -6297.849254 0.408002\n", + "FIRE: 24 18:03:10 -6297.850233 0.325805\n", + "FIRE: 25 18:03:10 -6297.851149 0.224788\n", + "FIRE: 26 18:03:10 -6297.852456 0.150222\n", + "FIRE: 27 18:03:10 -6297.852044 0.165351\n", + "FIRE: 28 18:03:10 -6297.852139 0.215623\n", + "FIRE: 29 18:03:10 -6297.851961 0.243710\n", + "FIRE: 30 18:03:10 -6297.852954 0.222756\n", + "FIRE: 31 18:03:10 -6297.854113 0.148616\n", + "FIRE: 32 18:03:10 -6297.855736 0.084148\n", + "FIRE: 33 18:03:10 -6297.855055 0.126039\n", + "FIRE: 34 18:03:10 -6297.855310 0.187920\n", + "FIRE: 35 18:03:10 -6297.856459 0.159655\n", + "FIRE: 36 18:03:10 -6297.856218 0.078716\n", + "FIRE: 37 18:03:10 -6297.857179 0.153488\n", + "FIRE: 38 18:03:10 -6297.857669 0.133507\n", + "FIRE: 39 18:03:10 -6297.857858 0.097674\n", + "FIRE: 40 18:03:10 -6297.857554 0.054184\n", + "FIRE: 41 18:03:10 -6297.857677 0.051685\n", + "FIRE: 42 18:03:10 -6297.858031 0.076014\n", + "FIRE: 43 18:03:10 -6297.858488 0.095619\n", + "FIRE: 44 18:03:10 -6297.857724 0.098065\n", + "FIRE: 45 18:03:10 -6297.857533 0.081023\n", + "FIRE: 46 18:03:10 -6297.858317 0.043732\n" ] }, { @@ -246,7 +287,7 @@ "True" ] }, - "execution_count": 42, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -287,7 +328,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -297,16 +338,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "142" + "148" ] }, - "execution_count": 5, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -317,28 +358,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Computing features: 100%|██████████████████████████████████████| 1142/1142 [00:04<00:00, 273.60it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(1142, 513)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" + "Computing features: 100%|██████████████████████████████████████| 1148/1148 [00:02<00:00, 410.32it/s]\n" ] } ], @@ -361,16 +388,45 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([139, 99, 1, 34, 102, 78, 4, 17, 97, 72])" + "(array([145, 99, 13, 28, 105, 8, 7, 3, 34, 77]),\n", + " array([2.1153207e+04, 8.0031250e+01, 1.9972656e+01, 5.7343750e+00,\n", + " 5.0390625e+00, 2.3984375e+00, 2.2890625e+00, 2.0976562e+00,\n", + " 1.5156250e+00, 1.2968750e+00], dtype=float32),\n", + " array([[-8.0443577e-08, -3.9290704e-08, -5.0462347e-07, ...,\n", + " -2.8600613e-07, -2.1077530e-12, 1.0578943e+01],\n", + " [-7.8728974e-08, -3.6814725e-08, -4.9945356e-07, ...,\n", + " -2.7572671e-07, -2.1329063e-12, 1.0578943e+01],\n", + " [-7.7208618e-08, -3.9166920e-08, -4.5074782e-07, ...,\n", + " -2.8476998e-07, -2.1711810e-12, 1.0578943e+01],\n", + " ...,\n", + " [-7.8029473e-08, -3.7501913e-08, -5.0669252e-07, ...,\n", + " -2.7671780e-07, -2.1255159e-12, 1.0578943e+01],\n", + " [-7.9816232e-08, -3.9418715e-08, -4.7391208e-07, ...,\n", + " -2.8574479e-07, -2.1665530e-12, 1.0578943e+01],\n", + " [-7.9606153e-08, -3.6622986e-08, -5.3845122e-07, ...,\n", + " -2.7972229e-07, -2.0286058e-12, 1.0578943e+01]], dtype=float32),\n", + " array([[-8.0443577e-08, -3.9290704e-08, -5.0462347e-07, ...,\n", + " -2.8600633e-07, -2.1077530e-12, 1.0578943e+01],\n", + " [-7.6723715e-08, -4.3407518e-08, -3.9524843e-07, ...,\n", + " -2.9376406e-07, -2.1438441e-12, 1.0578943e+01],\n", + " [-7.1703973e-08, -2.9766772e-08, -4.5751801e-07, ...,\n", + " -2.5320008e-07, -1.6724249e-12, 1.0578943e+01],\n", + " ...,\n", + " [-8.3775660e-08, -4.6998672e-08, -4.5863644e-07, ...,\n", + " -3.1039335e-07, -2.4709093e-12, 1.0578943e+01],\n", + " [-8.3781032e-08, -4.7010957e-08, -4.5846181e-07, ...,\n", + " -3.1048981e-07, -2.4710767e-12, 1.0578943e+01],\n", + " [-8.3768818e-08, -4.7006104e-08, -4.5847912e-07, ...,\n", + " -3.1042489e-07, -2.4719324e-12, 1.0578943e+01]], dtype=float32))" ] }, - "execution_count": 7, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -381,13 +437,13 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "energies = np.array([a.get_potential_energy() for a in pool_atoms])\n", "# selected_indices = np.random.randint(0, len(energies), 10)\n", - "selection_energies = energies[selected_indices]" + "selection_energies = energies[selected_indices[0]]" ] }, { @@ -400,22 +456,22 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 9, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHACAYAAABONwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACa/ElEQVR4nO2deXwU9f3/X3vn3iSQg5BwBFBA0CIogihUEJHWo15VEUURtBWvqhX1p9b6VdRqD62tWk8Uqq1Vq7RiUQQVkRsVhHCEIwmEAEk2xyZ7zu+P3c/szB7JntlN8no+HvuAzM7Ofmaz2Xnt631pJEmSQAghhBDSC9EmewGEEEIIIcmCQogQQgghvRYKIUIIIYT0WiiECCGEENJroRAihBBCSK+FQogQQgghvRYKIUIIIYT0WiiECCGEENJroRAihBBCSK+FQogQQgghvRYKoQTxn//8B+PHj0d6ejry8vJw8cUXh9zX4XDg3nvvxejRo5GZmYmSkhJce+21OHTokGq/zZs349xzz0Vubi769OmD+fPno6WlRb7/9ddfh0ajCXqrq6sLe+033XQThgwZgvT0dBQUFOCiiy7Czp07I34NCCGEkFSHQigB/Otf/8Ls2bNx/fXX49tvv8WaNWtw9dVXh9zfarVi8+bNePDBB7F582a89957qKiowIUXXijvc+jQIUybNg1Dhw7FunXrsHz5cmzfvh1z5syR9/n5z3+Ow4cPq27nnXceJk+ejMLCwrDXP3bsWLz22mvYsWMHPvnkE0iShOnTp8PlckX1ehBCCCEpi0TiisPhkPr37y+9/PLLMR1n/fr1EgDpwIEDkiRJ0osvvigVFhZKLpdL3ue7776TAEi7d+8Oeoy6ujrJYDBIixcvVm3/4IMPpDFjxkgmk0kaPHiw9Jvf/EZyOBwh1/Ltt99KAKQ9e/bEdE6EEEJIqkFHKM5s3rwZNTU10Gq1GDNmDPr164fzzz8f27Zti+g4FosFGo0Gubm5AACbzQaj0Qit1vcrS09PBwB89dVXQY+xePFiZGRk4LLLLpO3ffnll7j22mtx++2344cffsCLL76I119/HY899ljQY7S2tuK1117D4MGDUVZWFtE5EEIIIakOhVCcqaysBAD85je/wf/7f/8Py5YtQ15eHqZMmYL6+vqwjtHe3o57770XV111FXJycgAA55xzDmpra/G73/0OdrsdDQ0NWLhwIQDg8OHDQY/zyiuv4Oqrr5YFEwA88sgjWLhwIa677jqUl5fj3HPPxaOPPooXX3xR9di//OUvyMrKQlZWFj7++GOsWLECRqMx4teDEEIISWUohMJk4cKFIRORxW3nzp1wu90AgAceeACXXnqpnG+j0Wjwz3/+s9PncTgcuOKKKyBJEv7617/K20866SS88cYbeOaZZ5CRkYHi4mIMHjwYRUVFKpdIsHbtWuzYsQNz585Vbf/222/x29/+VhY5WVlZmDdvHg4fPgyr1SrvN2vWLGzZsgWrV6/GCSecgCuuuALt7e3RvnyEEEJISqKRJElK9iK6A0ePHsXx48c73Ke8vBxr1qzBOeecgy+//BKTJk2S7xs/fjymTZsWMgQF+ERQZWUlVq5ciT59+gTd78iRI8jMzIRGo0FOTg7efvttXH755ap95s6di82bN2PLli2q7enp6XjkkUdwySWXBF1/MFFlt9uRl5eHl19+GVdddVWHrwEhhBDSndAnewHdhYKCAhQUFHS639ixY2EymVBRUSELIYfDgf3792PgwIEhHydE0O7du/H555+HFEEAUFRUBAB49dVXkZaWhnPPPVd1f0tLC/7xj39g0aJFAY899dRTUVFRgaFDh3Z6LgJJkiBJEmw2W9iPIYQQQroDFEJxJicnBzfffDMefvhhlJWVYeDAgfjd734HACrXZvjw4Vi0aBF+9rOfweFw4LLLLsPmzZuxbNkyuFwu1NbWAgDy8/Pl3Jw///nPmDhxIrKysrBixQrcc889eOKJJ+SEasE777wDp9OJa665JmB9Dz30EH76059iwIABuOyyy6DVavHtt99i27Zt+L//+z9UVlbinXfewfTp01FQUIDq6mo88cQTSE9Px8yZMxP0qhFCCCFJIqk1az0Uu90u3XXXXVJhYaGUnZ0tTZs2Tdq2bZtqHwDSa6+9JkmSJO3bt08CEPT2+eefy4+ZPXu2lJ+fLxmNRunkk08OKIsXTJgwQbr66qtDrm/58uXSxIkTpfT0dCknJ0c6/fTTpZdeekmSJEmqqamRzj//fKmwsFAyGAxSaWmpdPXVV0s7d+6M7UUhhBBCUhDmCBFCCCGk18KqMUIIIYT0WiiECCGEENJrYbJ0J7jdbhw6dAjZ2dnQaDTJXg4hhBBCwkCSJDQ3N6OkpCRoaxjljt2C48ePS1dffbWUnZ0tmc1m6YYbbpCam5s7fMyLL74oTZ48WcrOzpYASA0NDRE/b1VVVchEZt5444033njjLbVvVVVVHV7nu40jNGvWLBw+fBgrVqyAw+HA9ddfj/nz52Pp0qUhH2O1WjFjxgzMmDED9913X1TPm52dDQCoqqqSx10QQgghJLVpampCWVmZfB0PRbeoGtuxYwdGjhyJDRs2YNy4cQCA5cuXY+bMmaiurkZJSUmHj1+1ahV+/OMfo6GhIaDnTmc0NTXBbDbDYrFQCBFCCCHdhHCv390iWXrt2rXIzc2VRRAATJs2DVqtFuvWrYvrc9lsNjQ1NaluhBBCCOmZdAshVFtbi8LCQtU2vV6P/Px8uQNzvFi0aBHMZrN8Kysri+vxCSGEEJI6JFUIhTvRvSu57777YLFY5FtVVVWXPj8hhBBCuo6kJkvfddddmDNnTof7lJeXo7i4GHV1dartTqcT9fX1KC4ujuuaTCYTTCZTXI9JCCEktXG73bDb7cleBokAg8EAnU4X83GSKoTCneg+YcIENDY2YtOmTRg7diwAYOXKlXC73Rg/fnyil0kIIaQHY7fbsW/fPrjd7mQvhURIbm4uiouLY+rz1y3K50eMGIEZM2Zg3rx5eOGFF+BwOLBgwQJceeWVcsVYTU0Npk6disWLF+P0008H4Mktqq2txZ49ewAA33//PbKzszFgwADk5+cn7XwIIYSkBpIk4fDhw9DpdCgrK+u48R5JGSRJgtVqlaNF/fr1i/pY3UIIAcCSJUuwYMECTJ06FVqtFpdeeimeffZZ+X6Hw4GKigpYrVZ52wsvvIBHHnlE/vnss88GALz22mudhuQIIYT0fJxOJ6xWK0pKSpCRkZHs5ZAISE9PBwDU1dWhsLAw6jBZt+gjlEzYR4gQQnou7e3t2LdvHwYNGiRfWEn3oa2tDfv378fgwYORlpamuq9H9REihBBCEglnSXZP4vF7oxAihBCSGCwWoLo6+H3V1Z77CUkyFEKEEELij8UCzJgBTJ4M+Pdjq6rybJ8xg2IoCezfvx8ajQZbt25N6PPMmTMHF198cUKfIx5QCBFCCIk/zc1AXR1QWQlMmeITQ1VVnp8rKz33Nzcnc5UkDoQSVn/605/w+uuvJ2VNkUAhRAghJP6UlgKrVgHl5UBlJZw/Pgf2r9b4RFB5uef+0tIkLzRGGP4LidlsjnjQeTKgECKEEJIYyspkMXTJmb/EtDd3wLH/gE8EdfdZjkkO/7377rsYPXo00tPT0adPH0ybNg2tra0AgJdffhkjRoxAWloahg8fjr/85S8dHmvbtm04//zzkZWVhaKiIsyePRvHjh2T73e73XjqqacwdOhQmEwmDBgwAI899hgAYPDgwQCAMWPGQKPRYMqUKQACQ2M2mw233XYbCgsLkZaWhkmTJmHDhg3y/atWrYJGo8Fnn32GcePGISMjAxMnTkRFRUU8Xq6QUAgRQghJHGVlcC1ejO/6nYCDef3QkJ4DvPlm9xdBQFLDf4cPH8ZVV12FG264ATt27MCqVatwySWXQJIkLFmyBA899BAee+wx7NixA48//jgefPBBvPHGG0GP1djYiHPOOQdjxozBxo0bsXz5chw5cgRXXHGFvM99992HJ554Ag8++CB++OEHLF26FEVFRQCA9evXAwA+/fRTHD58GO+9917Q5/n1r3+Nf/3rX3jjjTewefNmDB06FOeddx7q6+tV+z3wwAN45plnsHHjRuj1etxwww3xeMlCI5EOsVgsEgDJYrEkeymEENL9OHhQaht6ojTw3mXSwHuXSdXZBZJUXi5JBw8me2WSJElSW1ub9MMPP0htbW3RHeDgQc/5AJ5/16xR/5yg89y0aZMEQNq/f3/AfUOGDJGWLl2q2vboo49KEyZMkCRJkvbt2ycBkLZs2SLfN336dNX+VVVVEgCpoqJCampqkkwmk/S3v/0t6Fr8jye47rrrpIsuukiSJElqaWmRDAaDtGTJEvl+u90ulZSUSE899ZQkSZL0+eefSwCkTz/9VN7nP//5jwQg5O+no99fuNfvbtNZmhBCSDfD64w4qg/LmxyDBgPfr/c4Jj0hPCbCf8IBOvNMz/YEh/9OOeUUTJ06FaNHj8Z5552H6dOn47LLLoPRaMTevXsxd+5czJs3T97f6XTCbDYHPda3336Lzz//HFlZWQH37d27F42NjbDZbJg6dWrU6927dy8cDgfOFK8PPENTTz/9dOzYsUO178knnyz/X4zOqKurw4ABA6J+/o6gECKEEBJ/qqtlceAYPlre7HzzLeCSGb5w0urV3T9huqzME+5TXOQTHf7T6XRYsWIFvv76a/zvf//Dc889hwceeAAfffQRAOBvf/tbwFDyUCMoWlpacMEFF+DJJ58MuK9fv36orKyM/wl0gMFgkP8vGiYmciAuc4QIIYTEn+xsoLAQKC+H4/0P5M2OwiJfNVlhoWe/7k5VFTB7tnrb7NmBCdRxRqPR4Mwzz8QjjzyCLVu2wGg0Ys2aNSgpKUFlZSWGDh2quomkZn9OPfVUbN++HYMGDQp4TGZmJoYNG4b09HR89tlnQR9vNBoBAC6XK+RahwwZIq9P4HA4sGHDBowcOTKGVyF26AgRQgiJP2YzsHw50NwMe0Y+AE/4w+Fye5yS1as9IihEuKbboEyMLi/3OEGzZ/scrwSFx9atW4fPPvsM06dPR2FhIdatW4ejR49ixIgReOSRR3DbbbfBbDZjxowZsNls2LhxIxoaGvCrX/0q4Fi33HIL/va3v+Gqq67Cr3/9a+Tn52PPnj14++238fLLLyMtLQ333nsvfv3rX8NoNOLMM8/E0aNHsX37dsydOxeFhYVIT0/H8uXLUVpairS0tIAwXGZmJn7xi1/gnnvuQX5+PgYMGICnnnoKVqsVc+fOjfvrEwkUQoQQQhKD2QyYzXAea5U3OVzeOd/dPRwGqMJ/qpwgZc5QgsJ/OTk5+OKLL/DHP/4RTU1NGDhwIJ555hmcf/75AICMjAz87ne/wz333IPMzEyMHj0ad9xxR9BjlZSUYM2aNbj33nsxffp02Gw2DBw4EDNmzIBW6wkcPfjgg9Dr9XjooYdw6NAh9OvXDzfffDMAQK/X49lnn8Vvf/tbPPTQQzjrrLOwatWqgOd54okn4Ha7MXv2bDQ3N2PcuHH45JNPkJeXF9fXJlI4fb4TOH2eEEJiY9eRZkz/wxcAgHfmn4Hx5X2SvCIfYvp8sOnlnSL6CNXVBTo/wikqLPQ4Y93d+UpROvr9hXv9piNECCEkodidvkRX2RHqCSjCfwGOT08K//VwKIQIIYQkFKfbJ34cCaz+SQre8F9QekL4rxfAqjFCCCEJxeHyiR9nT3KESI+AQogQQkhCcahCYz3MESLdHgohQgghCcWhDI2lqBBi3VD3JB6/NwohQgghCcWRwsnSotuy3W5P8kpINFitVgDqbtSRwmRpQgghCUWdI5RajpBer0dGRgaOHj0Kg8Eg980hqY0kSbBarairq0Nubm7I8SHhQCFECCEkoahCY+7UcoQ0Gg369euHffv24cCBA8leDomQ3NxcFBcXx3QMCiFCCCEJRRUac6aWIwR4ZmUNGzaM4bFuhsFgiMkJElAIEUIISSiq0FiK9hHSarWRd5YmPQIGQwkhhCQUpRBKtWRpQiiECCGEJBSl+EnV8nnSe6EQIoQQklDYWZqkMhRChBBCEooqNJaiOUKk90IhRAghJKGoQmNOOkIktaAQIoQQklC6Q9UY6b1QCBFCCEkorBojqQyFECGEkITCqjGSylAIEUIISSipPGuMEAohQgghCUVdNcbQGEktKIQIIYQkFHXVGB0hklp0GyFUX1+PWbNmIScnB7m5uZg7dy5aWlo63P/WW2/FiSeeiPT0dAwYMAC33XYbLBZLF66aEEKIumqMjhBJLbqNEJo1axa2b9+OFStWYNmyZfjiiy8wf/78kPsfOnQIhw4dwtNPP41t27bh9ddfx/LlyzF37twuXDUhhBB11RgdIZJadIvp8zt27MDy5cuxYcMGjBs3DgDw3HPPYebMmXj66adRUlIS8JhRo0bhX//6l/zzkCFD8Nhjj+Gaa66B0+mEXt8tTp0QQro9rBojqUy3cITWrl2L3NxcWQQBwLRp06DVarFu3bqwj2OxWJCTk9OhCLLZbGhqalLdCCGERA9njZFUplsIodraWhQWFqq26fV65Ofno7a2NqxjHDt2DI8++miH4TQAWLRoEcxms3wrKyuLet2EEEJYNUZSm6QKoYULF0Kj0XR427lzZ8zP09TUhJ/85CcYOXIkfvOb33S473333QeLxSLfqqqqYn5+QgjpzbBqjKQySU2UueuuuzBnzpwO9ykvL0dxcTHq6upU251OJ+rr61FcXNzh45ubmzFjxgxkZ2fj/fffh8Fg6HB/k8kEk8kU1voJIYR0jpOzxkgKk1QhVFBQgIKCgk73mzBhAhobG7Fp0yaMHTsWALBy5Uq43W6MHz8+5OOamppw3nnnwWQy4cMPP0RaWlrc1k4IISQ87ApHiDlCJNXoFjlCI0aMwIwZMzBv3jysX78ea9aswYIFC3DllVfKFWM1NTUYPnw41q9fD8AjgqZPn47W1la88soraGpqQm1tLWpra+FyuZJ5OoQQ0qtQ5gjZWTVGUoxuU0O+ZMkSLFiwAFOnToVWq8Wll16KZ599Vr7f4XCgoqICVqsVALB582a5omzo0KGqY+3btw+DBg3qsrUTQkhvxsmqMZLCdBshlJ+fj6VLl4a8f9CgQZAk3x/YlClTVD8TQghJEBYL0NwMlJYG3lddDYfD58IzR4ikGt0iNEYIISRFsViAGTOAyZMB/yrbqipg8mTYjx6TN9lZNUZSDAohQggh0dPcDNTVAZWVwJQpPjFUVeX5ubISDsWlhrPGSKpBIUQIISR6SkuBVauA8nKfGPr6a1kEobwczqxseXeO2CCpBoUQIYSQ2CgrA1atQvvQE/Fq3igc+MmlsgjCqlWwK0wgh0ti/iZJKSiECCGExE5ZGT557AX8dtp8/H7SNZ5tb74JlJUFuEAuhsdICkEhRAghJHaqqmB5+XUAQEO6NxQ2ezZcBw7C3wBysISepBAUQoQQQmLDmxhtb2gEANhOGy/nDDmmTQ/Y3cESepJCUAgRQgiJnupqX3VYQREAoD0jS06gth8MHFzNpooklaAQIoQQEj3Z2UBhoac6bN48AIDN4ZITqJ3lQ+RdtRrPv6wcI6kEhRAhhJDoMZuB5cuB1avhyPTkBslNE8vK4Hj/3wAAvVYDg85zyaEQIqkEhRAhhJDYMJuB0lI4vNVg7YqRGvZCT7hMr/MJIYbGSCrRbWaNEUIISW0cXifIphijITpJG3Ra6L2xMTpCJJWgECKEEBIXhOhRCiEheow6LbSyEKIjRFIHCiFCCCFxwe4SjpAiNOYVRXqdBjqNRwhxAj1JJZgjRAghJC6I0JjDJcndo4UjZNBpYdAzWZqkHhRChBBC4oJysrxwhcQ2oypHiKExkjpQCBFCCIkLdoXTY3N43SFFaIxVYyQVoRAihBCLxdMhORjV1Z77Sac4lULIK4DsytAY+wiRFIRCiBDSu7FYgBkzgMmTPTOzlFRVebbPmEExFAbKkJfoJSTcH4NOC72O5fMk9aAQIoT0bpqbgbo6oLLSMzNLiCHvIFFUVnrub25O5iq7BY4gjpAvWVoDg9YbGnMzNEZSBwohQkjvprRUHhAqi6Gvv/aJoPJyz/2lpcldZzdALYQ8jpAqNKanI0RSDwohQgjxDgi1nHgSbjvpEnw++za1CCorS/YKuwXK0JhwhFShMa02YD9Ckg0bKhJCCACUlWH1o3/Gh5tacTQzDz+u3AS8+SZFUAQok6VFjpCyjxAgBexHSLKhI0QIIQBQVYWml14FALQa0z3bZs8OTKAmIbErHSFHkBwhVo2RFIRCiBBCvInRrU2tAADrsOHqnKE4i6FtNRY8//keefxETyFY+bxDVTXG0BhJPSiECCG9m+pqOTG6tagEANCmNwUmUIfqMxQFD/17G373SQU+r6iL2zFTgWDJ0qoRG1rOGiOpB4UQIaR3k50NFBYC5eVoueoaAECbwyUnUKO83HN/dnZcns7hcmPboSYAQE1DW1yOmSqo+wh1FBqjI0RSByZLE0J6N2YzsHw50NwM67p6AECb3Ts9vawMWL3aI4LM5rg83d6jLXJIrK7ZFpdjpgrBy+d9oTG3JAXsR0iyoSNECCFmM1BaihabE4DHEXKLpn+lpXETQQCwraZJ/n9dc3vcjpsKBGuo6OSIDZLiUAgRQoiXVq8QAoB2r6MRb7Yf8o3qONrDHCFnkBEb6tCYJmA/QpINhRAhhHhptfnEjxweizPblY5QU88SQnZWjZFuCIUQIYR4aVE4QtYECCG3W8IPh3tJaCwgWdpXNcbQGEklKIQIIcSL1a4IjTniL4QO1FvRYnPCqwfQYHX0mF5CLrcE5SzVgPJ5va9qjOXzJJWgECKEEC8titBYIhwhkR80ur8Zeq8aOtrSM8Jj/i6Pr3zeGxrTMjRGUhMKIUII8aJMlm5LgCMkKsZG9TejINsEAKhr6hnhMadbLW4CGyr6kqUZGiOpRLcRQvX19Zg1axZycnKQm5uLuXPnoqWlpcPH3HTTTRgyZAjS09NRUFCAiy66CDt37uyiFRNCuhMut6QSP4lIlhaO0EklZhQKIdRDKsccfiE+X7K0CI35yudZNUZSiW4jhGbNmoXt27djxYoVWLZsGb744gvMnz+/w8eMHTsWr732Gnbs2IFPPvkEkiRh+vTpcLkSUw1CCOm+tCryg4AYQmMWS9BxHJIkYXtVAwBgVP8cFGSnAehBQsgdSggpQ2N0hEjq0S06S+/YsQPLly/Hhg0bMG7cOADAc889h5kzZ+Lpp59GSUlJ0McphdKgQYPwf//3fzjllFOwf/9+DBkypEvWTgjpHlhtauETVWjMYgFmzADq6jzjOcrK5LsO76hEfbsLOsmNE9IlFOZ4HKGjPSQ05p/3E9BHSK8BnGyoSFKPbuEIrV27Frm5ubIIAoBp06ZBq9Vi3bp1YR2jtbUVr732GgYPHowyxYeTPzabDU1NTaobIaTnoyydB4A2P4coLJqbPSLIf2p9VRW2z/8VAGCY5TDS2lp7X2hMp/WIIQTmExGSTLqFEKqtrUVhYaFqm16vR35+Pmprazt87F/+8hdkZWUhKysLH3/8MVasWAGj0Rhy/0WLFsFsNsu3jkQTIaTn0OovhKJxhEpLVVPrm6bNQNPqNcCUKdiGLADASWeMAkpLUdjDQmP+JfE22RHyiB69Vgu9lo4QST2SKoQWLlwIjUbT4S3W5OZZs2Zhy5YtWL16NU444QRcccUVaG8PbUXfd999sFgs8q1KfKMjhPRo/IVQ1DlC3qn1DcNH4awZD2LssqO48Uez8L9RZwMARg3rBwAKR6hnhMbsTsnvZ7UjZNRz+jxJTZKaI3TXXXdhzpw5He5TXl6O4uJi1NXVqbY7nU7U19ejuLi4w8cLZ2fYsGE444wzkJeXh/fffx9XXXVV0P1NJhNMJlNE50EI6f4EhMZiKZ8vK8PWx/8MyzpPZeunw8bLd51U4hngWpTjdYR6yJgNf0eo3c8RMui0kCT1IFZCUoGkCqGCggIUFBR0ut+ECRPQ2NiITZs2YezYsQCAlStXwu12Y/z48Z082ockSZAkCTZbz/jgIT2fN9fuR1aaHj8bU5rspfR4/B2gmMrnq6pQ8bclwMkXYcKBbzG2ZgeWjT4HuUMH4eRSjxASydLHWmxwuSXoRLvpbop/uCtYjpBIDaIjRFKJbpEjNGLECMyYMQPz5s3D+vXrsWbNGixYsABXXnmlXDFWU1OD4cOHY/369QCAyspKLFq0CJs2bcLBgwfx9ddf4/LLL0d6ejpmzpyZzNMhJCwaWu148N/bce+738PN5NKE4+8IRR0aq6oCpkzBLm02AGDieeNxd83XWPWXG/DBn29EWu0hAECfTCM0GsAtAcdbu/bL2Wc7juC+974PCAfGgs/58Qi6QCHEhookNekWQggAlixZguHDh2Pq1KmYOXMmJk2ahJdeekm+3+FwoKKiAlarFQCQlpaGL7/8EjNnzsTQoUPx85//HNnZ2fj6668DEq8JSUWa2h0APBO97bxwJJy4JEtXV3uqxSorUdF/GADgxNNOUiVQY8oUoLoaep0WfTJFd+muFUK/+Wg7/r7+IN765kDcjinETabJE2gQnaWditCYb9YYhT1JHbpFHyEAyM/Px9KlS0PeP2jQIEiS74+rpKQE//3vf7tiaYQkhFZFXxu7y400gy6Jq+n5CCFk0mthc7qjC41lZwOFhXBqtNjddwDgknBicTbQJ9MjhqZMAQoLPfvBkzB9rMWGo11YOVZVb0VVfRsA4J2NVZh/djk0mtjDckIIZZn0aLQ64HBJcLklWcQbdFq4vAKIjhBJJbqNI0RIb0M5Cd3m4IUj0YiBq32zPC5NVELIbAaWL8eB9z+G3SUhzaBFWV6G576yMmD1amD5cs9+8OUJdWXl2Nq9x+X/Vx5txeaDDXE5rgiNZZl8369tTpdfaIzl8yT1oBAiJEVR5qgwNBZfrHYnttVYVC6yEJ59vWXt1mirxsxm7EImAOCEomxolUnQpaWyCAIUJfRdGBpbW+kRQkavKHlnQ3xahCgdIYHN4Q4eGmOyNEkhKIQISVGUjpDdSSEUT/7f+9vw0+e+wvp99fI2kSxdkOVpuBpVZ2kvFUeaAQAnFmV3uF9XN1WUJAlf7z0GALjlx0MBAMu+OxyQKB4NQtykG3XQe8Vfu9OlCo1x1hhJRSiECElRVDlCFEJxZd/xVgDArroWeZvIESrwujSx9BGqqPUKoeJOhFAXh8Yqj7XiSJMNRr0WN00uR3nfTFjtLvznu0MxH1sIHr1WA5Pec2lpd7hl0aPXaWQXiuXzJJWgECIkRVGGZkQFDokPYsDq8RafEyOEZ0EsOUJehCN0QqeOUNfOG/vamx80bmAe0gw6XD7OM0IoHuExZb8gkdhvtTshoo9GhSPk33yRkGRCIURIimK1MTSWKFq9Ya/jLXZ5mwgPiRyhaIVQu8OF/cc8jtPwThyhguyu7S691hsWmzikDwDg0lP7Q6fVYPPBRuypa47p2MpcIOEIKV1Ng045a0xS5WcRkkwohAhJUVrtDI0lCpGIrmxkKCdLZ/mSpaO5WO+pa4FbAnIzDHKYLRTCETrabEu4MHC7JblibMKQvp7nz0nDlBM83f0/2X4kpuMrq8NMXkeo2dsLC1CHxgD2EiKpA4UQISmK0hGyUQjFFWtQR0hdPi9J0b3uuxRhsc768wihZHe5YWlzdLhvrOysbUaD1YFMo04e8wEAw/t5XKu6ptjylOQp8wpHSJmEbdD6QmMAK8dI6kAhREiKos4RohCKFy63hHZvX6bjrT4hJJKl+3qrxoDowmMiP6izsBgApBl0MKcbACQ+T0hUi50+OF8uYweAvAzP+TZYYxNiyhwh4QgJIaTXaqDValRCiC0hSKpAIURIiqLKEeJFI24o2xKIZGmXW5KrxMzpBjmEE00voV214SVKC+LdS+hos03u4KxEhMUmesNiglxZCNkDHhMJYqK8UeerGmtp97zWQngZtNqA/QlJNhRChKQozBFKDMpGlQ1WB5wut5w8DXhmZaUZPB+NUTlCYZbOC+JZQr9xfz1Of/xTPPLRdtV2h8uNdd6eSRO8idKCvAyPI9UYoyNk7yA0JpwgrVYDnVZUjjE0RlIDCiFCUhTViA2Wz+NYiw2VR1s637ET/KfK11vtcjm9ztsDJ8Po6Y4cqRBqanfgkMUjaE4oDNcRil9TxR21zZAk4KNvD6lcoS0HG9FicyI/04iR/XJUj4mXIxSsfL7Z6wgpk6RFs0WKe5IqUAilIDsON/m+HVosnonWwaiu9txPeiRWOkIqrv7bNzjvj1+oev9Eg/+U+eMtdtm5yDTqoNFokGH0XMgjbaq425sf1M+cBrPXaekMkTB9LA5CSISiGqwOfF/j+2z4YtdRAMCkoX3VIz8QP0fIqawa83OElDlJRk6gJykGhVCKUd1gxQXPfYUrXlgLZ0MjMGMGMHkyUOXX8KyqyrN9xgyKoR6KlZ2lZRwuN3bXtcDhklDV0BbTsQIcoVa7LI7EnCxlQ8BI+M93tQCAk0pyOtnTR36mx5Gpj9GRAdQib3XFUfn/X+z2/P9sb6m8EpEs3WJzxvQ+s6v6CHmTpdvVoTHl/5kjRFIFCqEUY9eRZjjdEvYft+KTb6uBujqgshKYMsUnhqqqPD9XVnrub46tERpJTVrtLJ8XHG+xyx2Km2IsM2/1EzfHWmyygMj0CiHhCLVH4AjVNbdjyboDAIBrJwwK+3H5XiFS3xq7EFKWq6/eVScfV7hDZw/rG/CYnHQDRJV/Y1v0a3CqqsbUjpAqNOb9PwsASKpAIZRi1Fp89vhrO5qAVauA8nKfGPr6a58IKi/33F9amqTVkkTSxtCYjDKRONZ+O0qnDfALjXmFULpROELhC6GXv9wHm9ONH5Xl4qwggiMUwhFqiIMQEjk5ALC1qhGNVju+3H0UkuQp5y/MSQt4jE6rkUv4YwmPKRsqpnkdoeaOQmPsI0RSBAqhFKNW0dRs44EGfK/JAVatglRejt8MnoZzXvsexw8f84mgsrLkLZYkFKVz0du/PStLyyMRQmv2HMMPh5pU2/zDXcdbbbLgyTR5LuDphsiE0PEWG95c63GDbp82rNNGikryEhQac0vAV3uO4Ytdnv5Bk4OExeQ1ZMQuxhzK0JhwhLydpYOGxjhvjKQIFEIpxhFvxYkoMX1tzT6grAwvP/w3vD7uQlT2KcX6slHAm29SBPVglE3/ADpCyoqqpvbwhNCxFhtmv7IOc9/YoNruL27UydJqRyjc0NjfvtyHNocLJ5ea5ZEV4dJHCKGW+IXGRG+i1RVHO8wPEuR6E6ZjaaqonDLfUbK0r2qMjhBJDSiEUgzhCF15mkfkfPTdIXzw6XdYtL1V3udYZi4we3ZgAjXpMfi7Fr29fD6a0NjxFjvcEnDY0q4qJRdOmzBtjrUEJktnRBAaq2+1Y/Ha/QCA286JzA0CfI5Qq90VUU5SMEQoaubofgCAD789hKPNNqQbdBg3KC/0GryOUGMMrpSqs7RfsrQyR8ggV431bnFPUgcKoRTjiFcITT+pGKcOyIXDJeGOT6vg1mhhdHkuAEf7Dw5MoCY9Cv/+NclKlv7Dil1403uRTyYqR6gtvEouZem7MolY5AgVefv31LcGJkuLqrFwyuff2VAFq92Fk0pyMHVEYVhrU5KTppddklh7+YjzmHJiAdINOvl9c0Z5vixOghEPR0iUwxt0GrkhpWgKatD7xKGBOUIkxaAQSjGEI1SUY8L1I3wluKfUH8ANp5UAAI5ePkudQB2qzxDptrT6CaFkhMYONbbhT5/txqPLdiR8MnpnKHOEwq0aU4pJ5RR04QgNyM8A4Jk3Jgau+leNhdNQcd8xT5PH80cVR+wGAYBGo/HlCcWYMC0cmD6ZJlUH6Y7CYoCvci0WR0i8R5WOkECvVVaNeUNjvTzvjaQOFEIpRLvDJVdtFOekYcYppRjRUov+rcfxwp3nof+AIgDAMRh81WSFhUB2eB1sSffBv+lfMoSQuCjbXW45ETZZHI0iNKYMMymrqYS4KRNCqMUuhyIzvQIoks7SYoJ9H+/U+mgIVUL/1jcH5GaI4SCcr6w0vapUvjMhJIRYLI6UzxHyjdgQGIKFxugIkRRBn+wFEB8iLGbSa2FON0CTkYf//N+lcFmaYRhYhoJthwF4kkBRVgasXu0RQWZzWMe32p040mTD4L6ZCTsHEh/8c1OSERpTXhRtTheM+uR9bzoaRbJ0WwghJNw24Qi12JzyFHr/0Fg4Q1fFY0UZfDTkB3GE9tS14P99sA1FOSasu39ap8dwuyXZ7co06TBtZBGeXF6BwX0zUd7J33w8k6UNOo1cNSYwqkJjrBojqQWFUApR660YKzanyRa7NjcX2txcAEBf7zfOY2LEQIT9g25dugUrK+qw/Pazwx4ISZKDf7J0MhwhZU+Zdocb2YEtaLoESZJwtCXy8vlQoTGr1zUpyjHBoNPA4ZJw8LgVQGCydFsYnaWFeOmbFbsQUpavVzV41nSsxQ5JkjoNu1kdLrnpZLbJgPRsHT69a7I8NqQj4pEsrQyNpfldWVShMe//e3slJEkdGBpLIXz5QcGvOLIQao7uw2pXnWcg4/r99dEtkETMv7fWYLnXyYsEf0coGfkUyotirNVMsdBgdahCc2ELoZCOkC8xuk+m52/qYL1V3gb4+giFkywtZp/lZ8YQGgviCIkvRi63FNY6RDhVp/UlK/fPTZeHqnZEPJOl9VptgCMUNDTGWWMkRaAQSiFEaKw4hBASwxnbHK6AHJJwEN/wK2qbOtmTxIPjLTbc8c5W3Pb3rRGXv4vfr/gin4jy+c4SoJWOUDLL90XpvJgV2tTmCCt5W50jpHCEvCIzw6hDH6+LI4SG3FAxzPL5dodLDrX1icERCtZUUQghILxKOSH2wnGAAp4/juXzRr0mIFk6aGiMydIkRaAQSiGOeCtjis3BhVCmSS9/Uz0W4QRup8stf1BW1HI2WVewp64FkuRxc5RVT+EgLsxi9EG8wwivfLUPYx5dgR2HQ4viBr/QmJK3vjmAs55aiX3HWv0fFnfEayeSm92Suhy+1ebEv7fWqMQOoA6NNSkcIZ8Q0gckOAc4Qp0IIZEfZNBpkG2KPtMg3+vIBHOEAAScWzDEa5KdFt7UeyU+IaQWmcu+O4TvqhvDOoZIftZrA5Ol1VVjYtYYHSGSGlAIpRCdhcYAoG+25wNLmTwaDspwws7a5qSXQ/cGlCJB2RAwHFq95dziAhVvIfT5zjo0Wh1YV3k85D6NfsnSSj7ZXouq+jZ808Hj44XoITQgP0NuzKd8P7/+9X7c/vZWvLZmv+pxoUJjVpsvobivX4Kz6Cwt5wgpjvHA+9/j5y+ulZ0PwNcNOj/TGFXpvCDfK8hUQkgxbiecBPFWxXlFigiNOd2S3JRx95FmLFi6Bbe/vTWsY9gVDRVFsrlAHRqjI0RSCwqhFEKM1wgVGgOCJEyHSaPiwtHc7sRhS2QXZhI5lQohpBym68/xFhueWr4TB4779hfJ0uICFW8hJC6sHfWtUb5n/B0h4ZSEU14eK0JEFmSbkON1yJShov3e11kpHAB/IaTsI6R0hNRCKMtv6Ko4P4fLjb+vP4h1++qx64jPUT3e6vm99okhPwgIXj6vCo21hx8ay4rCmUoz6GQXrLHV81rt9DrHx4J86dpZ24Q3vzkAtyLPx6kKjfnlCClDY1rmCJHUgkIohRAf5MXm0B+qQggdjXAukf9UaYbHEk/lUZ+wOdIUWnguXXcQf1m1Fy9+USlv83eE4l0+Ly6aHQ36bOggWbrd6xD5J/G22V14+N/b8NXuY/FaqhwaK8xOgzndc5FXOkKiosxflIXqI2RVlJj7Jzj7D10Vx6y1tENct5W/S18PoejzgwBlsrTvvFSOUBgJ4r4eQpGHxgAgT06Y9pyTEJieajS1aHn439vx4AfbsG6fr/DC4QqdLK0asaEXs8boCJHUgEIoRZAkSf7A7zA0JleORegI+V3wdlIIJZxKb8dhADjSQWhMhNCOKByANkd8HKF2h0sVyhEIh6ShNfQF1qJKlg7uCPkLpDV7juGNtQfwf//5Iar1BkOEgQuVjpDC4RH3+7ccCFY+b3f6mkNmGAIdIV9nac+/QgSIUnZA7e7Vx6GHkPLxDVY73G4JbXaXSuw1h+EI+ealRR4aAyBXlwlxvM/rULrcUkDVonCkhSMGKEJj+k46S8uOEIUQSQ0ohFKE+la7/EFS2EHDFlE5FnFoLMARYuVYInG43HJvGkAtcvwRpdvHFGGRAEcoinwKu9ONHz+9Chf9eU3AfSLUoryQ+dOhI+QNlflXVQmBsruuJW4l97IQyjHJyeMqR0gWQn7uVBBHSCmO0o06Ve8fndYX0hGOkMstweGSUN3QJu9Xa/H9XyRLxxoay8s0yM/X3O4MCPOFkyPUYos+NKZcQ6OfIwQEum3iZ+VrLkJjBkX5vsAQtGqMoTGSGlAIpQjig69vlrHDDr4F3g/uaHOExIdkxZGWjnYnMVLd0KbKgTjSQdWYEEL1ClEi3I08hSMUaYJ7XXM7Dlva8cPhJpUoaXe4ZIcplCPkdksqseGfI2QLFRrz/uxyS9gdp/eYyBHyhMZEjpBDfh4hRgKFkG/NQgiJHkJGnRZGvVYlYJRl5yJHCPBc9FVCSBUa8+YIxRgaM+l18t9mvdWuyg9Srr8jfDlC0YXGhCMk3hP7FULe/7UVHbeFIHK5JTl0aNBpVaEwIPj0ec4aI6kChVAS2XesVf4WdySMijFAmSwdWY6Qxfstb9ygPADA3rqWoCGTePPht4fwzP8qsGbPsaQ25etqKo96RIAoJAqVI9Rmd8lVUcdbgjhCipBLpBcOcQxAnWOivKiGyhFqbndCmcvq/7uTQ2MhnAIA2H7IEtF6Q1GnDI2lqYVQg9UOl3eh/hfr9iChMSEwM7zhI6WAUTopBp0GOm/jojaHC9XK0FhTYGisT4yhMcDnyNS32lDb1Ka6L5wcoVhDY0J0N1rtsFgdqsTtACFkUztCys8Sg14LvU4LvdbnAqn+z1ljJMWgEEoSd7y9BT9+ehX++72n67DIO+ioYgwA+npDYx2Vz3+yvTYgGVo4QqNKzMg06mB3uVXWdyJobnfgzne24rmVezDr5XU4+ZH/Yd7ijV1SaZRsRN7PiOIcAKGFkDL3xGp3yRdq8Y07T9EVONI8oVZFzow638T3/4ZWe1CnyX/4pjJHSJIktHt/9neErCohFHv4tcXmlI9ZkB0YGlM6owE5QkFCY0IcijJ5lSOkEEIajQYZYt6Y3alyhJRhzmNxyhHyHEOU0DsCqgzDcYSUA1ejQbzXGqwOOT9I0OYXAhOiXLzGSiEkRI+ycsyg/L+Ws8ZIatFthFB9fT1mzZqFnJwc5ObmYu7cuWhpCc96lyQJ559/PjQaDT744IPELjRMhhZmAfCMYAAUPYRCNFMUdFY+v/doC256cxNu/ftm1XbRHC8v04gTvHPGEp0wve9YK1xuCWkGLYpyTLA73VjxwxF8tSd+FUWpyl5vxdiEIX0AeEq2W4J0A1fmEQE+V0j0uhEXfiByIWRVOkLtwR0hp1sKWprd6OdAKB0hh0uSXZhQoTEgPo5QnffvItOoQ6ZJjxy/qjHlF4KOcoRa7E643ZK8jwh9pRt1cs+gDL/cmnRFL6EahRA6rMgREuHMWENjgLKpok3OQxI5gZHlCMUYGrPaA74kKUWmchCtmMWmHIEiQl/KXkKqPkJ6MWuMjhBJDbqNEJo1axa2b9+OFStWYNmyZfjiiy8wf/78sB77xz/+MaZmZ4ngoh/1BwB8vfc46praw+ohBPgGOyrdAyXiwrD/uFX1TV8kQOamGzDcK4QSXUIvXJGTS3PxzX1TMXN0MQBPx+Voj7fihyNxW18i2eetGBvVP0fuOOyf9wH48oME9X75LlkmvZxcGmkJfWhHSP2+aQjSS8jfEWpXNFRU/j9AfCh+3nG4WRZM0SKHxbx/F3KOkPcclEIoVEIvAEiSRwzJpfOKHCAhYvxDSkIINbU5VeKnqd0pH1s0VIw1WRrwc4S8AvCEIs8XJv/f2ctfVmLa71fLQhEAWsSIjZhDY46AjuFK8aMU2OL3LxKltRrIIUWVI6QLDJPRESKpQrcQQjt27MDy5cvx8ssvY/z48Zg0aRKee+45vP322zh06FCHj926dSueeeYZvPrqq1202vAoy8/AqQNyIUmePJraTuaMCbJMerkiI9jwVfEt2O50q5rOiQthboYBJxZ1nSMEAIP7ZEKj0chhot110T3v7W9vwbzFG/FDHEIuiUb0EBrcN0t2+eqChMf8hZCo4lL2uhGlyBE7QmGExjzPGfg+svhVGdoUicfK3Bv/3CHlc7Y5XDGP4BBCSDgj/qExpRBqtTtV4t9/bc3tTlUzRYEQMZlGP0fI62hUHmuBW/Jc2MW22qZ21Zyx/Hg4QsocIa9oHlbo+Vv1zxF6b3MN9tS14Ou9vs7evhEbsYbG7NjfQWhM9Tv2bld2lRaYQjlC3v93RY4iIeHQLYTQ2rVrkZubi3Hjxsnbpk2bBq1Wi3Xr1oV8nNVqxdVXX43nn38excXFYT2XzWZDU1OT6pYoLh7jcYX+vfWQL1m6k9CYRqNRNFUMDI8pL1LKsQ6ifD43w4ATvYKk4khiBYUshAoyAQDDvN9uY3GEAKCmsa2TPZNLc7tDvoAP7puJohzP78u/JBoAqvyEkEiCb5VDOHq5ijCWZGmlsPEPs4TlCKmqznzrCHBh/KrLYg2PCfFY6BVCIlk6mBCSJLVr5h+2a253qMZrCPrKjlDw0Jiofuufl45+3r/PWkt73OaMCYI7QtnetasdISGYVUJQnJsxurXkKhwhERoTRrrVHtwF9DlCHgGqEkL6QPGj/L+DydIkRegWQqi2thaFhYWqbXq9Hvn5+aitrQ35uDvvvBMTJ07ERRddFPZzLVq0CGazWb6VlZVFve7OmDkwEzoN8H2NBXu9VUayI1RdDViCX0Q6yhNSfvgrPyTFhS03w4gTvaGxqvq2oHkr8UIWQn09QkjkRXmGkUb2IdjucMkXg1gmZHcF+495xE3fLCPM6Qa5EjBYCb1whMSFvr7VDofLLbs/mUadXHociyOkzAPyv6gGqxzz7zsVSmAEdpb2HFs4J6Hcu/9tr8X1r63v9Hfpa6boeQ1z/Mrn/b8MiAuzJEmyeBNhsE4dIT8xI3KHhINZmpch/y5rm9pUYbF4hN6FI3S0xSaftwiNKcWrJElyCFV5/s1xS5a2B/zttilzhOyBv3+H7Aj5Xge1I6SsGuOsMZJaJFUILVy4EBqNpsPbzp07ozr2hx9+iJUrV+KPf/xjRI+77777YLFY5FtVVVVUz98pFgv6Xnohzjq0HYDv21FxThpQVQVMngzMmBFUDMmOUJDKMeWFSbgSysnzuekG5Gca5VCDcm5SPJEkCfuOqj9MB/bJhF6rgdXuwqEIZ50pz9USRilxMhEdpcv7ei5iPiGkPme3W5KF0JgBuQA8fWmUF5oMhSPkP/i0M1SOUJvSEfITQkEcISFQRCjKvw+RwN8REmsX5xOscszllvDwh9vxecVRfLI99BcZQN1MUbmeYFVjgM8Vsbvccvm/yC9qbnfIF/QMRY6QKB4Y2CdDdSwh5oQjVJqXjmLZEbLhmNeViUfFGOATIrtqm+GWPLk0g7x/O1a7SxYOTe1O+fNC+XchcoSyo0yWFs9vtbvk94gIZ1s7CY05InKENKrHEJJsYvdzY+Cuu+7CnDlzOtynvLwcxcXFqKurU213Op2or68PGfJauXIl9u7di9zcXNX2Sy+9FGeddRZWrVoV9HEmkwkmU+yJj53S3AzU1eHipo+x6oKTAABpBi1yjh0GfvxjoLLSt5/ZrHpoQXbopoptQUJjygufuJAML87G0WYbKmqbceqAvPidl5fjrXY025zQaDxTwwHPh+HgvpnYXdeC3Uea0T83PezjKb/5+rsVqYbIDyr3hgSLvKLTXwgdbbHB5nRDp9VgdH8zPtl+BMdb7PLv0KDTwKjXyheUSJOlw80RCh4a8+xTnJMGS5tDLX46coS8P48bmIev9x7HD4ebIEmSyjH5pvK4PPS3oZPfpbKHEOBzhGxON9odroAvA+L52+2+16og24R9x1pDOkLXTRiIsQPzMKokR3WsdO8+Yg2leenyF4ojTe3ymuJRMaY8Tq2ip5iyarC53Ym8TKNKuIq/cZdbks892mTp7DQ9tBrIArLEnCaHy1pDhcYcomosSI5Qp6ExOkIkNUiqECooKEBBQUGn+02YMAGNjY3YtGkTxo4dC8AjdNxuN8aPHx/0MQsXLsSNN96o2jZ69Gj84Q9/wAUXXBD74mOltBRYtQrnTp2OdHs72oxpKDYCGiGCysuBVas8+/nRUWisPUhoTHy7zzbp5WZmo/ub8eXuY/im8jiuOn2A6hhWuxMGnVb14RUpwlrvn5uuKqMdVpSF3XUt2FPXgiknFoZ6eADKC15jW2qHxir9wgrCRfAXQsINKslNk12jY612udpLOBJyjlDEVWMhHKE2X1Jtc7szuCPk3b/InIaKI82qvCB/UaQUOkLEnVKWC51Wg/pWO2qb2tHP7BO9/9pU7XueToWQr6s04HkPazSefKCmdkeAEBKOkBAFBp1GroZqancGzRHS67T4UVluwHNnGNSCojQvQxaNhy1tKMn1rCkezRQBdc8oACjKMcGg8yRot3lDw3mZRrmbNeD7u1CGuKMNjWm1GuRlGOXcp0F9M2XnLFRozL+hojIEFqp8Xs/p8yTFCPtKd9lll2H58uUR53bEgxEjRmDGjBmYN28e1q9fjzVr1mDBggW48sorUVJSAgCoqanB8OHDsX79egBAcXExRo0apboBwIABAzB48OAuP4eglJUh87P/4dzabQCAoh3fqkVQiPwked5YB1VjgO+brPjWnZvp+3YpRMjqXUdVJc5V9VaMf/wzzF+8MYYTQ0BYTDDUWwUTacK0SgilvCPkDY0VeEJjhSFyhEQPoQH5GbIbUN9qk8uTRc6KMUpHqFVxcWwK4giJUFBHobFib0hKGZZTiiL/BGVxYczNMGKo9/y31/jCY602Jz7e5guHWToRtXV+oTGt1peYfLzFLr+3xZcDIcTE30GaQYdsb4J1c7sjqCMUCuWYDcDjCPlyhGyyYPCfYB8t/iX4QjyKKjCRJ6Ss8hN/F+J3bdQFDjyNBOEAAR4hJFwxVV5QB6ExfUhHKHDWGB0hkiqELYQaGhrwk5/8BAMGDMBDDz2EShG66SKWLFmC4cOHY+rUqZg5cyYmTZqEl156Sb7f4XCgoqICVqu1g6OkIGVluGHWj5Fta8W5e7wVcG++GVIEAZ0kSytCAmKavbjY5Kb7vnGeOiAX2Wl6NFod+La6Ud7+3uYaNLc78XnF0ZhKn/1dEYFImN4dgxCKR45Qi82JNXuOxdznxh9JkgISTUUCfF1zO9yK5xOO0ID8DPkieLzF5wiJb+OmaB2hEDlCIrwzMN+zvo6SpYu9F+NQjhDgX1othIYOJ3lDTco8oY+31arEekeitsXmlO8XYSgAMHsv1iIEqddq0N/rzojnF2tKN+hkIdHc7lS1JeiMYEJIVI0dsbT7kqXjFBrLTtPLPXgAX26ZnCDuFUJK4dpgdcDudMuOULRhMYHSlRrcR+kI+X5nwcJkwUNjnZXP0xEiqUHYQuizzz5DZWUl5s6di7feegvDhg3DOeecg6VLl8Jmi2wAaDTk5+dj6dKlaG5uhsViwauvvoqsrCz5/kGDBkGSJEyZMiXkMSRJwsUXX5zwtUZEVRV+dNv1+O6PP8eNGz7wbJs925MwHYJwq8ZEWEFZOi/Q67Q4e5gnLLlqpyf/SpIkfPhtjbzPh1s77tHUEftDCKFhQggdaY7IXYx3jtBTy3di1svr5M7e8eJIkyfZWafVyLlRBdkmaDSeD35lWboonS9TOELHW+yKi7VwhGLvI6RyhGxqR6ij8nkh4lQNFTvoJi3uSzfoMFIWQr6E//c2e8JiohrKv0wfAL6tasR9732PCY9/Jh9LmSsj/i8qLftmmeTXSohIsaZ0o9oRsioEUmco9zHptSjIMslhzqMtNtmtildozBOa8p2nEF2yI+QNaR73+7s/3mrzDVyNMiwmyFUKIUVoLFT5vHidRXNEddVY8BwhVo2RVCOiJJCBAwfiN7/5DSorK7FixQqUlJRg3rx56NevH2655RZs2rQpUevsmVRVAVOmAJWV0JSXA2vWeMJilZWe7SHEUF95An2Q0Jji4ufLEfJc+JQXEwCYcqJXCO06CsDTYFGMhgCAf39bE3Uo1N8VEQzumwmtxpOv0dG8NH/inSMkQnNrFQ3p4oE477K8dDmkZdD5ppwrewkd8AqhgfmZ8v12l1t28uQcoSindYfKERIXzUF9PL8b/4aKyirDYrM3NKbsHRRCCEmS5BtqatThpBJPkv/GAw3YdKABNY1tWFvpeb3nTPSEp/1F7daqRlz0/Br8ff1BNNucKM1LxyMXnaRKtha9hMTvsCDbFOBcKAVZjtIR8gs7doSysqx/Xrrcw0un1cDlluSKy3hVjfkfS/QUy1EIOSDw91XXZIu5h5Agzz80JuatBRmrAXjEucstyeMylIInTeUIKUNjTJYmqUXU2bDnnHMO3nrrLdTW1mLRokV4++23QyYukyBUV8siSM4JmjjR869SDFVXBzxUDF5tsTmDNLRTzpdyot3hkhNflY4QAEz2CqHvqi042mzDh996HKBJQ/vCpNei8mhrVIMz3W5JHtooSsgFaQYdBnovwJHkCcU7R0i4ad9Vx2dCukCMYuifp66IE00V6xR5QsrQmHLmldguLtZy1ZifAOkMqyJHqFVZfu19PwzwOkLN7U7VRUkpmkSScqgcIcAnPmxOX8l6ulGHU8rM6J+bjvpWOy7969eY/fI6SBJwRnk+RvXPCXguwFM6Dngq7pbOG48v7vkxrhinDhP7O0IeIaTOZRFrMvmFxvzDjh2hTPYtzfO8VjqtRg7Ticq3PlnxqzJVhqaEI5TjN1bkuN8XoKPNtpi7SsvP7xViWm+1p3gPKsVPq99njtXuDNFHiA0VSfcgpj5C+/btw9NPP43HH38cFosF06ZNi9e6ej7Z2UBhYWBidFmZTwwVFnr283+oyddbxj885t/Z92izTU589a9KKcxOky9Iq3cdxUdeIXTV6QMwbUQRAEQVOjpkaYPd6YZBp5Era5QMKYg8T0gphJrbnTHb6uJ4u+uaVUnFsXJYnhnnL4REkq3n/ja7r/RbhNBEeKzKO+AzIEcownP2nwPW1O4ZQSHcntK8dIiUFGWISiQgZ6fp5W7L7WE4QsqQWbpBhwyjHu//ciKuPK0MGo0vb+ySU0vlfDV/USt684wpy8PEIX2hVeTMCIRD4guNGRUhHL/QmEEbNDQWqSNUqhC2RX5jcOIVGgPU+UYiLOkTcoE5QoAnTCd6CPl3x44U8WWpv9fRTA8SGgs2080XGuu8fJ6zxkiqEbEQam9vx1tvvYVzzjkHw4YNw+LFizF37lzs27cPy5cvT8QaeyZmM7B8ObB6dWBidFmZZ/vy5QE9hADPmI2CEGM22v0+pOqabSFDYwDwY2/12F9W7UF1QxsyjDqcM7wQF/7IU4334beHIk4oFp2VB+RnqKpIBGLURrgzxyRJCjjPWBKmHS63fLF3S8C2mvi5QqJEXoSUBP5NFasaPK9RTppeTv4V4THZETKqq8YiL59XCzxPPyC3XLacm2GUxbHy4ion12cYZFdEKXL8nSlxYRQXS6NOK//eC3PS8MSlJ+M/t56FaSMKcdawvvjJ6H5yBWObw6U6tkhA7ttBArJ4vYQ4K8g2BVyw2xShMZUjZAvfEUo3BBdC/vMA4zFnTKD8siIq5YTwEzlC4suP6MOldITCEXgdIRxA8WVFtBAINWvM87MLjiChMVOnoTE6QiQ1CPuvZv369Xj11VfxzjvvoL29HT/72c+wfPlyTJ06NeUmu3cbzOagQgdA0P5BSvpmm1DT2IZjIRrKCY42tytCY4Ef2FNOLMBzK/fIFTjnjixCulGHKScWIDtNjyNNNqzfV48JQ/qEe1by5PXBfmExgS9hOjxHqKndKYsAk14Lm9ONxjZH1CEJ/2/U31VbML48/PPriFrZEVJfLEVoTJTQy6Xzim7Gwlmo9gohcXGPVgiJfBiR02Jpc8jjJrQaz+iJvExP3xhVJVKr5/2Sl2GUB/w63RKcLjf0Om1IR0hORA4iMkaW5ODl606Tf5YkSbUuIbh8JekdCCE/QV+QZZLz5az+OUKqZGlfKDnS8nkRGgN8faEAj+iLx5wxgXgP9Mk0ykIilCN0YnE2ahrbVG5prKGxGaOKsfdoC34yuh8ABIQc/f8vfnZ43R29VtlHqLPO0nSESGoQtiN0xhlnYN26dXj00Udx6NAhLF26FNOmTaMIShIFIRKmxUVJXCzqmm2wiDljQRyhH5XlqXKHLjzF4wSZ9DrMHOX5MFRWkoXEYpHzmXyl896Lh9/cNDFRW4Q2OkN80Gen6eVvybHkCfknaSvbB8TKEUVXYCXFfo6QMj9IIFeOeS90ohQ6ms7SdqdbDqWJ525qc8gl2FkmPTQaDfLFfKlW3+sphLM53aD6Vt/ufX7/qrF2v9BYOBVZGo1Gfo8qf5fi3DsSuTl+F/uC7DSFI+QNjdmVfYR8fXiES5YZhiOkFEsqR0ghhPIzjXH9DBQ5Osr3j7J8XjlnbLh3NEhdc7vsCMUaGssy6XHvjOEY1d/zBc3/dfX8P1AIO7zvDYM+lCMUKIqcdIRIihC2ENq4cSO2bNmCBQsWIC8v/iMZSGT0kSdV+zlC3g8pURpd12STw0B5mYFCSKfVyGX0OWl6nDXM1+n7Im947L/f13b87c1i8cxFmzwZqKpSlM5nBZ2bNqTQkyx9rMUetJmfP0K4FGSb5NySzhrxdXg8b2hBXL/imTAtcoCUnZSBwNDYAW8yeZlKCKkv/hl+obFIhJAylCGSbi1tDjnhVrgk4j2hfB8pc8qUeR4iJOafh2b1C42FE3YCfMJcOXhVlIZ3lHeT4+8IKarGOguNiShvRhiCIZzQWLx6CAnEtPmRinEfyqq3pjanHNoUw5PjGRrzR67GU4hf/5w6T46QNzSmcIRCNVTU0xEiKUbYQujUU0+V///ll1/immuuwYQJE1BT43EL3nzzTXz11VfxXyEJiugX0mIL/u1cOA3KZGlzevAP7UtO7Q8AuGr8APmiCwDjy/sgw6iDpc0hX7iD4p2bJird9tV6hMVgqdVXGVdX59kPngu8yG8Ip3JMCJeCLJPsXsXiCIlw4imluQA87kywXjqR4nS5ZdFW1EGO0Gc7juDvGzytEcS3eiDw4i9cC6PO20coggtHi/cbvFGvlcNMljaHnCgtxEG+LKh9r2eDLIQM0Go18nsilCPkyxHyjgYJVwh5f5fKeWP1siMUQWgs2yTnU/l3lvaUzwd+AQjHtRJ/Y2kGrZyTB6jdmniWzgPAxCF9sOzWSfjtRSfJ2+QcoXYHjnsFa7ZJL4uzeCZL+yOEkMMlycLFPzRqtTvl96YqR8gbGtNrNSrXTHaE3FJSJhUQ4k/EydL/+te/cN555yE9PR1btmyRmylaLBY8/vjjcV8gCY64SAZ8O3OoHaHDTe2yC+BfPi+YcmIh1j8wFb8+b7hqu06rkZMmOxQs3rlpKC+Hff9BueqpfO7VIeemRZIwrXSEgoVTIkUIq/KCTLnP0XdxSJg+2mKTp4b3zfQXQqIJph03vbkJdqcb00cW4SejS+R9/C/+AY6QI3whJM/UMupUoRWRZyK25WcKMeITgnJyvTdsliaEkF8ITHzL968aC9sRylC7e5IkhZUj5O8I9c0yyuJLhL7aFflKJr1W5UikG3SqDs6hGNQnAzdOGoyHfqruY9RPERqLZ8UY4AkZjupvVoXllI6W/PpkGeXEZqUjFG8hpBS1/s6f6DnkCY15HSHFFynRR8h/ZqFB6/uZ88ZIKhCxEPq///s/vPDCC/jb3/4Gg8H3gXTmmWdi8+bNcV0cCY3cSVchhCTJN4FaOEJ7FQImWNWYoDA7LejFQYzE6NS58Zb9V40aB5dWhwx7Gwp/2BpybppY3+HG9sBj+aEKjQlHKIaqMTGjrSDLhJNLPbkQ31U1Rn08gUiULsw2BZR952ca5Yux0y3hoh+V4PlZp6ocOP9ZUxl+OUKROELKmVri9650hES4RVQpKZv0CSEkLnQmv8ox8a94bLtfsnRaGG4LoAyNeZ6vxeZLivd/LZQo38dpBi2yTPqAhorKWWMajUYOBQLhCzWNRoP/99ORuHq8eiixMkconj2EQiEL2TaH3EMoP9Mod5hvd7jl916snaX9Meq08ueC7Px5P3PE81uV5fPK0JhBNBRV/y3oFT8zPEZSgYiFUEVFBc4+++yA7WazGY2NjfFYEwkD/5ECgCeHRDjNA7xzpGoaPe5Mtkkf1TT5sIUQAJSVYe9DiwAAgxoOQQOEnJsmmtL5T2QPRtAcoSCjGcJFlB8XZJtwsjc89m0c8oTkRGlzWsB9Go1GbiR55Wll+P0VPwr4ffi7IIHl8+E3VFROWTcrLqSimaIQBsKFUoYGGxXl84Cv+scmh8bcqvVGnSMkErWt6mqoDKOuw/CaMtTlGV+ikR2UVlkIedYoQmDKaqqMGOdxpSlGfsQ7NBYMtSMkcqg8LQNExZroaB5vR0ij0cgl9Fa7pw+V6DIt3jttdlfw0FgoR0jxM0voSSoQ8ZWxuLgYe/bsCdj+1Vdfoby8PC6LIp0jKoqUgzWVuRsDFWXZgK/3SqTIobFwKryqqrDnlb8DAE44dtCzLcTctEJ5EGnnYzbEzDRVjlAMjpAQVn2zTDhFOEJxqBwTzRT7BRFCAPDslWPw7FVj8PjPRgd13/r6uQuxlM935ghl+zlCwcrnc+XQmNoRavNzhMTPkZSme44v1uV57mMtnYfFALUjJHJ3Ahwhv1J+pRCKdQwF4Psdxzs0Fgwh/JxuCdXesLN43gLvFwrxO4i3EAKg6tGk/LIl3LA2h0uuAFP2DRO/E3+HUOkQcd4YSQUiFkLz5s3D7bffjnXr1kGj0eDQoUNYsmQJ7r77bvziF79IxBpJEDKNgY5QmyJ3oygnDcprbaj8oM4QjtDeulbV5PQAvHPT9mg9+w+79PwO56b5V1F1RLxzhIQj1DfLhJNKzNBpNahrtsnhhWipDVE6LxhZkoMLTykJ2i0ZCO0IRVM+r5yynpPuG9op5wilqR0NdUNFrxBKF46Q50ImcpTk0Jg3v6g9SDgqHPwT3+vDKJ0HPMJQOD1CCPh3lvYv5c82RR4a64jxg/Oh12pwSlluzMfqjAyjL6dJVGQKN0aM2xHEOzQmnh/w/H6Vofg+siPoG7FhVIickf1yMGv8ANwxbZjqeBqNRj4fOkIkFYj4r2bhwoVwu92YOnUqrFYrzj77bJhMJtx999249dZbE7FGEoSsIDlCyt4pOq0G+Zkm+aKfG6JirDMG9smAXqtBm8OFQ5Y2VWM5GcXctN1ThwIAhow7yZMbJKrGpkzxdMv2JkyL0Fg4g1eVoSzxwRmTI6Q4XrpRh2GFWdhZ24xvqxtRbC6O+rhHQjRTDBejXoucNL2c3B6QIxSJI2QLzxGShZDVDkmSoNFoFFVjRtXzh8oR8m+oGK7Q8Be19a2dl84LctL1aHO4fELI5B8aU4sylSMUB9fkNxeehLvPO1GVe5QoPDlOejRaHdjvbcSZ7+cICRLjCPmaKorfsUmvlV9Hq90l/10qw15arQaP/Wx00GMadJ5mmswRIqlAxI6QRqPBAw88gPr6emzbtg3ffPMNjh49ikcffTQR6yMhkD/4FaGxNr9vwYWKD8loHSGDTotBfTsZkuqdm+YuH4I9hQMBeKvCOpibJlyT4632Di/wTpdbTuRVJktHmyPkcLnlC68Y4yDK6L+NMWG6Vh6vEZ0QAtRuSECOUAQXDauicaBSCPn3ERIXVLvT7Q19uBRVQd7QmHCEOskRaotgoKny+EJ4idBYOEJInFNBlue1FnksYhp6YGjM9/4Pp3S+M/wTsBONEHLCERJh1MIuEEK+sKNT/ozJNOlV4zeEoAk2UicYonKMVWMkFYh66KrRaMTIkSNx+umnIysr+CgFkjiyRI6QIjSmHCsA+GYVAdELIQAY2lkJvXduWs1H/0ObU4JBp8FA0SgwxNy0vAyDnCvgP0dMSX2rHZLkGQnRJ9PkqzSK0hESVTc6rUa+EI8d5GkQ+tWeY1EdUxBqvEYkKEVAul8foUjK52VHyKT3E0K+gaqARxQIx6e+1Q6LVyRqNb59RLK0f45Qrn+OUJShMRGKq1eUhneGOKe+2Z591WXezsDQWJwdoa5GhDLFaxzKEUrEuSmbVQoHOt2gU+UOBZs+3xFsqkhSiZimz5PkEax8vs2urpRRNoGLNjQGKPKEjnbQVNFslvODyvtmqb8ZlpYGzFTTaDRyH5S6DvKERDJ1fqYJOq1GTvq2tDk6zlkKgQjF9ck0yrk6Pz6xEBqNp8N0tHlCkiTFyRHy/Z7k6fOG2ByhHMX0dVE1JkqyNRqNKk+oQTGgV7w+yvJ5h8stD+EVPYj8y+fD7yytnkAfTldpwYxR/VBiTsOZQ/p61qj3lXlb7a4Ad1Q5liMeOUJdjf8MMfE+Uf6Npxm0UVWGdka6wSd42hS/Y5EUr0yWDvf5fYNXKYRI8qEQ6qaIDyGHS4LNGfwbedwcITlhuuPKMeEYDS0KzyEskEvoQztCynwewHfxlCTI+S6RoEyUVq5jjDfp9dMdRyI+JuBJRBYho1DJ0uEgOj0b9b6LmlEXTdWYCFPpZdHjlnzhO+WFVZknJFwZ5YBeuWrM6VZVJsqOkF+lVtg5QoqGfO0Ol2/OWAc9hARzJw3G1/dNlcO26jJvhRAyar3n63v/d2dHSCBeI6UjlIiwGKCuyJPFrl/vpmDl8x3BCfQklaAQ6qYoh0aKKeOBOUK+C3KwyfPhIvcS6qSEXnSJFtPlO0N0Wz7aHNqFUVaMAR6BIM69MYp5Y/7CSnDuSE+S9IofohNCQmDkZhjCDg0FQ+QtKX+/0cwaE6GxLJMeaYrwl3BfcoIIoR8ONeHhD7cBUM/WMilCY+I9ptH4qsr853uFe/45aXrZxbEomwVGOb9LOSBUWTgA+PUR6paOkFoIiYq9rhBCymRpWWAbdPJra7U75TJ4fZihMbm5KB0hkgKELYQeeughbNq0KZFrIRGg12nli5tor9/ulyCqSpbuoKt0Z5QXeL5117d2PCR1t3CEwhZCooTe5wi53BIeXfYD/vv9YQA+IaRO/FaHVCJB2UNIybkjCwEAa/cel1/PSJDDYjG4QYAvLKTsxeMTQuE3VBQhU1F55t9VXHlhFblSv/ukAruOtKAw24QHfzpSvl84QjanW85TStP7QiOBobHwLsj+E+jFe8t/PEm4CKenpd0pi0ZfjlB8y+e7GtECAfCIOtGsUPllJ1FOl5wj5PAJzEyTTpU7JJwdY5iOkF7hcro5c4wkmbCFUHV1Nc4//3yUlpbiF7/4BT7++GPY7bEPqiTRk+XXXdrfESqIQ9UYEN6QVEmSsOeI575hhdlB9/EnWHfpNXuO4ZWv9uGOt7ei8mhLgCMEKMquo0iYlkNj2WrXYUhBFgb3zYTd5cYXu45GfNxai6fRXSz5QQCQ79cgEIiufF6IElF55j+fK1hoDPCI3vd+OVGegg6ok6XbFAn54n0W2FAxfKEhBHqDIiwXtSPkXY9yblqwhorhCrVUQinklDlU+ZlGuV9YohyhTEUIrFX+sqVX9ReKNDSm9y766pfXofz+/+Lk3/wP6/fVx3vphIRF2ELo1VdfRW1tLf7+978jOzsbd9xxB/r27YtLL70UixcvRn0938RdTaZfCX1AjpAqNBZbqW9nozaONNnQbHNCp9VgUN8gvYaCEKy7tDi+3eXGwx9u9wmhrEBR1xhFCb0o0S7wc4Q0Gg2mjfC4Qp9GER6rtXjWGasjNKokBzqtBiP65cjblOXz4X5zbvUrZVc6QnqtRlVCPsT7u/1RWS7evXliQK+oNDlZ2pcjlKbXIs2bf9PmcKnm3EUSGhS/y+qGNvliGm23ZnGuyrlpws1SV411Q0dIsX5liwWdViP/7J9QHS+UobE2RWgsXSGQIg2NTRjSR/Vzs82JNTFWbRISLRHlCGm1Wpx11ll46qmnUFFRgXXr1mH8+PF48cUXUVJSgrPPPhtPP/00ampqErVeokB88IswiK93iufXWphjghianRdDjhDQuRAS2wf2yZBt+84I5gjtVeQhfbn7GFZV1AEI7m5ZonCERD6Sf44Q4MsTWllRF3HuQmddpcOlvCAL6++fij/8/EfyNpO3fF6Swu+7IvLGhFhWCqHsNL1qmvpVp5Xh3Zsn4J2bzgg63kLubO3wVQ2lKRwhSfKEzSKtGgN8YU7xe8806qLOsRK9tUSukUmvlSvf1KGx7ucIKZOl/X9HQtQnOjSmTpZWVI1FERp7+IKTsPWhc7H5wXMx+wxP77H2CEK/hMSTmP5yRowYgREjRuDXv/41jh49ig8//BAffvghAODuu++OywJJaPy7S/v3Tkkz6HD/+SPQanfGPCW7s4TpSBOlAZ9oUHaXFhfEYYVZ2F3XIlvx6tBY9DlCwhHyzxECgFMH5CIvw4AGqwMbDzTgjPI+AfuEQoi5UHPGIsH/dyWSlQGP4Agn/NCRI+SfeKvXaTFuUH7IYykbKrY7fTlCSlepTekWRBEaExWJ0YbFAF9TRRFiU/YWyonzrLGuRpkj1NfvNSrINgGHE5ks7etZZlWVz4vcIWVDxfAcIcAngvMy1KNaCOlq4lY1VlBQgLlz5+Lf//43RVAXkRlirIDyAjXv7HLcMe2EmJ+rsxL6SBOlAZ8jpOwuLXoVPXrxKFXlUjBHKDohFLxqDPAIgnOGFwGIvHpMDFwNNnk+VpTfssPNE5JzhLzvEaUQiDSEosoRkquxtNDrtPLarA6XPJU8ks7NooS+UszQijJRGggMjSnXoeos3Q2TpbM7coS87+VEl897Rmz42jIIgexyS/L7LZo+Ria/XDNCuhqWz3djfBPo/UNj8f9AFN2laxrbVE0cBZEmSgOecJ0ooz3WYkNTu0N2h04qycHDF5wEwFOqHawCLtLyebtTOV4j+AVXVI+JkFy4HIlT1VgwtFqNnFwarhCSq8aCOEL+PWk6Q84RcrrkyjUhJoRIslgd8lTySISGCNkeOC6EUAyOkPfvQTRmVAqhNINWfg27Z46QMlla/d6dcVIxSsxpmHJiYUKeO2hoTOEIAb4wdbidpZX4ku5ZSk+SQ/fziImM/wR6nyMUf32bl2lEn0wjjrfasfdoC072zucCPBVju7yhsUgcIa3W0126prENR5raUdfs+RAtyjEhO82Ac0cW4eELRsKg06q+EfvmjUXmCB33DvXUaTUh2wmcPtgTDtt7tBUWq0N2LDrC5nTJ4ZhECCHAkzDttLvCKqF3utxy+XiwqrFIHSGR89XucPscIe+2dKMOTe1OVVuFSBwh8bsUOSZ9YgmNec9VrEWZa6TRaDCqvxl7j7bIFZDdiWxVsrT6NZo2sgjTRhYl7LnTDSJZWh0aM+i0MOg0cLgkNLcLIRT5Z48y6ZqQZEBHqBvjP2bDf9ZYvBlZ4qlk+rbaotp+vNWORqsDGo2nDD0SlN2lRdhNeYzrzxyMa7zJlAKRI9QQYdXYsWaRH+Qbr+FPfqYRg/p4qqa2VjeGddw6bx8kk14bc3VeKCIpobcqQgzB+ghFOixU5CjZnC5f1Zj3PSbEhxCZRp027MGb/usCfJ21o0EIMJEH5v938M5NZ+Cre8/p0mGp8UIpZGMJH0aD2hHyzhoz+mbVAZ6u5UCUQkgxwoWQZBDxu7a1tYN5U6RL8YXGouvsGymnDvAMJ918oEG1XVSMleVlRCzClN2lRaK0aOAYCjlHKMKqsaMtnvBVqLCYYIz3PLccbOhwP4FyxpiyGiueRNJdWghjvVYj5/DE4gilKRwhZbI04HuvBUtQDgf/juf+icCRIP4ehED2d6ZMel2A8OouhOr71BUok6Llhop+QlgQTWgsjTlCJMlELISKiopwww034KuvvkrEekgE+DtCco5QgoTQ2IEegbDxgLpn1I7DTQAiC4sJRK+jI002WQh15ipFEhrbcrABW6saAfgcoWCJ0krGDMgFAPlxnSEnSicoLAaoewl1hjx53qiThZk6Ryj2ZGnRokGEYYUQirRrc16GvyMU/UVeuBRiKGyivhAkA4NOi7L8dKQbdCjN79rQnnLKvK+hok71r3Kd0R6foTGSLCJ+17711luor6/HOeecgxNOOAFPPPEEDh06lIi1kU4IzBHyjhVIUGjsRwNyodEAVfVtqonxX+32NEI7rYMS7FAIR6iuuR2V3oqxToWQKJ9vc3TYYPBQYxt+/uI3uPSvX2P9vnp5zlinjlCZcIQaw2pgeMSSuERpgXB2bGEklIrwhbKKSCWEInRFVA0VnYE5QkDwSq1wEL9LQSxCKMPvubtjdVhH/Ovmifjv7WdFnOweK8L1sTvdaGl3qrb5/74jCYsKGBojySbid+3FF1+MDz74ADU1Nbj55puxdOlSDBw4ED/96U/x3nvvwemMfE4TiQ55tpLXAfDvIxRvctIMONE7emGTNzzW7nDh673HAQCTTyiI+JjCETrU2I793sqhIZ04S8IRcrmlDueCLVl3AHaXGy63hFuWbsYPXueqMyE0vF82THotLG0O7DvWeSj4iCI0lihEwnJEjlAIIRR5srSvoaL/PDuRSFsfIi+nM/yT0Tv73XSEfzVYIooGkklhThoG9+04bJwIlC6fyAXzhcb8HaHoq8YohEiyiPqToqCgAL/61a/w3Xff4fe//z0+/fRTXHbZZSgpKcFDDz0Eq9Uaz3WSIGR5P/itXjEgnIBEhgREeEwIoY37G9DmcKEw24QR/cIvnRcUeh2hrVWNcLgkpBt06NeJsxJsmro/7Q4X/r6+CoBHBBxttuE/33kGuXYWGjPotBjd3wzA4wp1xpEgg2HjjTGSZGnv+0A5wT4nhmRpVUNFMXTVoHaEog2NKSfQA/EJjck/96DQWDIx6bVyh3pR3RcyNKaNJjTmG9VCSDKIWggdOXIETz31FEaOHImFCxfisssuw2effYZnnnkG7733Hi6++OI4LpMEQ9jTLQF9hBJ3ARg3yCuEvInEq3d5+u1MPqEgqkRhkVcjzqG8IDNkRZeSzsZs/Oe7w6hvtaOfOQ3v3jxBFSYKJyFX5Altqeo8YVoOjSXQEYpkAn2rXOKs7KaskwVH5A0VfW6UCMMKISpcF+EURCrClRPogRhDY37v+7QeFhpLFhqNJiDsKMLyAY6QPoqGinomS5PkEvG79r333sMFF1yAsrIyLF26FL/85S9RU1ODt956Cz/+8Y8xe/Zs/Pvf/8aqVasSsFyiJNNv+rz4tp7Ib8JjB3jygLbVWNDucGFVhWdSe7TN3PxdlPIwy+9zOxmzsXjtfgDANWcMxLCibDx9+cnyfZ05QoCycqyx032PNCc+Wdq/fP6dDQdx9lOfY/eR5oB9hUOoDBVpNL7eSZE3VPR9TAjh6QuNxeYIAb4GmVkmfUxupv9z0xGKHwFuWxyrxsSx2h1uuMOcpUdIPIlYCF1//fUoKSnBmjVrsHXrVixYsAC5ubmqfUpKSvDAAw/Ea40AgPr6esyaNQs5OTnIzc3F3Llz0dISfNyDYMqUKdBoNKrbzTffHNd1JRPhclhtnunPIn8kkReAsvx0FGSb4HBJ+GR7LXbXtUCrASYN7RvV8ZTdpQFgSCel8wKzXEIf2Etoy8EGfFttgVGnxZWnlQEAZozqh0cvOgmXjOkfVlK3cIR21jbLoaZgSJIk5wgVZXedEPpgyyEcrLdi5c7ADtjBHCEAuGlyOWacVIyTSnICHtPxc/veT0J4+pKlPc8hWhlEM9BU/C5jaaYY7LkphOKHUmRqNb73o79wjSo0pjhGOO0hCIk3EX9qHT58GBkZGR3uk56ejocffjjqRQVj1qxZOHz4MFasWAGHw4Hrr78e8+fPx9KlSzt83Lx58/Db3/5W/rmztXcnxIdTi80p93cBEhsa02g0GDsgD8u31+JPn+4G4OkvFE4H5mBotRoUZJlwyBteCrcho3ARGoI4QovXHgAA/PSUfqoBprMnDMLsCeGtq585HcU5aahtasf31RaMDzGAtanNKTtxIt8pEfiXz4veRdUNbQH7BnOEAGD+2UOiem6dViN3EBbC098REsV10Tg6YsxGrP1xMv0dIYbG4oZSCGUa9XIYXLldp9WEFdb2R/meaXO4+HsjXU7E8t3pdKKpqSng1tzcDLs9sk6/4bJjxw4sX74cL7/8MsaPH49Jkybhueeew9tvv91p6X5GRgaKi4vlW05OZN+GUxnhCNkUZa2A79taohAJ02JQZjTVYkoKFSGlcIVQ32zRiNGm2n68xZcUfd2EQTGtS84T2nYg+A7V1ThyyBMazM0wJDRJXVk+L0kSDjV6BFBNY6AQCuUIxYJwgGRHyBsuE4muglhCY7HMGfOsxS9HiI5Q3FC+tsr/K3/f+ihEEOARUELoM0+IJIOIr5i5ubnIy8sLuOXm5iI9PR0DBw7Eww8/DLc7fhbn2rVrkZubi3Hjxsnbpk2bBq1Wi3Xr1nX42CVLlqBv374YNWoU7rvvvk6r2Ww2W4DIS1UyFN/4jykGTSaqu7FgrDdhWhDrsEeRJ6TRIOzyYDEv6pCfENhysBF2lxvDCrNwSlluTOsaU+gRaFv+sRyoqlLfWVUFTJ6MI7fdDSCxYTFAXT7faHXIIYTqhsD3s2iw6e+QxPT8XlHR3K6uTPQPP0UjhOTQWIyjI/yFH4VQ/MgIIX6UosgYRQ8h+TiiuzSbKpIkEPE79/XXX0dJSQnuv/9+fPDBB/jggw9w//33o3///vjrX/+K+fPn49lnn8UTTzwRt0XW1taisFB9sdXr9cjPz0dtbW3Ix1199dV466238Pnnn+O+++7Dm2++iWuuuabD51q0aBHMZrN8Kysri8s5JAKTXqea3g50TTjgpJIc+Rtc3yxjxDkn/ogk4xJzetjr7+et0DpsUQsh4ZB0NqYjHMbketayrs9gbP3ZtT4xVFUFTJkCVFbiSLsnJpTIsBigHrEhOlkDQE1DW0DTR5E8r+wjFCtpfj15fOXzsYuPM8r7wKjXYuLQ4OHHcNFpNSo3lDlC8UP0iwLUglNZTRZNxZjv+OwlRJJHxJ+Ub7zxBp555hlcccUV8rYLLrgAo0ePxosvvojPPvsMAwYMwGOPPYb777+/w2MtXLgQTz75ZIf77NixI9IlysyfP1/+/+jRo9GvXz9MnToVe/fuxZAhwfMl7rvvPvzqV7+Sf25qakppMZRp0qPR6sDxlug6+0aDSa/DKaVmbNjfgLOHFUSVF6BEdJfurJGikn5m4Qi1q7YLh6gkDhPGR48ZhpL/HcQh5ODiaXfj/PsW4+5rz8aQX8wBKiuB8nIcufVuYF1tQivGAHUfIaX4a7W70Gh1IE8RVrLa1POg4oF/uFVOlo6DI3TeScXY/sh5UY1n8CfDqJPdMgqh+KHMN1O7Q75LSLShMUBZOUYhRLqeiIXQ119/jRdeeCFg+5gxY7B27VoAwKRJk3Dw4MFOj3XXXXdhzpw5He5TXl6O4uJi1NWpq2OcTifq6+tRXFwc9trHjx8PANizZ09IIWQymWAyde1051jINHqEkHCE/L+5J4qrxw/AvmOtmOU3GT4apo4owgdbD+HysaVhP0YZGpMkSQ4HVnuFUP84CKE0gw7/XHAWfv/BFry34zg+Lv0RvvrvIXx2pAGF5eXAqlU4stkCILHjNQBFd2enS+UIAR4XTCmEZEconjlCIcZXxCNHCIhuRlUwMox6OYHef20kekKFw5S9mmL5HXLwKkkmEX9SlpWV4ZVXXgkIfb3yyiuyc3L8+HHk5eUFe7iKgoICFBR0nmg7YcIENDY2YtOmTRg7diwAYOXKlXC73bK4CYetW7cCAPr16xf2Y1Id8U2tK0NjAPCzMaX42ZjwhUtHjOiXg09/NTmixxSZPWLV5nSjvtUuV4fVeKuoSvPiM5iyf246npkzEfOXf4kbP9iFqtxibCgdiZ+8+hRQVoYjq4541tNFoTG7041aPyFU3WDFKG8nbMAzHBPw9ZmKB/5CSAjuwO3JdWGUF+xkr6UnoQyNZYYKjUXRQ0gg3k/MESLJIOJPyqeffhqXX345Pv74Y5x22mkAgI0bN2Lnzp149913AQAbNmzAz3/+87gtcsSIEZgxYwbmzZuHF154AQ6HAwsWLMCVV16JkpISAEBNTQ2mTp2KxYsX4/TTT8fevXuxdOlSzJw5E3369MF3332HO++8E2effTZOPvnkTp6x+yAudl0ZGksFTHodCrJNONpsw2FLu08IyY5QHNskVFXhxFvmYPzwC1CVW4w9fcqA2bOBVatQ2+Qdr9GFobFDfnlR/iX0rSHK52PB32kU7zN/1ymeLlQ0qJyLXvK30BWESpbOiJMjlE5HiCSRiN+5F154ISoqKjBz5kzU19ejvr4e559/Pnbu3Imf/vSnAIBf/OIX+P3vfx/XhS5ZsgTDhw/H1KlTMXPmTEyaNAkvvfSSfL/D4UBFRYVcFWY0GvHpp59i+vTpGD58OO666y5ceuml+Oijj+K6rmQjvp0dbYluxEF3psSbMC3ET7vDJZfT94+TI6RMjB4qed5bewaO8OQITZmCugZPC4GE5wjpfMnSwhESLpS/ELImsHxe/jmOVWPxJFSZN4mNUK+r8v/RTJ6Xj8NkaZJEIvqkdDgcmDFjBl544QUsWrQoUWsKSn5+fofNEwcNGqSqnikrK8Pq1au7YmlJxRca612OEOBJiP622oLDXiEkBEKaQYu8KBs8qqiulkUQyssxdOHtwH/3Y8+YM4F15XBX7kNdUzug1SU+R0jM+1IIoXGD8vGf7w4H9BKSh67G0REy+TlCvlljqRUaU4ZtetPfQqJRNVQ0Ba8gM8YSGjOyfJ4kj4gkvMFgwHfffZeotZAoEB/8x7s4RygVEJVjInm4RpEoHZdeStnZQGEh4E2MHjpyEACg0mKHa+XnOD7iZLi0OmgQ3iDXWDDpfJ2lRWjsNG9jy8DQmKgaS4wjlGbQyq9vWpySpeNFOnOEEkKokGP8Q2McsUG6nojfuddccw1eeeWVRKyFRIGcI9TaGx0hdWhMJEr3z4tTfpDZDCxfDqxeDZSVoTQvHUadFjanGzVZfXHkrX8A8HS5jiUsEA4iR6iuuV0e6THOOzNN2VTR5ZbkPIt4ihKTIdSF0D9HKDWSpTWaxHdY700o+0UpnUal2NTH4AgxR4gkk4i/MjqdTrz66qv49NNPMXbsWGRmqhvXxTs3iHSMEEIu79Tm3vQtWPQKEo5QPEvnZcxmzw2eHIjBfTNRcaQZe442Q0r3bE90WAzwCaEDxzyip0+mUW4a2dzuhKXNAXO6QTUgNr5VY1rF/xUXQj+xkWxHUgizruiw3ptQVocpRVHcHCHvcWwUQiQJRPxJuW3bNpx66qkAgF27dqnu4wdP19ObB02K7tKiieIhWQglTpgMLcxCxZFm7K1rlYVGokvnAZ+70eytCCs2pyHDqEd+phH1rXbUNLR5hZDnQqKNsyNi0odyAbQw6rTyMNhkO5LiwpzsdfQ0VJViIdxB9hEi3ZWIhdDnn3+eiHWQKPH/1t+bLgDC+TnS1A6ny60IjcXREfJDdL/eU9eCIq8QS3TpPOBzhAQiP6p/brpHCDW2YWRJjmLOmD6uX0xCOUKAR3zb2zxCKFXK53uTM9oVpKuSpX3/12o1SDNo0e5wx9RHiLPGSDKJWsLv2bMHn3zyCdraPBcf/3lHpGvI6sVCqG+WCQadBm4JONJsS0wPIT+GCiF0tMVTMYbED1wFAgdaCjdMNI4UeUJy6XwcK8YAv3BYiJ5CRr0WuhjHrcSKHBrrRc5oV6AUuP7z5cR9seTJyQ0V6QiRJBDxO/f48eOYOnUqTjjhBMycOROHDx8GAMydOxd33XVX3BdIOsb/gpfWiy4AWq0GxaKXUEObPIMrkY7Q0AKfI1TrFULF5i4IjfkJ3GI/ISTcMKUjFE/SOhhmmp5C4SiGxhJDqCaKgEIIs48Q6aZE/M698847YTAYcPDgQWRk+L55//znP8fy5cvjujjSOb05NAb4QkTfVjXC4ZKg02pQlJ04YVJekAmNBrC0OfDDoSYAXRQa87vIiIo5ER4UJfTCFctKi7MQUjlCwXsHJbtiDACy0zz9o+LZQ4moHbYAIeT9OabQmOgjRCFEkkDEn5b/+9//8Mknn6C0VD1natiwYThw4EDcFkbCozeHxgCfENiwvx6Ap4IrkaXsaQYdyvIycLDeijpvF+suCY355QgV53jOu9TbKkAIoCXrPMOOp5xYGNfnVzZUDNVNOhXCUWef0BeXnNofF55Skuyl9ChCTZxX3hdbaIw5QiR5RCyEWltbVU6QoL6+vltNbe8p+H87S4Vv5V2JyJXZdKABQJxL50MwpCATB+t9vXu6smpMIM67vyJH6LvqRmw60ACDToNrzhgQ1+dXNlT07zIthFEqiPDsNAN+f8WPkr2MHkeaXgejXgu7042ctOBfvuIRGmNDRZIMIn7nnnXWWVi8eLH8s0ajgdvtxlNPPYUf//jHcV0c6Rx/R6i3Vcv08wof0VAykflBApEwDXjCAfmZie0qDQQKoWI/IdRgdeD5z/cAAH56cgkK4+xSdZfQGEkMWq0GT1wyGg/9dKQ84FggO0IxJMoLN5E5QiQZROwIPfXUU5g6dSo2btwIu92OX//619i+fTvq6+uxZs2aRKyRdIC/TZ0K4YmuxL9nUFc4QkohVJid1iX9s5ShsfxMoyw+ctIMMKcbYGlz4JPtRwAA1585KO7P31FoTE6WTnLpPEksl5xaGnS7+AwyxNC3isnSJJlE/M4dNWoUdu3ahUmTJuGiiy5Ca2srLrnkEmzZsgVDhgxJxBpJB/T2HCGRLC0o6WIh1BVhMUAthPw7WSvF39iBeTi5NDfuz2/ymzWmJEMOjXGkRW/ElyzNhoqkexLVVziz2YwHHngg3mshUZBm0EKrAbwTNnqdEPIXPl0SGivIlv9f1AUVY4A6/6LEzwUrzUvHD4c9FWxzJg5KyPOnheEIJbuZIkkOI/rlAACGKb4gRIpcNcZkaZIEovrkamxsxPr161FXVwe3W53cdu2118ZlYSQ8NBoNMo16efSC/zTwnk5Omh6ZRh1avR+gXREaM2cY0DfLhGMtti4TQnqdp1mhyy3J+UECIf6Kc9IwY1RxQp4/nByh3haWJR5uOHMQLjilX0x5aaJPlc3phtstQZvkxpykdxGxEProo48wa9YstLS0ICcnR5UfodFoKISSQKbJJ4R6myOk0WhQkpuO3XUtALpGCAHA0MLMLhVCgMcVanO7AsKB544swrsbq3HPeSfGFJ7oiI6E0KShffGPjVU4e1jfhDw3SW00Gk3MyflKEd3udNFdJF1KxO+2u+66CzfccAMef/zxoGX0pOtRNo/rbVVjgKdybHddC/IzjV3mSlwxrgx1zTacMzy+/Xo6wqjXos3hkkvnBROH9MV3v5me0KRtZdVagBAa1heb/t80Dl0mUaNsz9BmpxAiXUvE77aamhrcdtttFEEphOgubdBpEuYIpDIlZnWX5a7gklNLQ1bRJAohRvxDYwASLkKU4ieY60gRRGJBq9XApNfC5nQzYZp0ORFfNc877zxs3LgxEWshUSLmSvVGNwjwJUx3pRBKBjNGFWNIQWZCqsI6I03lCPU+sU0SD3sJkWQRsSP0k5/8BPfccw9++OEHjB49GgaDQXX/hRdeGLfFkfAQobHelh8kuOhHJdh0oAHXThyY7KUklN9eNCppz63XaaHXauB0S71WcJPEkm7QoREOtNnZXZp0LRELoXnz5gEAfvvb3wbcp9Fo4HJRzXc1IjTWW6t2BvbJxBs3nJ7sZfR40gw6tNicFEIkIchNFZ28hpCuJWIh5F8uT5KPLIR4gSIJJNPkEULZcZ5sTwjAwaskefATrQeQ6XWC+E2dJJL7Z47AD4ebYmqcR0go5KaKzBEiXUzYWY8zZ86ExWKRf37iiSfQ2Ngo/3z8+HGMHDkyrosj4UFHiHQFF/2oP+47fwQrxEhCEEn4TJYmXU3YQuiTTz6BzWaTf3788cdRX18v/+x0OlFRURHf1ZGwyOrlOUKEkO5POkNjJEmELYQkSerwZ5I8xBDQIQWZSV4JIYREBwevkmTBHKEewJQTC7H6nikozWOTS0JI9ySdQogkibCFkEajCcgNYK5A6jCwD90gQkj3RW6oyNAY6WLCFkKSJGHOnDkwmUwAgPb2dtx8883IzPRcgJX5Q4QQQkgk0BEiySJsIXTdddepfr7mmmsC9uHkeUIIIdEgcoTaHexVR7qWsIXQa6+9lsh1EEII6cWwjxBJFpyeSAghJOkwNEaSBYUQIYSQpCM3VGSyNOliKIQIIYQkHfYRIsmCQogQQkjSYWiMJItuI4Tq6+sxa9Ys5OTkIDc3F3PnzkVLS0unj1u7di3OOeccZGZmIicnB2effTba2tq6YMWEEELCRU6WZmiMdDHdRgjNmjUL27dvx4oVK7Bs2TJ88cUXmD9/foePWbt2LWbMmIHp06dj/fr12LBhAxYsWACtttucNiGE9ArS5fJ5CiHStXSLERs7duzA8uXLsWHDBowbNw4A8Nxzz2HmzJl4+umnUVJSEvRxd955J2677TYsXLhQ3nbiiSd2yZoJIYSED3OESLLoFtbI2rVrkZubK4sgAJg2bRq0Wi3WrVsX9DF1dXVYt24dCgsLMXHiRBQVFWHy5Mn46quvOnwum82GpqYm1Y0QQkhikUdssKEi6WK6hRCqra1FYWGhapter0d+fj5qa2uDPqayshIA8Jvf/Abz5s3D8uXLceqpp2Lq1KnYvXt3yOdatGgRzGazfCsrK4vfiRBCCAkKk6VJskiqEFq4cKE8zDXUbefOnVEd2+32fKu46aabcP3112PMmDH4wx/+gBNPPBGvvvpqyMfdd999sFgs8q2qqiqq5yeEEBI+QgjZnW643FKSV0N6E0nNEbrrrrswZ86cDvcpLy9HcXEx6urqVNudTifq6+tRXFwc9HH9+vUDAIwcOVK1fcSIETh48GDI5zOZTPJgWUIIIV2DyBECPAnTmaZukcJKegBJfacVFBSgoKCg0/0mTJiAxsZGbNq0CWPHjgUArFy5Em63G+PHjw/6mEGDBqGkpAQVFRWq7bt27cL5558f++IJIYTEDZPeF6BooxAiXUi3yBEaMWIEZsyYgXnz5mH9+vVYs2YNFixYgCuvvFKuGKupqcHw4cOxfv16AIBGo8E999yDZ599Fu+++y727NmDBx98EDt37sTcuXOTeTqEEEL80Go18pgN9hIiXUm3kdxLlizBggULMHXqVGi1Wlx66aV49tln5fsdDgcqKipgtVrlbXfccQfa29tx5513or6+HqeccgpWrFiBIUOGJOMUCCGEdEC6QYd2h5u9hEiXopEkiVlpHdDU1ASz2QyLxYKcnJxkL4cQQnosExd9hkOWdny44EycXJqb7OWQbk641+9uERojhBDS80njmA2SBCiECCGEpATymA0nmyqSroNCiBBCSEogN1WkI0S6EAohQgghKYFvzAaFEOk6KIQIIYSkBCY9x2yQrodCiBBCSEqQzmRpkgQohAghhKQE6aKhIh0h0oV0m4aKhBBCeigWC9Dc7KsaUwqh6mogOxswm5O0ONLToSNECCEkeVgswIwZwOTJSGv3TAZos7tgtTvx3PsbsfqKmzz3WyxJXijpqVAIEUIISR7NzUBdHVBZifS33gAAVBxpxkV/WIVn1h3B/adc5rm/uTnJCyU9FQohQgghyaO0FFi1CigvR3pdLQDgy93HsLvBBgCoMRei/dOVnv0ISQAUQoQQQpJLWRmwahXSzdnypkn7tyDd6RFDh7L6JGtlpBdAIUQIIST5lJVh8j1zMaZmJ+7+YjHe+MfDKMtLBwBUN7QleXGkJ8OqMUIIIcmnqgoDb56D9ysr5U2lFd9hV8koVDVYk7gw0tOhI0QIISS5VFUBU6YAlZVAeTmwZg1QXo6yw/sAANUHjiR3faRHQyFECCEkeVRXq0XQqlXAxInAqlUo1Ts9u3yw3LMfIQmAQogQQkjyyM4GCgt9IqiszLO9rAyl994BAKjKLfLsR0gCoBAihBCSPMxmYPlyYPVqnwjyUjbM83N1v8HsLE0SBpOlCSGEJBezOajQKfVWjR1rdaDd4UKadwQHIfGEjhAhhJCUxJxuQJbJ8329mpVjJEFQCBFCCElJNBqN7ApVsZcQSRAUQoQQQlKW0rwMAEB1PR0hkhgohAghhKQsZfnsLk0SC4UQIYSQlEV2hCiESIKgECKEEJKy+HKEGBojiYFCiBBCSMpSRkeIJBgKIUIIISlLf68jVN9qR6vNmeTVkJ4IhRAhhJCUxZxuQE6a6CVEV4jEHwohQgghKU1ZvgiPMU+IxB8KIUIIISmNSJimI0QSAYUQIYSQlEYkTFexqSJJABRChBBCUho6QiSRUAgRQghJaURTRfYSIomAQogQQkhK40uWpiNE4g+FECGEkJRG9BKytDnQ1O5I8mpIT6PbCKH6+nrMmjULOTk5yM3Nxdy5c9HS0hJy//3790Oj0QS9/fOf/+zClRNCCImFLJMeeRkGAEB1PV0hEl+6jRCaNWsWtm/fjhUrVmDZsmX44osvMH/+/JD7l5WV4fDhw6rbI488gqysLJx//vlduHJCCCGxwl5CJFHok72AcNixYweWL1+ODRs2YNy4cQCA5557DjNnzsTTTz+NkpKSgMfodDoUFxertr3//vu44oorkJWV1SXrJoQQEh9K89LxXbWFeUIk7nQLR2jt2rXIzc2VRRAATJs2DVqtFuvWrQvrGJs2bcLWrVsxd+7cDvez2WxoampS3QghhCSXMlaOkQTRLYRQbW0tCgsLVdv0ej3y8/NRW1sb1jFeeeUVjBgxAhMnTuxwv0WLFsFsNsu3srKyqNdNCCEkPrCXEEkUSRVCCxcuDJnQLG47d+6M+Xna2tqwdOnSTt0gALjvvvtgsVjkW1VVVczPTwghJDZELyEKIRJvkpojdNddd2HOnDkd7lNeXo7i4mLU1dWptjudTtTX1wfkAQXj3XffhdVqxbXXXtvpviaTCSaTqdP9CCGEdB1l+V5HqN4KSZKg0WiSvCLSU0iqECooKEBBQUGn+02YMAGNjY3YtGkTxo4dCwBYuXIl3G43xo8f3+njX3nlFVx44YVhPRchhJDUo3+uxxFqtjnR1OaE2VtOT0isdIscoREjRmDGjBmYN28e1q9fjzVr1mDBggW48sor5YqxmpoaDB8+HOvXr1c9ds+ePfjiiy9w4403JmPphBBC4kC6UYe+WUYATJgm8aVbCCEAWLJkCYYPH46pU6di5syZmDRpEl566SX5fofDgYqKClit6j+QV199FaWlpZg+fXpXL5kQQkgc8eUJUQiR+KGRJElK9iJSmaamJpjNZlgsFuTk5CR7OYQQ0mtZsHQzln13GP/vJyNw41nlyV4OSXHCvX53G0eIEEJI70Z0l66qpyNE4geFECGEkG4BewmRREAhRAghpFvAXkIkEVAIEUII6RaUeR2hqgZPLyFC4gGFECGEkG5BSa5HCFntLjRYHUleDekpUAgRQgjpFqQZdCjM9nT+Zwk9iRcUQoQQQroNvsox5gmR+EAhRAghpNvgqxyjI0TiA4UQIYSQbkMZK8dInKEQIoQQ0m0oVVSOERIPKIQIIYR0G9hLiMQbCiFCCCHdhrJ8X44QewmReEAhRAghpNvQz5wOjQZod7hxrMWe7OWQHgCFECGEkG6DUa9FcU4aAGDbIUuSV0N6AhRChBBCuhVnDu0LAPj1u9+hppG5QiQ2KIQIIYR0Kx6+YCSGF2fjaLMNN7y2Ac3tHLdBoodCiBBCSLciO82AV+achoJsEyqONOOWpVsohkjUaCSm3XdIU1MTzGYzLBYLcnJykr0cQgghXr6rbsQVL65Fu8MNvVaDUwfmYfIJBbh8XCkKs9OSvTySZMK9ftMRIoQQ0i05uTQXL84eh8F9M+F0S1i/rx6/+6QCU59ZjbfXH2R5PQkLOkKdQEeIEEJSnwPHW/HFrqN4Z2MVttU0AQDOKM/HE5ecjEF9M5O8OpIMwr1+Uwh1AoUQIYR0H5wuN17/ej+e/l8F2h1uZJn0+MPPf4RzRxYle2mki2FojBBCSK9Dr9PixrPK8b87JuP0QflosTkxb/FG/PHTXXC7+b2fBEIhRAghpMcxoE8GlswbjzkTBwEA/vjpbsx/cxOaWF1G/KAQIoQQ0iMx6LT4zYUn4XeXnQyjXotPdxzBxc+vwZ66lmQvjaQQFEKEEEJ6NJePK8O7N09AP3MaKo+24uLn12DFD0eSvSySIlAIEUII6fGcXJqLj26dhNMH+/KG/rCCeUOEQogQQkgvoW+WCUtu9OUN/emz3Zj/5kbmDfVyKIQIIYT0GkTe0NOXn+LNG6rDxX9eg2+rGpO9NJIkKIQIIYT0Oi4bW4p/3TwRJeY0VB5rxcV/WYMH3v8ejVZ7spdGuhgKIUIIIb2S0aVmfHTrJFwypj8kCViy7iDOeWY13ly7H3anO9nLI10EO0t3AjtLE0JIz+ebyuN48INt2O0trS/NS8ftU4fhZ2P6Q6+jZ9Ad4YiNOEEhRAghvQOHy42/rz+I51buwdFmGwBgVP8cPHvlGJQXZCV5dSRSOGKDEEIIiQCDTotrJwzCF/f8GPfPHA5zugHbaprw0+e+wrubqjnNvodCIUQIIYQoSDfqMP/sIfjkjrNxRnk+rHYX7v7nt/jVP76F1e5M9vJInKEQIoQQQoJQbE7DkhvPwN3TT4BOq8H7W2pw6V/XoqremuylkTjSbYRQfX09Zs2ahZycHOTm5mLu3Lloael4XkxtbS1mz56N4uJiZGZm4tRTT8W//vWvLloxIYSQ7o5Oq8GCc4Zh6Y3j0TfLiB2Hm3DBn7/Cl7uPJntpJE50GyE0a9YsbN++HStWrMCyZcvwxRdfYP78+R0+5tprr0VFRQU+/PBDfP/997jkkktwxRVXYMuWLV20akIIIT2B8eV98NGtk3BKqRmNVgeue3U9ln13KNnLInGgW1SN7dixAyNHjsSGDRswbtw4AMDy5csxc+ZMVFdXo6SkJOjjsrKy8Ne//hWzZ8+Wt/Xp0wdPPvkkbrzxxrCem1VjhBBCBO0OF+5773u8v6UGeq0GL84ei6kjipK9LBKEHlU1tnbtWuTm5soiCACmTZsGrVaLdevWhXzcxIkT8c4776C+vh5utxtvv/022tvbMWXKlJCPsdlsaGpqUt0IIYQQAEgz6PD05afgoh+VwOmW8Islm/HV7mPJXhaJgW4hhGpra1FYWKjaptfrkZ+fj9ra2pCP+8c//gGHw4E+ffrAZDLhpptuwvvvv4+hQ4eGfMyiRYtgNpvlW1lZWdzOgxBCSPdHp9Xg6ctPwfSRRbA73Zi3eCO2clZZtyWpQmjhwoXQaDQd3nbu3Bn18R988EE0Njbi008/xcaNG/GrX/0KV1xxBb7//vuQj7nvvvtgsVjkW1VVVdTPTwghpGdi0Gnx3NVjcPYJBWhzuPDLtzahvpVzyrojSc0ROnr0KI4fP97hPuXl5Xjrrbdw1113oaGhQd7udDqRlpaGf/7zn/jZz34W8Li9e/di6NCh2LZtG0466SR5+7Rp0zB06FC88MILYa2ROUKEEEJC0dzuwEV/XoPKY604+4QCvDbnNOi0mmQviyD867e+C9cUQEFBAQoKCjrdb8KECWhsbMSmTZswduxYAMDKlSvhdrsxfvz4oI+xWj19HrRateml0+ngdnOYHiGEkNjJTjPgL9ecioufX4Mvdh3Fcyt3445pJyR7WSQCukWO0IgRIzBjxgzMmzcP69evx5o1a7BgwQJceeWVcsVYTU0Nhg8fjvXr1wMAhg8fjqFDh+Kmm27C+vXrsXfvXjzzzDNYsWIFLr744iSeDSGEkJ7E8OIcPP6z0QCAP322G59X1CV5RSQSuoUQAoAlS5Zg+PDhmDp1KmbOnIlJkybhpZdeku93OByoqKiQnSCDwYD//ve/KCgowAUXXICTTz4ZixcvxhtvvIGZM2cm6zQIIYT0QC45tRRXjx8ASQJuWbIZmw82dP4gkhJ0iz5CyYQ5QoQQQsLB5nThxjc24svdx5CTpsc/bp6A4cW8biSLHtVHiBBCCEl1THodXpw9FqcOyEVTuxOzX1mP/cdak70s0gkUQoQQQkicyDDq8dqc0zG8OBtHm2247IWv8fUeNlxMZSiECCGEkDhizjBg8VyPGDrWYsesV9bhT5/uhsvNTJRUhEKIEEIIiTOF2Wl4/5dn4ufjyiBJwB8+3YU5r61Ho5VNF1MNCiFCCCEkAaQbdXjyspPxzOWnIN2gw5e7j+Hi59dgT11zspdGFFAIEUIIIQnk0rGleO+XE9E/Nx37j1vxs+e/Zq+hFIJCiBBCCEkwI/rl4N8LzsTpg/LRbHPihtc34Jn/VcDp4qSDZEMhRAghhHQBfbNMeOvG8bjqdE/jxedW7sGVL32D6gZrspfWq6EQIoQQQroIo16LRZeMxrNXjUG2SY+NBxow809f4t9ba8D+xsmBQogQQgjpYi48pQT/vf0s/KjM03zx9re34pdLNuNYiy3ZS+t1UAgRQgghSaAsPwP/vHkCfnXuCdBrNfh4Wy3O+8MXeP7zPexI3YVw1lgncNYYIYSQRLOtxoK7/vEtKo74SutPKsnBdRMG4bKxpdBqNUlcXfck3Os3hVAnUAgRQgjpCmxOF97fXIP/fH8YX+89LneiPn1QPh6/ZDSGFmYleYXdCwqhOEEhRAghpKupb7XjHxur8KdPd6PN4YJRp8X8s8sx7+xymNMNyV5et4BCKE5QCBFCCEkW1Q1WPPjBNnxecRQAkJOmx9xJ5bh+0iDkpFEQdQSFUJygECKEEJJMJEnCJ9tr8fsVu7DrSAsAwKjTYkhhFoYXZ2NoYRYyjTqkGXRIN+pQkpuOgX0yUJBlgkaTxNwiiwVobgZKSwPvq64GsrMBszlhT08hFCcohAghhKQCbreE/247jGc/2y0Loo7INOpQmJOG3AwD8jOMyM0wIj/T4P3XiLwM3//7ZpmQm26IX1K2xQLMmAHU1QGrVgFlZb77qqqAKVOAwkJg+fKEiaFwr9/6hDw7IYQQQuKKVqvBT08uwU9G90N1Qxt21jajorYJ+49b0eZwweZwocXmRHVDGw41tqHV7sK+CMrwdVoN+mQaMahvJk4oysIJRdnoZ05HfqZHLPUzpyHNoAvvYM3NHhFUWekRPUIMCRFUWenbL4GuUDjQEeoEOkKEEEK6G3anG9UNVhxrsaPBakdDqx31VjsarQ7Ut9rRaLV7/3XgeKsdljZHp8fUaTUYUpCJk0rMGFKQiSyTHpneW4ZRhyyTHulGHXRaDTTQALW10Fw/B5qqKqC0DJonnwDu/TU0VVWwDxwMy19eQmNWHixtdpw2KB/lBfGtimNoLE5QCBFCCOnp2J1uNFjtONLUjj11Ldh1pAV76ppxtNmGeqsd9S12tNpdCXv+Jy8djZ+fNiCux2RojBBCCCFhYdRrUZSThqKcNJxcmhtwvyRJqGu2YfshC7bVNKGq3gqr3YVWuxNWmyckZ7U70Wp3QZIkCItFAiA5HJAsFkjQQNJogOxsGIwGmDMMyE335CkVZJu69HyVUAgRQgghpEM0Go0slM4ZXhT+A/1zggCgvDwwgTqJcNYYIYQQQuKPUgSVlwNr1nj+FQnUVVXJXiEACiFCCCGExJvqarUIWrUKmDjR869SDFVXJ3edYGiMEEIIIfEmO9vTJwhQh8HKyjw/iz5C2dlJWqAPCiFCCCGExBez2dMsMVhn6bIyYPXqhHeWDhcKIUIIIYTEH7M5tNAJNnYjSTBHiBBCCCG9FgohQgghhPRaKIQIIYQQ0muhECKEEEJIr4VCiBBCCCG9FgohQgghhPRaKIQIIYQQ0muhECKEEEJIr4VCiBBCCCG9FnaW7gRJkgAATU1NSV4JIYQQQsJFXLfFdTwUFEKd0NzcDAAoEwPjCCGEENJtaG5uhrmDmWYaqTOp1Mtxu904dOgQsrOzodFo4nbcpqYmlJWVoaqqCjk5OXE7bneB58/z5/nz/Hn+PP9Enr8kSWhubkZJSQm02tCZQHSEOkGr1aI0gcPhcnJyeuUfgoDnz/Pn+fP8eys8/8Sff0dOkIDJ0oQQQgjptVAIEUIIIaTXQiGUJEwmEx5++GGYTKZkLyUp8Px5/jx/nj/Pn+efCjBZmhBCCCG9FjpChBBCCOm1UAgRQgghpNdCIUQIIYSQXguFUJJ4/vnnMWjQIKSlpWH8+PFYv359speUEBYtWoTTTjsN2dnZKCwsxMUXX4yKigrVPu3t7bjlllvQp08fZGVl4dJLL8WRI0eStOLE8cQTT0Cj0eCOO+6Qt/WGc6+pqcE111yDPn36ID09HaNHj8bGjRvl+yVJwkMPPYR+/fohPT0d06ZNw+7du5O44vjgcrnw4IMPYvDgwUhPT8eQIUPw6KOPqtr997Rz/+KLL3DBBRegpKQEGo0GH3zwger+cM63vr4es2bNQk5ODnJzczF37ly0tLR04VlET0fn73A4cO+992L06NHIzMxESUkJrr32Whw6dEh1jJ56/v7cfPPN0Gg0+OMf/6janozzpxBKAu+88w5+9atf4eGHH8bmzZtxyimn4LzzzkNdXV2ylxZ3Vq9ejVtuuQXffPMNVqxYAYfDgenTp6O1tVXe584778RHH32Ef/7zn1i9ejUOHTqESy65JImrjj8bNmzAiy++iJNPPlm1vaefe0NDA84880wYDAZ8/PHH+OGHH/DMM88gLy9P3uepp57Cs88+ixdeeAHr1q1DZmYmzjvvPLS3tydx5bHz5JNP4q9//Sv+/Oc/Y8eOHXjyySfx1FNP4bnnnpP36Wnn3trailNOOQXPP/980PvDOd9Zs2Zh+/btWLFiBZYtW4YvvvgC8+fP76pTiImOzt9qtWLz5s148MEHsXnzZrz33nuoqKjAhRdeqNqvp56/kvfffx/ffPMNSkpKAu5LyvlLpMs5/fTTpVtuuUX+2eVySSUlJdKiRYuSuKquoa6uTgIgrV69WpIkSWpsbJQMBoP0z3/+U95nx44dEgBp7dq1yVpmXGlubpaGDRsmrVixQpo8ebJ0++23S5LUO8793nvvlSZNmhTyfrfbLRUXF0u/+93v5G2NjY2SyWSS/v73v3fFEhPGT37yE+mGG25QbbvkkkukWbNmSZLUs89dkiQJgPT+++/LP4dzvj/88IMEQNqwYYO8z8cffyxpNBqppqamy9YeD/zPPxjr16+XAEgHDhyQJKl3nH91dbXUv39/adu2bdLAgQOlP/zhD/J9yTp/OkJdjN1ux6ZNmzBt2jR5m1arxbRp07B27dokrqxrsFgsAID8/HwAwKZNm+BwOFSvx/DhwzFgwIAe83rccsst+MlPfqI6R6B3nPuHH36IcePG4fLLL0dhYSHGjBmDv/3tb/L9+/btQ21treo1MJvNGD9+fLd/DSZOnIjPPvsMu3btAgB8++23+Oqrr3D++ecD6NnnHoxwznft2rXIzc3FuHHj5H2mTZsGrVaLdevWdfmaE43FYoFGo0Fubi6Ann/+brcbs2fPxj333IOTTjop4P5knT9njXUxx44dg8vlQlFRkWp7UVERdu7cmaRVdQ1utxt33HEHzjzzTIwaNQoAUFtbC6PRKH8QCIqKilBbW5uEVcaXt99+G5s3b8aGDRsC7uvp5w4AlZWV+Otf/4pf/epXuP/++7FhwwbcdtttMBqNuO666+TzDPb30N1fg4ULF6KpqQnDhw+HTqeDy+XCY489hlmzZgFAjz73YIRzvrW1tSgsLFTdr9frkZ+f3+Nek/b2dtx777246qqr5HlbPf38n3zySej1etx2221B70/W+VMIkS7jlltuwbZt2/DVV18leyldQlVVFW6//XasWLECaWlpyV5OUnC73Rg3bhwef/xxAMCYMWOwbds2vPDCC7juuuuSvLrE8o9//ANLlizB0qVLcdJJJ2Hr1q244447UFJS0uPPnXSMw+HAFVdcAUmS8Ne//jXZy+kSNm3ahD/96U/YvHkzNBpNspejgqGxLqZv377Q6XQBlUFHjhxBcXFxklaVeBYsWIBly5bh888/R2lpqby9uLgYdrsdjY2Nqv17wuuxadMm1NXV4dRTT4Ver4der8fq1avx7LPPQq/Xo6ioqMeeu6Bfv34YOXKkatuIESNw8OBBAJDPsyf+Pdxzzz1YuHAhrrzySowePRqzZ8/GnXfeiUWLFgHo2ecejHDOt7i4OKBoxOl0or6+vse8JkIEHThwACtWrFBNX+/J5//ll1+irq4OAwYMkD8PDxw4gLvuuguDBg0CkLzzpxDqYoxGI8aOHYvPPvtM3uZ2u/HZZ59hwoQJSVxZYpAkCQsWLMD777+PlStXYvDgwar7x44dC4PBoHo9KioqcPDgwW7/ekydOhXff/89tm7dKt/GjRuHWbNmyf/vqecuOPPMMwPaJezatQsDBw4EAAwePBjFxcWq16CpqQnr1q3r9q+B1WqFVqv+iNXpdHC73QB69rkHI5zznTBhAhobG7Fp0yZ5n5UrV8LtdmP8+PFdvuZ4I0TQ7t278emnn6JPnz6q+3vy+c+ePRvfffed6vOwpKQE99xzDz755BMASTz/hKVhk5C8/fbbkslkkl5//XXphx9+kObPny/l5uZKtbW1yV5a3PnFL34hmc1madWqVdLhw4flm9Vqlfe5+eabpQEDBkgrV66UNm7cKE2YMEGaMGFCEledOJRVY5LU8899/fr1kl6vlx577DFp9+7d0pIlS6SMjAzprbfekvd54oknpNzcXOnf//639N1330kXXXSRNHjwYKmtrS2JK4+d6667Turfv7+0bNkyad++fdJ7770n9e3bV/r1r38t79PTzr25uVnasmWLtGXLFgmA9Pvf/17asmWLXBUVzvnOmDFDGjNmjLRu3Trpq6++koYNGyZdddVVyTqliOjo/O12u3ThhRdKpaWl0tatW1WfhzabTT5GTz3/YPhXjUlScs6fQihJPPfcc9KAAQMko9EonX766dI333yT7CUlBABBb6+99pq8T1tbm/TLX/5SysvLkzIyMqSf/exn0uHDh5O36ATiL4R6w7l/9NFH0qhRoySTySQNHz5ceumll1T3u91u6cEHH5SKiookk8kkTZ06VaqoqEjSauNHU1OTdPvtt0sDBgyQ0tLSpPLycumBBx5QXfR62rl//vnnQf/er7vuOkmSwjvf48ePS1dddZWUlZUl5eTkSNdff73U3NychLOJnI7Of9++fSE/Dz///HP5GD31/IMRTAgl4/w5fZ4QQgghvRbmCBFCCCGk10IhRAghhJBeC4UQIYQQQnotFEKEEEII6bVQCBFCCCGk10IhRAghhJBeC4UQIYQQQnotFEKEEEII6bVQCBFCCCGk10IhRAjpVsyZMwcXX3xxspdBCOkhUAgRQgghpNdCIUQI6bZMmTIFt956K+644w7k5eWhqKgIf/vb39Da2orrr78e2dnZGDp0KD7++GP5MS6XC3PnzsXgwYORnp6OE088EX/6059Ux3U6nbjtttuQm5uLPn364N5778V1112ncqLcbjcWLVokH+eUU07Bu+++21WnTgiJExRChJBuzRtvvIG+ffti/fr1uPXWW/GLX/wCl19+OSZOnIjNmzdj+vTpmD17NqxWKwCPgCktLcU///lP/PDDD3jooYdw//334x//+Id8zCeffBJLlizBa6+9hjVr1qCpqQkffPCB6nkXLVqExYsX44UXXsD27dtx55134pprrsHq1au78vQJITHC6fOEkG7FnDlz0NjYiA8++ABTpkyBy+XCl19+CcDj9pjNZlxyySVYvHgxAKC2thb9+vXD2rVrccYZZwQ95oIFC1BbWys7OsXFxbj77rtx9913y8ctLy/HmDFj8MEHH8BmsyE/Px+ffvopJkyYIB/nxhtvhNVqxdKlSxP5EhBC4og+2QsghJBYOPnkk+X/63Q69OnTB6NHj5a3FRUVAQDq6urkbc8//zxeffVVHDx4EG1tbbDb7fjRj34EALBYLDhy5AhOP/101XHHjh0Lt9sNANizZw+sVivOPfdc1VrsdjvGjBkT93MkhCQOCiFCSLfGYDCoftZoNKptGo0GAGQR8/bbb+Puu+/GM888gwkTJiA7Oxu/+93vsG7durCfs6WlBQDwn//8B/3791fdZzKZojoPQkhyoBAihPQq1qxZg4kTJ+KXv/ylvG3v3r3y/81mM4qKirBhwwacffbZADyhsc2bN8uu0ciRI2EymXDw4EFMnjy5S9dPCIkvFEKEkF7FsGHDsHjxYnzyyScYPHgw3nzzTWzYsAGDBw+W97n11luxaNEiDB06FMOHD8dzzz2HhoYG2V3Kzs7G3XffjTvvvBNutxuTJk2CxWLBmjVrkJOTg+uuuy5Zp0cIiRAKIUJIr+Kmm27Cli1b8POf/xwajQZXXXUVfvnLX6pK7O+9917U1tbi2muvhU6nw/z583HeeedBp9PJ+zz66KMoKCjAokWLUFlZidzcXJx66qm4//77k3FahJAoYdUYIYR0gtvtxogRI3DFFVfg0UcfTfZyCCFxhI4QIYT4ceDAAfzvf//D5MmTYbPZ8Oc//xn79u3D1VdfneylEULiDBsqEkKIH1qtFq+//jpOO+00nHnmmfj+++/x6aefYsSIEcleGiEkzjA0RgghhJBeCx0hQgghhPRaKIQIIYQQ0muhECKEEEJIr4VCiBBCCCG9FgohQgghhPRaKIQIIYQQ0muhECKEEEJIr4VCiBBCCCG9FgohQgghhPRa/j/MvcWI2WrmlgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHACAYAAABONwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe4ElEQVR4nO2deXhU9fX/33fWTLaZJGQhJCxhDYrKohREoUIFaV3qrohiKWgrWhUX1Kq11mKt/mq1i7tWhVq1ytfSiqIIKCJBNgUhAmFJSEKWSSaTTGa/vz/ufO7cmcxyZzKZ9byeZx7IzJ07nzuZzH3fc97nHI7neR4EQRAEQRAZiCLRCyAIgiAIgkgUJIQIgiAIgshYSAgRBEEQBJGxkBAiCIIgCCJjISFEEARBEETGQkKIIAiCIIiMhYQQQRAEQRAZCwkhgiAIgiAyFhJCBEEQBEFkLCSECIIgCILIWEgIDRD//e9/MXXqVOh0OhQUFOCSSy4Juq3D4cC9996LCRMmICcnB+Xl5bj++uvR2Njos93OnTvxox/9CAaDAUVFRVi6dCm6u7vFx1977TVwHBfw1tLSInvtN910E0aOHAmdTofi4mJcfPHFOHDgQMTvAUEQBEEkOySEBoB///vfWLhwIW688Ubs2bMHW7ZswbXXXht0e4vFgp07d+LBBx/Ezp078d5776G2thYXXXSRuE1jYyPmzJmDUaNGYdu2bVi3bh327duHRYsWidtcddVVaGpq8rnNnTsXM2fORElJiez1T548Ga+++ir279+Pjz76CDzP4/zzz4fL5Yrq/SAIgiCIpIUnYorD4eCHDBnCv/TSS/3aT01NDQ+AP3bsGM/zPP/888/zJSUlvMvlErf55ptveAD8wYMHA+6jpaWFV6vV/Ouvv+5z/5o1a/iJEyfyWq2WHzFiBP+b3/yGdzgcQdeyZ88eHgB/6NChfh0TQRAEQSQbFBGKMTt37sSJEyegUCgwceJEDB48GBdccAH27t0b0X5MJhM4joPBYAAA2Gw2aDQaKBTeX5lOpwMAfPHFFwH38frrryM7OxuXX365eN/nn3+O66+/Hr/61a/w3Xff4fnnn8drr72Gxx57LOA+enp68Oqrr2LEiBGorKyM6BgIgiAIItkhIRRj6urqAAC/+c1v8Otf/xpr165FQUEBZs2aBaPRKGsfVqsV9957L6655hrk5+cDAM477zw0Nzfjj3/8I+x2Ozo6OrBixQoAQFNTU8D9vPzyy7j22mtFwQQAjzzyCFasWIEbbrgBVVVV+NGPfoRHH30Uzz//vM9z//a3vyE3Nxe5ubn48MMPsX79emg0mojfD4IgCIJIZkgIyWTFihVBjcjsduDAAbjdbgDAAw88gMsuu0z023Ach3feeSfs6zgcDlx55ZXgeR5///vfxftPOeUU/OMf/8BTTz2F7OxslJWVYcSIESgtLfWJEjG2bt2K/fv3Y/HixT7379mzB7/97W9FkZObm4slS5agqakJFotF3G7BggXYtWsXNm3ahDFjxuDKK6+E1WqN9u0jCIIgiKSE43meT/QiUoHW1la0t7eH3KaqqgpbtmzBeeedh88//xwzZswQH5s6dSrmzJkTNAUFeEVQXV0dNmzYgKKiooDbnTx5Ejk5OeA4Dvn5+XjrrbdwxRVX+GyzePFi7Ny5E7t27fK5X6fT4ZFHHsGll14acP2BRJXdbkdBQQFeeuklXHPNNSHfA4IgCIJIJVSJXkCqUFxcjOLi4rDbTZ48GVqtFrW1taIQcjgcOHr0KIYNGxb0eUwEHTx4EJ999llQEQQApaWlAIBXXnkFWVlZ+NGPfuTzeHd3N95++22sXLmyz3MnTZqE2tpajBo1KuyxMHieB8/zsNlssp9DEARBEKkACaEYk5+fj5tvvhkPP/wwKisrMWzYMPzxj38EAJ+ozbhx47By5Ur89Kc/hcPhwOWXX46dO3di7dq1cLlcaG5uBgAUFhaK3py//OUvmD59OnJzc7F+/XrcfffdePzxx0VDNeNf//oXnE4nrrvuuj7re+ihh/CTn/wEQ4cOxeWXXw6FQoE9e/Zg7969+N3vfoe6ujr861//wvnnn4/i4mI0NDTg8ccfh06nw/z58wfoXSMIgiCIBJHQmrU0xW6388uXL+dLSkr4vLw8fs6cOfzevXt9tgHAv/rqqzzP8/yRI0d4AAFvn332mfichQsX8oWFhbxGo+FPO+20PmXxjGnTpvHXXntt0PWtW7eOnz59Oq/T6fj8/Hz+rLPO4l944QWe53n+xIkT/AUXXMCXlJTwarWar6io4K+99lr+wIED/XtTCIIgCCIJIY8QQRAEQRAZC1WNEQRBEASRsZAQIgiCIAgiYyGzdBjcbjcaGxuRl5cHjuMSvRyCIAiCIGTA8zzMZjPKy8sDtoZhkBAKQ2NjI42WIAiCIIgUpb6+HhUVFUEfJyEUhry8PADCG8nGXRAEQRAEkdx0dXWhsrJSPI8HI2WEkNFoxK233or//Oc/UCgUuOyyy/DnP/8Zubm5QZ/zwgsvYPXq1di5cyfMZjM6Ojr69NwJB0uH5efnkxAiCIIgiBQjnK0lZczSCxYswL59+7B+/XqsXbsWmzdvxtKlS0M+x2KxYN68ebj//vvjtEqCIAiCIFKJlOgjtH//fowfPx7bt2/HlClTAADr1q3D/Pnz0dDQgPLy8pDP37hxI374wx9GFRHq6uqCXq+HyWSiiBBBEARBpAhyz98pERHaunUrDAaDKIIAYM6cOVAoFNi2bVtMX8tms6Grq8vnRhAEQRBEepISHqHm5maUlJT43KdSqVBYWCjO5IoVK1euxCOPPBLTfRIEQRDJjdvtht1uT/QyiAhQq9VQKpX93k9ChdCKFSvwhz/8IeQ2+/fvj9NqBO677z7ceeed4s/MdU4QBEGkJ3a7HUeOHIHb7U70UogIMRgMKCsr61efv4QKoeXLl2PRokUht6mqqkJZWRlaWlp87nc6nTAajSgrK4vpmrRaLbRabUz3SRAEQSQnPM+jqakJSqUSlZWVIRvvEckDz/OwWCyiNhg8eHDU+0qoECouLkZxcXHY7aZNm4bOzk7s2LEDkydPBgBs2LABbrcbU6dOHehlEgRBEGmK0+mExWJBeXk5srOzE70cIgJ0Oh0AoKWlBSUlJVGnyVJC+lZXV2PevHlYsmQJampqsGXLFixbtgxXX321WDF24sQJjBs3DjU1NeLzmpubsXv3bhw6dAgA8O2332L37t0wGo0JOQ6CIAgiuXC5XAAAjUaT4JUQ0cDEq8PhiHofKSGEAGDVqlUYN24cZs+ejfnz52PGjBl44YUXxMcdDgdqa2thsVjE+5577jlMnDgRS5YsAQCce+65mDhxIj744IO4r58gCIJIXmiWZGoSi99bSvQRSiTUR4ggCAKAyQSYzUCgmU0NDUBeHqDXx39d/cRqteLIkSMYMWIEsrKyEr0cIkJC/f7Sqo8QQRAEkUBMJmDePGDmTKC+3vex+nrh/nnzhO2IpOfo0aPgOA67d+8e0NdZtGgRLrnkkgF9jVhAQoggCIIIjdkMtLQAdXXArFleMVRfL/xcVyc8bjYncpVEgggmrP785z/jtddeS8iaIoGEEEEQBBGaigpg40agqgqoq4Nr1g9h/XyLVwRVVQmPB0qbpTsmk5AaDERDQ0ZHyfR6fcRjrRIBCSGCIAgiPJWVohi6cfL1OPvtozCdOOkVQZnYeDbBKcN3330XEyZMgE6nQ1FREebMmYOenh4AwEsvvYTq6mpkZWVh3Lhx+Nvf/hZyX3v37sUFF1yA3NxclJaWYuHChWhraxMfd7vdeOKJJzBq1ChotVoMHToUjz32GABgxIgRAICJEyeC4zjMmjULQN/UmM1mw2233YaSkhJkZWVhxowZ2L59u/j4xo0bwXEcPv30U0yZMgXZ2dmYPn06amtrY/F2BYWEEEEQBCGPykrgjTewc0g12nMM2DlkHPDGG5kpgoCEpgybmppwzTXX4Gc/+xn279+PjRs34tJLLwXP81i1ahUeeughPPbYY9i/fz9+//vf48EHH8Q//vGPgPvq7OzEeeedh4kTJ+Lrr7/GunXrcPLkSVx55ZXiNvfddx8ef/xxPPjgg/juu++wevVqlJaWAoDYtuaTTz5BU1MT3nvvvYCvc8899+Df//43/vGPf2Dnzp0YNWoU5s6d26elzQMPPICnnnoKX3/9NVQqFX72s5/F4i0LDk+ExGQy8QB4k8mU6KUQBEEkluPHeb6qih951xp+2L1r+b9NvYznq6qE+1OU3t5e/rvvvuN7e3uj24HnPeEB4d8tW3x/HqD3ZseOHTwA/ujRo30eGzlyJL969Wqf+x599FF+2rRpPM/z/JEjR3gA/K5du8THzj//fJ/t6+vreQB8bW0t39XVxWu1Wv7FF18MuBb//TFuuOEG/uKLL+Z5nue7u7t5tVrNr1q1Snzcbrfz5eXl/BNPPMHzPM9/9tlnPAD+k08+Ebf573//ywMI+vsJ9fuTe/5OiaGrBEEQRILxRDkcR4/BqRROHfurJgDb/i1EPzI1PcZShiwCdPbZwv0DnDI8/fTTMXv2bEyYMAFz587F+eefj8svvxwajQaHDx/G4sWLxR56gNBBWx+kvcGePXvw2WefITc3t89jhw8fRmdnJ2w2G2bPnh31eg8fPgyHw4Gz2fsDYWjqWWed1Wem6GmnnSb+n43OaGlpwdChQ6N+/VCQECIIgiBC09Agnuh7x4wX7z5wxtnAtipvamjTpsw0THtShpCc5Ac6ZahUKrF+/Xp8+eWX+Pjjj/Hss8/igQcewH/+8x8AwIsvvthnBFWwERTd3d248MILAw5BHzx4MOrq6mJ/ACFQq9Xi/1nDxIEciEseIYIgCCI0eXlASQlQVQXr//1HvPtwpx3WTzYI0Y+SEmG7TKS+Hli40Pe+hQv7GqhjDMdxOPvss/HII49g165d0Gg02LJlC8rLy1FXV4dRo0b53Jip2Z9JkyZh3759GD58eJ/n5OTkYPTo0dDpdPj0008DPp+NJ2HjSgIxcuRIcX0Mh8OB7du3Y/z48UGfFw8oIkQQBEGERq8H1q0DzGZYdYUAhFSGy83jkMaAUzdtStnO0v1GaoyuqhIiQQsXeqNkA5Qe27ZtGz799FOcf/75KCkpwbZt29Da2orq6mo88sgjuO2226DX6zFv3jzYbDZ8/fXX6OjowJ133tlnX7fccgtefPFFXHPNNbjnnntQWFiIQ4cO4a233sJLL72ErKws3Hvvvbjnnnug0Whw9tlno7W1Ffv27cPixYtRUlICnU6HdevWoaKiAllZWX3ScDk5OfjFL36Bu+++G4WFhRg6dCieeOIJWCwWLF68OObvTySQECIIgiDCo9cDej16m30roA40m3Hq5AxMhwE+KUMfT5DUMzRAKcP8/Hxs3rwZTz/9NLq6ujBs2DA89dRTuOCCCwAIw0j/+Mc/4u6770ZOTg4mTJiA22+/PeC+ysvLsWXLFtx77704//zzYbPZMGzYMMybNw8KhZA4evDBB6FSqfDQQw+hsbERgwcPxs033wwAUKlUeOaZZ/Db3/4WDz30EM455xxs3Lixz+s8/vjjcLvdWLhwIcxmM6ZMmYKPPvoIBQUFMX1vIoVmjYWBZo0RBEF42V3fiUv+6k1vLJ4xAg/+JLGpjf7Qr1ljrI9QS0vfyA+LFJWUCNG0TIyWxYFYzBqjiBBBEAQhm167rw/kQHNXglaSBEhShn0iPpWVQiQoU1OGKQQJIYIgCEI2VocghDRKBewuN/Y3mcHzvFjdk3F4UoYBycQKuhSEqsYIgiAI2TAhNLYsDwoOMPbY0Wq2JXhVBBE9JIQIgiAI2fR6hJAhW40Rg3IAAPubYz9CgiDiBQkhgiAIQjZMCOnUSlQPFgyo+5tS3ydEdUOpSSx+bySECIIgIqChw4Jzn/gML39xJNFLSQjMLK3TeIXQgRQWQqzbst1uT/BKiGiwWCwAfLtRRwqZpQmCSFu2HzVi6+F23PLDUVAqYmPm/fJQO44bLfjw2yYsnhG4U286Y3MKow6yVEqMKxM6Se9vSt3UmEqlQnZ2NlpbW6FWq8W+OURyw/M8LBYLWlpaYDAYgo4PkQMJIYIg0pZH136HbxpMqB6cjx+NL43JPlu7BWOw1Rl8nEA6EygidLi1GzuPd0DJcSjNz0KZPsJ+PAmE4zgMHjwYR44cwbFjxxK9HCJCDAYDysrK+rUPEkIEQaQtrJpp1/GO2Akhzz4t9gwVQh6PUJZaicH6LORnqdBldeLSv30JAFBwwMd3nItRJakzd0yj0WD06NGUHksx1Gp1vyJBDBJCBEGkLaZeBwChG3KsYELImuFCSKdWguM4/PKHo/DmV8fA88J7Y3e5caTNklJCCAAUCkXknaWJtICEEEEQaYnd6RajNt80mOB281DEwCfEUmNMEGQaTABmqQUvzc0zR+LmmSMBAFc89yW2H+2A0+VO2PoIIlLIFUYQRFrCokEA0G1zoq6tOyb7bTNnuBByej1C/jBDutNNpehE6kBCiCCItMTU6+v32F1visl+xdSYww13Bp7we+1ej5A/Kk/FlSsD3xcidSEhRBBEWiKNCAHA7vqOfu+z1+6C2eYUf2al5JmE1CPkj0pJESEi9SAhRBBEWtJp8RVCe2IQEWrr9p2plYnpsV6Hp49QwIiQRwiRR4hIIUgIEQSRlrCIUBWbh9XUJQ4MjZZWEkKwhYgIkUeISEVICBEEkZYwIVRdno9BuRo43Ty+6+coCP8p6712Z5At0xcxNabpe/ogjxCRipAQIggiLWGpMYNOjdMrDACA3cc7+7XPvkIo81JAIc3S5BEiUhASQgRBpCUsIqTXqXF6pQEAsKehs1/77COEMjA1FsoszVJjLnfmCUQidaGGigRBpCVMCBmy1RhXJszE2tPPDtPkEQJsMszSDhdFhIjUgSJCBEGkJdKI0GkVegDA0XYLOi3Rz5Nq65Mayywh5HS5YfdUhAWOCJFHiEg9SAgRBJGWMMGj16lhyNZghKd6bE9D9GX0/hGh/lahpRpWSd+kQJ2lVVQ1RqQgKSOEjEYjFixYgPz8fBgMBixevBjd3cFb5huNRtx6660YO3YsdDodhg4dittuuw0mU2y6yxIEkdx4I0IaAMDI4lwAQL3REvU+mUeoKEfYZ6alxqQRMK0qQNWYkjxCROqRMkJowYIF2LdvH9avX4+1a9di8+bNWLp0adDtGxsb0djYiCeffBJ79+7Fa6+9hnXr1mHx4sVxXDVBEIlCmhoDgJJ8LQCgxS+9JRee50UhVFmYDSDzUmMsApalVoDj+g6w9TZUpIgQkTqkhFl6//79WLduHbZv344pU6YAAJ599lnMnz8fTz75JMrLy/s859RTT8W///1v8eeRI0fisccew3XXXQen0wmVKiUOnSCIKOB53scsDQAleYIQajVbo9qn2eYUR2oMLczG7vrOjIsIWUNUjAFejxClxohUIiUiQlu3boXBYBBFEADMmTMHCoUC27Ztk70fk8mE/Px8EkEEkeZY7C6xckmMCOVlAQBauqKLCDGjdJ5WhUKWGsuwiFCo0nnAGxEiszSRSqSEImhubkZJSYnPfSqVCoWFhWhubpa1j7a2Njz66KMh02kAYLPZYLN5vyi7uvrXiZYgiPjDokFqJYdsj6mXRYSiTY2xtFhxnlYsHc+0iJDYTDGAURqQjtggjxCROiQ0IrRixQpwHBfyduDAgX6/TldXF3784x9j/Pjx+M1vfhNy25UrV0Kv14u3ysrKfr8+QRDxhXWV1uvUopfF6xGKLjXGKsYG5WnFiEjGCSHmEVIFFkJqJUWEiNQjoRGh5cuXY9GiRSG3qaqqQllZGVpaWnzudzqdMBqNKCsrC/l8s9mMefPmIS8vD++//z7UanXI7e+77z7ceeed4s9dXV0khggixfA3SgPe1Fhbtx0uNy9GL+QiRoRyteKcLWuGpcasnmaKgUrnAa9HiBoqEqlEQoVQcXExiouLw243bdo0dHZ2YseOHZg8eTIAYMOGDXC73Zg6dWrQ53V1dWHu3LnQarX44IMPkJWVFfa1tFottFqt/IMgCCLpMPV6ewgxBuVqwHFCtMLYY0dxXmR/59LUWKZGhMKZpckjRKQiKWGWrq6uxrx587BkyRLU1NRgy5YtWLZsGa6++mqxYuzEiRMYN24campqAAgi6Pzzz0dPTw9efvlldHV1obm5Gc3NzXC5MuvLiyAyDW/FmEa8T6VUiP1/okmPtXWTR0hMjQWtGqOGikTqkRJmaQBYtWoVli1bhtmzZ0OhUOCyyy7DM888Iz7ucDhQW1sLi0VolrZz506xomzUqFE++zpy5AiGDx8et7UTBBFfAqXGAKA4Lwtt3Xa0mG04JcJ9+qbGPEIow1Jj7HiDpcaooSKRiqSMECosLMTq1auDPj58+HDwvPcqZNasWT4/EwSROUjN0lJK8rTY3wS0RlFC3yqJCPEQvlsyb8QGM0sHTiaoWB8h8ggRKURKpMYIgiAiIVhEyFtCH3lqjEWEBuVmbmrMGi4iRKkxIgUhIUQQRNrR6ddVmhHxmA2TCWhogNvNo61bMGBLzdIWqyNGK04NwjVUJI8QkYqQECIIIu3oChoRiqC7tMkEzJsHzJyJzkNHxUqoolwNdMZWAIC1tV3YLkMIZ5YmjxCRipAQIggi7QjlEQJkpsbMZqClBairQ+tVCwEAhTkaqBtPQHe98HMvpxK2yxB67YLACSqEyCNEpCAkhAiCSDv8B64yIkqNVVQAGzcCVVVo7egGABQrnMCsWdDVHQQA9GqywA8ZEruFJznMLK1TBz51UGqMSEVICBEEkXZ0Wvo2VAQkqTGzTV5VaWUlsHEjWkeMBQAM+nYnUFeHrCGDAQBuHrC7MicNRGZpIh0hIUQQRFrhcvMw25wAAL1O4/MY6yZtd7rRZXXK22FlJdp/dhMAoMjSCQDQvfyC+LDVnjlCKGxDRfIIESkICaF0wFPZEpCGhowycxKE2eoAC/b4R4Sy1ErkZwnt01rlltDX16Pj3TUAgIJewQ+kvuF6qD3Rj0wqoQ9XNSZGhMgjRKQQJIRSHUllC+rrfR+rrxfunzePxBCRMTB/ULZGCU2Axn8l+RFUjtXXA7NmocMqRDgM11wBVFUJ6TFrD4DMEkJs6Go4szTNGiNSCRJCqY6ksgWzZnnFkOcLHHV1wuMZVNlCZDbBKsYY3sqxMEKooUH8G+ocVAYAKBhbJRqodbZeAIClvjEm604FxKGrYUZskEeISCVICKU6ksoW1NWBnzUL+PJLrwiq8nxxV1Qkdp0EESeCdZVmyC6hz8sDSkqAqip0/GAGAKAgRyMaqHWcEB2xarJitPLkR5w1FrahInmEiNSBhFA64PlidowchXmz7sTSJ//nK4IqKxO9QoKIG53hhJDc1JheD6xbB2zahA6X8FVZwKbZV1ZCN0z4u+rV6GKw6tQgbENFjxBykUeISCFSZugqEYbKSpz42yuo3dCFukJPX5M33iARRGQcwXoIMWSnxgBBDOn16LTUApAIIQBZ2VlAuzXDPEJMCFEfISJ9oIhQulBfD/u9KwAADqUaLk4BLFzY10BNEGmOKUgPIUZxFINXOzz7lIorXYYNXnW7edicQsorWGpMrfR0liYhRKQQJITSAY8x2t50UrzLPmp0XwM1QWQA3oiQJuDj0qaKcui1u0QBUJDj3We2xzDMmgwOFNvq2nH/+9+i2yaz79EAwbpKA8HN0mJEKIOaTBKpDwmhVEdS2WKrHCbebfvvh6KBGrNmBe8zRBBpRliztGfMRquc8nl4o0FqJYcciQDI0kQXETrW3oNDLd2yt//rxsNYve04Ptrb7HP/h982YervP8G2uvaIXj9aeiWCL0sVxiNEESEihSAhlOpIKlvsz/5FvNtWOthbTVZSImxHEBkAK5/PD1M1ZrY5fU7uwTD2sLSYBhzHifdHkxrrtbtw6d++xE//tgUWu7wIj9kqHE9zl28q7397m3Gyy4ZP9p8M9LSYw45To1JAoeACbkMeISIVIbN0qsMqW8xm2C1aAHUAAJvDLRilN20SRJBen9h1EkScEFNjQYRQrlYFnVqJXocLLWYrhhXlhNwfE1YFfuZrUQhFkBrbcqgN7R5h1Wa2Y2hR+K9gtv9mk68QOun5udEk3+vUH1gzxWD+IMDrEaKIEJFKUEQoHdDrgYoK2J3evLyN5fMrKkgEERlFuNQYx3ERTaH3GqV9PUe6KFJj0uhNlyfSEw62/5N+ESEWIWrq7JX9+v3BGma8BuAbEZI11JYgkgASQmmErxAisyKRmQSq8PJHLKGX4RNik+z9I0JZEUaE3G4en+xvEX+WLYQ8+z8pEW08z3uFUJwiQr1hukoDXo8QQFEhInUgIZRGOCSVGtYMKeklCCluN4/2bkG4sDL5QAzKFR5r75ETERIES2GOX0QoQo/QnoZOtHV7X6+rV55HSIwISQRPp8UhXvic7LLGpUqLCbJgzRQBb0QIIJ8QkTqQEEojKCJEZDqdvQ7xBFyUE1wI5WcJ0R2zNbwYCZoa8zQVlCuE/E3N5ggjQq3dNjHKIjVOu3n5rQD6Q7hmioB36CpAESEidSAhlEbYXAE8QgSRQbR6BEFBtjrg5HlGbpZgUpbTmyeYWTpbI+xDbh+hT74T0mIsktQlQ4Q5XG5R2LncvBjB8q8gazINvE+oV4ZHiA1dBSgiRKQOJITSCJ+IkIMiQkTmwbpFh0qLAULlGAB09yMiFEkfoePtFtSeNEOp4DC7ugSAvIiQxU9knTTZPP/6CqHGzoH3CckyS0vaC1BTRSJVICGURlBqjMh0WEQonBDK80SE5IiRjh5mlo7eI8TSYmcNL0RFQTYAeR4hf68fqxxLSESIeYRCmKUVCg7MJkSpMSJVICGURgQsnyeIDEIUQrkyI0IyUmMdMegjxITQnPGlyNfJF2H++2YCiAkiJjriERHq9USZg3WVZjCfEKXGiFSBhFAaYXd5vzQpIkRkInIjQrliRKgfZmmN8PUZrkKz1+5CzREjAGBOdQnyPEZtOeXz/qmxFhYR8qTGxpblA4hPREhMjWlCnzaUNGaDSDFICKUR5BEiMp3WbrmpMUGMhIsIOV1uUSwF6yPkL1b8aeu2wenmoVMrMawoB/kRiDD/tNtJT98j9u/EoQYA8eklJMcjBHgN0w7yCBEpAgmhNIJSY0SmIzsiJDM11tnrjdr4d6qW6xFis8pYH6L8CCJC/tEm/9TYxEoDgHilxmQKIYoIESkGCaE0wu7TUJGuxojMw+sRygq5XZ7MqAzrKq3XqaFS+n5dsg7L4VJjRtaZOkcQQF6PUPiIUJ+qsS4rbE6XOK9s4tACAELUaaAvfphfSRtGCCnJI0SkGCSE0ggbRYQImdQcMeKbhs5ELyPmyE2NyS2fD2aUBoBstbAPh4sPmQbyrzoTPUK9MszSHpHFokknu6ziWBCNSoGqQTnQevolsdJ6OfA8j//bfQKHWsyyn2N1hh+6ClBEiEg9SAilEf0tn//6qBH/7+Nayu2nOV1WB657eRuueG5rn0GeqYzN6RKbH8o1S9td7pAXDUzE+BulASBLYhoOFRUKlhozW51hB5OyZo3Di4SS+w6LA/VGCwCgNF8LhYLDYL0Q/WqMwDC983gHfvXWbix/5xvZz2ERoVCzxgDfwasEkQqQEEoj+muW/v3/9uOZDYew9XB7LJdFJBktXTbYnW7YnG48v6kupvu22OXNzxoI2IwxlYKDIcjkeUaOpys0EDoq1BFk4CoAaJQKsXw9lE/Iuw8WERJe2+nmw/qL2Ps5WK8TO2V/c8IEACjLzxIfAyKrHPv+ZDcA4Ghbj+znyDVLqz1maWqoSKQKJITSCHs/R2ywShQ53gUidTFJUjKra475DALtD69tOYJTH/4Inx1oCb/xACA1Siskwz8DoVRwyPFENkIZpr2psb4RIY7jRFFgtQc/6Rt7fIe2ZmuUYtQk3N8a692j0yhRmi9EuVhKs5QJIYMnIhSBYfq4J6pk6nXIHtDcK84ao4gQkV6QEEoj+psaY1euNLk+vTH12sX/Wx1uvPzFkZjsd/uxDrh54OtjxpjsL1LkVowx8mQMXg3WQ4ihkzFmQ/QIeYQQx3FiVCicT4jtN1ujRGmeIHj21PtGhMqjiAix9Brg7UkUDjlDVwFvQ0XyCBGpQsoIIaPRiAULFiA/Px8GgwGLFy9Gd3d3yOfcdNNNGDlyJHQ6HYqLi3HxxRfjwIEDcVpx/OmPELI6XGKFipWM1mkNiwixiMjrXx4Vq6P6tV9P9ISlqOKNaJQO01WaIaepYmdPcLM04I2OhBJCrGqsUCKmvCX03tf+v90n8MD73/qklHo9qTGdWilGgE50CoKnTO8bEWqKICLkI4Rk+sTkls9TRIhINVJGCC1YsAD79u3D+vXrsXbtWmzevBlLly4N+ZzJkyfj1Vdfxf79+/HRRx+B53mcf/75cLnS80Tfn9RYh+RESM0Y0xsmWGaNLcG4sjz02F14dcvRfu+30xNpilWqLVIijQjJ6SUkRoRygkSExKaKIfbR41s+D3h9QtJeQn/48ABWbTuOPQ0m8T5pOooJIUapX0SoMYKmisclQkiuYd4q0yzNPEIuN32PEKlBSgih/fv3Y926dXjppZcwdepUzJgxA88++yzeeustNDY2Bn3e0qVLce6552L48OGYNGkSfve736G+vh5Hjx6N3+LjSH/M0qyyBaCIULrDmgTqs9W49bzRAIBXtxzx+fxEtV+PwGpLVEQo4tQYE0LB01OdIcrnAXm9hJiYKszpGxFi0SiXm8dJz/ql6bJej/coW+IRYvSJCMlMjZmtDtH7BMgXQpFGhBwuiggRqUFKCKGtW7fCYDBgypQp4n1z5syBQqHAtm3bZO2jp6cHr776KkaMGIHKysqBWmpC6U9qTCqEKCKU3rDUmF6nxgWnlkGjUqDL6ux3KT3bb3tPikWEZFWNhY4I9QYxS7vdvCg6pKkxf4+QsccuemrMkghVr8OTGtMoReHD8K8a67Q4ZA2ArTf6CqZmmf2H5JqlySNEpBopIYSam5tRUlLic59KpUJhYSGam5tDPvdvf/sbcnNzkZubiw8//BDr16+HRhP4Sw0AbDYburq6fG6pglT8RGp4pohQ5sAEi0GnhkLBocQjHFrM0Qsh6UyulPEIeYSQOcqqMaCvWbqjx+7zt2e2OkVBIDVc5+t8I0LS914qzJiwyVIrUZLnK4RKPBGi/CyV6PeSExWSpsUAeREht5sXu9VT1RiRbiRUCK1YsQIcx4W89dfcvGDBAuzatQubNm3CmDFjcOWVV8JqDf6Hv3LlSuj1evGWStEjX49QZFGdDooIZQzMI8RmZzGvCetYHA1S06/F7kpIP6FYV43xPC+ayKX+HinSeWP1RgvOfeIzLH1jh/g4M0rnalViHyDhtX09QtL3XpqqYwUM/qmxwhwNtCrhtTmOw2ADqxwLL2qYUZp1pJZjlpaawZmADIaKPEJEihH6Ez3ALF++HIsWLQq5TVVVFcrKytDS4tubxOl0wmg0oqysLOTzmaAZPXo0fvCDH6CgoADvv/8+rrnmmoDb33fffbjzzjvFn7u6ulJGDPVn6KpR4hmg8RzpjTQ1BkCMCPlHBk509qLZZMXkYQVh9+lfddbebUd2Yfy+Xniejzw1lhU6NWa2OcWoRrjUmNXuwn+/bYLZ5sRXde1wu3koFJwYafUXUl6PkEcISSJCUmEmbWIoNUv7G6cH67NwqKUbjZ3hI0L1HYIQmjjUgK/qjLLK53s8UTMFJ6d8njxCRGqRUCFUXFyM4uLisNtNmzYNnZ2d2LFjByZPngwA2LBhA9xuN6ZOnSr79XieB8/zsNmCX/lqtVpotfK+SJON/niEpBEhGtia3kjN0gAkqTHfv4uf/+Nr7G/qwhf3/hAVBdkh92ny64fT3mNHZWHo58SSHrtLjFoMkpkaywtTNcZK57PUiqDpoCxJamxjrXCxZne60dZjQ0lelvh3VegnpLweIU9qTBIRkgohqUE5R6tCnlYFs82JMj/jtLeXUHhRw1JjZw4vxFd1RrSYreB5HhwXvAkle49yNKqQ2wHeoavkESJShZTwCFVXV2PevHlYsmQJampqsGXLFixbtgxXX301ysvLAQAnTpzAuHHjUFNTAwCoq6vDypUrsWPHDhw/fhxffvklrrjiCuh0OsyfPz+RhzNg+KTGIq0ak5bPU0QorekTEWKpMYkQcrl5fH9SGMgpx0PS6S+EIiyhb+u24bynNuJP67+P6HkMFg3K0QiCQQ7h+giFM0oD3ojQcaMFu+o7xftPdAiRGe/ked99eD1CLCIkTY35phkBrxeJ+YL8jdMsCibnfWdCaJIn0udw8T4ewUCwdch5b1XkESJSjJQQQgCwatUqjBs3DrNnz8b8+fMxY8YMvPDCC+LjDocDtbW1sFiEP/KsrCx8/vnnmD9/PkaNGoWrrroKeXl5+PLLL/sYr9MBl5v3uQKzOV1hBzpKSemIkMkENDQEfqyhQXicACBEReWkxlrMVvHzJEdUmyz+Qigyw/TOYx2oa+3B61uPRvS5ZUSaFgOkfYQCl8+H6yoNeIXQR/uaIV02a3oYLCKUL3qEBNEjfe+7A6XGPEKICSD/1Fi2lvUzCn0R43bzaPCItFHFuRiUK6wrnE+IiTP2OqFQMo8QzRojUoSEpsYiobCwEKtXrw76+PDhw32+QMvLy/G///0vHktLCvx7wLh54YqMNTcLh0/5fCpFhEwmYN48oKUF2LgRkPq56uuBWbOAkhJg3TpAr0/UKpMGq8MtflbYCZ5FhFolUQmp10ROFaG/R6gtwhJ6Jgg6LA4cN1owrCgnoudHJYTCRITC9RACvAKF7YPjAJ6XERHq4xGSpMZs0j5Cvr17Jg8rxJZD7Zg01Ne3xYbIhhNCLWZh4K7SM7W+ND8Lbd12nOyy4pTy4H8fzPwezigNUESISD1SJiJEhCZQM7xIfELSztIpFREymwURVFcniJ76euF+JoLq6oTHzeZErjJpYNEg6dDRQB6hE5JxDXI+D/6psTZzZBEhaRPBXcc7I3ouALR6zMaRCKH8rNAeoUhSY4w51aUAAkSEcvw9Qp4RGx6PkFSEsogQz/Ow+EWE7pgzGjt+PQfnjvH1VmZ7Hu8JU63H0mLlhiyolAqxF1G4XkLdNm/1WjhYHyESQkSqQEIoieB5HjuOGfHXzw7Jqv6QYvOMDZH6GG0yewnxPJ+6EaGKCiESVFUliiF+yxavCKqqEh6vqEjwQpMDaVqMmV5ZmsXYYxcFdZM0IiTjc8T2y0rEI22qKB01set4R0TPBSLvIQQAuVpBjASrGvv2hJBSrSjQBd2HdNzE8KJszBorCBSWfgrWhyhfx6JRDvA871s15hFmNqdbTLcxwcVxHIoCHCPz7lhsoX9XrHR+qMfIXupJtYVLjVlskUeEyCxNpAopkxpLZ+xON1ZtO4bV247jYIswSPZoWw/+eMXpEe0DADRKBXjPz1aZEaFum9On1DWlIkKAkA7buBGYNQvPDzoDz/3rGN7qcmEsE0Ep0v4gHrAUlkHnTfcUZKuhVnJwuHi0dtswxKDzTY1F4BGqGpSDA83miD1C0vTUbonpWC79So0FiAi53Dw21rYCEGayBUMaETr/lDIM8fTzYakxb0TIN73GIkI9dhfauu0+f3/svZAK0HBjLSKNCDEhVCb2kJLpEdKEP2Uwj5CTyueJFIEiQknAy18cwSP/+Q4HW7rFiE7tychSOaIQUinERmlyI0IdPb5pjUi7UicFlZXAG29gzfhZ6MjWY8eQccAbb5AI8oNFbvIlQojjODGSwk6IvqkxGR4hz35HFucCiHzwqjQ1tq+xK+LPYH/M0nanu08UdNfxDhh77MjPUmHK8OB9lKRl9eePLxWjRyc6e4VIa5D0GiufB4DDrd0+j7EIFfP7aJQKqJShv6rFiFAYjxCLCLHWBqxJY7iIUI8t8qoxaqhIpAokhJKAI23CF+GlE4fg3ZunC/e19kRUPcNK57UqhdhxVq5HyOhndI20B1FSUF8Px/U34NAgQfhY1FnAwoVez1Ac+L/dJ/DeziDVa0mCf8UYw7+EXhoRkvN5YJGmkcWCybk9TDm2P9LUmNPNY19jZJV+YmosCiEE9E2PfbJf6Ak0a2wJ1CFECPMZFeVoMHFoAco9EaFumxNdvc6gHiG1UiFGeQ55osDMq9XrcMHpcktme4X/mhYjQiHGhQB9I0KlokcoTGrMzvoIyfcIOSg1RqQIJISSAHby+UFVEU4dkg8FJ4TrWyO4qpamxsSIkExBw76sc2RM0k5KPMbowyYHHErhBN9bOrivgXoAsTpcWP72Htz97jcJGS8hF3HOmF8llGiY9kQGGk3ReYRGlggRIWOPHe4IToQsHcTmVEVqmBYjQrlZYbb0olRwooDwN0x/uv8kAGB2dehWG1OrirB4xgj88YrTPPtTiaKnvsMiRsr8q8YAr0+ICSEWTQOECEyvOF4jfBQmW2bVGOsqXelpkMnK8cP1ihIbKsqJCCnJI0SkFiSEkoCTnq6yJflaaFVKsYtvXWuP7H34pMbUkaXGmFGazStKqYhQQ4NojD5wqrfLuOX6G30M1EH7DMWI9h47nJ5eTqwSKBkJHhHyVo712Jxi6Tggr3ye7XfEICEi5HLzfbpNh4JFhCZ7ysJ3RegTYqZkf4EXjrwAJfTH2y042NINpYLDrDGhhZBSweHBn4zHeeNKxftYemxfo0k0Oxt0fdfFfEIsNVZu0InRny6rw9tVWkYUhl3EWOzOoJFkq8Mlftf4e4Q6LI6QgpcJLDlmaXHoKnmEiBSBhFASwEp/2XTpKk964UhblEIowtQYKxMe7Lk6tDvdEV3NJ4ImUy92HDMCeXlCn6CqKuy/ebn4eG9WjrearKRE2G4AkTakDGdYTSRBhVCed/Cq/wTzcA0VheGkwn6L87TiviOpHGPi8dwxgwAAuyOICDlc3t5Ick7UUnIDjNn4xBMNOnN4gTiGJBKYYZpVnel16oAeH5ZWO8xSY/labyWbzekzeT4c2Z7jcPPB/+4bPNGgPK1KFIx6nVqMIIcauhtJQ0XyCBGpBgmhBON0uUU/BbsqZ1fVdX4mylDYXAHM0nI9Qj2+QgjwHdeRjNyyaicuf24rdnfxQrPETZuwX6Ibe2xOwSi9aVNcmilK+zCFK2GOJ18eahMNsoC3SaC/EGKm2ZNmq49RGgifGuuxu8SeMQadBkWebsVtEVSOsYjQ2aMGgeMEs3G4SiaGNB0k50QtJTerbwn9pwcEIcR6AkWKKIQaBCHk7w9isIhQo4ldCGnFCFW3zSlGhOT07pFWlQXzCTF/UEVhttg6geM40Sd00hz8/Y6koaKSGioSKQYJoQTT1m0HzwtXUawNf5XHKxBVRMjHIySzasxzEi/Te/ulJLNPyO5045sGIe3w6f6TgsipqMCBpi5xG9aIDhUVceko3SFJJQVr0BdvDrV049qXtuEXq3aI98mJCPn3sAr3WWBGaY1KgSy1AoNy2NwreUKI53kxNVVu0GFsqRC921XfCZebx2e1LahtDl5FyU7SKgUHTZjqKn/Y4FXWzbnL6sC2OiMAYHa0QsiTGtvvWXOwztT5fcRoljdCZXX26SodCqWCE7cL5hNiXiQWcWaUyTBMexsqhhdCzFxOqTEiVSAhlGCYSXFQrhYKz5VUlRgRii41xkLpcgevsohQcZ5WDGsncy+hI2094tXm5oNtAIRhk9LOyL1hTKOxRpoaSxazNIsEHWgyw+mJ8AUTQsWS7tJMCLHPQrjIon+TRhYRkpsas9hdorE2P0uNiUMNAIA3vzqGC/68GTe+uh0/e2170Of3SLoeh5uM7o9UeADA5u9b4XTzGFmcI0ZmI4VFhNjfZPCIkK+okEaEpB4hOakxAMjRhu4l9P1JQQiNKfFNE5fKMExbRLO0PFEGUESISB1ICCUYdvJmqQnAe8V23GiBQ2aKyiuElFGnxgqzNV4RlcTdpaU9lr5t6ITJ4sABv4hBvMWINDWWLBGhzl5hTU7JoE1v1ZjvyZmlR9p7bH26D4eLCLFmiswQLKbGzPKEEEuLqRQcstQKnFFpAAB8frBNPHm3hEjb9ETQ9dgf/6aKLBoUqoliOIb4daIONqKDzRtjlORl+XiWvFVj8oQQi9b0BEnNHvT83YwpzfW5v4z1EgoREWLvcY6MiBB5hIhUg4RQgmkRZyR5/Tll+VnQqZVwunkff0comKdHo1RAq46sDN4o6XXCRFQyR4S+l4geNw98ebgN+z1pMZYeSGxEKDlEpLTy60i7EF0MFhEqytFAqeDA88A3Hm8LE+ThPgudfiX5RZ7UWJvMXkLMKJ3viSjNGF2MHI0SeVoVlpwzAgDgcPFBLwpYBCQ7GiHkFxH63iMWTinPj3hfjApDts/PsiNC+VpRmHVbvR4hOakxwCuYAl0EuN282LV+dKlfRIilxkJEhCIpn6eIEJFqkBBKMC2S0nkGx3ESw7S89BiLCGmjMEszf0thTmpFhJi/Y/PBNuxvEu47vVLwA8VbjEg9QuGa2sULqRA62iY06AwmhBQKDoM8kZw6jzeNedXClc97DdjC89l+2mX2wWIT2FkV1RCDDl/cex62PTAbd80dK24X7HfKzOlymv354z94VRQLfumjiPapU4mfTSBwDyFhO+/vID9LhSy1UjKVXuIRkh0RCu4ROtHZC4vdBY1SgeFFvkItXC8hnucjKp+nWWNEqkFCKMGw1FiJX0dcdjVe1yavcizgiA0ZYsbl5kWza0GOOjUiQh4hdNWZQhfpzw+2ihGhSZ4+NPEXQpLy+SSpGpP28Tna1oNum1M8OQXqt1OS59uMkInxcJ8Ff3HFhoLKNUuz1JhUGBTkaJCtUUGjVIgRhmBRPjEiJCNt4480AtPebYOxxw6OA0aV5IZ5ZnA4jvNJjxUGTY1518s6e0tTY5YIhZB3zEZfIX6wRfibqSrO6VPKHy4iZHO6xeiOrPJ5z/4dZJYmUgQSQgmGlQj7n4QirRzzSY1F0Eeoq9cBduFWkK0R02rJGhHqtbvEMuDrpw2HWsmhoaMX+5sFITR5mCCEeuNc9eZTPt9Pf9K+RhPu/NdusVtytHRK1nSk3eIzIT6QAVfqU1NwwDCPRyjcZ4F5kbypMWaWjiw15p8qAgRRkc3SnUF+p0wwyDHy+sP69nRZnaIfqbIgW7b4CAYzTAMhIkISjxB773MlDR6jTY0FEuLs2PzTYoC3qi1YI1DpRYUcj5CSPEJEikFCKMEEMksD3sqxwzJTY7aAnaXDfxGxOWN5WSqoJaX3yRoROtTSDZ4XTrZDi7LFCBDPC1fTYzxf9PFOT0kH1/bXLP3o2u/w3q4TePvr/o0G6fBLjQVLizGkPrXS/CwxwhDuc9TXLO3xCEWcGgu8Ll0I7wsgMfL2wyzdbXPgkCdqMrof0SCGT0QoJ/BxSYUfuxDyRoS8nZ7lCqEcTfCIEIuiBjo29r712AJ3pWbvb5baG50LhYo8QkSKQUIowbSYg0WEovMIRZoa8x8KyVr8J2sfIeYPGu2pfDln9CDxsbFleeJVsc3pjqtHwTciFP17Z+yxo+aIULkUbv4T42hbD85+fANe+eKIz/2dktRYQ4dFjDAFGvcA+KZnhXEP8kz3nX7jLZhHyGx1yvoMdnmMysGEEPudBk2NRdDjxp88SSoqVNQkUnwiQsFSY5LfA3vvpSM/mKCR7RHSBo8IHWSl86XBhZDTzQeMIvdE0EwRkEaESAgRqQEJoQTicvNi912pWRomE0bYhcqdtm6bz2RuNDQApr6TuaMdscEqxtiXtdcsnZwRIXZly5ruzRhdLD42rizP52QYr/SY1eHyET/9iQh98t1JMVUZauSBlG1H2nGisxf//bbJ536TRJy5eWBfo5A+DBYRYl4RwHfuVVgh5EmN6T2fIb1OLUYFjDLSY10ewRYoNQYAujADRSOZjO6P1CP0fZDy8mjwjQiFrxpjHiHfztLC32B/I0JuNy82Uwwk8qTprkDvMYsIyRWabPo8NVQkUgUSQgmkvccGl5sHx3l9FTCZgHnzkPej81CcLXzxHGFRofp6YOZMYN68PmLI7hK+wDRKhXgCkyNmWCSDfVl7U2PJGREST1Zlwhf6hCF68cRePTgfWWoFWE+9ePUSklZn9fd1P9rXLP4/1MgDKazrr38qikWE2ImUTXQPNpjUNyKU5Y0IhW2oKBwv+z34NFWUYZgOZJaWEqoaCuhf+bxUeByKQcUYgw1OVnDBI13S+9l7L84aszphjbhqzJPi8nufTnT2otchVIwx35cUpad/ExA4pcw+X3JTj2z6vJM8QkSKQEIogbAr/qIcrbeSw2wGWlqAujpUHd0PwGOYrq8Xp6yjpUXYTkLAiJAMMdOeahGhZnbVLpyslAoOS84ZgapBOZhTXeprro1T5Zg0LQZ4TxyR0m1z4nNPp2xAfkSInbykosMtmf4+oUJoKbDbM9E9mOCQRiWHGHSiKHa5fXv4bKtrx28+2Ce+vyzyJE25ib2EZPiEvKmxIBEh0SwdxMzbj/J5lu5p77GjPQYVY4wxpbkoy8/CWSMKxY7x/mRrlGIaqU9qzOaExRFZaoyZxf0/9+ziIVDFGCPQ8FmG2FVa5jqofJ5INUgIJZDWQEbpigpxanpV42EAQN2uA14RVFUlPF5R4bOvaPsIMY8Qu4JP5ohQl9UhDqiUjglYdt5obLhrltgPJVwqJdZ0+KV/LFGmxjbWtsDucouCoNVsC2he9YedvLptTvH31mV1gD11oqdTMxMlslJjep1PZZn0s/T0Jwfx2pdH8e7OBgB9GyoCiCwiJKbGwpmlQ0eEojFL53kiMOy9qijQ9btiDBCiM5vv+SFW//wHQbfhOA6VBTooFd6+YUyQmK2OiGaNAd73yT+qI47WCOF9khqm/YmkmSJADRWJ1IOEUALxGqV9K8ZQWQls3IgqThiLUPd/H/uKoMrKPvuyu/pWjckRM0ZPtVOfiFASCiE2IqAsPwv6IOkdIHwqJdaw6qxQ6QU5rNsrpMUunyz8fu0ud5+0WyCkV/FM7LDn5WpVfSIcBl1gz0pRjkZMK5ZLIkKA72eJRZo2HmiB3ekW32fpfgdFUDkmRoTCpMbCmaWjKZ/3f47/HK7+oFEpgkaDGK/deBbevmlaH4+Q1eEWB9FG7hHyfZ+CjdYI9NyAEaEImikCXo8QRYSIVIGEUAI5ybpK+1WMAQAqK1F84wIAQIfO0+7/jTcCiiDAf/q8/PSW1yMknIQi7UodT7xVPaFTF6FGDQwErAUB84X4ezTkYHO6sLG2FQBw4emDxd4uLTJ6CbHxEABE832npFTef3ioXhf4hKZSKnDpxApMGmrAqJJccBwXMELI3tcvD7eLYp7jfM2/zPMmpxeSf2dpf8IKoX40VFQpFT5CIxYVY5EwfFCO2PsK8I26sLS1/FljgYeufs/aAoQ4tlwxItT3Pe4WzdIyU2Mej5DcOYkEkWhICCUQMSLk10MIAFBfj7xn/gQAMGs9BseFCwWvUABsAcvno68aS8bUWG2zb8VYMMKlUmJNp+c9ZCXT0QiwLw+1o9vmRGm+FqdXGERxHGrYKEMagWKDTlkzRUO2GsP9hVCIaNpTV56O9355NjSez5D38+D9LDGh1+twYf13JwEIxl9p9IOlKZtktACQzhoLhE7tiXQEa6goeoQiF0KAt3IMiE0Pof6glggzFlGRP33e8z5JxIy0Yix0aixwWg2QVOXJjgiRR4hILUgIJRBxzph/asxjjM47VgcAMI8aJ6TF6uoEr1AAMRRtHyF2xc48HclslvavGAtGuAhCrPFGhAQh5HDxEXfm/tgjKOaeUgaFghPF8UkZhmmz5OTV3iNsb5L4dopyND6zr4KlxgIRqIReerJcs+uE+DpSyj2isKmzN+xrsKqxYOXzsiNCUaTG/F83lFiIF7l+70Oks8akEaH6DgusDje0KgWGBqgYY+SEMEtHmnokjxCRapAQSiDinDGJSRUNDaIxOq9YCJmbOZVooBbFUEODz74CTZ8P1xG41+7CCc+JasQg4Uo4mc3SrLlkuKt2MYIQr4iQx4/DUmOA71W5HA63ClftLE1S7BHHEUeEPKkxZuA26DTgOM4nKhQs8hIIb5pVOB63m/d5X/d4JtX7N2kczCJCptDrtzpcoogPGhEKk+oUR2xEGRFiIjFWFWP9Jc8v8iI3JeWdNeb9/bB08sji3JBdoXNDmKUj7dxNHiEi1SAhlEC8c8YkEaG8PKCkBKiqQu4brwHwmEk9BmpUVQmP5/leuQaOCIUWQuzkW5Ct9vYRSuKIEItysNLsYLArVzkpKqfLjc3ft4o+lWhg6cVBuRrxvY+0qSIzFbOUGKvgklNCH9As7VfJJRVCwarGApHlN65F2qRSel7V+3VPZhGhk11WOEN4RZghmOOA3CBCJpz53VvVFF1EiEVgYlUx1l/8I2NZqkhnjXk/Dw0dwlw+f5+YP2LVWKCGimLDSqoaI9ITEkIJgud5tHYHiAjp9cC6dcCmTcgfMRSAIHJsTpcghjZtEh7X6332JxVCWTIHpzIhJL0KTtaIkNPlFk/C4U54kaTGPtjTiOtfqcFTH38f9dqYH6cgWyNeWUcajWLenuI8QVCU9DMi5D/2YkSRN1oVrKFiILxNFYXjYSdFjgOmDCsUt/MXV4NytVApOLj50IZvlhbL1aqCVljpQvSFcrjc4mc/ao+Q53cWy4qx/iBNjWllVJ4xmFlcOl5GKtJDkROk9B6IvKGimjVUJLM0kSKQEEoQHRYHHJ4W9MW5fhEOvR6oqPD5QhQrgyoq+oggwJsai6SP0OEWb9icEcgc2x/au21Y8NJXeCfMAFFjjz1kFEV6pervofAnnLlWCjOSMlEYDcwjVJCjFn0qkUSErA6XWELOys5Fs7Qcj5C0aszs5xHy+IGijgipfD8PPRJj8qxx3vEm/qkxpYITo1pNpuA+IdZDKFj3ZSC0+V16X7QeIfba8a4YC4a0TF1uWsx/WxYNZcK4MGwUNXhqjPXFyiWPEJGmkBBKEOxKvyBbLVbo+KNUcOKVmvRkFwhv+bxSFEJ2pztkQ75DISJCkZp9g/H21w3Ycqgdr289FvDxZpMV97//Lc567BNc9Jcvgq6XfUGrlZzoWwlGJBEhlkqS0/gvGJ2SXkyhJoAHg5VJq5WcKFJYk81w5fMOl9tH8DKzNItSsQoxlhrJ1iihDtJdOBD+Pal6JKXUs8aUiNsFijKVGwQh1NgZPKoVroeQ8FrBhS17n1UKDpoIjkvKNVOH4kfjS3H1mYFbU8QbNmYDkN9DCBD+dpkIYQKxvdu3GCIYoczS3vJ58ggR6Ul0sWSi37ArfWk330DkZanRY3fJF0Iqr1kaEKJCwcpvD7cI5uORJQMXEdpwQKiG8h++6XbzePLjWrz0xRFx7XWtPWg123xThR4iMWwG67AbCFY1xwREpNidbrFqqyBbI7myli8kWRSnKEcLjmMjF4T34GSXFTzPi/f743+MolmapcY8AmPCED3OH1+KcYPzZa8L6Pt5EI3JWhWqB+ehNF+Lk122gFGmwXodgI6QEaFwPYQAqbANXtGUrVEGfY/CMWloAV68fkpUzx0IpB6hrAgiQhzHIVujhNnq9I5dkZkaE83SAd5j6e9cDkolRYSI1IIiQgnipMcoXexfOu+HOHsojJk3kFkaCF455nS5hRlmAEYVD0xEqKPHjh3HOoT/+83j+r7FjL9tPAy7040zhxeInhhW5eKPaIiVcVUqmmtlpMZaJREhdxRf3GzyuoITohqhUgzBYFGpQXnekxUrn7c53WLUJBD+V/AdFjucLreYGivwmOBVSgVeuH4K7vzRGNnrAvp6xrzjLAThcd3UYVBwwNQRRX2eO1hORMjTQyjYeA3AK2x7A/w+e8S0Tfpc00mFUCSpMaBvd2l2ASI3NRZoTl5PhGZ01keIPEJEqkBCKEGIpfOBukpLYF+KoU6GAGDzfOmolRxUCk6s6AkmaBo6emF3Cf1FWCNAILYRoU3ft4JpC4vd5WPAZhGx0SW5ePumaTjDMw+L9Qryh135yznhRZIaYxEhp5sXjbuR0NHj7eAsTWVGkhpjQkjqFctSKyUzx4ILCfa+GLLV4DhhZpbRYvc2VIzADxQI/75SFjECI6xt2Xmj8P3vLhAHu0op13t6CYXyCImT5+VEhIJXNEUzeT5ZkX7GI0mNAV6fFBMvbbJTY8GjqJFWjTEh5OYR1cUFQcQbEkIJolXsIRT6Si3Xc6UcKiLE87xPREgYjRC6DJ6ZhKuKc32qUsRy6RiUz396oMXnZ2lUiF2pFucJ6SDWyO5gS2AhFEmJtE6mT8ft5sVUEgCf/8ulQzRKCyeabE3wK+tgsNcd5GeaZynCUE0Vu21eIVaY7R1rwSJCobpIy8G/oaIYHfCIE47jgk40l9NLyJsaC+ERCtEXqj+T55MVaXRMbldphjQiZHN6U+qDwkSEgvURcrrc4kVRpH2EAMAlY2gwQSSalBFCRqMRCxYsQH5+PgwGAxYvXozubnmVPjzP44ILLgDHcVizZs3ALlQmOVolhhh0PtGYQLCIUKgqJFZ9BgBapfDFqVWHTnEFKp0HJA30+lk+73C5sbHWVwhJfULtYsheOHmz+WHhUmO5IU6YjByZEaHOXoePobNdxoDQPvuQlM4D3sqaSCJCTBQP8kuTyimh75ZUcTEhdbTNIkbiIqkQC4RYNeZXPi8nAsN6CUlTY3Wt3Zj7p834YE8jAMl4jRAeIWlqzN9M3585Y8lKbj9SY9KeSyxaqVJwISNuQHCztDS9LLuztNJ7YUWGaSIVSBkhtGDBAuzbtw/r16/H2rVrsXnzZixdulTWc59++umojZQDxd1zx2HLivNw3Q+GhdwuX/QIBT+x2iW5eFaB5vV2hI4IjSz2bbQmRgD66RH6+mgHzFYnCnM0othiX8wAYOxhBmFBQLCI0PcnzQErx3oiKOGVO2vMfyBoe0/kESGjpGIM8AqESMrnmU/JPyIkp6kia6uQm6US0x/sd5utUYatsAtHll+XcnESuQzhwSJCbd02UZC/u6MBtSfNeH7TYQDS1Fh4jxDP9/08e428aRQR6k9qTDJmg6XFCnM0Yb//pP2vpH9/7O8ukqo8lSTCTIZpIhVICSG0f/9+rFu3Di+99BKmTp2KGTNm4Nlnn8Vbb72FxsbGkM/dvXs3nnrqKbzyyitxWm1syZORGrM7Awmh0KmxcBEhh4vv19UcqxabNbZYrFgxSlJj7X79TaqKc6BUcDBbnQFTQZGZpeU1NewjhKKICImpMU8KSjyhRFE15l/ZwyJCoVJjUrMwE1KHxI7h8meKBSNYakxOz57CHG+n7ZMm4Rj2NHQCAL5r6kKnxS6vj5BEDPhH2iId/5AKSCNCkXa6zhY/f05R2Bf59ykLAHv/XG7e5ztD+v7KvZj0EUJkmCZSgJQQQlu3boXBYMCUKd4S1zlz5kChUGDbtm1Bn2exWHDttdfir3/9K8rKymS9ls1mQ1dXl88tkbCrw5ARIc8Xl1LBiX1EskKkxniel0SEfIUQe16w58qF+YNmjysV01+dlgCpMc/JX6tSYpin+3Egw3QkJ7xsmYbl1m6r389ReIT8Unzstbv7aZYG5M0bM0uEkH9EqL9pMcArjJkQimSuF8dxYlSo0dQLt5vHN/XCbDKeB76qM4qf62ADVwHhc80Elb+47fEzb6cD0veCNQeVi9gh2u7y9hDKCS+IsyViUxrNjKRIgaGkiBCRYqSEEGpubkZJSYnPfSqVCoWFhWhubg76vDvuuAPTp0/HxRdfLPu1Vq5cCb1eL94qKxPbZC1PTmpMbKbo/XWGigi1dtvQZXWC4/rOIJKmUsINbQ3GkbYe1LX2QKXgcM6YQTB4IhNSjxD7v/RLmo04CCWE5HwhswhCfCJCbJSFcBw5kityuTCztH8rBWaWDtVUUSoQWUSozhMRimSURjD8zfPdEUSEANZLSKgcq2vrFoUbAGw93CYrNQZIKsf8vGsWsaIpfVJjPlVjmsi+orMlhQLi31iYijEAUCi4gLPKpA005cJx3gsy8ggRqUBChdCKFSvAcVzI24EDB6La9wcffIANGzbg6aefjuh59913H0wmk3irrw89GmKgYamxUKXddpdwcpB2qBb7AQUQM6yRYmVBdp+qFKWCE2cFResT+swTDTpzeCHys7zVTB0BhFChVAh5DNMHAximI5l3xL60pTOXAsEECDvZR9NdmqXGCnOE3xOLlAQaXhkIu9Pb86ePR4hFhLpCmaW9ERUWUWKiJRZCSKv2jwhFVkot7SW02xMNYp+vLw+3S8zS4YSQ8Hr+Bvh0LJ/Pk3SWjjTS5S2Dd4mf73BDir3P7etv64mwmSKDxmwQqURCvz2WL1+ORYsWhdymqqoKZWVlaGnxrUByOp0wGo1BU14bNmzA4cOHYTAYfO6/7LLLcM4552Djxo0Bn6fVaqHVyvviiAe5QarGLHYndGqhqZ1NUjrPCFU1Fmi0hpQslRIOlzPqiNDmg60AgB96ZlGx0nKjxSvmAoXtx5R5IkIBSuhZmXi4OWOA78mj1+EKGkViEaGxZfnYU98ZVXdpJoQMollafldrwNvRWqXg+qSy5ESEpN4p/yt/vS4WHqEgs8ZknhilvYRYP6FLzhiCd3c24GBLt+gnCVfVFMwAn47l89LPeKTl89KIEPsMyokIAUIkqtVs8+mKHmkzRYZKwcEO8ggRqYFsIXT55Zfj5z//OebOnRuzCqzi4mIUFxeH3W7atGno7OzEjh07MHnyZACC0HG73Zg6dWrA56xYsQI///nPfe6bMGEC/vSnP+HCCy/s/+LjRKDUWGNnL2Y/tQlzTynF01dPDJ0aCxgRClwxJj5XrYDZFl1EyOpw4au6dgDAuWOE3y2LlrCIkMPl7ZYsNXKyyrFDJ7v7jJXwehXCfyFnqRVic0GL3RlWCI0rzROEUD88Qt7y+cimz7eZvekL/ynjzCxtsbvQbQt8HNKqMf+IUkEsUmMq3yrCSFNRLCLU1GkVBd2ssSXY19iF75q6xIhBqM7SgDQ15meWtsv3jqUKSk+aymJ3RVw1liMRjCx6JscjBARuqhhpM0WGiiJCRAohOzXW0dGBH//4xxg6dCgeeugh1NXVDeS6fKiursa8efOwZMkS1NTUYMuWLVi2bBmuvvpqlJeXAwBOnDiBcePGoaamBgBQVlaGU0891ecGAEOHDsWIESPitvb+kh+gauybBhN6HS7UHDEC8HqEtIFSYwHETLCKMe9zo+8uvf2oEVaHG6X5Woz1CJsCP48QEw8Kzrfz8fCiHKgUHMw2Z58mfJFUjXEcJ5o/Q/USEoXQYGGdbf3wCDGxJ5qlZUaEmGHbX8QAwsmdiZ+TQdJj0rYC/n2IYuMR8v0ssBSl3FQUM0sfae/B/iah8OCMoQZMH+k7kiOUWRoI7vvyRqjSJyIEeAV15H2EvEK8LYKqMcD7t9UdwCMUqdBkTTbJI0SkArKF0Keffoq6ujosXrwYb775JkaPHo3zzjsPq1evhs0W3cDKSFi1ahXGjRuH2bNnY/78+ZgxYwZeeOEF8XGHw4Ha2lpYLJYBX0s8CRQRYn1n2nrsQldpV4DUmMrX5ColWMWY+FyWVouiqeLm74W02Dmji8WIDvMBsTRSuySKIo2CaFQK0bztb5iOdKaUTkYJPXsfx5UJg0i7rM6IKuWkM70M/hEhmUKIRYSCzZwTmyoGKaH3Vo2p+1z5G2KQGvN6zaKMCHlSY3WtPXC6eQzK1aJcn4Xpo7xCKFujhDpMj5pgqbF0bKgIeNNjEafGJFGddkkfIVmvGaC7dHeUQlP0CLlICBHJT0Rm6WHDhuE3v/kN6urqsH79epSXl2PJkiUYPHgwbrnlFuzYsWOg1onCwkKsXr0aZrMZJpMJr7zyCnJzvSfy4cOHg+d5zJo1K+g+eJ7HJZdcMmBrHAhYysBid4n5dhbJsDvd6LY5fcZrMIJVjbWabWgyWcFxwFiPJ8cfbzfhyCNCm79vAwDMHONNeUojQjzPBzRKM8RRG36G6UivTLPDNFV0uNyiMBtZkiOG8o0RNFVkIgjwRrayJWZpOXOWgjVTZIQroZd6OLLUSp9mfP0drwH0nTUWrUeIcUalHhzH4czhheLJMlw0CAg+b8wi6aydTlR5LgiGFmZH9DzpiA2jzMnz4nO13s8uwxJtRMivaqzH5sTWw+0UISKSkqirxs477zy8+eabaG5uxsqVK/HWW28F9esQ0SM9SbCQtbTsu73bHtgjFCSqs6e+E4AwcT6YLyPaiFCzyYrak2ZwHDBj1CDxfiZ4bE43eh2uPuM1pHhHbfhGhLqjFkKBIzOCKBOuXItytOJaIvEJNXextJZGTAVII1aBpqX70xZGCIXrLt0jqRoDfI2x/R24CkhTY9FVjeXrVD7pHTZcNy9LjdM8g1rDVYwB3n46QSNCaZYae+rKM7D21hkYX54f0fPYe93WbRPfK9mpsQARoWg9QkzkOtzCd9OTH9fimhe/wn+/bYpoPwQRD/pVPn/kyBE8+eST+P3vfw+TyYQ5c+bEal2EB7VSIZZ3s/SYjxDqsQVMjflfyTN2e4QQOyEFItqIEKsWO63CIFaKAcKXM1ubsccOY4iJ2OKojRZvRIjneZ8ycTmEG7PB3sOiHA2UCk4UIpH4hJo9PqYyjw8G8Bq1Ae9JJBTegauBr9qHeyIDq2uOB6xE8xeIUkFVIDMlEgppZ2m3mxffT7nCQ9pUEQBOl3zumE8oXA8hQBoR8q+ejLzhXyqg16lx6hB9xM9jnwMm0jUqhew0Zm4gs3SEEUCG2s8jVG/s9fybXtYFIj2IWAhZrVa8+eabOO+88zB69Gi8/vrrWLx4MY4cOYJ169YNxBoznlwtM0x7hJDkZN0mjQjJ8AixEQenhxJCUUaENnn8QTNHD/K5n+M4sYKpo8cRMiLEegkdOmkWU0tWh1scIhppRCiYWVocdOoRDkyURRIRYobusnxv+ofjOG8vIRljNth4jWAeoRunD0dZfhaOtPXgNx/s6/O4v4lcKoRiGhFyun0HcEYQISiXDBY+rcIg/v8np5VDq1JgWlVRgGf5EizVKTZ4TKPy+f7A3gc2LmyQjDlj3ueGMEtH+P76e4RYtV8kM/gIIl7I/jarqanBK6+8gn/961+wWq346U9/inXr1mH27NlJN9A03cjPUqGt2yZWjrWZpULI+3/f8vm+VWNuNy8rIqSNIiLkcvP44qDHHzS2b0uEgmwNTnbZ0GGxS4RQ35P/0EIhAtJjd8HU60BBjsbnyzNbpnk0WCqF0eonQJiAiKSXEIsISSMegODX6bY5ZfUSCpcaK8jR4E9XnYFrX/oK7+xowLljinHh6UKlpNPlFqu5AqXG5ERawsGigy43L3qiFJzvKJZwsPenqjjHp1dS9eB87H1kblijNOA7gZ7hcLnFi4B08whFi/+Fgty0GBDYLB1tewJ/jxD7O5TbX4sg4onsb7Mf/OAH2LZtGx599FE0NjZi9erVmDNnDomgOCCtHON5PrhHKIBZWloCf6S9B2arE1qVIqhRGogsIsTzPI629eC1L4/C1OtAXpYKp0uu+hnSyjGj2PG2b0RIo1Ig33O8TDBJr0r9e+0Eg1W5BPMIsagaE0JsLW3RRIT8hZCm7wklGP7rCMS0kUW4ZdYoAMD9730rphekESf/1JhOrYy44igQWongYW0PcjTyB3ACwLAiQdxOGlrQ5zE5IggIHOGTitx08whFi39kTG7FGCDtLC1tqNjPqjGPR4j93rpDjAoiiEQhW+Z//fXXmDRp0kCuhQiCOIHe5kBXr1P0BAFCh2YW/QnXWXr38U4AwIQh+pAnoHCT6xk7jhlx0xs7faJS544uFo3DUsTu0j32sDOQinK16LJ6ZyVFapQG5KfGRCEUhUeIdUouN/hHhOQ1VXS43Oi0BB6v4c+v5ozGlsNt2HW8E69sOYKHLzwFZk+3ba1KIf4+WS+hWPQQYvtmMGEaqei45qyhcLp4XDZ5SNTrCNQOgYlclYLziYZmMv5tBOR2lQZi3FDR8/tgqTG2H0qNEcmI7G8PqQj6/PPPcd1112HatGk4ceIEAOCNN97AF198EfsVEj4RIf+J6W099tANFSURITn+IMDXIBuKj/edRFu3DRqlAmdUGrBo+nDcN39cwG2l88ZY+inY1aq3gkvYLtIeQoAkNRbkGFr9Jr5H4xFqDuARAuQ3VWSvpVRwYf08aqUCV00RBgAfaRNmxQWaDF7sOQ7W16i/cJx38rvR83uL9KRYmKPBr+aMRkVBZKXgUsSGio5A0YrIIlTpjFLB+XwPhBPYUsTUmD2ARyjK1BjrLM0uSOQUEBBEvIn4Murf//435s6dC51Oh127donNFE0mE37/+9/HfIGErxDynzvV3i2pGgszfZ75g8IJIW2QijN/2JiMZeeNwppbzsZvLjol6MnOO29MEhEKMgxSFEIsNWb3jpGQi2iu9XyRf3m4DfOe3owdxzoABPIIsdeUFxHieV5Mjfl7hLxjNkJ/6bdJ5q3JSfmx97ahQ4hEBZq/Nn3UIJwzehBuPHu4jKOQB0uxMeGWiDRUoKqxaI286Y5UtESXGut/1Zj/9HkWyeuWUUBAEPEmYiH0u9/9Ds899xxefPFFqNXeq9izzz4bO3fujOniCAExNWZ1iidwdsUV3CPkmxqzOlziiIOJ4SJCKnkRIWbelhOpKfSkatrMdnT2srEUQVJjkjSa8DqRh+f9y+ffqqnHgWYz/vjRAWEdfiZl0SwtMyLU1esUjbv+HqFs0XQa+v0L10zRn4oCIfLU0GHxtBTo20wwP0uNNxZPxZWe6FEsYBHCdolHKN4EaoeQjpPnY4HUJyR3zhgg7YouvMc8z0vM0pEPXQUEj5DbzYt/K2SWJpKRiIVQbW0tzj333D736/V6dHZ2xmJNhB/sC8psdYhCiI3HaO+xh5k+Lzz2XVMXHC4ehTka8YQaDDEiFGbWGBMocnr7sIhQXVu3WNobbChooZ8QiuaqVIwIeb6A2Xy1r+qMONTSHdQj1N4tdL8OR1NXr3gM/qbkQP1YAhGudN4fNsDU6nDD2GP3Gbg6kLDoIjO5J2LAaaDZcek4eT4WSIVqJKkx/4aKFrtL/FuNtqGi08XD6vTuh4QQkYxELITKyspw6NChPvd/8cUXqKqqismiCF98PUK+g0I7LHbx5KBRek8IWX7T5/dIyubD+Sm0fhPHg+FtchjemMvEDfO3GLLVAU3VgESU+FWNyZk8z5Capd1uHnWtPeJjr2w5Ioo4/6oxu8stpvxC0dTJ0mJ9RaV0zEYovM0U5Z2stColSvOFbRs6eqPyTkUDiwgZPSNJEtGzJzuAWTpd54z1F2nqMrLUmEfA24XqVJaCzctSRfw7lzZUlP7OyCxNJCMRC6ElS5bgV7/6FbZt2waO49DY2IhVq1bhrrvuwi9+8YuBWGPGI51AzyIZY0rzwHFC4zRpF1mGf9WY6A8KUNruj/9YhWCw1Fi+nIiQx7zr8FSRhPqC9qbGhGONrmrM69NpNPX69J955+t6AL6l+llqpSgo2mVUjgXzBwHeCEXYiBBLjeXJP1lJfULmuAkhT0QoCVJj0t8jO8EmIkKVzEh/PxFVjXme5+aF97nOE0WtKs6N2IyulJilpVG8HptTVsSVIOJJxN8gK1asgNvtxuzZs2GxWHDuuedCq9Xirrvuwq233joQa8x4pBEhVoVRmp+FwmwN2nvsYhm3RqUATCbAbIZWJUSMbE4hR7/zuGASPqMofPQm1OR6Kd7UWPh9+o97COVd8J/7FU3kQxoROuyJBlUV58Dhcovt/otztT5f8EW5QvPG9h47qvr2hPSh2fOe+/uDAOnwytBCSEzPRZC+GGLQYcexDpzotIg9ogZaCLDoIhOICUmNBWiHIB04S3jR+XiE5H+2sjVK8eKq2+YU08kji3MiXoO3oaLb5+/AzQupXR2lM4kkIuKIEMdxeOCBB2A0GrF371589dVXaG1txaOPPjoQ6yPgFRrdNqePt4WlVFiaRuOwAfPmATNnQtvWAkAQM098VIt6Yy+0LjvOuHWRIJZCID8iJN+jUuhXzh0qItTHIxRFd1upufawZ27ZmJI8XHPWUHEbf29OkV/ZfihCRYSy/bwWwQjXVToQXsN0b1Qpw2jQ+pulE1g1Zne54fRUSTLvGKXGfGERyWyNMiLB4T8ehqWTmR8xEqQRoWBjUQgiWYi6C5lGo8H48eNx1llnITc38j8UQj7SiFCbpP8NC3uzFInWYQNaWoC6OmgXLgAgiInnNh0GAPzhf89A31QPmM3+L+GDnIiQyx3ZIFSdRukzliFU6392XMKEeN4ruKJKjblwiF3ZluTgismVUCuFL2l/AeJtqhi+coylI8sCeIRytV4RForjng7R4czrUgKnxmLTPDEYTBiz30MihIf0hM4M8Bax2R9FF6QwIR5JWowhbaoYi4iQ08X3aWpKQohINqgdawrAhEanZE5XcZ62j5jQFA8CNm4EqqqgPXLY57HbtvwTl1iPC49XVIR8PW9EKLgQkoa75U6El0aF5KTGnG4eXb3OfqXGLHanGBEaWZyL4jwt5p5SBgAo0/u+f5GU0Dd2CqmxgBGhAMMr/bE6XDjh2ceIQfJPNEMkJfTxSg1JG/TF4/UCoVEqwFot+Tfno/J5X5gwjCQtJj5X0kuoTkwpR36hK3aWDhARosoxItkgIZQCsNRTj6ecVcEJYsFfTGhUCqCyEti4Edoh5eL9P96/Gbc3fiWIoMrw/WUCDWz1h0UHNCqFWF4dDqlPKFRqTKuSGJd7bFGVz4udiO0u8cp2VInwhf7Aj6tx7dSh+NnZI3yew5oqhhuzEaqZItC3H0sgjrVbwPOC0TySyh4WPTrR0SuWz8sVotHi3x4gEWZpjuP6VI5ZxM7aFBGSwt6nSHoIMdhn90hbD8w2JxQcMKwo8o7gUo+Qf2NRiggRyQZdSqUA+X5m5KJcLZQKTjxxM8TO0pWV0L/8HC55/H3YlWo89b+nodj0mSwRBHhPfKH6CLGKsbwIxEmhTCHEHu+2CfPGuqOIfLCIkM3phs0T4WFXtoP1Ovz+pxP6PMc7eDW0EDLbnOLJOJBZmr12KLP0kTZBnI2IsCJniEHn2bdLLG8ecLO0OvERIUBIj3XbnOKJlcrnA8OihlVRpLSYyP2mQfARVhZmy77QkRLKI0QRISLZkP0N8tBDD+Hiiy/G5MmTB3I9RACEoZqcWHrunY/llxpjKYz6enDXX4+n6+q8Dy5cKDsiJMcsHUkzRUaBT2osdNi+MEeD40YL2nvs3hEbEZzw/cVBWX5W2OcXet7PDkvo1BibMabXqQOehP0b0wWiztNPqSqCtBgg/G4G5WrR1m0TI10DXj7vdyJMlPDwrxyLdjJ6uvPTiUNQlp+FScMKIn4u++x+e6ITQHRGacDXI0RmaSLZkZ0aa2howAUXXICKigr84he/wIcffgi7Xf6ASiJ6OI7zKVH3zscKIITq64FZs4C6OqCqCtiyRfi3rk64v74+7OvJMUt3R1A6z4gkIiQdsxHN4EetSgFpoIWlxULBBp+yifDBCJUWA6Tl88GF5BGP/yISfxCDpcdYK4V49RFiJCwixLpLO/w8QhQR8kGtVODcMcVRfS5YmvFAk1BQEalQZygVEo+Qn/AJN3qGIOKNbCH0yiuvoLm5Gf/85z+Rl5eH22+/HYMGDcJll12G119/HUajcSDXmfFIIy/esRB+qTFjm68I2rgRmD5dNFCLYqihIeRryYkIdbHUWLQRoTAVLdIS+miqxjiOE8cyAPIqXwzZMoVQZ/AeQoDXrGp3uuFwBRaTrMN2NOkL/yqzgR6x4Z8aS3REyN8jlAjPUrrCRDwT2SNlXEAEglVmutxuscqPQakxItmIyCytUChwzjnn4IknnkBtbS22bduGqVOn4vnnn0d5eTnOPfdcPPnkkzhx4sRArTdjCSSEBvmllzR5uUBJiVcEsTSYx0CNqirh8by8kK/FIkJONy/2bPEnqtRYjjd6VJAdRgh5hFJLl1WMTEV6hauTnCDlRITYmjp7Q0c6w0WEpEIhmGGaCaFoIkJD/ITQQAsBf4/IQEeggsHe175VY5QaixX+UdfoI0KBO0sDlBojko9+faNVV1ejuroa99xzD1pbW/HBBx/ggw8+AADcddddMVkgIZAn6RXj9Qj5igmtIR9Yt07oE+RfIl9ZCWzaJIggvT7ka0lTITanO+BMMG+URn5qjAmNvCyVzziQQDCRV+8xBAORm4Kl85HkeB30noiQ1eGG1eHqkxJiNJuCzxkDWCWdAjanG6Zeh7hfhsniENsgDC+KJiLkW8Uz8FVj/hGhxJmlAUlEyM6qxigiFCv8RXW0ESFv1RgvRpZZ12qKCBHJRsy+QYqLi7F48WIsXrw4VrskJOQGiAhle5oUsn4/GpUC0IcQOmH6BzGkfWOsDldAAWKOIjXG1l0iY9o6S40daxciJxqlIqx48sdHCMn4Qs/TqqBUcHC5eXRaHCjTBz7hN4nNFANHhABgaGE2DrZ040h7D4b6lR/XeSrGyvKzoqr48k+NDXTVmLaPRygxwsPbEkE4kbLIQqKEWToi9X/lZ6miKsEHvB4hh4sXvXJsJFC40TMEEW+oj1CKECg1xnGcT/VVpEIhGAoFJ5biBzNMs5OQnIGrjDOHF+KmmVX49U/Gh92WpcbqxRLxyE92LIKQp1XJEl8cx3kN0yHSY2zOWLDUGOCNQLFmjlL6kxYDgAqDVwhpVApx0vdAIY2MKbi+DRbjhbRqzNTrgN3z2YzEsE+ERhpdG1kS+bBVhkriEWKpMfa91U1maSLJICGUIuQHqBoD4NNLSBPDEyKbLxXMMB3JwFWGUsHhvguq8cOxJWG3ZVei7GQXTRSCnTirIvhC18swTLPZbiGFUIkgclj0R4oohKIwSgO+HqFI+jhFS5ZE+ORoVVGfHPuLmBpzuPD1UaE4Y8SgHOh1JIRihfTvrGpQ9KOTVD59hITvClEIWUMXIxBEvCEhlCIEiggBviX0sYoIAV6DbLCIEEuNDVTFkn95fTQ+EGaujWRWkreEPnBEyGx1iDO+As0ZY7CTyOGWnj6PRdtDiJGt8aYs4pGmkkaEElmhJY0IfVXXDgD4QVVhwtaTjvhGhKL7fAJes7RL0lCRfW9R+TyRbER85uzp6fvFTgw8TAhpVQqfKIDUMN1vIWQyiaX1Wf4RoYYGn6n1XQM83sG/4WI0QoiJmrGloavkpIiVY0EiQswonadVhVwT8ySxpodS6vrRQ4jBokLxMApLU2GJrNDyjthwYtsRISI0dURRwtaTjgxMRMg/NUYeISK5iPjMWVpaip/97Gf44osvBmI9RBBYCqo4T+uTmpB2l+5XasxkAubNA2bOBOrrfZsq1tcL98+bJ4qhaFJjkaDTKEVzLBBd5OPmWSPxy1kjcfWZQ2U/R0yN9QYWQsfahYnxlYWh5y+x/kAtZpsYPQMAt5vHUbGHUPQnmoo4CqFkiQixz0OL2Ya9J4TP4VSKCMUUqRdvVH8iQmzoqsvrESrJE1LJZJYmko2Iz5xvvvkmjEYjzjvvPIwZMwaPP/44GhsbB2JthAQW3SjN9/WlsBSJRqnon3fDbAZaWsSmi1m88OVlbTzpbdLY0iJsB6DbFnnVWKRI02PRnPBHFufinnnj+pSvh8KgE14z2JiNY0ZBCA0fFFoI5WepxStgFgECgJNmK3odLqgUXJ/qr0hgJfQD3UwR8BNCCY0ICa+9rc4INy8MAw3WwoCIDuZFVCo4DC2MXgipfVJjvh4hKp8nko2IhdAll1yCNWvW4MSJE7j55puxevVqDBs2DD/5yU/w3nvvwemkD/lAcO6YYlxzViV+NXu0z/3MI9TvtFhFhU8Hau2B/QAA630P+Haq9pTgs4hQJFVjkSJN+8XrBFzgEU2mIKkxVs4/TEb/H+ZNkqbH2GiNoYXZ/ar2Yum+UIbtWCHtI5TQiBDzCHnStT+gtFjMqSjQ4Wdnj8AD86v79Z0ibajYI0aEKDVGJCdRf6sVFxfjzjvvxJ133olnn30Wd999N/73v/9h0KBBuPnmm7FixQpkZ4e+aibkk6NVYeWlp/W5n4mFmBilWQfqWbOQ1d0FDAJ+fcZl+Fv1jzD0rNPwkL4YJQB4no+qoWKkSCNC8epdE27MxlFPamx4UfjPdlVxLr6qM/oIobp+ls4zLjqjHDlaVVzMwtKIUHYCmxfq/PoZUVos9nAch4cuDN/eIhysfN7udIuVn0wIWR1uOF2BG7USRCKI+pN48uRJPPHEExg/fjxWrFiByy+/HJ9++imeeuopvPfee7jkkktiuEwiGMOLcsBx8poUyqKyEnjjDUxqFCJCbTkF+KZwGNYeMmHNbmF0Sq/DBZdnFlG8UmPxKBMHAH12mNRYO4voyIkICR4gaWqsvz2EGGqlAvNOLYMhzKiSWCCdPp+TwOaF/jPOplZRRChZYQ0VuyT+OGm1a6iBxAQRbyI+u7z33nt49dVX8dFHH2H8+PH45S9/ieuuuw4Gg0HcZvr06aiuro7lOokgVBZm459LfhC7FEl9PbBwIe6qq8NVez5Ga24BXpt5DT4YOgUnPM0N2eR5pYIb0K6+0tYA8YoIiamxAGZph8uNBs97EM4jBAROjdV5/h9tD6FEoJWkxhI56V0n+axVFuowxED+oGSFVY119QrfFQpO8PmplZzQbdrmpP5PRNIQcUToxhtvRHl5ObZs2YLdu3dj2bJlPiIIAMrLy/HAAw/Eao1EGH5QVSTLsxKW+nqf6fWVH76PSVkOnHmgBgDQ2NwBwFs6nzvAzfUSkhrTBS+fb+zshcvNQ6tSoDQvvPBkEaGjbRa43DzsTjf2NAjVTqP6UTEWb6Tl87lJYJYGyB+U7DAhxComczTCdwX7OybDNJFMRCyEmpqa8Pzzz+PMM88Muo1Op8PDDz/cr4X5YzQasWDBAuTn58NgMGDx4sXo7u7bo0XKrFmzwHGcz+3mm2+O6brShoYGHxGEjRuB6dOBjRsxOFv48mrauQ9oaIhqzlg09LdqLBqYRyhQaoz5g4YVZUOhCC8Ayw06aFUK2F1uNHRY8On+kzD22FGSp8XkYQWxXfgAwnGcKIYS6RGSCiFKiyU3zCPEvIQsmsfM9mYSQkQSEfG3mtPpRFdXV5/7OY6DVquFRjMwnoUFCxagqakJ69evh8PhwI033oilS5di9erVIZ+3ZMkS/Pa3vxV/JgN3EPLygBLP6IuNGwWvEABUVqL82T8C/zqIppxCIC8P5pOCSBhocVKUgIgQK7W3OftOoI+kYgwQUocjBuXgQLMZh1u78db2egDA5ZMrUs4omqVWwuZ0J41HaOoIMkonM8wj5PR4CZmIzaWIEJGERHx2MRgMIdMhFRUVWLRoER5++GEoFLH5st+/fz/WrVuH7du3Y8qUKQCAZ599FvPnz8eTTz6J8vLyoM/Nzs5GWVlZTNaR1uj1wLp1Qp8gvyn15WOHAziIdk0OrNm5MFtbAPjOPxsIfFNj8TkBh5pAf7RNfsUYY2RxLg40m/H5wTZsPtgKALhySmVsFx0HstQKmHoT6xEalKvBj08bjPwsVdiGlkRiUflFTNnnhv0dkxAikomIlcprr72G8vJy3H///VizZg3WrFmD+++/H0OGDMHf//53LF26FM888wwef/zxmC1y69atMBgMoggCgDlz5kChUGDbtm0hn7tq1SoMGjQIp556Ku677z5YLJaQ29tsNnR1dfncMga9vo8IAgC9Ti2WLjeZrHFppgj4jtnIG8AyfSnSCfT+6TGxYiwCPxYzTK/66jh4XohkDO9nxVgiYJGxeEXmAsFxHP567aSAbSSI5KKvEPL9/NAEeiKZiPhb7R//+AeeeuopXHnlleJ9F154ISZMmIDnn38en376KYYOHYrHHnsM999/f0wW2dzcjJIS34nlKpUKhYWFaG5uDvq8a6+9FsOGDUN5eTm++eYb3HvvvaitrcV7770X9DkrV67EI488EpN1pwscx2GwIQt1rT1o6uyVjNcYYI9QAhoqAkJ6rL3H3scwLXaVjiQi5Jk5ZncJvVSuPiv1okGA19uRr0ucECJSB+YRYjCPEPvOoIgQkUxEHBH68ssvMXHixD73T5w4EVu3bgUAzJgxA8ePHw+7rxUrVvQxM/vfDhw4EOkSRZYuXYq5c+diwoQJWLBgAV5//XW8//77OHz4cNDn3HfffTCZTOKtvr4+6tdPJ1ipcqPJ6q0aG2AhlKNRoiw/C1qVwqcHyUDDBq+aer0RIZebx3GxmaL8iI50cGVelgoXnDo4RquML8vPH4NF04fjzOHkzSHCo/SzRWT7maWpuzSRTER8JqusrMTLL7/cJ/X18ssvo9JjsG1vb0dBQfiqmOXLl2PRokUht6mqqkJZWRlaWlp87nc6nTAajRH5f6ZOnQoAOHToEEaOHBlwG61WC602fifdVIH1KRIiQiw1NrDpKo7j8PZN09Bjdw74a0nxpsa8EaHmLivsLjfUSi6ink1Vkn5BF59R7mO+TiVmV5didnVpopdBpAj+qbEc0SNEESEi+YhYCD355JO44oor8OGHH4ol9F9//TUOHDiAd999FwCwfft2XHXVVWH3VVxcjOLi4rDbTZs2DZ2dndixYwcmT54MANiwYQPcbrcobuSwe/duAMDgwal5VZ5I2HDLRlMvHK6B7yrNGBpBGipW6AOM2Tjm6QhdWZAdUcVXjlaFcWV5ONjSjWvOGhrbhRJEkqJUBE6NUdUYkYxEfCa76KKLUFtbi+effx61tbUAgAsuuABr1qzB8OHDAQC/+MUvYrrI6upqzJs3D0uWLMFzzz0Hh8OBZcuW4eqrrxYrxk6cOIHZs2fj9ddfx1lnnYXDhw9j9erVmD9/PoqKivDNN9/gjjvuwLnnnovTTiOzZaSUG4QoSGOnVTROxzNKE09YaqxTkhqT9hCKlFcWnQljjx2nlOtjs0CCSHLUSjJLE6lDRELI4XBg3rx5eO6557By5cqBWlNAVq1ahWXLlmH27NlQKBS47LLL8Mwzz/isrba2VqwK02g0+OSTT/D000+jp6cHlZWVuOyyy/DrX/86rutOF1hEqMnUK/p1BnLyfCJhqbHOHklEyBhZDyEp5QYdymkcBJFB9PUICd8VuVQ+TyQhEZ3J1Go1vvnmm4FaS0gKCwtDNk8cPnw4eJ4Xf66srMSmTZvisbSMgJ3Imzqtos8lXt2e4404gV4SETrWFn1EiCAyjfDl8ySEiOQh4qqx6667Di+//PJArIVIYlhqzGxzorHTCiB9U2NsorvUI3TU00MokooxgshU/D1CJISIZCaqERuvvPIKPvnkE0yePBk5Ob4nhv/3//5fzBZHJA/ZGhX0OjVMvQ60ddsAxMcsnQgMfmZpnudxrB8eIYLINPwjQjoxNUZmaSL5iPhMtnfvXkyaNAkA8P333/s8NpCTyInEM1ifBVOvN0qStkJI52uWbjXb0OtwQcEBFQUkhAgiHP6VlTl+ESESQkQyEfGZ7LPPPhuIdRApQLlBhwPNZvHneI29iDf+EaGDLd0AgCEFOmhUqTUslSASQbjyeUqNEclE1N/qhw4dwkcffYTe3l4A8DEqE+kJ8wkxBrqzdKIwSCbQ99pd+OJQGwBgyjDqqkwQcgg2dFVMjdlddM4gkoaIhVB7eztmz56NMWPGYP78+WhqagIALF68GMuXL4/5AonkgZXQA0Ko2/+qL13I1arEL/LOXju+OCgIoRmjBiVyWQSRMgQ3Swv/utw8bE533NdFEIGIWAjdcccdUKvVOH78OLKzvX6Jq666CuvWrYvp4ojkQhoRSteKMcAzgd4TFTrS1oO9jSYAwDmjSQgRhByCls9rvFFkSo8RyULEuY2PP/4YH330ESoqKnzuHz16NI4dOxazhRHJhzQilK5GaYZep0Zbtx3//aYJPA+MLc1DSb78GWMEkcn0jQgJ3xcKBYdsjRIWuws9NicG5dJcRyLxRBwR6unp8YkEMYxGIw0rTXPKJUIoXf1BDNZL6MO9zQCAGRQNIgjZcBznExXK1nqHDVMvISLZiFgInXPOOXj99dfFnzmOg9vtxhNPPIEf/vCHMV0ckVyU6rVgHRLSOTUGAAWe1JixRyihJyFEEJEhjQplq71CyNtLiOaNEclBxJf1TzzxBGbPno2vv/4adrsd99xzD/bt2wej0YgtW7YMxBqJJEGrUmJQrhatZlv6psZMJsBsht7TSwgANEoFpo4oBBoagLw8QE/DUwkiHCoFBxuEvx9pXyFmmO62OYI8kyDiS8QRoVNPPRXff/89ZsyYgYsvvhg9PT249NJLsWvXLowcOXIg1kgkEeV6wSeTlgNXTSZg3jxg5kwYXFbx7snDCpB9sgmYOVN43GRK4CIJIjVg4of1EGIwwzRNoCeShajOZnq9Hg888ECs10KkAIP1OuxpMKXnwFWzGWhpAerqUPDma8CEnwAAZpSogVmzgLo673YUFSKIkDCPUI6fEKIxG0SyEdXZrLOzEzU1NWhpaYHb7dsL4vrrr4/JwojkZEKFHuv2NWNUSW6ilxJ7KiqAjRuBWbOgbzwGTBDuPud3ywURVFUlPO5XMUkQRF+YR6hPRIiEEJFkRCyE/vOf/2DBggXo7u5Gfn6+z3wxjuNICKU5N51bhdnVJRhbmpfopQwMlZXAxo0wXHcHAKDAYsIpOz/3iqDKysSujyBSBBYRytb4nmZYxSlVjRHJQsQeoeXLl+NnP/sZuru70dnZiY6ODvFmNBoHYo1EEqFSKjCuLD+9B+xWVuKsh2/HyPZ6/Hz7Gih5N/DGGySCCCIClEomhCg1RiQ3EUeETpw4gdtuuy1gLyGCSAvq61G65AZ8yjxBALBwIUWECCIC1ArhOttfCJFZmkg2Io4IzZ07F19//fVArIUgEk99vdcYXVUFbNki/FtXJ9xfX5/oFRJESqAMkhpj5fMUESKShYgjQj/+8Y9x991347vvvsOECROgVvs21rvoootitjiCiCsNDb4iiEWAPAZqUQxt2kSGaYIIQzCzNKXGiGQjYiG0ZMkSAMBvf/vbPo9xHAeXi8KdRIqSlweUlAj/l6bBpGKopETYjiCIkKiUgcvnacQGkWxELIT8y+UJIm3Q64F164Q+Qf4Rn8pKIRJEnaUJQhZKBWuo6Fc1RkKISDLSsCseQfQDvT640KF0GEHIRq0IXDVGfYSIZEO2WXr+/PkwSUYLPP744+js7BR/bm9vx/jx42O6OIIgCCI1UQYVQmzWGNkoiORAthD66KOPYLPZxJ9///vf+/QNcjqdqK2tje3qCIIgiJREpQzSUJEiQkSSIVsI8Twf8meCIAiCYAwx6AAAw4p8e84xIdTrcMHlpvMIkXjII0QQBEHEnEcuOhXXTxuOU8rzfe7PkQxs7rE7kZ+l9n8qQcQV2REhjuP6jFVI6zELBEEQRNToNEqcOkTf5zyhVSnEOWSUHiOSAdkRIZ7nsWjRImi1WgCA1WrFzTffjJycHADw8Q8RBEEQRCA4jkOOVgVTr4OEEJEUyBZCN9xwg8/P1113XZ9taPI8QRAEEY5cjxCiyjEiGZAthF599dWBXAdBEASRIdC8MSKZiHjoKkEQBEH0BxqzQSQTJIQIgiCIuCKO2bCSECISDwkhgiAIIq7keJos9thJCBGJh4QQQRAEEVcoNUYkEykjhIxGIxYsWID8/HwYDAYsXrwY3d3dYZ+3detWnHfeecjJyUF+fj7OPfdc9Pb2xmHFBEEQRCByySxNJBEpI4QWLFiAffv2Yf369Vi7di02b96MpUuXhnzO1q1bMW/ePJx//vmoqanB9u3bsWzZMigUKXPYBEEQaUduFps3RuXzROJJiREb+/fvx7p167B9+3ZMmTIFAPDss89i/vz5ePLJJ1FeXh7weXfccQduu+02rFixQrxv7NixcVkzQRAEERhKjRHJREqERrZu3QqDwSCKIACYM2cOFAoFtm3bFvA5LS0t2LZtG0pKSjB9+nSUlpZi5syZ+OKLL+K1bIIgCCIANIGeSCZSQgg1NzejpKTE5z6VSoXCwkI0NzcHfE5dXR0A4De/+Q2WLFmCdevWYdKkSZg9ezYOHjwY9LVsNhu6urp8bgRBEETsYFVjFBEikoGECqEVK1aIw1yD3Q4cOBDVvt1uNwDgpptuwo033oiJEyfiT3/6E8aOHYtXXnkl6PNWrlwJvV4v3iorK6N6fYIgCCIwORQRIpKIhHqEli9fjkWLFoXcpqqqCmVlZWhpafG53+l0wmg0oqysLODzBg8eDAAYP368z/3V1dU4fvx40Ne77777cOedd4o/d3V1kRgiCIKIId7UGJmlicSTUCFUXFyM4uLisNtNmzYNnZ2d2LFjByZPngwA2LBhA9xuN6ZOnRrwOcOHD0d5eTlqa2t97v/+++9xwQUXBH0trVYLrVYbwVEQBEEQkcBmjVFqjEgGUsIjVF1djXnz5mHJkiWoqanBli1bsGzZMlx99dVixdiJEycwbtw41NTUAAA4jsPdd9+NZ555Bu+++y4OHTqEBx98EAcOHMDixYsTeTgEQRAZTS5VjRFJREqUzwPAqlWrsGzZMsyePRsKhQKXXXYZnnnmGfFxh8OB2tpaWCwW8b7bb78dVqsVd9xxB4xGI04//XSsX78eI0eOTMQhEARBEPD1CPE8D47jErwiIpPheJ7nE72IZKarqwt6vR4mkwn5+fmJXg5BEETKY+p14PRHPgYAHHh0HrLUygSviEhH5J6/UyI1RhAEQaQPLDUGUOUYkXhICBEEQRBxRangoFOzeWNUOUYkFhJCBEEQRNyhMRtEskBCiCAIgog74gR6OwkhIrGQECIIgiDiDkWEiGSBhBBBEAQRd2jMBpEskBAiCIIg4o7YVNFKQohILCSECIIgiLhDqTEiWSAhRBAEQcQd0SxN5fNEgiEhRBAEQcSdHI3HI0RVY0SCISFEEARBxB1KjRHJAgkhgiAIIu7kZVHVGJEckBAiCIIg4g6VzxPJAgkhgiAIIu5QaoxIFkgIEQRBEHGHqsaIZIGEEEEQBBF3xKoxiggRCYaEEEEQBBF3KDVGJAskhAiCIIi4k0tCiEgSSAgRBEEQcYdFhCx2F9xuPsGrITIZEkIEQRBE3GERIYC6SxOJhYQQQRAEEXey1AooOOH/VDlGJBISQgRBEETc4TiOfEJEUkBCiCAIgkgIudRdmkgCSAgRBEEQCYHGbBDJAAkhgiAIIiFQLyEiGVCF34QgCIIgYojJBJjN3tSYtGqsoQHIywP0+gQtjsg0KCJEEARBxA+TCZg3D5g5EzluOwCgm1WN1dcDM2cKj5tMCVwkkUmQECIIgiDih9kMtLQAdXXI2bAeANBtdQoiaNYsoK5OeNxsTuw6iYyBhBBBEAQRPyoqgI0bgaoq5La3AgB6Dh/1iqCqKuHxiooELpLIJEgIEQRBEPGlshLYuBH5OjUAoPH9//mKoMrKxK6PyChICBEEQRDxp7IS5y65DADw0egfoEedBbzxBokgIu6QECIIgiDiT309zrz9ZxhubESPNhv/G3s2sHCh4BUiiDhCQoggCIKILx5jNFdXhytO7AAAvHPWhUJ6bNYsEkNEXCEhRBAEQcSPhgYfY/RlT94DBQfUFI9C3WlTvWKooSHRKyUyBBJCBEEQRPzIywNKSkRjdFl1FWaOKQYAvPvAM8L9JSXCdgQRB1JGCBmNRixYsAD5+fkwGAxYvHgxuru7g25/9OhRcBwX8PbOO+/EceUEQRCEiF4PrFsHbNokGqOvnCL8++9DXXB+tlF4nDpLE3EiZYTQggULsG/fPqxfvx5r167F5s2bsXTp0qDbV1ZWoqmpyef2yCOPIDc3FxdccEEcV04QBEH4oNf79AmaXV2KwhwNTnbZsNmiIRFExBWO53k+0YsIx/79+zF+/Hhs374dU6ZMAQCsW7cO8+fPR0NDA8rLy2XtZ+LEiZg0aRJefvll2a/d1dUFvV4Pk8mE/Pz8qNZPEARBhOa3//kOr2w5grwsFR656BT8dOIQcByX6GURKYzc83dKRIS2bt0Kg8EgiiAAmDNnDhQKBbZt2yZrHzt27MDu3buxePHikNvZbDZ0dXX53AiCIIiB5ZYfjsQZlQaYrU7c+fYe/OLNnTD22BO9LCIDSAkh1NzcjJKSEp/7VCoVCgsL0dzcLGsfL7/8MqqrqzF9+vSQ261cuRJ6vV68VVJzL4IgiAGnKFeLd2+ehrvOHwOVgsO6fc247qVtsEgn0xPEAJBQIbRixYqghmZ2O3DgQL9fp7e3F6tXrw4bDQKA++67DyaTSbzVUz8LgiCIuKBSKrDsvNFYc8vZKMrR4LumLtz1zh643Unv4CBSGFUiX3z58uVYtGhRyG2qqqpQVlaGlpYWn/udTieMRiPKysrCvs67774Li8WC66+/Puy2Wq0WWq027HYEQRDEwHDqED2eWzgZ1774Ff73bTOeKT2I2+eMSfSyiDQloUKouLgYxcXFYbebNm0aOjs7sWPHDkyePBkAsGHDBrjdbkydOjXs819++WVcdNFFsl6LIAiCSDxnDi/E7y45Fff++1s8/clBjCnNw/wJgxO9LCINSQmPUHV1NebNm4clS5agpqYGW7ZswbJly3D11VeLFWMnTpzAuHHjUFNT4/PcQ4cOYfPmzfj5z3+eiKUTBEEQUXLVmUNx49nDAQD3vvsN6o2WxC6ISEtSQggBwKpVqzBu3DjMnj0b8+fPx4wZM/DCCy+IjzscDtTW1sJi8f1DeeWVV1BRUYHzzz8/3ksmCIIg+skD86sxaagBZpsTy9/eAxf5hYgYkxJ9hBIJ9REiCIJILMfbLbjgz5vRY3fh7rljccsPRyV6SUQKkFZ9hAiCIIjMZWhRNn5z0SkAgD+t/x7fNHQmdkFEWkFCiCAIgkh6Lp9cgfkTyuB087j9rd3UX4iIGSSECIIgiKSH4zj8/qcTUJafhbq2Hjy6dn+il0SkCSSECIIgiJTAkK3BU1eeDgD4Z81xfLxP3mQBgggFCSGCIAgiZTh71CAsOWcEAGDFe9+ixWxN8IqIVIeEEEEQBJFS3DV3LKoH58PYY8dd73xDIziIfkFCiCAIgkgptCol/nz1GdCqFNj8fSue23w40UsiUhgSQgRBEETKMaY0D494Suqf+vh71BwxJnhFRKpCQoggCIJISa46sxI/nTgELjeP2/65C+3dtkQviUhBSAgRBEEQKQnHcfjdJadiZHEOmrusuO2tXbA6XIleFpFikBAiCIIgUpYcrQp/WzAZWWoFthxqxw2v1MBsdSR6WUQKQUKIIAiCSGnGluXhHzeehVytCtuOGLHgpW0w9tgTvSwiRSAhRBAEQaQ8U6uK8M8lP0BhjgbfNJhwxXNf4lh7T6KXRaQAJIQIgiCItGBChR5v3zQNg/VZONzag4v/ugVbD7cnellEkkNCiCAIgkgbRpXkYs0tZ+P0Cj06LQ4sfHkb/llzPNHLIpIYEkIEQRBEWlGan4V/3TQNF55eDqebx33vfYsXqOkiEQQSQgRBEETakaVW4pmrz8CyH44CAPz+fwfwt42HErwqIhkhIUQQBEGkJRzH4a65Y3HHnDEAgCfW1eIvGw4meFVEskFCiCAIgkhrfjVnNO6eOxYA8OTH3+Odr+sTvCIimSAhRBAEQaQ9t/xwFG49T0iTPbBmL/bUdyZ2QUTSQEKIIAiCyAjumDMGc6pLYXe6cfObO9BqptlkBAkhgiAIIkNQKDj86arTUVWcgyaTFbes2gmHy53oZREJhoQQQRAEkTHkZanxwsIpyNWqUHPUiLeox1DGQ0KIIAiCyChGleTinnmCefrpTw6i2+ZM8IqIREJCiCAIgsg4rjlrKEYMykF7jx0vbKJmi5kMCSGCIAgi41ArFbjHU1L/4udHcLLLmuAVEYmChBBBEASRkcw7tQwThxrQ63Dh6U++T/RyiARBQoggCILISDiOw/3zqwEA/9pej0Mt3QleEZEISAgRBEEQGcuZwwsxp7oEbh54+Yu6RC+HSAAkhAiCIIiMZum5IwEA/955Au3d1GQx0yAhRBAEQWQ0Zw4vwGkVetidbrz5FfUVyjRICBEEQRAZDcdxWDxjBADgja+OwupwJXhFRDwhIUQQBEFkPPMnDMZgfRbauu34YE9jopdDxBESQgRBEETGo1YqsGj6cADAy58fAc/ziV0QETdICBEEQRAEgKvPGopsjRK1J834/GBbopdDxImUEUJGoxELFixAfn4+DAYDFi9ejO7u0D0fmpubsXDhQpSVlSEnJweTJk3Cv//97zitmCAIgkgl9Do1rjqzEgDw/GYau5EppIwQWrBgAfbt24f169dj7dq12Lx5M5YuXRryOddffz1qa2vxwQcf4Ntvv8Wll16KK6+8Ert27YrTqgmCIIhUYvGMEVAqOGw51I5vG0yJXg4RB1JCCO3fvx/r1q3DSy+9hKlTp2LGjBl49tln8dZbb6GxMbip7csvv8Stt96Ks846C1VVVfj1r38Ng8GAHTt2xHH1BEEQRKpQUZCNi04vBwA8R1GhjCAlhNDWrVthMBgwZcoU8b45c+ZAoVBg27ZtQZ83ffp0/Otf/4LRaITb7cZbb70Fq9WKWbNmBX2OzWZDV1eXz40gCILIHJaeWwUA+PDbJhxr70nwaoiBJiWEUHNzM0pKSnzuU6lUKCwsRHNzc9Dnvf3223A4HCgqKoJWq8VNN92E999/H6NGjQr6nJUrV0Kv14u3ysrKmB0HQRAEkfxUD87HrLHFcPPAC5tp7Ea6k1AhtGLFCnAcF/J24MCBqPf/4IMPorOzE5988gm+/vpr3Hnnnbjyyivx7bffBn3OfffdB5PJJN7q6+ujfn2CIAgiNbl5pjB2450dDWg109iNdEaVyBdfvnw5Fi1aFHKbqqoqlJWVoaWlxed+p9MJo9GIsrKygM87fPgw/vKXv2Dv3r045ZRTAACnn346Pv/8c/z1r3/Fc889F/B5Wq0WWq028oMhCIIg0oapIwpxRqUBu+s78ZcNB/HIxacmeknEAJFQIVRcXIzi4uKw202bNg2dnZ3YsWMHJk+eDADYsGED3G43pk6dGvA5FosFAKBQ+Aa9lEol3G53P1dOEARBpDMcx+GeuWNx7Uvb8MZXx3D1WUNRPTg/0csiBoCU8AhVV1dj3rx5WLJkCWpqarBlyxYsW7YMV199NcrLBXf/iRMnMG7cONTU1AAAxo0bh1GjRuGmm25CTU0NDh8+jKeeegrr16/HJZdcksCjIQiCIFKB6aMGYf6EMrh54OEP9lG36TQlJYQQAKxatQrjxo3D7NmzMX/+fMyYMQMvvPCC+LjD4UBtba0YCVKr1fjf//6H4uJiXHjhhTjttNPw+uuv4x//+Afmz5+fqMMgCIIgUogHfjweWWoFao4YaQZZmsLxJHFD0tXVBb1eD5PJhPx8CosSBEFkGn/ZcBBPfvw9SvO12LB8FnK0CXWVEDKRe/5OmYgQQRAEQSSCn59ThaGF2TjZZcMfP6pN9HKIGENCiCAIgiBCkKVW4tFLhKqx1748ii9oIGtaQUKIIAiCIMIwc0wxrvvBUADA3e/uganXkeAVEbGChBBBEARByOD++dUYMSgHTSYrHv6/vYleDhEjSAgRBEEQhAyyNSo8deXpUHDAmt2N+O83TYleEhEDSAgRBEEQhEwmDS3ALT8U5lU+/MFemCyUIkt1SAgRBEEQRAQsO28URpXkoq3bjpUf7k/0coh+QkKIIAiCICJAq1Ji5aUTAABvba/Htrr2BK+I6A8khAiCIAgiQs4cXohrzhKqyO57/1vYnK4Er4iIFhJCBEEQBBEFKy4Yh+I8Lepae/Dsp4cSvRwiSkgIEQRBEEQU6HVqPHLRKQCAv208hB3HOhK8IiIaSAgRBEEQRJTMnzAYl5xRDjcP3Pn2bvTYnIleEhEhJIQIgiAIoh88cvGpGGLQ4Vi7BY+u/S7RyyEihIQQQRAEQfQDvU6Np648HRwnVJH9bu13WLe3GfVGC3ieT/TyiDBwPP2WQtLV1QW9Xg+TyYT8/PxEL4cgCIJIUlZ+uB/Pb6rzua8oR4Mpwwtw5vBCjC/Px/CiHJTlZ0Gh4BK0ysxB7vmbhFAYSAgRBEEQcnC5efx7RwO2HzXiu6YuHDzZDbvL3Wc7jUqBYYXZGFaUg+FF2RhdmotTyvUYU5oHjUoBnudhc7phc7qhVHBQeUSTzemG3emGRqmAPlsd78OLHJMJMJuBioq+jzU0AHl5gF4/YC9PQihGkBAiCIIgosHmdGHvCRO2H+3A10c7UNfajeNGC5zuwKddtZJDfpYaZqszoICSUpSjwciSXIwqycWoYuHfMaV5KNNnDcShRI7JBMybB7S0ABs3ApWV3sfq64FZs4CSEmDdugETQ3LP36oBeXWCIAiCyHC0KiUmDyvE5GGFwEzhPqfLjSaTFUfaenCsvQdH2iyoPdmFvSe6YOp1oL3HLmvf7T12tB8xouaI0ef+IQYdpo4oxClD9DBbHTjZZUNHjx1qlQI6tQLZGhWGF2VjTGkeRpXkQqngYHW6YXO4UJynRV5WjCJNZrMggurqBNHDxBATQXV13u0GMCokB4oIhYEiQgRBEMRAw/M8Gjp60WN3Ij9LjXydGhqlAm6eh9PNg+d5aFVKqJUcLHYX6lp7cKjVjEMt3TjU0o2DLd042taDIMEm2QzK1WB4UQ5K8rUwZGtg0KmRrVFCo1JAo1TA6ebRa3ehxy500s5SK5ClViJL5flXrUS2RglDtgZ6Uztw441o7LKiaUQ1jNctgu29NbCbewC9HoOXXI/y4YNRbtBhWFF27ESYB0qNxQgSQgRBEEQq0G1zYuexDmw/asTBk90oyNGgNF+LohyNIGAcLnT1OnG4tRvfnzTjuNECnococroT2APp1z+uxs/PqYrpPik1RhAEQRAZRK5WhXPHFOPcMcWytne43FBynFjB1mV14Hi7BUfbe9DebUeHxY5OiwO9dhfsLsGorVRwyNEqoVML8sHqdMHqcMHmcMPqcMHqdKHb5kJXrwOdFjvcPDBY7Ub5zq0YZOlElsMO7ZWXwVk2GM0mKxo7e3Gi04ohBt2AvS/hICFEEARBEBmIWunbSjA/S41Th+hx6pAYenb8PUEAUPexxzN0Suxepx9QQ0WCIAiCIGKPVARVVQFbtgj/MgN1fX2iVwiAhBBBEARBELGmocFXBG3cCEyfLvwrFUMNDYldJyg1RhAEQRBErMnLE/oEAb59hCorhZ9ZH6G8vAQt0AsJIYIgCIIgYoteLzRLDNRZurIS2LRpwDtLy4WEEEEQBEEQsUevDy50Ao3dSBDkESIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgiAIgshYSAgRBEEQBJGxkBAiCIIgCCJjoc7SYeB5HgDQ1dWV4JUQBEEQBCEXdt5m5/FgkBAKg9lsBgBUsoFxBEEQBEGkDGazGfoQM804PpxUynDcbjcaGxuRl5cHjuNitt+uri5UVlaivr4e+fn5MdtvspOJx03HnBnHDGTmcWfiMQOZedypdsw8z8NsNqO8vBwKRXAnEEWEwqBQKFAxgMPh8vPzU+IDFWsy8bjpmDOHTDzuTDxmIDOPO5WOOVQkiEFmaYIgCIIgMhYSQgRBEARBZCwkhBKEVqvFww8/DK1Wm+ilxJVMPG465swhE487E48ZyMzjTtdjJrM0QRAEQRAZC0WECIIgCILIWEgIEQRBEASRsZAQIgiCIAgiYyEhlCD++te/Yvjw4cjKysLUqVNRU1OT6CXFjJUrV+LMM89EXl4eSkpKcMkll6C2ttZnG6vViltuuQVFRUXIzc3FZZddhpMnTyZoxbHn8ccfB8dxuP3228X70vWYT5w4geuuuw5FRUXQ6XSYMGECvv76a/Fxnufx0EMPYfDgwdDpdJgzZw4OHjyYwBX3D5fLhQcffBAjRoyATqfDyJEj8eijj/q08U+HY968eTMuvPBClJeXg+M4rFmzxudxOcdoNBqxYMEC5Ofnw2AwYPHixeju7o7jUURGqGN2OBy49957MWHCBOTk5KC8vBzXX389GhsbffaRTsfsz8033wyO4/D000/73J9qx+wPCaEE8K9//Qt33nknHn74YezcuROnn3465s6di5aWlkQvLSZs2rQJt9xyC7766iusX78eDocD559/Pnp6esRt7rjjDvznP//BO++8g02bNqGxsRGXXnppAlcdO7Zv347nn38ep512ms/96XjMHR0dOPvss6FWq/Hhhx/iu+++w1NPPYWCggJxmyeeeALPPPMMnnvuOWzbtg05OTmYO3curFZrAlcePX/4wx/w97//HX/5y1+wf/9+/OEPf8ATTzyBZ599VtwmHY65p6cHp59+Ov76178GfFzOMS5YsAD79u3D+vXrsXbtWmzevBlLly6N1yFETKhjtlgs2LlzJx588EHs3LkT7733Hmpra3HRRRf5bJdOxyzl/fffx1dffYXy8vI+j6XaMfeBJ+LOWWedxd9yyy3izy6Xiy8vL+dXrlyZwFUNHC0tLTwAftOmTTzP83xnZyevVqv5d955R9xm//79PAB+69atiVpmTDCbzfzo0aP59evX8zNnzuR/9atf8Tyfvsd877338jNmzAj6uNvt5svKyvg//vGP4n2dnZ28Vqvl//nPf8ZjiTHnxz/+Mf+zn/3M575LL72UX7BgAc/z6XnMAPj3339f/FnOMX733Xc8AH779u3iNh9++CHPcRx/4sSJuK09WvyPORA1NTU8AP7YsWM8z6fvMTc0NPBDhgzh9+7dyw8bNoz/05/+JD6W6sfM8zxPEaE4Y7fbsWPHDsyZM0e8T6FQYM6cOdi6dWsCVzZwmEwmAEBhYSEAYMeOHXA4HD7vwbhx4zB06NCUfw9uueUW/PjHP/Y5NiB9j/mDDz7AlClTcMUVV6CkpAQTJ07Eiy++KD5+5MgRNDc3+xy3Xq/H1KlTU/a4p0+fjk8//RTff/89AGDPnj344osvcMEFFwBIz2P2R84xbt26FQaDAVOmTBG3mTNnDhQKBbZt2xb3NQ8EJpMJHMfBYDAASM9jdrvdWLhwIe6++26ccsopfR5Ph2OmWWNxpq2tDS6XC6WlpT73l5aW4sCBAwla1cDhdrtx++234+yzz8app54KAGhuboZGoxG/PBilpaVobm5OwCpjw1tvvYWdO3di+/btfR5L12Ouq6vD3//+d9x55524//77sX37dtx2223QaDS44YYbxGML9HlP1eNesWIFurq6MG7cOCiVSrhcLjz22GNYsGABAKTlMfsj5xibm5tRUlLi87hKpUJhYWFavA9WqxX33nsvrrnmGnHuVjoe8x/+8AeoVCrcdtttAR9Ph2MmIUQMKLfccgv27t2LL774ItFLGVDq6+vxq1/9CuvXr0dWVlailxM33G43pkyZgt///vcAgIkTJ2Lv3r147rnncMMNNyR4dQPD22+/jVWrVmH16tU45ZRTsHv3btx+++0oLy9P22MmfHE4HLjyyivB8zz+/ve/J3o5A8aOHTvw5z//GTt37gTHcYlezoBBqbE4M2jQICiVyj7VQidPnkRZWVmCVjUwLFu2DGvXrsVnn32GiooK8f6ysjLY7XZ0dnb6bJ/K78GOHTvQ0tKCSZMmQaVSQaVSYdOmTXjmmWegUqlQWlqadscMAIMHD8b48eN97quursbx48cBQDy2dPq833333VixYgWuvvpqTJgwAQsXLsQdd9yBlStXAkjPY/ZHzjGWlZX1KQBxOp0wGo0p/T4wEXTs2DGsX7/eZwp7uh3z559/jpaWFgwdOlT8Xjt27BiWL1+O4cOHA0iPYyYhFGc0Gg0mT56MTz/9VLzP7Xbj008/xbRp0xK4stjB8zyWLVuG999/Hxs2bMCIESN8Hp88eTLUarXPe1BbW4vjx4+n7Hswe/ZsfPvtt9i9e7d4mzJlChYsWCD+P92OGQDOPvvsPq0Rvv/+ewwbNgwAMGLECJSVlfkcd1dXF7Zt25ayx22xWKBQ+H51KpVKuN1uAOl5zP7IOcZp06ahs7MTO3bsELfZsGED3G43pk6dGvc1xwImgg4ePIhPPvkERUVFPo+n2zEvXLgQ33zzjc/3Wnl5Oe6++2589NFHANLkmBPt1s5E3nrrLV6r1fKvvfYa/9133/FLly7lDQYD39zcnOilxYRf/OIXvF6v5zdu3Mg3NTWJN4vFIm5z880380OHDuU3bNjAf/311/y0adP4adOmJXDVsUdaNcbz6XnMNTU1vEql4h977DH+4MGD/KpVq/js7Gz+zTffFLd5/PHHeYPBwP/f//0f/8033/AXX3wxP2LECL63tzeBK4+eG264gR8yZAi/du1a/siRI/x7773HDxo0iL/nnnvEbdLhmM1mM79r1y5+165dPAD+//2//8fv2rVLrJCSc4zz5s3jJ06cyG/bto3/4osv+NGjR/PXXHNNog4pLKGO2W638xdddBFfUVHB79692+e7zWaziftIp2MOhH/VGM+n3jH7Q0IoQTz77LP80KFDeY1Gw5911ln8V199leglxQwAAW+vvvqquE1vby//y1/+ki8oKOCzs7P5n/70p3xTU1PiFj0A+AuhdD3m//znP/ypp57Ka7Vafty4cfwLL7zg87jb7eYffPBBvrS0lNdqtfzs2bP52traBK22/3R1dfG/+tWv+KFDh/JZWVl8VVUV/8ADD/icDNPhmD/77LOAf8c33HADz/PyjrG9vZ2/5ppr+NzcXD4/P5+/8cYbebPZnICjkUeoYz5y5EjQ77bPPvtM3Ec6HXMgAgmhVDtmf2j6PEEQBEEQGQt5hAiCIAiCyFhICBEEQRAEkbGQECIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgiAIgshYSAgRBJFSLFq0CJdcckmil0EQRJpAQoggCIIgiIyFhBBBECnLrFmzcOutt+L2229HQUEBSktL8eKLL6Knpwc33ngj8vLyMGrUKHz44Yfic1wuFxYvXowRI0ZAp9Nh7Nix+POf/+yzX6fTidtuuw0GgwFFRUW49957ccMNN/hEotxuN1auXCnu5/TTT8e7774br0MnCCJGkBAiCCKl+cc//oFBgwahpqYGt956K37xi1/giiuuwPTp07Fz506cf/75WLhwISwWCwBBwFRUVOCdd97Bd999h4ceegj3338/3n77bXGff/jDH7Bq1Sq8+uqr2LJlC7q6urBmzRqf1125ciVef/11PPfcc9i3bx/uuOMOXHfdddi0aVM8D58giH5C0+cJgkgpFi1ahM7OTqxZswazZs2Cy+XC559/DkCI9uj1elx66aV4/fXXAQDNzc0YPHgwtm7dih/84AcB97ls2TI0NzeLEZ2ysjLcdddduOuuu8T9VlVVYeLEiVizZg1sNhsKCwvxySefYNq0aeJ+fv7zn8NisWD16tUD+RYQBBFDVIleAEEQRH847bTTxP8rlUoUFRVhwoQJ4n2lpaUAgJaWFvG+v/71r3jllVdw/Phx9Pb2wm6344wzzgAAmEwmnDx5EmeddZbPfidPngy32w0AOHToECwWC370ox/5rMVut2PixIkxP0aCIAYOEkIEQaQ0arXa52eO43zu4zgOAEQR89Zbb+Guu+7CU089hWnTpiEvLw9//OMfsW3bNtmv2d3dDQD473//iyFDhvg8ptVqozoOgiASAwkhgiAyii1btmD69On45S9/Kd53+PBh8f96vR6lpaXYvn07zj33XABCamznzp1i1Gj8+PHQarU4fvw4Zs6cGdf1EwQRW0gIEQSRUYwePRqvv/46PvroI4wYMQJvvPEGtm/fjhEjRojb3HrrrVi5ciVGjRqFcePG4dlnn0VHR4cYXcrLy8Ndd92FO+64A263GzNmzIDJZMKWLVuQn5+PG264IVGHRxBEhJAQIggio7jpppuwa9cuXHXVVeA4Dtdccw1++ctf+pTY33vvvWhubsb1118PpVKJpUuXYu7cuVAqleI2jz76KIqLi7Fy5UrU1dXBYDBg0qRJuP/++xNxWARBRAlVjREEQYTB7XajuroaV155JR599NFEL4cgiBhCESGCIAg/jh07ho8//hgzZ86EzWbDX/7yFxw5cgTXXnttopdGEESMoYaKBEEQfigUCrz22ms488wzcfbZZ+Pbb7/FJ598gurq6kQvjSCIGEOpMYIgCIIgMhaKCBEEQRAEkbGQECIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgiAIgshYSAgRBEEQBJGx/H9s6abPNMCm9gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -429,17 +485,24 @@ "\n", "ax.plot(energies)\n", "ax.scatter(\n", - " selected_indices, selection_energies, marker=\"x\", color=\"red\", label=\"selection\"\n", + " selected_indices[0], selection_energies, marker=\"x\", color=\"red\", label=\"selection\"\n", ")\n", "ax.set_ylabel(\"Energy / eV\")\n", "ax.set_xlabel(\"Image\")\n", "ax.legend()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "apax311", + "display_name": "new_defaults", "language": "python", "name": "python3" }, @@ -453,7 +516,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.10" } }, "nbformat": 4, From bd0d1845690a264a2468fd320565365390739160 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Wed, 20 Nov 2024 18:10:49 +0000 Subject: [PATCH 05/17] config updates --- apax/cli/templates/train_config_full.yaml | 40 ++++++++++++++--------- apax/config/lr_config.py | 2 +- apax/config/md_config.py | 2 +- apax/config/model_config.py | 2 +- 4 files changed, 27 insertions(+), 19 deletions(-) diff --git a/apax/cli/templates/train_config_full.yaml b/apax/cli/templates/train_config_full.yaml index 13d89656..dadc6d3d 100644 --- a/apax/cli/templates/train_config_full.yaml +++ b/apax/cli/templates/train_config_full.yaml @@ -24,7 +24,7 @@ data: n_train: 1000 n_valid: 100 - batch_size: 32 + batch_size: 8 valid_batch_size: 100 shift_method: "per_element_regression_shift" @@ -38,11 +38,17 @@ data: model: name: gmnn + use_ntk: false basis: - name: gaussian - n_basis: 7 - r_max: 6.0 - r_min: 0.5 + name: bessel + n_basis: 16 + r_max: 6.5 + + # if you would like to use emirical repulsion corrections + # with the following example. + # empirical_corrections: + # - name: exponential + # r_max: 1.5 ensemble: null # if you would like to train model ensembles, this can be achieved with @@ -53,15 +59,15 @@ model: n_radial: 5 n_contr: 8 - nn: [512, 512] + nn: [256, 256] - calc_stress: true + calc_stress: false - w_init: normal + w_init: lecun b_init: zeros - descriptor_dtype: fp64 + descriptor_dtype: fp32 readout_dtype: fp32 - scale_shift_dtype: fp32 + scale_shift_dtype: fp64 emb_init: uniform loss: @@ -86,15 +92,17 @@ metrics: optimizer: name: adam kwargs: {} - emb_lr: 0.03 - nn_lr: 0.03 + emb_lr: 0.01 + nn_lr: 0.01 scale_lr: 0.001 - shift_lr: 0.05 + shift_lr: 0.03 zbl_lr: 0.001 schedule: - name: linear - transition_begin: 0 - end_value: 1e-6 + name: cyclic_cosine + period: 20 + decay_factor: 0.90 + + callbacks: - name: csv diff --git a/apax/config/lr_config.py b/apax/config/lr_config.py index 23791f2b..23ccc389 100644 --- a/apax/config/lr_config.py +++ b/apax/config/lr_config.py @@ -42,4 +42,4 @@ class CyclicCosineLR(LRSchedule, frozen=True, extra="forbid"): name: Literal["cyclic_cosine"] period: int = 20 - decay_factor: NonNegativeFloat = 1.0 + decay_factor: NonNegativeFloat = 0.90 diff --git a/apax/config/md_config.py b/apax/config/md_config.py index aa1f209b..b93451ce 100644 --- a/apax/config/md_config.py +++ b/apax/config/md_config.py @@ -275,7 +275,7 @@ class MDConfig(BaseModel, frozen=True, extra="forbid"): duration: PositiveFloat n_inner: PositiveInt = 100 sampling_rate: PositiveInt = 10 - buffer_size: PositiveInt = 100 + buffer_size: PositiveInt = 5000 dr_threshold: PositiveFloat = 0.5 extra_capacity: NonNegativeInt = 0 diff --git a/apax/config/model_config.py b/apax/config/model_config.py index 4ac054fd..5c4d495d 100644 --- a/apax/config/model_config.py +++ b/apax/config/model_config.py @@ -42,7 +42,7 @@ class BesselBasisConfig(BaseModel, extra="forbid"): """ name: Literal["bessel"] = "bessel" - n_basis: PositiveInt = 7 + n_basis: PositiveInt = 16 r_max: PositiveFloat = 6.0 From 2d3f5d40ea8f41917b9c99a7deab2e995686f363 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Wed, 20 Nov 2024 18:11:10 +0000 Subject: [PATCH 06/17] idk --- apax/nodes/optimizer/__init__.py | 3 + apax/nodes/optimizer/get_optimizer.py | 157 ++++++++++++++++++++++++++ apax/nodes/optimizer/optimizers.py | 84 ++++++++++++++ 3 files changed, 244 insertions(+) create mode 100644 apax/nodes/optimizer/__init__.py create mode 100644 apax/nodes/optimizer/get_optimizer.py create mode 100644 apax/nodes/optimizer/optimizers.py diff --git a/apax/nodes/optimizer/__init__.py b/apax/nodes/optimizer/__init__.py new file mode 100644 index 00000000..8d73c6f6 --- /dev/null +++ b/apax/nodes/optimizer/__init__.py @@ -0,0 +1,3 @@ +from apax.optimizer.get_optimizer import get_opt + +__all__ = ["get_opt"] diff --git a/apax/nodes/optimizer/get_optimizer.py b/apax/nodes/optimizer/get_optimizer.py new file mode 100644 index 00000000..d25d2ba0 --- /dev/null +++ b/apax/nodes/optimizer/get_optimizer.py @@ -0,0 +1,157 @@ +import logging + +import jax.numpy as jnp +import numpy as np +import optax +from flax import traverse_util +from flax.core.frozen_dict import freeze +from optax._src import base + +from apax.optimizer.optimizers import ademamix, sam + +log = logging.getLogger(__name__) + + +def cyclic_cosine_decay_schedule( + init_value: float, + steps_per_epoch, + period: int, + decay_factor: float = 0.9, +) -> base.Schedule: + r"""Returns a function which implements cyclic cosine learning rate decay. + + Args: + init_value: An initial value for the learning rate. + + Returns: + schedule + A function that maps step counts to values. + """ + + def schedule(count): + cycle = count // (period * steps_per_epoch) + step_in_period = jnp.mod(count, period * steps_per_epoch) + arg = np.pi * step_in_period / (period * steps_per_epoch) + lr = init_value / 2 * (jnp.cos(arg) + 1) + lr = lr * (decay_factor**cycle) + return lr + + return schedule + + +def get_schedule( + lr: float, + n_epochs: int, + steps_per_epoch: int, + schedule_kwargs: dict, +) -> optax._src.base.Schedule: + """ + builds a linear learning rate schedule. + """ + schedule_kwargs = schedule_kwargs.copy() + name = schedule_kwargs.pop("name") + if name == "linear": + lr_schedule = optax.linear_schedule( + init_value=lr, transition_steps=n_epochs * steps_per_epoch, **schedule_kwargs + ) + elif name == "cyclic_cosine": + lr_schedule = cyclic_cosine_decay_schedule(lr, steps_per_epoch, **schedule_kwargs) + else: + raise KeyError(f"unknown learning rate schedule: {name}") + return lr_schedule + + +class OptimizerFactory: + def __init__( + self, opt, n_epochs, steps_per_epoch, gradient_clipping, kwargs, schedule + ) -> None: + self.opt = opt + self.n_epochs = n_epochs + self.steps_per_epoch = steps_per_epoch + self.gradient_clipping = gradient_clipping + self.kwargs = kwargs + self.schedule = schedule + + def create(self, lr): + if lr <= 1e-7: + optimizer = optax.set_to_zero() + else: + schedule = get_schedule( + lr, self.n_epochs, self.steps_per_epoch, self.schedule + ) + optimizer = optax.chain( + optax.clip(self.gradient_clipping), + self.opt(schedule, **self.kwargs), + optax.zero_nans(), + ) + return optimizer + + +def get_opt( + params, + n_epochs: int, + steps_per_epoch: int, + emb_lr: float = 0.02, + nn_lr: float = 0.03, + scale_lr: float = 0.001, + shift_lr: float = 0.05, + zbl_lr: float = 0.001, + rep_scale_lr: float = 0.001, + rep_prefactor_lr: float = 0.0001, + gradient_clipping=1000.0, + name: str = "adam", + kwargs: dict = {}, + schedule: dict = {}, +) -> optax._src.base.GradientTransformation: + """ + Builds an optimizer with different learning rates for each parameter group. + Several `optax` optimizers are supported. + """ + + log.info("Initializing Optimizer") + if name == "sam": + opt = sam + elif name == "ademamix": + opt = ademamix + else: + opt = getattr(optax, name) + + opt_fac = OptimizerFactory( + opt, n_epochs, steps_per_epoch, gradient_clipping, kwargs, schedule + ) + + nn_opt = opt_fac.create(nn_lr) + emb_opt = opt_fac.create(emb_lr) + scale_opt = opt_fac.create(scale_lr) + shift_opt = opt_fac.create(shift_lr) + zbl_opt = opt_fac.create(zbl_lr) + rep_scale_opt = opt_fac.create(rep_scale_lr) + rep_prefactor_opt = opt_fac.create(rep_prefactor_lr) + + partition_optimizers = { + "w": nn_opt, + "b": nn_opt, + "atomic_type_embedding": emb_opt, + "scale_per_element": scale_opt, + "shift_per_element": shift_opt, + "a_exp": zbl_opt, + "a_num": zbl_opt, + "coefficients": zbl_opt, + "exponents": zbl_opt, + "rep_scale": rep_scale_opt, + "rep_prefactor": rep_prefactor_opt, + "kernel": nn_opt, + "bias": nn_opt, + "embedding": emb_opt, + "weights_K": nn_opt, + "weights_Q": nn_opt, + "weights_V": nn_opt, + "scale": scale_opt, + } + + param_partitions = freeze( + traverse_util.path_aware_map(lambda path, v: path[-1], params) + ) + tx = optax.multi_transform(partition_optimizers, param_partitions) + + return tx diff --git a/apax/nodes/optimizer/optimizers.py b/apax/nodes/optimizer/optimizers.py new file mode 100644 index 00000000..22237e22 --- /dev/null +++ b/apax/nodes/optimizer/optimizers.py @@ -0,0 +1,84 @@ +from typing import NamedTuple + +import chex +import jax.numpy as jnp +import optax +from jax import tree_util as jtu +from optax import bias_correction, contrib, update_moment, update_moment_per_elem_norm +from optax._src import base, combine, numerics, transform +from optax.tree_utils import tree_zeros_like + + +class ScaleByAdemamixState(NamedTuple): + count: chex.Array + count_m2: chex.Array + m1: base.Updates + m2: base.Updates + nu: base.Updates + + +def ademamix( + lr, + b1=0.9, + b2=0.999, + b3=0.9999, + alpha=5.0, + b3_scheduler=None, # TODO maybe implement schedules + alpha_scheduler=None, + eps=1e-8, + weight_decay=0.0, +): + """AdEMAmix implementation directly taken from the original implementation: + 2409.03137 + """ + return combine.chain( + scale_by_ademamix(b1, b2, b3, alpha, b3_scheduler, alpha_scheduler, eps), + transform.add_decayed_weights(weight_decay), + transform.scale_by_learning_rate(lr), + ) + + +def scale_by_ademamix(b1, b2, b3, alpha, b3_scheduler, alpha_scheduler, eps): + def init_fn(params): + m1 = tree_zeros_like(params) # fast EMA + m2 = tree_zeros_like(params) # slow EMA + nu = tree_zeros_like(params) # second moment estimate + return ScaleByAdemamixState( + count=jnp.zeros([], jnp.int32), + count_m2=jnp.zeros([], jnp.int32), + m1=m1, + m2=m2, + nu=nu, + ) + + def update_fn(updates, state, params=None): + del params + c_b3 = b3_scheduler(state.count_m2) if b3_scheduler is not None else b3 + c_alpha = ( + alpha_scheduler(state.count_m2) if alpha_scheduler is not None else alpha + ) + m1 = update_moment(updates, state.m1, b1, 1) # m1 = b1 * m1 + (1-b1) * updates + m2 = update_moment(updates, state.m2, c_b3, 1) + nu = update_moment_per_elem_norm(updates, state.nu, b2, 2) + count_inc = numerics.safe_int32_increment(state.count) + count_m2_inc = numerics.safe_int32_increment(state.count_m2) + m1_hat = bias_correction(m1, b1, count_inc) + nu_hat = bias_correction(nu, b2, count_inc) + updates = jtu.tree_map( + lambda m1_, m2_, v_: (m1_ + c_alpha * m2_) / (jnp.sqrt(v_) + eps), + m1_hat, + m2, + nu_hat, + ) + return updates, ScaleByAdemamixState( + count=count_inc, count_m2=count_m2_inc, m1=m1, m2=m2, nu=nu + ) + + return base.GradientTransformation(init_fn, update_fn) + + +def sam(lr=1e-3, b1=0.9, b2=0.999, rho=0.001, sync_period=2): + """A SAM optimizer using Adam for the outer optimizer.""" + opt = optax.adam(lr, b1=b1, b2=b2) + adv_opt = optax.chain(contrib.normalize(), optax.sgd(rho)) + return contrib.sam(opt, adv_opt, sync_period=sync_period) From 15cc06fc7754c2171910df5f1f6ee88400e78806 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Wed, 20 Nov 2024 18:17:51 +0000 Subject: [PATCH 07/17] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- apax/md/simulate.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/apax/md/simulate.py b/apax/md/simulate.py index 2cb7a64c..d9a23d3d 100644 --- a/apax/md/simulate.py +++ b/apax/md/simulate.py @@ -17,7 +17,7 @@ from apax.config import Config, MDConfig, parse_config from apax.config.md_config import Integrator from apax.md.ase_calc import make_ensemble, maybe_vmap -from apax.md.constraints import Constraint, ConstraintBase, FixAtoms +from apax.md.constraints import Constraint, ConstraintBase from apax.md.dynamics_checks import DynamicsCheckBase, DynamicsChecks from apax.md.io import H5TrajHandler, TrajHandler, truncate_trajectory_to_checkpoint from apax.md.md_checkpoint import load_md_state From df7639f2a0c9f2a693dd55e95ca67cff89ae5854 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Thu, 21 Nov 2024 16:31:49 +0000 Subject: [PATCH 08/17] config defaults --- apax/cli/templates/md_config_minimal.yaml | 2 +- apax/cli/templates/train_config_full.yaml | 21 +++++++------- apax/cli/templates/train_config_minimal.yaml | 2 +- apax/config/lr_config.py | 8 +++--- apax/config/md_config.py | 4 +-- apax/config/model_config.py | 29 ++++++++++++-------- apax/config/train_config.py | 23 ++++++++++------ 7 files changed, 50 insertions(+), 39 deletions(-) diff --git a/apax/cli/templates/md_config_minimal.yaml b/apax/cli/templates/md_config_minimal.yaml index 4f0a0a4e..d0afd0b7 100644 --- a/apax/cli/templates/md_config_minimal.yaml +++ b/apax/cli/templates/md_config_minimal.yaml @@ -13,7 +13,7 @@ ensemble: duration: # fs n_inner: 100 # compiled innner steps sampling_rate: 10 # dump interval -buffer_size: 100 +buffer_size: 2500 dr_threshold: 0.5 # Neighborlist skin extra_capacity: 0 diff --git a/apax/cli/templates/train_config_full.yaml b/apax/cli/templates/train_config_full.yaml index dadc6d3d..6de499ad 100644 --- a/apax/cli/templates/train_config_full.yaml +++ b/apax/cli/templates/train_config_full.yaml @@ -1,7 +1,6 @@ n_epochs: seed: 1 patience: null -n_jitted_steps: 1 data_parallel: True weight_average: null @@ -24,7 +23,7 @@ data: n_train: 1000 n_valid: 100 - batch_size: 8 + batch_size: 4 valid_batch_size: 100 shift_method: "per_element_regression_shift" @@ -38,23 +37,23 @@ data: model: name: gmnn - use_ntk: false basis: name: bessel n_basis: 16 r_max: 6.5 + ensemble: null # if you would like to use emirical repulsion corrections # with the following example. # empirical_corrections: # - name: exponential # r_max: 1.5 - ensemble: null - # if you would like to train model ensembles, this can be achieved with - # the following example. + # if you would like to train model ensembles, this can be + # achieved with the following example. + # Hint: loss type hase to be changed to a probabalistic loss like nll or crps # ensemble: - # kind: full + # kind: shallow # n_members: N n_radial: 5 @@ -69,6 +68,7 @@ model: readout_dtype: fp32 scale_shift_dtype: fp64 emb_init: uniform + use_ntk: false loss: - name: energy @@ -99,15 +99,14 @@ optimizer: zbl_lr: 0.001 schedule: name: cyclic_cosine - period: 20 - decay_factor: 0.90 - + period: 40 + decay_factor: 0.93 callbacks: - name: csv checkpoints: - ckpt_interval: 1 + ckpt_interval: 500 # The options below are used for transfer learning base_model_checkpoint: null reset_layers: [] diff --git a/apax/cli/templates/train_config_minimal.yaml b/apax/cli/templates/train_config_minimal.yaml index 67f96a08..8aaa6d98 100644 --- a/apax/cli/templates/train_config_minimal.yaml +++ b/apax/cli/templates/train_config_minimal.yaml @@ -8,7 +8,7 @@ data: n_train: 1000 n_valid: 100 - batch_size: 32 + batch_size: 4 valid_batch_size: 100 metrics: diff --git a/apax/config/lr_config.py b/apax/config/lr_config.py index 23ccc389..770fdf89 100644 --- a/apax/config/lr_config.py +++ b/apax/config/lr_config.py @@ -33,13 +33,13 @@ class CyclicCosineLR(LRSchedule, frozen=True, extra="forbid"): Parameters ---------- - period: int = 20 + period: int = 40 Length of a cycle in epochs. - decay_factor: NonNegativeFloat = 1.0 + decay_factor: NonNegativeFloat = 0.93 Factor by which to decrease the LR after each cycle. 1.0 means no decrease. """ name: Literal["cyclic_cosine"] - period: int = 20 - decay_factor: NonNegativeFloat = 0.90 + period: int = 40 + decay_factor: NonNegativeFloat = 0.93 diff --git a/apax/config/md_config.py b/apax/config/md_config.py index b93451ce..606809b5 100644 --- a/apax/config/md_config.py +++ b/apax/config/md_config.py @@ -234,7 +234,7 @@ class MDConfig(BaseModel, frozen=True, extra="forbid"): | `jax.lax.fori_loop` loop). Also determines atoms buffer size. sampling_rate : int, default = 10 | Interval between saving frames. - buffer_size : int, default = 100 + buffer_size : int, default = 2500 | Number of collected frames to be dumped at once. dr_threshold : float, default = 0.5 | Skin of the neighborlist. @@ -275,7 +275,7 @@ class MDConfig(BaseModel, frozen=True, extra="forbid"): duration: PositiveFloat n_inner: PositiveInt = 100 sampling_rate: PositiveInt = 10 - buffer_size: PositiveInt = 5000 + buffer_size: PositiveInt = 2500 dr_threshold: PositiveFloat = 0.5 extra_capacity: NonNegativeInt = 0 diff --git a/apax/config/model_config.py b/apax/config/model_config.py index 5c4d495d..b7a9ad91 100644 --- a/apax/config/model_config.py +++ b/apax/config/model_config.py @@ -35,15 +35,15 @@ class BesselBasisConfig(BaseModel, extra="forbid"): Parameters ---------- - n_basis : PositiveInt, default = 7 + n_basis : PositiveInt, default = 16 Number of uncontracted basis functions. - r_max : PositiveFloat, default = 6.0 + r_max : PositiveFloat, default = 6.5 Cutoff radius of the descriptor. """ name: Literal["bessel"] = "bessel" n_basis: PositiveInt = 16 - r_max: PositiveFloat = 6.0 + r_max: PositiveFloat = 6.5 BasisConfig = Union[GaussianBasisConfig, BesselBasisConfig] @@ -84,6 +84,11 @@ class ShallowEnsembleConfig(BaseModel, extra="forbid"): If set to an integer, the jacobian of ensemble energies wrt. to positions will be computed in chunks of that size. This sacrifices some performance for the possibility to use relatively large ensemble sizes. + + Hint + ---------- + Loss type hase to be changed to a probabalistic loss like 'nll' or 'crps' + """ kind: Literal["shallow"] = "shallow" @@ -101,12 +106,12 @@ class Correction(BaseModel, extra="forbid"): class ZBLRepulsion(Correction, extra="forbid"): name: Literal["zbl"] - r_max: NonNegativeFloat = 2.0 + r_max: NonNegativeFloat = 1.5 class ExponentialRepulsion(Correction, extra="forbid"): name: Literal["exponential"] - r_max: NonNegativeFloat = 2.0 + r_max: NonNegativeFloat = 1.5 EmpiricalCorrection = Union[ZBLRepulsion, ExponentialRepulsion] @@ -120,13 +125,13 @@ class BaseModelConfig(BaseModel, extra="forbid"): ---------- basis : BasisConfig, default = GaussianBasisConfig() Configuration for primitive basis funtions. - nn : List[PositiveInt], default = [512, 512] + nn : List[PositiveInt], default = [256, 256] Number of hidden layers and units in those layers. - w_init : Literal["normal", "lecun"], default = "normal" + w_init : Literal["normal", "lecun"], default = "lecun" Initialization scheme for the neural network weights. - b_init : Literal["normal", "zeros"], default = "normal" + b_init : Literal["normal", "zeros"], default = "zeros" Initialization scheme for the neural network biases. - use_ntk : bool, default = True + use_ntk : bool, default = False Whether or not to use NTK parametrization. ensemble : Optional[EnsembleConfig], default = None What kind of model ensemble to use (optional). @@ -134,17 +139,17 @@ class BaseModelConfig(BaseModel, extra="forbid"): Whether to include the ZBL correction. calc_stress : bool, default = False Whether to calculate stress during model evaluation. - descriptor_dtype : Literal["fp32", "fp64"], default = "fp64" + descriptor_dtype : Literal["fp32", "fp64"], default = "fp32" Data type for descriptor calculations. readout_dtype : Literal["fp32", "fp64"], default = "fp32" Data type for readout calculations. - scale_shift_dtype : Literal["fp32", "fp64"], default = "fp32" + scale_shift_dtype : Literal["fp32", "fp64"], default = "fp64" Data type for scale and shift parameters. """ basis: BasisConfig = Field(BesselBasisConfig(name="bessel"), discriminator="name") - nn: List[PositiveInt] = [128, 128] + nn: List[PositiveInt] = [256, 256] w_init: Literal["normal", "lecun"] = "lecun" b_init: Literal["normal", "zeros"] = "zeros" use_ntk: bool = False diff --git a/apax/config/train_config.py b/apax/config/train_config.py index 627d3025..6450b343 100644 --- a/apax/config/train_config.py +++ b/apax/config/train_config.py @@ -118,7 +118,10 @@ class DataConfig(BaseModel, extra="forbid"): | dict of property name, shape (ragged or fixed) pairs. Currently unused. energy_regularisation : | Magnitude of the regularization in the per-element energy regression. - + pos_unit : str, default = "Ang" + unit of length + energy_unit : str, default = "eV" + unit of energy """ directory: str @@ -210,16 +213,20 @@ class OptimizerConfig(BaseModel, frozen=True, extra="forbid"): ---------- name : str, default = "adam" Name of the optimizer. Can be any `optax` optimizer. - emb_lr : NonNegativeFloat, default = 0.02 + emb_lr : NonNegativeFloat, default = 0.01 Learning rate of the elemental embedding contraction coefficients. - nn_lr : NonNegativeFloat, default = 0.03 + nn_lr : NonNegativeFloat, default = 0.01 Learning rate of the neural network parameters. scale_lr : NonNegativeFloat, default = 0.001 Learning rate of the elemental output scaling factors. - shift_lr : NonNegativeFloat, default = 0.05 + shift_lr : NonNegativeFloat, default = 0.03 Learning rate of the elemental output shifts. zbl_lr : NonNegativeFloat, default = 0.001 Learning rate of the ZBL correction parameters. + rep_scale_lr : NonNegativeFloat, default = 0.001 + LR for the length scale of thes exponential repulsion potential. + rep_prefactor_lr : NonNegativeFloat, default = 0.0001 + LR for the strength of the exponential repulsion potential. gradient_clipping: NonNegativeFloat, default = 1000.0 Per element Gradient clipping value. Default is so high that it effectively disabled. @@ -230,10 +237,10 @@ class OptimizerConfig(BaseModel, frozen=True, extra="forbid"): """ name: str = "adam" - emb_lr: NonNegativeFloat = 0.02 - nn_lr: NonNegativeFloat = 0.03 + emb_lr: NonNegativeFloat = 0.01 + nn_lr: NonNegativeFloat = 0.01 scale_lr: NonNegativeFloat = 0.001 - shift_lr: NonNegativeFloat = 0.05 + shift_lr: NonNegativeFloat = 0.03 zbl_lr: NonNegativeFloat = 0.001 rep_scale_lr: NonNegativeFloat = 0.001 rep_prefactor_lr: NonNegativeFloat = 0.0001 @@ -362,7 +369,7 @@ class CheckpointConfig(BaseModel, extra="forbid"): reset_layers: List of layer names for which the parameters will be reinitialized. """ - ckpt_interval: PositiveInt = 1 + ckpt_interval: PositiveInt = 500 base_model_checkpoint: Optional[str] = None reset_layers: List[str] = [] From fb5a7c478d70004583c5cd748908c5e69b29d790 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Thu, 21 Nov 2024 16:31:59 +0000 Subject: [PATCH 09/17] tutorials --- examples/01_Model_Training.ipynb | 56 ++--- examples/02_Molecular_Dynamics.ipynb | 130 ++++++------ examples/03_Transfer_Learning.ipynb | 136 +++++++------ examples/04_Batch_Data_Selection.ipynb | 269 +++++++++++-------------- 4 files changed, 292 insertions(+), 299 deletions(-) diff --git a/examples/01_Model_Training.ipynb b/examples/01_Model_Training.ipynb index bdcaa16d..8348e2ea 100644 --- a/examples/01_Model_Training.ipynb +++ b/examples/01_Model_Training.ipynb @@ -255,23 +255,23 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732123698.225144 453396 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732123698.228412 453396 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "INFO | 17:28:20 | Running on [CudaDevice(id=0)]\n", - "INFO | 17:28:20 | Initializing Callbacks\n", - "INFO | 17:28:20 | Initializing Loss Function\n", - "INFO | 17:28:20 | Initializing Metrics\n", - "INFO | 17:28:20 | Running Input Pipeline\n", - "INFO | 17:28:20 | Reading data file project/ethanol_ccsd_t-train_mod.xyz\n", - "INFO | 17:28:20 | Found n_train: 990, n_val: 10\n", - "INFO | 17:28:21 | Computing per element energy regression.\n", - "INFO | 17:28:21 | Building Standard model\n", - "INFO | 17:28:21 | initializing 1 model(s)\n", - "INFO | 17:28:28 | Initializing Optimizer\n", - "INFO | 17:28:28 | Beginning Training\n", - "Epochs: 0%| | 0/100 [00:00" ] @@ -399,7 +399,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Structure: 100%|████████████████████████████████| 999/999 [00:04<00:00, 234.76it/s, test_loss=0.018]\n" + "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 242.67it/s, test_loss=0.0139]\n" ] } ], @@ -419,9 +419,9 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732123824.572919 455329 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732123824.576016 455329 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "Structure: 100%|███████████████████████████████| 999/999 [00:03<00:00, 253.48it/s, test_loss=0.0218]\n" + "E0000 00:00:1732191672.090079 472347 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732191672.093383 472347 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 248.50it/s, test_loss=0.0138]\n" ] } ], @@ -436,7 +436,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwEUlEQVR4nOzdfVyN9/8H8NepdLrRHdGNuyLkJiIq0Wia2or65t7XXeuLmTaEWUZuZnJTMsrCMJuVm2ptX6wtqa2thNSIIiYSJ2KK0M05n98f/c717dKJ7k/n9H4+HtdD57re13U+n3Nd6n2u63MjYIwxEEIIIYQQIoOKvAtACCGEEEJaL0oWCSGEEEJIrShZJIQQQgghtaJkkRBCCCGE1IqSRUIIIYQQUitKFgkhhBBCSK0oWSSEEEIIIbWiZJEQQgghhNSKkkVCCCGEEFIrShYJIXJjZmYGgUAAgUCAxYsXvzZ227ZtXKyamloLlfDN8vLyIBAIYGZmJu+iEEJIs6BkkRDSKnz//fcoLy+vdfuBAwea9P0oySOEkLqhZJEQInfDhg3Do0eP8OOPP8rcnpKSgpycHAwfPryFS/ZmXbp0QXZ2NhISEuRdFEIIaRaULBJC5O79998HUPvdw/379/PiWpN27drB0tISvXr1kndRCCGkWVCySAiROysrKwwbNgy//vorCgoKeNuePXuGY8eOoWvXrhg3blytx6isrMTXX3+NMWPGoEOHDhAKhTA3N8fChQuRn5/Pi507dy7Mzc0BALdv3+baQkoXqXXr1kEgEGDdunW4c+cOfHx80K1bN7Rr1w5z584F8ObH2c+fP8eOHTswatQoGBgYQCgUokePHhg/fjwiIiJ4scXFxVi9ejWsrKygra0NoVAIU1NTjBw5EgEBAaioqKjrR0oIIU2m9bQSJ4S0ae+//z4uXLiAb775Bp999hm3/tixY3j27BkWL14MFRXZ32+fPn2KCRMmICkpCe3bt4eNjQ06deqEy5cvIzw8HMePH0d8fDyGDBkCABg1ahSePXuG6OhoaGtrY9KkSa8tW25uLoYMGQJ1dXWMHDkSjDEYGhq+sU75+flwdXXF1atXoaWlhZEjR6Jjx44oKChAcnIyLl++jBkzZgCoSipHjRqFrKwsdOrUCWPHjoW2tjZEIhFycnKQkpICPz8/6Ovr1/ETJYSQJsIIIUROevTowQCw5ORk9uTJE6apqcksLCx4MSNHjmQCgYDdvHmT3bp1iwFgqqqqvJgZM2YwAMzd3Z0VFhbytoWEhDAArHfv3qyyspJbLz1Wjx49ai3f2rVrGQAGgM2cOZO9fPmyRkxtxxGLxWzYsGEMABs3bhx78OABb/uLFy/YyZMnudeHDh1iANi7777LysvLaxwrKSmJlZWV1VpWQghpLvQYmhDSKujp6cHLyws3btzAb7/9BgC4du0a/vzzT4wePRo9e/aUuV92djYiIyNhamqKiIgIdO7cmbd9yZIleO+995Cbm4uff/65QWXr0KEDQkNDIRQK67zPf//7X1y4cAEmJiaIjo5Gp06deNs1NDTw3nvvca8LCwsBAO+88w7atWvHi1VRUcHo0aOhrq7eoPITQkhjULJICGk1Xu3oIv33dR1bTp06BcYY3n33Xejo6MiMGTNmDICqXtUN4ezsDD09vXrtExcXBwCYMWMG2rdv/8Z4aU/vrVu34ttvv8Xjx4/rX1BCCGkGlCwSQloNJycnmJubIyoqCv/88w++/fZb6OrqvrZN4d9//w2gqsf0qx1VpMsnn3wCAHj48GGDytWQsRhv374NALC0tKxT/JgxY7By5Uo8ePAAc+bMgaGhIfr27Yv3338fP/74IyQSSb3LQAghTYE6uBBCWg2BQIC5c+di7dq1mDNnDkQiEebPnw9NTc1a95EmUdbW1hg8ePBrj29nZ9egcr3u/ZvS5s2b8cEHH+C///0v/vjjD/z55584ePAgDh48iOHDhyMxMRHa2totUhZCCJGiZJEQ0qrMnTsX69evx3//+18Abx5bsVu3bgCAkSNHIjQ0tNnLV1fdu3cHAOTk5NRrPzMzM3z00Uf46KOPAADnz5/HzJkzcf78eWzduhXr169v8rISQsjr0GNoQkir0r17d3h4eKBjx46wt7d/493Ad999FwDw008/4eXLl3V+H2lnkcrKyoYX9jVcXV0BAJGRkSgtLW3wcYYPH44PP/wQAJCZmdkURSOEkHqhZJEQ0urExMSgqKgIqampb4wdMmQIJk6ciPz8fHh5eSEvL69GTGlpKb7//nuuxzEAdOrUCerq6hCJRM3SmWTChAkYMmQI7t27h8mTJ+PRo0e87S9fvuT1zv7hhx/w+++/12ibWFFRwXWW6dGjR5OXkxBC3oQeQxNCFN7Bgwfx5MkT/Pzzz+jbty8GDx4Mc3NzMMaQl5eHv/76C+Xl5cjOzoaRkRGAqmn6JkyYgKioKFhbW2PUqFHQ0tICAHz99deNLpOKigp++OEHuLi44Oeff0b37t0xatQoblDuv/76C/r6+lxy+9tvv+HLL7+EoaEhhgwZgs6dO+Pp06c4e/YsHjx4gC5dunAddQghpCVRskgIUXg6Ojr49ddfcfToURw+fBjp6enIzMyErq4uTExM8O9//xsTJkyoMX/znj170LFjR/z888+IioriptNrimQRqLoTeOHCBezevRtRUVFITU1FeXk5jI2NMXr0aG72FqCqraampib++OMPXL16Fb/99hv09PTQvXt3LFmyBPPnz0fHjh2bpFyEEFIfAsYYk3chCCGEEEJI60RtFgkhhBBCSK0oWSSEEEIIIbWiZJEQQgghhNSKkkVCCCGEEFIrShYJIYQQQkitKFkkhBBCCCG1omSREEIIIYTUipJFQgghhBBSK0oWCSGEEEJIrShZJIQQQgghtaJkkRBCCCGE1IqSRUIIIYS0Od988w0EAgHy8vLkXZRWj5JFQhTE+fPn4eDgAG1tbQgEAmRmZsq7SKSNoGuPkLZNTd4FIIS8WUVFBSZPngwNDQ2EhIRAS0sLPXr0kHexSBtA1x4hhJJFQhTAzZs3cfv2bezbtw//+c9/5F0c0obQtUcIocfQclZaWirvIhAF8ODBAwCAvr5+kxyPrjtSV3TtkbZk9+7dGDBgAIRCIUxNTbFo0SI8efKEF5Obm4uJEyfC2NgYGhoa6Nq1K6ZNm4bi4mIuJj4+HqNGjYK+vj7at2+Pvn37YtWqVS1cm6bTZpPFgoICvP/++zAyMoJQKMSAAQNw4MABbntSUhIEAgGOHTuGL774Al27doWGhgbGjh2LGzdu1DheWloaXF1doaenBy0tLYwePRp//vknL2bdunUQCAS4evUqZsyYAQMDA4waNQoAIJFIsG7dOpiamkJLSwtOTk64evUqzMzMMHfuXADA33//DYFAgJCQkBrvn5KSAoFAgMjIyDrVPy8vDwKBAEFBQQgLC0PPnj2hpaWFcePGIT8/H4wxfP755+jatSs0NTXh4eGBx48f847x448/ws3NDaamphAKhejVqxc+//xziMXiBn0+RLa5c+di9OjRAIDJkydDIBBgzJgxAIAzZ87A0dER2tra0NfXh4eHB7Kzs3n7v+66A4DDhw/D1tYWWlpaMDAwwFtvvYVff/2Vd4yff/6Zex8dHR24ubnhypUrvBiRSARvb2907doVQqEQJiYm8PDwqFfjcWlZr1+/jpkzZ0JPTw+dOnXCmjVrwBhDfn4+PDw8oKurC2NjYwQHB9c4xq5duzBgwACuPsOGDUNERAQv5k3//0kVuvbqfu2Vl5cjICAANjY20NPTg7a2NhwdHZGYmFjjvSQSCXbs2IEBAwZAQ0MDRkZGWLBgAf755586l5c0vXXr1mHRokUwNTVFcHAwJk6ciD179mDcuHGoqKgAUHWeXVxccPbsWXz00UcICwvD/Pnz8ffff3NJ5ZUrV+Du7o6ysjJs2LABwcHBmDBhgmL/zWNtkEgkYl27dmXdunVjGzZsYF999RWbMGECA8BCQkIYY4wlJiYyAGzIkCHMxsaGhYSEsHXr1jEtLS1ma2vLO15CQgJTV1dnI0aMYMHBwSwkJIQNGjSIqaurs7S0NC5u7dq1DADr378/8/DwYLt372ZhYWGMMcY++eQTBoCNHz+ehYaGsnnz5rGuXbsyQ0NDNmfOHO4YI0eOZDY2NjXq9OGHHzIdHR1WWlpap8/g1q1bDACztrZm/fv3Z9u3b2erV69m6urqzN7enq1atYo5ODiwnTt3so8//pgJBALm7e3NO4anpyebMmUK27ZtG/vqq6/Y5MmTGQC2fPnyBn0+RLaUlBS2atUqBoB9/PHH7LvvvmO//vori4+PZ2pqaqxPnz5s69atbP369czQ0JAZGBiwW7ducfu/7rpbt24dA8AcHBzYtm3b2JdffslmzJjBVq5cye3/7bffMoFAwFxdXdmuXbvYli1bmJmZGdPX1+e9j4ODA9PT02OrV69mX3/9Ndu0aRNzcnJiv/32W53rKi2rtbU1mz59Otu9ezdzc3NjANj27dtZ37592cKFC9nu3bvZyJEjGQDe8ffu3csAsEmTJrE9e/awL7/8kvn4+LCPP/6Yi6nL/39Sha69ul97Dx8+ZCYmJszPz4999dVXbOvWraxv376sXbt2LCMjg/de//nPf5iamhqbN28eCw8PZytXrmTa2tps+PDhrLy8vH4niTTYwYMHGQB269Yt9uDBA6aurs7GjRvHxGIxFxMaGsoAsAMHDjDGGMvIyGAA2PHjx2s9bkhICAPAHj582Ox1aCltMln08fFhJiYmrKioiLd+2rRpTE9Pjz1//pxLFvv168fKysq4mC+//JIBYJcvX2aMMSaRSFjv3r2Zi4sLk0gkXNzz58+Zubk5e+edd7h10l9G06dP572vSCRiampqzNPTk7de+su0erK4Z88eBoBlZ2dz68rLy2sklW8iTRY7derEnjx5wq339/dnANjgwYNZRUUFt3769OlMXV2dvXz5klfHVy1YsIBpaWlxcfX5fEjtpNdj9V9Q1tbWrHPnzuzRo0fcur/++oupqKiw2bNnc+tqu+5yc3OZiooK+9e//sX75cgY487V06dPmb6+Pps3bx5vu0gkYnp6etz6f/75hwFg27Zta1Q9pWWdP38+t66yspJ17dqVCQQCtnnzZm79P//8wzQ1NXnXvYeHBxswYMBr36Mu///J/9C1V7drr7Kykve3QhpnZGTE3n//fW5dcnIyA8C+//57XmxcXJzM9aT5VE8WIyIiGAB26tQpXkxZWRnT1dVlEydOZIwx9vfffzMA7D//+U+tN2ekx/36669rXN+Kqs09hmaMITo6GuPHjwdjDEVFRdzi4uKC4uJiXLx4kYv39vaGuro699rR0RFA1SNhAMjMzERubi5mzJiBR48ecccqLS3F2LFj8fvvv0MikfDK8MEHH/BeJyQkoLKyEh9++CFv/UcffVSj/FOmTIGGhga+//57bt0vv/yCoqIizJw5s96fx+TJk6Gnp8e9trOzAwDMnDkTampqvPXl5eUoKCjg1mlqanI/P336FEVFRXB0dMTz58+Rk5MDoGGfD3mz+/fvIzMzE3PnzkWHDh249YMGDcI777yDU6dO1djn1esuNjYWEokEAQEBUFHh/yoQCAQAqtrdPHnyBNOnT+f9X1FVVYWdnR33iE1TUxPq6upISkpqkkdp1TtSqKqqYtiwYWCMwcfHh1uvr6+Pvn37cv8Xpevu3r2L8+fPyzxuff//k5ro2pN97amqqnJ/KyQSCR4/fozKykoMGzaMd00dP34cenp6eOedd3j1srGxQfv27WU+tibN7/bt2wCAvn378tarq6ujZ8+e3HZzc3P4+fnh66+/hqGhIVxcXBAWFsZrrzh16lSMHDkS//nPf2BkZIRp06bh2LFjCv23rs31hn748CGePHmCvXv3Yu/evTJjHjx4AAMDAwBA9+7deduk66W/lHJzcwEAc+bMqfU9i4uLuf2AqoutOulFaGFhwVvfoUMH3n5A1S+p8ePHIyIiAp9//jkA4Pvvv0eXLl3w9ttv11qG2rxaP2ni2K1bN5nrq/8yvnLlClavXo0zZ86gpKSEFy/9j9OQz4e8WW2/2ACgX79++OWXX1BaWgptbW1u/avX3c2bN6GiooL+/fvX+j7S81fbtaWrqwsAEAqF2LJlC5YtWwYjIyPY29vD3d0ds2fPhrGxcf0qB9nXpYaGBgwNDWusf/ToEfd65cqVOH36NGxtbWFhYYFx48ZhxowZGDlyJIC6//8ntaNr73/rq197AHDo0CEEBwcjJyeHa+MG8Oufm5uL4uJidO7cWeb70/XX+gUHB2Pu3Ln48ccf8euvv+Ljjz9GYGAgzp49y7Xz//3335GYmIiTJ08iLi4OR48exdtvv41ff/0Vqqqq8q5CvbW5ZFGa2c+cObPWBGbQoEG4evUqANR6UhljvONt27YN1tbWMmPbt2/Pe139jlxDzJ49G8ePH0dKSgqsrKzw008/4cMPP6zxDb0uaqvfm+r95MkTjB49Grq6utiwYQN69eoFDQ0NXLx4EStXruQ+l4Z8PqR5NOS6k56/7777TuYf3up3n5csWYLx48cjNjYWv/zyC9asWYPAwECcOXMGQ4YMqdf7yrr+3nRNAlXJyrVr13DixAnExcUhOjoau3fvRkBAANavX1/n//+kabWFa+/w4cOYO3cuPD09sWLFCnTu3BmqqqoIDAzEzZs3efXq3Lkz7+lQdZ06dapXeUnTkI4deu3aNfTs2ZNbX15ejlu3bsHZ2ZkXb2VlBSsrK6xevRopKSkYOXIkwsPDsXHjRgCAiooKxo4di7Fjx2L79u3YtGkTPvvsMyQmJtY4liJoc8lip06doKOjA7FY/NoTJk0W36RXr14Aqr7lNvQCkF6kN27c4H0DffTokczHKq6urujUqRO+//572NnZ4fnz55g1a1aD3ruhkpKS8OjRI8TExOCtt97i1t+6dYsX1xSfD6mp+i+2V+Xk5MDQ0JB3Z0eWXr16QSKR4OrVq7Um8tLz17lz5zqdv169emHZsmVYtmwZcnNzYW1tjeDgYBw+fPiN+zYVbW1tTJ06FVOnTkV5eTm8vLzwxRdfwN/fv87//0nt6NqTLSoqCj179kRMTAz3KB0A1q5dW6Ocp0+fxsiRIxt944A0HWdnZ6irq2Pnzp1wdXXlzuH+/ftRXFwMNzc3AEBJSQm0tLR4X1asrKygoqKCsrIyAMDjx495TTQAcNe5NEbRtLk2i6qqqpg4cSKio6ORlZVVY/vDhw/rdTwbGxv06tULQUFBePbsWYOON3bsWKipqeGrr77irQ8NDZUZr6amhunTp+PYsWP45ptvYGVl1eJ3Q6TftKt/sy4vL8fu3bt5cU3x+ZCaTExMYG1tjUOHDvHGAMvKysKvv/6K9957743H8PT0hIqKCjZs2FCjLY30vLq4uEBXVxebNm3iPVaTkp6/58+f4+XLl7xtvXr1go6OTov+cnz1saC6ujr69+8PxhgqKiqa/P9/W0TXnmyyfiempaUhNTWVFzdlyhSIxWKuGVF1lZWVNcb0Iy2jU6dO8Pf3R1xcHFxdXREWFoaPP/4YH330EYYPH871CThz5gzMzMywdOlSfPXVV9i1axfGjh3L/W4BgA0bNmDo0KFYs2YNvv76a2zatAnz589H165deUNHKZI2d2cRADZv3ozExETY2dlh3rx56N+/Px4/foyLFy/i9OnTNcYTfB0VFRV8/fXXePfddzFgwAB4e3ujS5cuKCgoQGJiInR1dfHf//73tccwMjLC4sWLubGYXF1d8ddff+Hnn3+GoaEh71uq1OzZs7Fz504kJiZiy5Yt9f4MGsvBwQEGBgaYM2cOPv74YwgEAnz33Xe8X5RA03w+RLZt27bh3XffxYgRI+Dj44MXL15g165d0NPTw7p16964v4WFBT777DN8/vnncHR0hJeXF4RCIc6fPw9TU1MEBgZCV1cXX331FWbNmoWhQ4di2rRp6NSpE+7cuYOTJ09i5MiRCA0NxfXr1zF27FhMmTIF/fv3h5qaGn744QcUFhZi2rRpzf9h/L9x48bB2NgYI0eOhJGREbKzsxEaGgo3Nzfo6OgAaNr//20VXXs1ubu7IyYmBv/617/g5uaGW7duITw8HP379+d9UR49ejQWLFiAwMBAZGZmYty4cWjXrh1yc3Nx/PhxfPnll5g0aVKLlZv8z7p169CpUyeEhoZi6dKl6NChA+bPn49NmzahXbt2AIDBgwfDxcUF//3vf1FQUAAtLS0MHjwYP//8M+zt7QEAEyZMQF5eHg4cOICioiIYGhpi9OjRWL9+Pa9DqUJp+Q7YrUNhYSFbtGgR69atG2vXrh0zNjZmY8eOZXv37mWMyR4ugrH/DTlz8OBB3vqMjAzm5eXFOnbsyIRCIevRowebMmUKS0hI4GKkQzPIGnupsrKSrVmzhhkbGzNNTU329ttvs+zsbNaxY0f2wQcfyKzDgAEDmIqKCrt792696y+tx6vDTdRWb+lQAOfPn+fW/fnnn8ze3p5pamoyU1NT9sknn7BffvmFAWCJiYm8/evy+ZDa1XZeTp8+zUaOHMk0NTWZrq4uGz9+PLt69Sov5nXXHWOMHThwgA0ZMoQJhUJmYGDARo8ezeLj42u8v4uLC9PT02MaGhqsV69ebO7cuezChQuMMcaKiorYokWLmKWlJdPW1mZ6enrMzs6OHTt2rF71rK2sc+bMYdra2jXiR48ezRsqZ8+ePeytt97irrNevXqxFStWsOLiYt5+b/r/T/6Hrr26XXsSiYRt2rSJ9ejRgwmFQjZkyBB24sQJNmfOHNajR48a++/du5fZ2NgwTU1NpqOjw6ysrNgnn3zC7t27V69yE9ISBIy9ciuItBpPnjyBgYEBNm7ciM8++6zG9iFDhqBDhw5ISEiQQ+kIIYQQ0ha0uTaLrdWLFy9qrNuxYwcAcNNrVXfhwgVkZmZi9uzZzVwyQgghhLRldGexlfjmm2/wzTff4L333kP79u3xxx9/IDIyEuPGjcMvv/zCxWVlZSE9PR3BwcEoKirC33//DQ0NDW67WCx+YyP99u3b03A1pEU9e/ZMZgen6jp16qSQ44+R1o2uPUIar012cGmNBg0aBDU1NWzduhUlJSVcpxfpmE1SUVFR2LBhA/r27YvIyEheoggA+fn5NQbAfdXatWvr1AidkKYSFBSE9evXvzbm1q1bMDMza5kCkTaDrj1CGo/uLCqZly9f4o8//nhtTM+ePXmDjhLS3P7++2/e1GiyjBo1qsaXH0Iai649QhqPkkVCCGliYWFh2LZtG0QiEQYPHoxdu3bB1ta21vjjx49jzZo1yMvLQ+/evbFlyxbeeIXr1q3DkSNHkJ+fD3V1ddjY2OCLL77g5nKvrqysDHZ2dvjrr7+QkZFR66DXhBBSV23mMbREIsG9e/ego6Mjc9xCIj+MMTx9+hSmpqYNmrJQWdA12jrV9/o8evQo/Pz8EB4eDjs7O+zYsQMuLi64du2azPmAU1JSMH36dAQGBsLd3R0RERHw9PTExYsXMXDgQABAnz59EBoaip49e+LFixcICQnBuHHjcOPGjRrTw33yyScwNTXFX3/9Va960vXXOinD70e6tlqvOl9f8hmxp+Xl5+czALS04iU/P1/el4lc0TXaupe6Xp+2trZs0aJF3GuxWMxMTU1ZYGCgzPgpU6YwNzc33jo7Ozu2YMGCWt+juLiYAWCnT5/mrT916hSztLRkV65cYQBYRkZGncrMGF1/rX1R5N+PdG21/uVN11ebubMonb0hPz8furq6ci4Nqa6kpATdunXjzlFbRddo61Sf67O8vBzp6enw9/fn1qmoqMDZ2bnGtG9Sqamp8PPz461zcXFBbGxsre+xd+9e6OnpYfDgwdz6wsJCzJs3D7GxsdDS0npjWcvKynjT4bH/b5FE11/rogy/H+l3W+tV1+urzSSL0lvfurq6dLG2Um398QRdo61bXa7PoqIiiMViGBkZ8dYbGRkhJydH5j4ikUhmvEgk4q07ceIEpk2bhufPn8PExATx8fEwNDQEUJXozZ07Fx988AGGDRuGvLy8N5Y1MDBQZi9huv5aJ0X+/Ui/21q/N11fitkAghBC2hgnJydkZmYiJSUFrq6umDJlCh48eAAA2LVrF54+fcq7o/km/v7+KC4u5pb8/PzmKjppYWFhYTAzM4OGhgbs7Oxw7ty5WmNjYmIwbNgw6OvrQ1tbG9bW1vjuu+94MXPnzoVAIOAtrq6uzV0N0opQskgIIU3E0NAQqqqqKCws5K0vLCyEsbGxzH2MjY3rFK+trQ0LCwvY29tj//79UFNTw/79+wEAZ86cQWpqKoRCIdTU1GBhYQEAGDZsGObMmSPzfYVCIXenh+74KA9pB6u1a9fi4sWLGDx4MFxcXLgvFq/q0KEDPvvsM6SmpuLSpUvw9vaGt7c3bzIIAHB1dcX9+/e5JTIysiWqQ1oJShYJIaSJSIe1qT5fu0QiQUJCAkaMGCFznxEjRtSY3z0+Pr7W+OrHlbY53LlzJ/766y9kZmYiMzMTp06dAlCVOHzxxReNqRJRMNu3b8e8efPg7e2N/v37Izw8HFpaWjhw4IDM+DFjxuBf//oX+vXrh169emHx4sUYNGhQjfF6hUIhjI2NucXAwKAlqkNaiTbTZpEQQlqCn58f5syZg2HDhsHW1hY7duxAaWkpvL29AQCzZ89Gly5dEBgYCABYvHgxRo8ejeDgYLi5ueHIkSO4cOEC9u7dCwAoLS3FF198gQkTJsDExARFRUUICwtDQUEBJk+eDADo3r07rwzS6Tx79eqFrl27tlTViZw1pINVdYwxnDlzBteuXcOWLVt425KSktC5c2cYGBjg7bffxsaNG9GxY0eZx3m181RJSUkDa0RaC0oWCSGkCU2dOhUPHz5EQEAARCIRrK2tERcXx3ViuXPnDm88MwcHB0RERGD16tVYtWoVevfujdjYWG6MRVVVVeTk5ODQoUMoKipCx44dMXz4cCQnJ2PAgAFyqSNpnRrSwQoAiouL0aVLF5SVlUFVVRW7d+/GO++8w213dXWFl5cXzM3NcfPmTaxatQrvvvsuUlNTZc6pXVvnKaLAWmKMpdZAOi5ZcXGxvItCXlHfcxMaGsp69OjBhEIhs7W1ZWlpaa+NP3bsGOvbty8TCoVs4MCB7OTJk7ztEomErVmzhhkbGzMNDQ02duxYdv36dW77rVu32Pvvv8/MzMyYhoYG69mzJwsICGBlZWUy3y83N5e1b9+e6enp1ak+UnSNtk5t5by0lXoqmvqcl4KCAgaApaSk8NavWLGC2dra1rqfWCxmubm5LCMjgwUFBTE9PT2WmJhYa/zNmzcZUHOcT6mXL1+y4uJibpGOs0jXVutT1+uL2iwShVLfxtvS2TF8fHyQkZEBT09PeHp6Iisri4vZunUrdu7cifDwcKSlpUFbWxsuLi54+fIlACAnJwcSiQR79uzBlStXEBISgvDwcKxatarG+1VUVGD69OlwdHRsng+AEEJq0ZAOVkDVo2oLCwtYW1tj2bJlmDRpEtdMQpaePXvC0NAQN27ckLmdOk8pH0oWiUKpb+PtL7/8Eq6urlixYgX69euHzz//HEOHDkVoaCiAqjY6O3bswOrVq+Hh4YFBgwbh22+/xb1797hBkV1dXXHw4EGMGzcOPXv2xIQJE7B8+XLExMTUeL/Vq1fD0tISU6ZMabbPgBBCZGlIBytZqneekuXu3bt49OgRTExMGlVeojgoWSQKQ9p429nZmVtXl9kxqscDVbNjSONv3boFkUjEi9HT04Odnd1rG4QXFxejQ4cOvHVnzpzB8ePHERYWVqf6lJWVoaSkhLcQQkhj+Pn5Yd++fTh06BCys7OxcOHCGh2sqneACQwMRHx8PP7++29kZ2cjODgY3333HWbOnAkAePbsGVasWIGzZ88iLy8PCQkJ8PDwgIWFBVxcXORSR9LyqIMLURjNMTuG9N+6zKAhdePGDezatQtBQUHcukePHmHu3Lk4fPhwnR+5UCNwQkhTq28Hq9LSUnz44Ye4e/cuNDU1YWlpicOHD2Pq1KkAqjpYXbp0CYcOHcKTJ09gamqKcePG4fPPP4dQKJRLHUnLo2RRwYjFYiQnJ+P+/fswMTGBo6OjzN5opHkUFBTA1dUVkydPxrx587j18+bNw4wZM/DWW2/V+Vj+/v68OYGlc3QqOrpGiTzR9Qf4+vrC19dX5rakpCTe640bN2Ljxo21HktTU7PGAN1tVVu+tugxtAKJiYmBhYUFnJycMGPGDDg5OcHCwkJm2zll1ByzY0j/rcsx7927BycnJzg4OHBj4EmdOXMGQUFBUFNTg5qaGnx8fFBcXAw1NbVa21MqYyPwtn6NEvmi6480l7Z+bVGyqCBiYmIwadIkWFlZITU1FU+fPkVqaiqsrKwwadKkNnHBNsfsGObm5jA2NubFlJSUIC0tjXfMgoICjBkzBjY2Njh48CDvMQ5Q1TZSOntGZmYmNmzYAB0dHWRmZuJf//pXo+uuCOgaJfJE1x9pLnRtgcZZVASVlZXMzMyMjR8/nonFYt42sVjMxo8fz8zNzVllZaWcStg49Tk3R44cYUKhkH3zzTfs6tWrbP78+UxfX5+JRCLGGGOzZs1in376KRf/559/MjU1NRYUFMSys7PZ2rVrWbt27djly5e5mM2bNzN9fX32448/skuXLjEPDw9mbm7OXrx4wRhj7O7du8zCwoKNHTuW3b17l92/f59banPw4ME2Nc6iMl+jinxe6kOR60nXX+umyHVQ5muLsbqfG0oWFUBiYiIDwFJTU2VuT0lJYQBeO4hqa1bfc7Nr1y7WvXt3pq6uzmxtbdnZs2e5baNHj2Zz5szhxR87doz16dOHqaurswEDBtQ6KLeRkRETCoVs7Nix7Nq1a9z2gwcPMgAyl9q0tWRRma9RRT4v9aHI9aTrr3VT5Doo87XFWN3PDXVwUQD3798HAG76r1dJ10vjlF19Gm8DwOTJk7k5dGURCATYsGEDNmzYIHP73LlzMXfu3HqVsSH7KDK6Rok80fVHmgtdW1WozaICkA58Wn3Wkeqk62mAVCIvdI0SeaLrjzQXuraqULKoABwdHWFmZoZNmzZBIpHwtkkkEgQGBsLc3JymmCNyQ9cokSe6/khzoWurCiWLCkBVVRXBwcE4ceIEPDw8EBYWhgMHDiAsLAweHh44ceIEgoKC2sx4T6T1qX6Nenp68noMenp60jVKmhVdf6S50LX1/1qoDaXcKXIDW6kVK1YwNTU1XgcLNTU1tmLFCnkXrVGU4dw0BWX4HKKjo5mZmRnvGjU3N2fR0dHyLlqDKcN5qQtlqCddf62TMtRBGa8txqiDi9KJiYlBUFAQ3Nzc8O6770JTUxMvXrzAzz//jKCgINjb28PLy0vexSRtnJeXFzw8PNrsLAdEvuj6I82JMcZ7/epjaWVGyaICEIvFWLZsGdzd3REbG8sbEPqDDz6Ap6cnli9fDg8PD/qlSOROVVUVY8aMkXcxSBtF1x9patJBud3d3XHkyBEMHDgQWVlZ2LRpEyZNmoSoqCilv1lDbRYVQHJyMvLy8rBq1aoaM4eoqKjA398ft27dQnJyspxKSAghhCifV2/W2Nvbo3379rC3t0dsbCzc3d2xfPlyiMVieRe1WVGyqABonCdCCCGk5dHNmiqULCoAGueJEEIIaXl0s6YKJYsKoPo4TxUVFUhKSkJkZCSSkpJQUVHRZsZ5IoQQQloS3aypQh1cFIB0nKeJEydCT08PL1684LZJe0VHR0dT5xZCCCGkCVW/WfNqB1MalJu0SgKBQOY6WesJIYQQ0jg0KHcVShYVQPXeWMXFxUhMTERERAQSExPx5MmTNtMbixBCCGlpXl5eiIqKwuXLl+Hg4ABdXV04ODggKyurTQybA9BjaIUg7Y0VGRlZa28sBwcHJCcn0/hihBBCSBNr6wO+U7KoAKS9rG7evIkpU6YgPz+f29atWzcEBgby4gghhBDStNrygO+ULCoAaS+rmTNn1tiWn5/PrVf23liEEEIIaXmULCoABwcHCAQCMMagqqqK0aNHo0uXLigoKMBvv/0GsVgMgUAABwcHeReVEEIIIUqGkkUFkJCQwE1gLpFIcObMGW6btCc0YwwJCQl499135VJGQgghhCgn6g2tALZv3879LE0aZb2uHkcIIYQQ0hTozqICePz4Mfdzx44dYWVlBcYYBAIBLl++jEePHtWII4QQQghpCpQsKgB1dXXu53/++QdJSUnc6+pD6VSPI4QQQghpCg16DB0WFgYzMzNoaGjAzs4O586de2388ePHYWlpCQ0NDVhZWeHUqVO87TExMRg3bhw6duwIgUCAzMxM3vbHjx/jo48+Qt++faGpqYnu3bvj448/RnFxcUOKr3Cqz9AikUh426q/pplcCCGEENLU6p0sHj16FH5+fli7di0uXryIwYMHw8XFBQ8ePJAZn5KSgunTp8PHxwcZGRnw9PSEp6cnb1Lu0tJSjBo1Clu2bJF5jHv37uHevXsICgpCVlYWvvnmG8TFxcHHx6e+xSeEEEIIIfVQ78fQ27dvx7x58+Dt7Q0ACA8Px8mTJ3HgwAF8+umnNeK//PJLuLq6YsWKFQCAzz//HPHx8QgNDUV4eDgAYNasWQCAvLw8me85cOBAREdHc6979eqFL774AjNnzkRlZSXU1GpWo6ysDGVlZdzrkpKS+la11ejYsWOTxhFCCCGE1FW97iyWl5cjPT0dzs7O/zuAigqcnZ2Rmpoqc5/U1FRePAC4uLjUGl9XxcXF0NXVlZkoAkBgYCD09PS4pVu3bo16P3mq3i5RIBDA0NAQnTt3hqGhIe/R86tTARJCCCGENFa9souioiKIxWIYGRnx1hsZGUEkEsncRyQS1Su+ruX4/PPPMX/+/Fpj/P39UVxczC3Vp8hTNNra2tzPjDEUFRXhwYMHKCoq4g2dUz2OECI/Td2ue926dbC0tIS2tjYMDAzg7OyMtLQ0XsyECRPQvXt3aGhowMTEBLNmzcK9e/eavG6EkLZH4W5FlZSUwM3NDf3798e6detqjRMKhdDV1eUtikpPT69J4wghzac52nX36dMHoaGhuHz5Mv744w+YmZlh3LhxePjwIRfj5OSEY8eO4dq1a4iOjsbNmzcxadKkZq8vIUT51StZNDQ0hKqqKgoLC3nrCwsLYWxsLHMfY2PjesW/ztOnT+Hq6godHR388MMPaNeuXb2PQQghzal6u+7+/fsjPDwcWlpaOHDggMz46u26+/Xrh88//xxDhw5FaGgoFzNjxgw4OzujZ8+eGDBgALZv346SkhJcunSJi1m6dCns7e3Ro0cPODg44NNPP8XZs2dRUVHR7HUmhCi3eiWL6urqsLGxQUJCArdOIpEgISEBI0aMkLnPiBEjePEAEB8fX2t8bUpKSjBu3Dioq6vjp59+goaGRr32V2R3795t0jhCSPNoiXbd5eXl2Lt3L/T09DB48GCZMY8fP8b3338PBweHWr9Ul5WVoaSkhLcQQogs9X4M7efnh3379uHQoUPIzs7GwoULUVpayvWOnj17Nvz9/bn4xYsXIy4uDsHBwcjJycG6detw4cIF+Pr6cjGPHz9GZmYmrl69CgC4du0aMjMzuXaN0kSxtLQU+/fvR0lJCUQiEUQiEcRicaM+AEVw48aNJo0jhDSP5mzXfeLECbRv3x4aGhoICQlBfHw8DA0NeTErV66EtrY2OnbsiDt37uDHH3+stazK1AmwOrFYjKSkJERGRiIpKalN/I0gpLnVO1mcOnUqgoKCEBAQAGtra2RmZiIuLo77ZXfnzh3cv3+fi3dwcEBERAT27t2LwYMHIyoqCrGxsRg4cCAX89NPP2HIkCFwc3MDAEybNg1Dhgzhhta5ePEi0tLScPnyZVhYWMDExIRbFLnjSl3duXOnSeMIIYrHyckJmZmZSElJgaurK6ZMmVKjHeSKFSuQkZGBX3/9Faqqqpg9e3aN+eSllKkToFRMTAwsLCzg5OSEGTNmwMnJCRYWFoiJiZF30QhRbKyNKC4uZgBYcXGxvItSb+3atWMA3ri0a9dO3kVtEEU+N02JPofWqT7npaysjKmqqrIffviBt3727NlswoQJMvfp1q0bCwkJ4a0LCAhggwYNeu17WVhYsE2bNtW6PT8/nwFgKSkpbyw3Y4p//UVHRzOBQMDGjx/PUlNT2dOnT1lqaiobP348EwgELDo6Wt5FbBBFPy+MKUcdlFVdz43C9YZui1RVVZs0jhDSPFqyXbdEIuFNPCBrO4DXxigLsViMZcuWwd3dHbGxsbC3t0f79u1hb2+P2NhYuLu7Y/ny5fRImpAGqvcMLqTlqaur4+XLl3WKI4TIl5+fH+bMmYNhw4bB1tYWO3bsqNGuu0uXLggMDARQ1a579OjRCA4OhpubG44cOYILFy5g7969AKqmQ/3iiy8wYcIEmJiYoKioCGFhYSgoKMDkyZMBAGlpaTh//jxGjRoFAwMD3Lx5E2vWrEGvXr3q3ZlQESUnJyMvLw+RkZE1JidQUVGBv78/HBwckJycjDFjxsinkIQoMEoWFUBd7wy0hTsIhLR2U6dOxcOHDxEQEACRSARra+sa7bqrJzTSdt2rV6/GqlWr0Lt3b167blVVVeTk5ODQoUMoKipCx44dMXz4cCQnJ2PAgAEAAC0tLcTExGDt2rUoLS2FiYkJXF1dsXr1agiFwpb/EFqYtJ189bbw1UnXV29PTwipO0oWFYD0cVJTxRFCmpevry9vxIfqkpKSaqybPHkyd5fwVRoaGm/soGFlZYUzZ87Uu5zKwsTEBACQlZUFe3v7GtulA5xL4wgh9UNtFhWAjo5Ok8YRQogycXR0hJmZGTZt2lTjS7NEIkFgYCDMzc3h6OgopxISotgoWVQAdZ3zmeaGJoS0RaqqqggODsaJEyfg6emJ1NRUPH36FKmpqfD09MSJEycQFBREnQAJaSBKFhXAs2fPmjSOEEKUjZeXF6KionD58mU4ODhAV1cXDg4OyMrKQlRUFLy8vORdxBYTFhYGMzMzaGhowM7ODufOnas1NiYmBsOGDYO+vj60tbVhbW2N7777jhfDGENAQABMTEygqakJZ2dn5ObmNnc1SCtCyaICoA4uhBDyZl5eXrhx4wYSExMRERGBxMRE5ObmtqlE8ejRo/Dz88PatWtx8eJFDB48GC4uLjUGcJfq0KEDPvvsM6SmpuLSpUvw9vaGt7c3fvnlFy5m69at2LlzJ8LDw5GWlgZtbW24uLjUaZQOohwEjNUyvL+SKSkpgZ6eHoqLi6Grqyvv4tRLt27d6jTvc9euXRVyFgZFPjdNiT6H1qmtnJe2Uk9FU9/zYmdnh+HDhyM0NBRAVZvNbt264aOPPsKnn35ap/ccOnQo3Nzc8Pnnn4MxBlNTUyxbtgzLly8HABQXF8PIyAjffPMNpk2b1uR1IC2nrueG7iwqgIqKiiaNI4QQonzKy8uRnp4OZ2dnbp2KigqcnZ2Rmpr6xv0ZY0hISMC1a9fw1ltvAQBu3boFkUjEO6aenh7s7OxqPWZZWRlKSkp4C1FslCwqgI4dOzZpHCGEEOVTVFQEsVjMjekpZWRkBJFIVOt+xcXFaN++PdTV1eHm5oZdu3bhnXfeAQBuv/ocMzAwEHp6etzSrVu3xlSLtAKULCoAPT29Jo0jhBBCpHR0dJCZmYnz58/jiy++gJ+fn8zxQOvK398fxcXF3KKIzaMIHw3KrQC6detWp0cI9O2NEELaLkNDQ6iqqqKwsJC3vrCwEMbGxrXup6KiAgsLCwCAtbU1srOzERgYiDFjxnD7FRYW8gY1LywshLW1tczjCYXCNjFzUFtCdxYVwL1797ifBQIBDA0N0blzZxgaGkIgEHDb6NsbIYS0Xerq6rCxsUFCQgK3TiKRICEhoV5zhEskEm50DXNzcxgbG/OOWVJSgrS0tDYx7zipQncWFUCPHj3wxx9/AKhqgFxUVCQzTl9fvwVLRQghpLXx8/PDnDlzMGzYMNja2mLHjh0oLS2Ft7c3AGD27Nno0qULAgMDAVS1Lxw2bBh69eqFsrIynDp1Ct999x2++uorAFU3KJYsWYKNGzeid+/eMDc3x5o1a2BqagpPT095VZO0MEoWFcDs2bPx/fffAwDs7e3xzz//4Nq1a+jbty8MDAxw9uxZAMAHH3wgz2ISQgiRs6lTp+Lhw4cICAiASCSCtbU14uLiuA4qd+7cgYrK/x4qlpaW4sMPP8Tdu3ehqakJS0tLHD58GFOnTuViPvnkE5SWlmL+/Pl48uQJRo0ahbi4OGhoaLR4/Yh80DiLCkAsFqNDhw4oKSmBiooKb+5T6WtdXV08fvxYIaezUuRz05Toc2id2sp5aSv1VDTKcF6UoQ7KisZZVCKqqqo4ePAggKrH0NVJXx88eFAhE0VCCCGEtG6ULCoILy8vREdH1+jx3L17d0RHR7ep6awIIYQQ0nIoWVQgXl5e+Pvvv7Fnzx4AwJ49e3Dz5s02lyiGhYXBzMwMGhoasLOzw7lz514bf/z4cVhaWkJDQwNWVlY4deoUbztjDAEBATAxMYGmpiacnZ2Rm5vLbc/Ly4OPjw/Mzc2hqamJXr16Ye3atSgvL+dikpKS4OHhARMTE2hra8Pa2pprZ0oIIYQoMkoWFYyqqiqGDRsGABg2bFibe/R89OhR+Pn5Ye3atbh48SIGDx4MFxcXPHjwQGZ8SkoKpk+fDh8fH2RkZMDT0xOenp7IysriYrZu3YqdO3ciPDwcaWlp0NbWhouLC16+fAkAyMnJgUQiwZ49e3DlyhWEhIQgPDwcq1at4r3PoEGDEB0djUuXLsHb2xuzZ8/GiRMnmvcDIYQQQpobayOKi4sZAFZcXCzvojRaeno6A8DS09PlXZQmUZ9zY2tryxYtWsS9FovFzNTUlAUGBsqMnzJlCnNzc+Ots7OzYwsWLGCMMSaRSJixsTHbtm0bt/3JkydMKBSyyMjIWsuxdetWZm5u/tqyvvfee8zb2/uNdZJSlmu0srKSJSYmsoiICJaYmMgqKyvlXaRGUZbz8iZtpZ6KRhnOizLUQVnV9dzQnUWiMMrLy5Gens6b0F5FRQXOzs61znCTmprKiwcAFxcXLv7WrVsQiUS8GD09PdjZ2b121pzi4mJ06NDhteV9U0xZWRlKSkp4i6KLiYmBhYUFnJycMGPGDDg5OcHCwgIxMTHyLhohhJAGomSRKIyioiKIxeJ6TWgvEoleGy/9tz7HvHHjBnbt2oUFCxbUWtZjx47h/Pnz3EC4sgQGBkJPT49bFH26xpiYGEyaNAlWVlZITU3F06dPkZqaCisrK0yaNIkSRkIIUVA0KHcrlpubi6dPn9ZYn52dzftXFh0dHfTu3bvZytZWFRQUwNXVFZMnT8a8efNkxiQmJsLb2xv79u3DgAEDaj2Wv78//Pz8uNclJSUKmzCKxWIsW7YM7u7uiI2N5Qb9tbe3R2xsLDw9PbF8+XJ4eHi0uXa2hBCi6ChZbKVyc3PRp0+f18bMnDnztduvX7+uVAmjoaEhVFVVUVhYyFtfWFjITXb/KmNj49fGS/8tLCyEiYkJL8ba2pq337179+Dk5AQHBwfs3btX5vv99ttvGD9+PEJCQjB79uzX1kcoFEIoFL42RlEkJycjLy8PkZGRvNkhgKqmAv7+/nBwcEBycjLGjBkjn0ISQghpEEoWWynpHcXDhw+jX79+vG0vXrxAXl4ezMzMoKmpWWPf7OxszJw5U+ZdSUWmrq4OGxsbJCQkcHOSSiQSJCQkwNfXV+Y+I0aMQEJCApYsWcKti4+Px4gRIwAA5ubmMDY2RkJCApcclpSUIC0tDQsXLuT2KSgogJOTE2xsbHDw4MEaCRFQNXyOu7s7tmzZgvnz5zdNpRXE/fv3AQADBw6UuV26XhpHCCFEcVCy2IoZtxdgqIkq+hm/mphoY6R57Y83NZ+owri9oHkLJyd+fn6YM2cOhg0bBltbW+zYsQOlpaVc28DZs2ejS5cuCAwMBAAsXrwYo0ePRnBwMNzc3HDkyBFcuHCBuzMoEAiwZMkSbNy4Eb1794a5uTnWrFkDU1NTLiEtKCjAmDFj0KNHDwQFBeHhw4dceaR3JhMTE+Hu7o7Fixdj4sSJXHtHdXX1N3aEUQbSu7JZWVkYOnQodu/ejZs3b6JXr1748MMPuaGKqt+9JYQQohgoWWzFFtioo9/vC4Df67dfv//fVxlNnToVDx8+REBAAEQiEaytrREXF8d1ULlz5w7vrp+DgwMiIiKwevVqrFq1Cr1790ZsbCzvDtgnn3yC0tJSzJ8/H0+ePMGoUaMQFxcHDQ0NAFV3Im/cuIEbN26ga9euvPKw/59u8dChQ3j+/DkCAwO5RBUARo8ejaSkpOb6OFoNR0dHmJmZYebMmbh9+zYqKyu5bStWrECPHj1gbm4OR0dHOZaSEEJIQwgYe2WyYSWlaBOZX7x4EW6jh+HMjxHoZ2lZr32zc3LwtscMnPztAoYOHdpMJWw6inZumouifw6enp748ccfoa6uDj8/P/j4+GD//v3Yvn07ysvL4eHhgdjYWHkXs94U/bzUVVupp6JRhvOiDHVQVnU9N3RnsRUTPWN4od8HMLWu134vRBKInrWJ7wCklSgvL8fJkyehp6cHHR0dbN68GZs3bwYAdOvWDSUlJTh58iTKy8uhrq6cd70JIURZUbLYSj1//hxA1R3GV9WlgwshLWn37t2orKyEvb09EhISeNvu378PJycnxMfHY/fu3bzORoQ0NbFYjOTkZNy/fx8mJiZwdHSk4ZoIaSRKFlupnJwcAKh1LL+60NHRaariEPJaN2/eBAD88ssvMDIywsaNG+Hu7o4TJ05g9erViI+P58UR0hxiYmKwbNky5OXlcevMzMwQHBwMLy8v+RWMEAVHyWIrJe2Ja2lpCS0tLd426dA4sobVkaJBuUlL6tGjBwBAV1cXt2/fRmpqKhITE2FhYYHbt2+jU6dOePr0KRdHSFOTziDk7u6OyMhIDBw4EFlZWdi0aRMmTZqEqKgoShgJaSBKFlspQ0ND/Oc//3ltTL9+/RSiAwtpO8rLy2FpaVnjzk5FRYX8CkWUHs0gREjzormhCSGNdvv2bQDAy5cvce/ePaxcuRLXr1/HypUrce/ePbx8+ZIXR0hTks4gtGrVqlpnELp16xaSk5PlVEJCFBvdWSSENJq5uTkAoFOnTigqKsKWLVuwZcsWAFUDnxsaGqKoqIiLI6Qp0QxChDQvurNICGk0KysrAFVjdgkE/NmDBAIBN/WkNI6QplR9BiFZaAYhQhqHkkUF8+zZM/j5+QGomvru2bNnci4RIUBRUREAoKysDIwxzJo1CxkZGZg1axYYYygrK+PFEdKUpDMIbdq0CRKJhLdNIpEgMDCQZhAipBEoWVQgtra20NHRwW+//QYA+O2336CjowNbW1s5l4y0dYaGhgAAoVAIxhi+++47DBkyBN999x0YYxAKhbw4QpqSqqoqgoODceLECXh6eiI1NRVPnz5FamoqPD09ceLECQQFBVHnFkIaiJJFBWFra4vz58/L3Hb+/HlKGIlcXb58GUBVb2hZpOulccouLCwMZmZm0NDQgJ2dHc6dO/fa+OPHj8PS0hIaGhqwsrLCqVOneNvXrVsHS0tLaGtrw8DAAM7OzkhLS+O25+XlwcfHB+bm5tDU1ESvXr2wdu3aWs+HMvLy8kJUVBQuX74MBwcH6OrqwsHBAVlZWTRsDiGNRMmiAnj27FmtiaLU+fPn6ZE0kZtbt24BAKRTzZuYmODbb7/l2ohJ10vjlNnRo0fh5+eHtWvX4uLFixg8eDBcXFzw4MEDmfEpKSmYPn06fHx8kJGRAU9PT3h6evLa3/Xp0wehoaG4fPky/vjjD5iZmWHcuHF4+PAhgKpB/CUSCfbs2YMrV64gJCQE4eHhWLVqVYvUubXw8vLCjRs3kJiYiIiICCQmJiI3N5cSRUIaiZJFBTBt2jTuZwcHB8yZMwcAMGfOHDg4OHDbJk+e3OJlIwQAOnTowP1sbGyM+/fvY/bs2dyUa7LilNX27dsxb948eHt7o3///ggPD4eWlhYOHDggM/7LL7+Eq6srVqxYgX79+uHzzz/H0KFDERoaysXMmDEDzs7O6NmzJwYMGIDt27ejpKQEly5dAgC4urri4MGDGDduHHr27IkJEyZg+fLliImJqbWcZWVlKCkp4S2EECILJYsK4Pfff+d+TklJwaFDhwAAhw4dQkpKisw4QlrSnj17uJ9FIhFvW/XhSqrHKaPy8nKkp6fD2dmZW6eiogJnZ2ekpqbK3Cc1NZUXDwAuLi61xpeXl2Pv3r3Q09PD4MGDay1LcXHxa5PzwMBA6OnpcUu3bt1eVzWFEBMTAwsLCzg5OWHGjBlwcnKChYXFa5NmQsibUbKoACorK7mfHR0dsXTpUsybNw9Lly7l9e57tRcgIS3lyZMnvNdmZmY4evQozMzMXhunbIqKiiAWi2FkZMRbb2RkVCOJlhKJRHWKP3HiBNq3bw8NDQ2EhIQgPj6+1g5DN27cwK5du7BgwYJay+rv74/i4mJuyc/Pr0sVWy3pdH9WVla8Di5WVlaYNGkSJYyENAINyq0A+vTpg7/++gsAasxC0LVrV+7nvn37tnjZCAGq5iKXDo8DVHW4mDp1qsw40jBOTk7IzMxEUVER9u3bhylTpiAtLQ2dO3fmxRUUFMDV1RWTJ0/GvHnzaj2eUCjkeqkrOpruj5DmRXcWFUD1Not3796Fi4sLkpOT4eLigrt378qMI6Ql1bUtorK3WTQ0NISqqioKCwt56wsLC2FsbCxzH2Nj4zrFa2trw8LCAvb29ti/fz/U1NSwf/9+Xsy9e/fg5OQEBwcH7N27twlqpBhouj9CmhcliwqgS5cuvNe//PILHB0d8csvv7w2jpCW8upg21paWti0aRO0tLReG6ds1NXVYWNjg4SEBG6dRCJBQkICRowYIXOfESNG8OIBID4+vtb46setfje3oKAAY8aMgY2NDQ4ePFgjaVJmNN0fIc2r7fw2UWCPHj1q0jhCmtqrj0KfP3+OVatW4fnz56+NU0Z+fn7Yt28fDh06hOzsbCxcuBClpaXw9vYGAMyePRv+/v5c/OLFixEXF4fg4GDk5ORg3bp1uHDhAnx9fQEApaWlWLVqFc6ePYvbt28jPT0d77//PgoKCrgREKSJYvfu3REUFISHDx9CJBLV2k5S2dB0f4Q0L2qzqAA6deoEABgyZAgePXqEO3fucNt69OiBDh06ICMjg4sjpKWZm5sjJyenTnHKburUqXj48CECAgIgEolgbW2NuLg4rhPLnTt3eHf9HBwcEBERgdWrV2PVqlXo3bs3YmNjubthqqqqyMnJwaFDh1BUVISOHTti+PDhSE5OxoABAwBU3Ym8ceMGbty4wWvHDPxvjEtlVn26v+ptFgGa7o+QJsEaIDQ0lPXo0YMJhUJma2vL0tLSXht/7Ngx1rdvXyYUCtnAgQPZyZMnedujo6PZO++8wzp06MAAsIyMjBrHePHiBfvwww9Zhw4dmLa2NvPy8mIikajOZS4uLmYAWHFxcZ33aS0SExMZAAaAubu7s9DQULZ//34WGhrK3N3duW2JiYnyLmqDKPK5aUqK/DlYWVlx1yEAZmxszA4ePMiMjY15662srORd1HpT5PNSH4pez+joaCYQCNj48eNZSkoKKykpYSkpKWz8+PFMIBCw6OhoeRexQRT9vDCmHHVQVnU9N/V+DN0csxOUlpZi1KhR2LJlS63vu3TpUvz3v//F8ePH8dtvv+HevXttZlR+6bfmYcOG4fLly/D19YWPjw98fX2RlZWFYcOG0bdmIlc9evTgvRaJRPD29q7xGPTVOEKainS6v0uXLvGm+7t8+TJN90dII9U7WWyO2QlmzZqFgICAGgPTShUXF2P//v3Yvn073n77ba4Bd0pKCs6ePVvfKigcVVVVBAcHIz09vUZSXlhYiPT0dAQFBdGQEERuqvfcvXXrFoyMjCAUCmFkZMSb4q+2HsGENBfWBh7DE9Lc6pUstsTsBLKkp6ejoqKCdxxLS0t079691uMo41RWsn7pCQQC+mVI5K56O1pzc3MUFhairKwMhYWFvHaK1eMIaUrSQbllDUNEg3KTpiAWi5GUlITIyEgkJSVBLBbLu0gtpl7JYnPOTvA6IpEI6urq0NfXr/NxlGkqK+mAs+PHj8fjx48REhICX19fhISE4NGjRxg/fjyWL1/epi5c0rr07t27SeMIqQ+xWIyFCxeCMQaBQMDbJv1CvXDhQvodSRqsrU8lqbRD5yjTVFbSAWcdHBzQr18/LF26FKGhoVi6dCn69euHESNG0ICzRK6++OIL7uf8/HwMHDgQHTp0wMCBA3n/96rHEdJUkpKSuCY6Y8eO5U33N3bsWADAgwcPkJSUJMdSEkVFU0nWM1lsztkJXsfY2Bjl5eU15pV93XGEQiF0dXV5i6KSDiTr7+8v82JdtWoVL46Qlnbw4EHu527duiErKwuPHz9GVlYW765+9ThCmsqZM2cAVA1wHhMTg5cvX+K///0vXr58iZiYGNjb2/PiCKmrV6eStLe3R/v27bmpJN3d3dvEk716JYstOTtBdTY2NmjXrh3vONeuXcOdO3fqdRxFJR3IeNSoUTIv1pEjR/LiCGlpN2/ebNI4QupD2ha2f//+6N27N+9RYe/evdGvXz9eHCF1RVNJVqn3oNx+fn6YM2cOhg0bBltbW+zYsaPG7ARdunRBYGAggKrZCUaPHo3g4GC4ubnhyJEjuHDhAm/e0sePH+POnTu4d+8egKpEEKi6o2hsbAw9PT34+PjAz88PHTp0gK6uLj766COMGDGC+8bYlr3aRoeQliYdEkdXVxe3b9+Gt7c3bt68iV69euHgwYPo3r07nj59SkPnkGbRvXt3AKgxVzYA3L59m7ujLY0jpK5oKskq9W6zOHXqVAQFBSEgIADW1tbIzMysMTtB9Q9NOjvB3r17MXjwYERFRfFmJwCAn376CUOGDIGbmxsAYNq0aRgyZAjCw8O5mJCQELi7u2PixIl46623YGxs3CbaCQDg2uL8+eef8PDwQFhYGA4cOICwsDB4eHjgzz//5MURIi/l5eUYMmQIYmNjcfnyZcTGxmLIkCGoqKiQd9GIEhszZkyTxim6sLAwmJmZQUNDA3Z2djh37lytsfv27YOjoyMMDAxgYGAAZ2fnGvFz586FQCDgLa6urs1djVaBppL8f80/PnjroMgjyEtncPn3v//N1NTUeDNiqKmpsRkzZtAMLkpAkT8HX19f7ppUV1dnK1euZNevX2crV65k6urq3DZfX195F7XeFPm81Ici1/PUqVO834u1LadOnZJ3UeutvuflyJEjTF1dnR04cIBduXKFzZs3j+nr67PCwkKZ8TNmzGBhYWEsIyODZWdns7lz5zI9PT129+5dLmbOnDnM1dWV3b9/n1seP37cbHVoTSorK5mZmRkbP348E4vFvG1isZiNHz+emZubs8rKSjmVsHHqem4oWVQAlZWVrFOnTgwAc3NzY2FhYezAgQMsLCyMubm5MQCsc+fOSn+xKjtF/hyCg4MZANapUycmEAh4f6BVVFSYoaEhA8CCg4PlXdR6U+TzUh+KXE/pF2YANa6/6q9nzJgh76LWW33Pi62tLVu0aBH3WiwWM1NTUxYYGFin/SsrK5mOjg47dOgQt27OnDnMw8OjXuWuTpGvLcaUdypJxppxuj8iH9XbJbKqJJ8G4yathpWVFQCgpKSkRiNwgUCAp0+f8uIIaUq3b98GAHTo0EFmJ4QOHTrw4pRVQybOeNXz589RUVHBfWZSSUlJ6Ny5M/r27YuFCxfi0aNHtR5D2SbFkE4lefnyZd5UkllZWW1mKsl6d3AhLS85ORkPHjzAv//9bxw9ehQnT57ktqmpqWHGjBmIiIhAcnJym2mTQ1qXoqIiAFV/JAQCAWbOnIlly5YhODgY33//PcrKynhxhDQlDQ0NAFWdJTU0NHjDmLRr1w6PHz/mxSmr102ckZOTU6djrFy5EqampryE09XVFV5eXjA3N8fNmzexatUqvPvuu0hNTZU5zWxgYCDWr1/fuMq0Ml5eXvDw8EBycjLu378PExMTODo6tplpdilZVADSDkPff/893N3d8e6770JTUxMvXrzAzz//jIiICF4cIS2tY8eOAKr+GJeXl+Pw4cM4fPgwgKo7G0KhEC9fvuTiCGlKw4YN44ZWk34xkar+etiwYS1aLkWzefNmHDlyBElJSbzEetq0adzPVlZWGDRoEHr16oWkpCRu0PPq/P394efnx70uKSlR6FnUpFRVVdvsDRlKFhVA9XEWf/zxR95jlg8++ABvvfUW/vzzTxpnkcjN5cuXAYC7o1H9cZ/0j8Tt27dx+fJljBs3ruULSJSaoaEh9/OrzXOqv64ep4waMnGGVFBQEDZv3ozTp09j0KBBr43t2bMnDA0NcePGDZnJolAohFAorH8FSKtFbRaVAI2zSOQtLy8PQFVC+PLlS+zduxf37t3D3r178fLlSy55lMYR0pSkj5mbKk5RNWTiDADYunUrPv/8c8TFxdXp7uvdu3fx6NEj5R8uhnAoWVQA1cdZ9PT05E335+npSeMsErkzNzcHUDU4t1AoxPz582Fqaor58+dDQ0ODG4xbGkdIU6rrl5C28GXFz88P+/btw6FDh5CdnY2FCxfWmDjD39+fi9+yZQvWrFmDAwcOwMzMDCKRCCKRCM+ePQMAPHv2DCtWrMDZs2eRl5eHhIQEeHh4wMLCAi4uLnKpI2l5lCwqAOm3t02bNsnsjfXFF1/w4ghpadJezkVFRTLvdEs7tlBvaNIcCgoKuJ9fffxZ/XX1OGVV34kzvvrqK5SXl2PSpEkwMTHhlqCgIABV7fQuXbqECRMmoE+fPvDx8YGNjQ2Sk5PpUXMbQm0WFYCjoyPMzMyQkpKC69ev488//+R6Y40cORITJ06Eubk5HB0d5V1U0kZJk8HS0lJUVFRg5cqV8PHxwf79+xESEoLy8nJeHCFNSTpFLACMHTsW7733HtcJ8NSpUzh16lSNOGXm6+sLX19fmduSkpJ4r990t1VTUxO//PJLE5WMKCpKFhWAqqoqgoODMWnSJEycOBH+/v5wd3dHVlYWJk6ciBMnTiAqKqrNdOEnrY+0c1WXLl1w//59bNmyBVu2bAFQ1Ru6S5cuKCgooE5YpFlIv4wAQEJCApccAvw7i9XjCCF1R4+hFQQNCkoUgY6OTo0hMrp16wYdHR05lYi0BdW/hLxu6Bz6skJIw1CyqEC8vLxw48YNJCYmIiIiAomJicjNzaVEkcidtHNVTk6OzN7Q0gGBqRMWaQ6bNm1q0jhCCB89hlYwbXlQUNJ6Se/Y9OvXD6WlpZg/fz63rUePHrC0tEROTg7d2SHNwsPDA+rq6q99zKyurg4PD48WLBUhyoPuLBJCmkxJSUmNHqd3797l5oYmpDmoqqoiMjLytTGRkZHUrpuQBqJkkRDSaNLHywUFBVBVVcWnn36K3NxcfPrpp1BVVeUSSHoMTZqLl5cXoqOj0b17d976Hj16IDo6mprrENIIlCwSQhpNOudz+/btYWxsjM2bN6N3797YvHkzTExM0L59e14cIc3By8sLf//9N/bs2QMA2LNnD27evEmJIiGNRMkiIaTRpHNDd+zYkTd3OVA1HaU0SZTGEdJcVFVVuSnrhg0bRo+eCWkClCwSQhqt+tzQL1684PWGfvHiBc0NTQghCox6QxNCGq363NCMsRq9oXv06IHbt2/T3NCEEKKAKFkkhDSadM5nkUiEyspK3ra7d+9CTU2NF0cIIURx0GNoonDCwsJgZmYGDQ0N2NnZ4dy5c6+NP378OCwtLaGhoQErKyveVGAAwBhDQEAATExMoKmpCWdnZ+Tm5nLb8/Ly4OPjA3Nzc2hqaqJXr15Yu3ZtjTHdLl26BEdHR2hoaKBbt27YunVr01W6lZPO+VxWVgaJRIKZM2ciIyMDM2fOhEQi4WbRoLmhCSFE8VCySBTK0aNH4efnh7Vr1+LixYsYPHgwXFxcah2SJSUlBdOnT4ePjw8yMjLg6ekJT09PZGVlcTFbt27Fzp07ER4ejrS0NGhra8PFxQUvX74EUDUriUQiwZ49e3DlyhWEhIQgPDwcq1at4o5RUlKCcePGoUePHkhPT8e2bduwbt067N27t3k/kFZC2oFFQ0MDAHD48GEMGTIEhw8fhkAg4NZTb2hCCFFArI0oLi5mAFhxcbG8i0JeUZ9zY2tryxYtWsS9FovFzNTUlAUGBsqMnzJlCnNzc+Ots7OzYwsWLGCMMSaRSJixsTHbtm0bt/3JkydMKBSyyMjIWsuxdetWZm5uzr3evXs3MzAwYGVlZdy6lStXsr59+9Z6jJcvX7Li4mJuyc/PV9hrNCgoiAFgnTp1YqqqqgwAt6iqqrJOnToxACwoKEjeRa23tvK7Q5nqmZ6ezgCw9PR0eRel0ZThvChDHZRVXc8N3VkkCqO8vBzp6elwdnbm1qmoqMDZ2Rmpqaky90lNTeXFA4CLiwsXf+vWLYhEIl6Mnp4e7Ozsaj0mABQXF6NDhw6893nrrbegrq7Oe59r167hn3/+kXmMwMBA6OnpcUu3bt1eU/vWTdrL+eHDhzIH5X748CEvjhBCiOKgZJEojKKiIojFYhgZGfHWGxkZQSQSydxHJBK9Nl76b32OeePGDezatQsLFix44/tUf49X+fv7o7i4mFvy8/NlxikC6awZmpqaMDEx4Q3KbWpqCk1NTV4cIYQQxUHJIiH1UFBQAFdXV0yePBnz5s1r1LGEQiF0dXV5i6Jr164dMjMz4enpCSsrK3h6eiIjI4PrDd1WNHUnrHXr1sHS0hLa2towMDCAs7Mz0tLSeDFffPEFHBwcoKWlBX19/aauEiGkDaNkkSgMQ0NDqKqqorCwkLe+sLAQxsbGMvcxNjZ+bbz037oc8969e3BycoKDg0ONjiu1vU/191Bmd+7cAVDV0cfAwACxsbG4fPkyYmNjYWBggKdPn/LilFlzdMLq06cPQkNDcfnyZfzxxx8wMzPDuHHjuMf7QFUzjcmTJ2PhwoXNXkdCSNtCySJRGOrq6rCxsUFCQgK3TiKRICEhASNGjJC5z4gRI3jxABAfH8/Fm5ubw9jYmBdTUlKCtLQ03jELCgowZswY2NjY4ODBgzWmtBsxYgR+//13VFRU8N6nb9++MDAwaHilFUSvXr2aNE6Rbd++HfPmzYO3tzf69++P8PBwaGlp4cCBAzLjv/zyS7i6umLFihXo168fPv/8cwwdOhShoaFczIwZM+Ds7IyePXtiwIAB2L59O0pKSnDp0iUuZv369Vi6dCmNZUkIaXKULBKF4ufnh3379uHQoUPIzs7GwoULUVpaCm9vbwDA7Nmz4e/vz8UvXrwYcXFxCA4ORk5ODtatW4cLFy7A19cXQNW8xUuWLMHGjRvx008/4fLly5g9ezZMTU3h6ekJ4H+JYvfu3REUFISHDx9CJBLx2iLOmDED6urq8PHxwZUrV3D06FF8+eWX8PPza7kPR46knz9Q1YnFzMwM2traMDMz43VqqR6njJqjE5as99i7dy/09PQwePDgBpe1rKwMJSUlvIUQQmRpWw2JiMKbOnUqHj58iICAAIhEIlhbWyMuLo7rTHLnzh3eXT8HBwdERERg9erVWLVqFXr37o3Y2FgMHDiQi/nkk09QWlqK+fPn48mTJxg1ahTi4uK4sQHj4+Nx48YN3LhxA127duWVhzEGoKoH9a+//opFixbBxsYGhoaGCAgI4E17p8w+++wz7mczMzPu59LSUt7rzz77jHfHTNm8rhNWTk6OzH3e1AlL6sSJE5g2bRqeP38OExMTxMfHw9DQsMFlDQwMxPr16xu8PyGk7aBkkSgcX19f7s7gq5KSkmqsmzx5MiZPnlzr8QQCATZs2IANGzbI3D537lzMnTv3jeUaNGgQkpOT3xinjKrPeNMUcaQmJycnZGZmoqioCPv27cOUKVOQlpaGzp07N+h4/v7+vDvfJSUlCj18EyGk+VCySAhptOp3XP/55x988803uHnzJnr16oW5c+dy7TZfvTOrbJqjE5aUtrY2LCwsYGFhAXt7e/Tu3Rv79+/nNbuoD6FQCKFQ2KB9CSFtC7VZJIQ02tWrVwFU3aXV0tLCkiVLsGvXLixZsgRaWlo14pRVc3TCqk31ObcJIaQ5UbJICGm0goICAFVtOHV0dLBy5Upcv34dK1euhI6OTo04ZdbUnbBKS0uxatUqnD17Frdv30Z6ejref/99FBQU8JpX3LlzB5mZmbhz5w7EYjEyMzORmZmJZ8+etewHQAhROvQYmhDSaN27d0d+fj46deqEhw8fYuvWrdi6dSu33dDQEEVFRW1iBpem7oSlqqqKnJwcHDp0CEVFRejYsSOGDx+O5ORkDBgwgDtOQEAADh06xL0eMmQIACAxMRFjxoxpgZq3vNzcXG4Mz+qys7N5/8qio6OD3r17N1vZCFEmAibtzqnkSkpKoKenh+LiYqWYKUOZ0Lmposifw/3792FqagoA+PXXX/HVV18hNzcXvXv3xsKFCzFu3DgAVQObm5iYyLOo9abI56U+FK2eubm56NOnT6OOcf369VafMCraeZFFGeqgrOp6bujOIiGk0e7fv8/9LE0MASArKws//PADL07RkkXSOknvKB4+fBj9+vXjbXvx4gU33qd0XvLqsrOzMXPmTJl3JQkhNVGySAhpNEtLS6Snp8PDwwN3796tsb1r16748ccfYWlpKYfSEWXWr18/DB06tMb6kSNHyqE0hCgn6uBCCGk0LS0tDB06FPn5+Xjy5Ak3s8jgwYPx5MkT5OfnY+jQobye0YQQQhQDJYuEkCalp6fHzYN84MAB6OnpyblEhBBCGoOSRUIIIYQQUitKFgkhhBBCSK0oWSSEEEIIIbWiZJEQQgghhNSKhs4hhBCikIzbC6D55Dpwr373PTSfXIdxe0EzlYoQ5UPJIiGEEIW0wEYd/X5fAPxev/36/f++hJC6oWSREEKIQtqTXo6pAd+gXz0He8/OycGe4BmY0EzlIkTZULJICCFEIYmeMbzQ7wOYWtdrvxciCUTPWPMUihAlRB1cCCGEEEJIrShZJIQQQgghtWpQshgWFgYzMzNoaGjAzs4O586de2388ePHYWlpCQ0NDVhZWeHUqVO87YwxBAQEwMTEBJqamnB2dkZubi4v5vr16/Dw8IChoSF0dXUxatQoJCYmNqT4hBBCCCGkjurdZvHo0aPw8/NDeHg47OzssGPHDri4uODatWvo3LlzjfiUlBRMnz4dgYGBcHd3R0REBDw9PXHx4kUMHDgQALB161bs3LkThw4dgrm5OdasWQMXFxdcvXoVGhoaAAB3d3f07t0bZ86cgaamJnbs2AF3d3fcvHkTxsbGjfwYCCGEKJLnz58DAC5evFhj24sXL5CXlwczMzNoamrW2J6dnd3s5SNEqbB6srW1ZYsWLeJei8ViZmpqygIDA2XGT5kyhbm5ufHW2dnZsQULFjDGGJNIJMzY2Jht27aN2/7kyRMmFApZZGQkY4yxhw8fMgDs999/52JKSkoYABYfH1+nchcXFzMArLi4uG4VJS2Gzk0VZfoc0tPTGQCWnp4u76I0mjKdl9dRtHru27ePAWjUcv36dXlX440acl5CQ0NZjx49mFAoZLa2tiwtLa3W2L1797JRo0YxfX19pq+vz8aOHVsjXiKRsDVr1jBjY2OmoaHBxo4dW6/PTtGurbakruemXncWy8vLkZ6eDn9/f26diooKnJ2dkZqaKnOf1NRU+Pn58da5uLggNjYWAHDr1i2IRCI4Oztz2/X09GBnZ4fU1FRMmzYNHTt2RN++ffHtt99i6NChEAqF2LNnDzp37gwbGxuZ71tWVoaysjLudUlJSX2qSgghpBXz9PQEAFhaWkJLS4u3LTs7GzNnzsThw4fRr18/mfvr6Oigd+/ezV3MFlffp39JSUmYPn06HBwcoKGhgS1btmDcuHG4cuUKunTpAqBuT/+IcqtXslhUVASxWAwjIyPeeiMjI+Tk5MjcRyQSyYwXiUTcdum62mIEAgFOnz4NT09P6OjoQEVFBZ07d0ZcXBwMDAxkvm9gYCDWr19fn+oRQghREIaGhvjPf/7z2ph+/fph6NChLVSi1mH79u2YN28evL29AQDh4eE4efIkDhw4gE8//bRG/Pfff897/fXXXyM6OhoJCQmYPXs2GGPYsWMHVq9eDQ8PDwDAt99+CyMjI8TGxmLatGk1jkk3a5SPQvSGZoxh0aJF6Ny5M5KTk3Hu3Dl4enpi/PjxuH//vsx9/P39UVxczC35+fktXGpCCCGk5Uif/lV/Uvemp3+vev78OSoqKtChQwcAb376J0tgYCD09PS4pVu3bo2oFWkN6nVn0dDQEKqqqigsLOStLywsrLWTibGx8Wvjpf8WFhbCxMSEF2NtbQ0AOHPmDE6cOIF//vkHurq6AIDdu3cjPj4ehw4dkvltSSgUQigU1qd6hJB6ys3NxdOnT2usl3YgeF1HAmV9DEiIvDTk6d+rVq5cCVNTUy45rMvTv1f5+/vzmp+VlJRQwqjg6pUsqqurw8bGBgkJCVx7EYlEgoSEBPj6+srcZ8SIEUhISMCSJUu4dfHx8RgxYgQAwNzcHMbGxkhISOCSw5KSEqSlpWHhwoUA/tfrTUWFfyNURUUFEomkPlUghDSR3Nxc9OnT57UxM2fOfO3269evU8JISCuxefNmHDlyBElJSY1qi0g3a5RPvYfO8fPzw5w5czBs2DDY2tpix44dKC0t5dpHzJ49G126dEFgYCAAYPHixRg9ejSCg4Ph5uaGI0eO4MKFC9i7dy+AqvaIS5YswcaNG9G7d2+u8aypqSmXkI4YMQIGBgaYM2cOAgICoKmpiX379uHWrVtwc3Nroo+CEFIf0juKsjoR1GXokpkzZ8q8K0kIaZiGPP2TCgoKwubNm3H69GkMGjSIW1+Xp39E+dU7WZw6dSoePnyIgIAAiEQiWFtbIy4ujrtFfefOHd4dQAcHB0RERGD16tVYtWoVevfujdjYWG6MRQD45JNPUFpaivnz5+PJkycYNWoU4uLiuG82hoaGiIuLw2effYa3334bFRUVGDBgAH788UcMHjy4sZ8BIaQRautEMHLkSDmUhpC2qyFP/4Cq3s5ffPEFfvnlFwwbNoy3rS5P/4jyq3eyCAC+vr61XnhJSUk11k2ePBmTJ0+u9XgCgQAbNmzAhg0bao0ZNmwYfvnll3qXlRBCCGkr6vv0b8uWLQgICEBERATMzMy4dojt27dH+/bt6/T0jyi/BiWLhBBCCGl96vv076uvvkJ5eTkmTZrEO87atWuxbt06AG9++keUHyWLhBBCiBKpz9O/vLy8Nx6vLk//iHJTiHEWCSGEEEKIfFCySAghhBBCakXJIiGEEEIIqRW1WSSENJhxewE0n1wH7tXve6fmk+swbi9oplIRQghpSpQsEkIabIGNOvr9vgD4vX779fv/fQkhhLR+lCwSQhpsT3o5pgZ8g36WlvXaLzsnB3uCZ2BCM5WLEEJI06FkkRDSYKJnDC/0+wCm1vXa74VIAtEz1jyFIoQQ0qSogwshhBBCCKkVJYuEENLEwsLCYGZmBg0NDdjZ2eHcuXOvjT9+/DgsLS2hoaEBKysrnDp1ird93bp1sLS0hLa2NgwMDODs7Iy0tDRezOPHj/Hvf/8burq60NfXh4+PD549e9bkdWuNnj9/josXL3JLdnY2ACA7O5u3/vnz53IuKSGKiR5DE0IaRPqH9+LFizW2vXjxAnl5eTAzM4OmpmaN7dI/5sro6NGj8PPzQ3h4OOzs7LBjxw64uLjg2rVr6Ny5c434lJQUTJ8+HYGBgXB3d0dERAQ8PT1x8eJFDBw4EADQp08fhIaGomfPnnjx4gVCQkIwbtw43LhxA506dQIA/Pvf/8b9+/cRHx+PiooKeHt7Y/78+YiIiGjR+stDTk4ObGxsaqyfOXMm73V6ejqGDh3aUsUiRGkIGGNtouFQSUkJ9PT0UFxcDF1dXXkXh1RD56aKon0OX3/9NebNm9eoY1y/fh29e/duohI1j/qeFzs7OwwfPhyhoaEAAIlEgm7duuGjjz7Cp59+WiN+6tSpKC0txYkTJ7h19vb2sLa2Rnh4+GvLdPr0aYwdOxbZ2dno378/zp8/j2HDhgEA4uLi8N577+Hu3bswNTVt8nq2Js+fP0dOTg73urYvK5aWltDS0pJHERtMkc+LlDLUQVnV9dzQnUVCSIN4enoCkP0HODs7GzNnzsThw4fRr18/mfvr6Oi0+kSxvsrLy5Geng5/f39unYqKCpydnZGamipzn9TUVPj5+fHWubi4IDY2ttb32Lt3L/T09DB48GDuGPr6+lyiCADOzs5QUVFBWloa/vWvf9U4TllZGcrKyrjXJSUlda5na6OlpVXjjuHIkSPlVBpClA8li4SQBjE0NMR//vOf18b069evTT32KyoqglgshpGREW+9kZER785XdSKRSGa8SCTirTtx4gSmTZuG58+fw8TEBPHx8TA0NOSO8eojbjU1NXTo0KHGcaQCAwOxfv36etWPENI2UQcXQghRAE5OTsjMzERKSgpcXV0xZcoUPHjwoMHH8/f3R3FxMbfk5+c3YWkJIcqEkkVCCGkihoaGUFVVRWFhIW99YWEhjI2NZe5jbGxcp3htbW1YWFjA3t4e+/fvh5qaGvbv388d49XEsbKyEo8fP671fYVCIXR1dXkLIYTIQskiIYQ0EXV1ddjY2CAhIYFbJ5FIkJCQgBEjRsjcZ8SIEbx4AIiPj681vvpxpW0OR4wYgSdPniA9PZ3bfubMGUgkEtjZ2TW0OoQQAoDaLBJCSJPy8/PDnDlzMGzYMNja2mLHjh0oLS2Ft7c3AGD27Nno0qULAgMDAQCLFy/G6NGjERwcDDc3Nxw5cgQXLlzA3r17AQClpaX44osvMGHCBJiYmKCoqAhhYWEoKCjA5MmTAVS1DXV1dcW8efMQHh6OiooK+Pr6Ytq0aXXqCU0IeTOxWIzk5GTcv38fJiYmcHR0hKqqqryL1SIoWSSEkCY0depUPHz4EAEBARCJRLC2tkZcXBzXieXOnTtQUfnfQx0HBwdERERg9erVWLVqFXr37o3Y2FhujEVVVVXk5OTg0KFDKCoqQseOHTF8+HAkJydjwIAB3HG+//57+Pr6YuzYsVBRUcHEiROxc+fOlq08IUoqJiYGy5YtQ15eHrfOzMwMwcHB8PLykl/BWgprI4qLixkAVlxcLO+ikFfU99yEhoayHj16MKFQyGxtbVlaWtpr448dO8b69u3LhEIhGzhwIDt58iRvu0QiYWvWrGHGxsZMQ0ODjR07ll2/fp0Xs3HjRjZixAimqanJ9PT0ZL7PuXPn2Ntvv8309PSYvr4+GzduHMvMzKxTnRhTrms0PT2dAWDp6enyLkqjKdN5eZ22Uk9FowznRdHrEB0dzQQCARs/fjxLTU1lT58+ZampqWz8+PFMIBCw6OhoeRexwep6bqjNIlEo0tkx1q5di4sXL2Lw4MFwcXGptVeodHYMHx8fZGRkwNPTE56ensjKyuJitm7dip07dyI8PBxpaWnQ1taGi4sLXr58ycWUl5dj8uTJWLhwocz3efbsGVxdXdG9e3ekpaXhjz/+gI6ODlxcXFBRUdG0HwIhpFZisRhJSUmIjIxEUlISxGKxvItEFJhYLMayZcvg7u6O2NhY2Nvbo3379rC3t0dsbCzc3d2xfPly5b/OWih5lTtF/2ajzOpzbmxtbdmiRYu412KxmJmamrLAwECZ8VOmTGFubm68dXZ2dmzBggWMsaq7isbGxmzbtm3c9idPnjChUMgiIyNrHO/gwYMy7yyeP3+eAWB37tzh1l26dIkBYLm5uW+sF2PKdY3SnUXFowz1jI6OZmZmZgwAt5iZmbWJOz+tmSLXITExkQFgqampMrenpKQwACwxMbFlC9ZE6M4iUTrS2TGcnZ25dXWZHaN6PFA1O4Y0/tatWxCJRLwYPT092NnZ1XpMWfr27YuOHTti//79KC8vx4sXL7B//37069cPZmZmMvcpKytDSUkJbyGENExMTAwmTZoEKysrpKam4unTp0hNTYWVlRUmTZqEmJgYeReRKKD79+8DAAYOHCjzrrW0bbE0TllRskgUxutmx6htloo3zY4h/bc+x5RFR0cHSUlJOHz4MDQ1NdG+fXvExcXh559/hpqa7H5kgYGB0NPT45Zu3brV+f0IIf9DjwpJczExMQEAhIaGwsLCAk5OTpgxYwacnJxgYWHBzQEvjVNWlCwS0gRevHgBHx8fjBw5EmfPnsWff/6JgQMHws3NDS9evJC5D82gQUjTSE5ORl5eHlatWsXraQ5UPX3w9/fHrVu3kJycLKcSEkXl6OiITp06wd/fHwMHDuTdtR44cCBWrVqFzp07w9HRUd5FbVY0dA5RGM0xO4b038LCQt43w8LCQlhbW9e5bBEREcjLy0Nqair3xyoiIgIGBgb48ccfMW3atBr7CIVCCIXCOr8HIUS26o8KZWkrjwpJ8xAIBNzPjDFuaUvoziJRGM0xO4a5uTmMjY15MSUlJUhLS3vjDBrVPX/+HCoqKrxfKtLXEomkzschhNSf9Ite9VEOqpOuV/ZHhaTpJScn48GDBwgMDERWVhYcHBygq6sLBwcHXLlyBZs2bcKDBw+U/q41JYtEofj5+WHfvn04dOgQsrOzsXDhwhqzY/j7+3PxixcvRlxcHIKDg5GTk4N169bhwoUL8PX1BVD1jXHJkiXYuHEjfvrpJ1y+fBmzZ8+GqakpPD09uePcuXMHmZmZuHPnDsRiMTIzM5GZmYlnz54BAN555x38888/WLRoEbKzs3HlyhV4e3tDTU0NTk5OLfcBEdIGOTo6wszMDJs2barx5UwikSAwMBDm5uZK/6iQND3p3WhfX1/cuHEDiYmJiIiIQGJiInJzc7m/JUp/17oluma3BorcdV/Z1ffc7Nq1i3Xv3p2pq6szW1tbdvbsWW7b6NGj2Zw5c3jxx44dY3369GHq6upswIABtQ7KbWRkxIRCIRs7diy7du0aL2bOnDm84TikS/XhEn799Vc2cuRIpqenxwwMDNjbb79d63ALTfE5tGY0dI7iUfR6Vh84OSUlhZWUlLCUlBSFHzhZ0c8LY4pdBxo6p4qAsbbx4L2kpAR6enooLi6Grq6uvItDqqFzU0WZPoeLFy/CxsYG6enpGDp0qLyL0yjKdF5eRxnqKWtKNnNzcwQFBSnslGzKcF4UuQ5isRgWFhawsrJCbGwsrwOVRCLhJnnIzc1VyHmi63pu6DE0IaRJPXv2DH5+fgCqmg1IH9UT0ty8vLxkPipU1ESRyJ+qqiqCg4Nx4sQJeHp68npDe3p64sSJEwgKClLIRLE+qDc0IaTRnj9/jpycHMyaNQtXr17l1v/222/Q0dFB//798d1338HS0hJaWlpyLClRdqqqqhgzZoy8i0GUiJeXF6KiorBs2TI4ODhw683NzREVFdUmvoxQskgIabScnBzY2NjUuv3q1atK81iaENL2eHl5wcPDA8nJybh//z5MTEzg6Oio9HcUpShZJIQ0WteuXQFU9S7/448/wBhDXl4ezMzMIBAIMGrUKDDGuDhCCFE0bfmuNbVZJIQ02oIFCwAAM2fOxJAhQxAZGYlvv/0WkZGRGDJkCGbMmMGLI4QQojjoziIhpNFu3rwJAMjPz+e1Sfz1118RFhaG0aNH8+IIIYQoDrqzSAhptF69egEAkpKSoK6ujk8//RQ3btzAp59+CnV1dfz222+8OEKai1gsRlJSEiIjI5GUlASxWCzvIhGi8ChZJIQ02t69e7mfCwoKYGRkhB07dsDIyAgFBQUy4whpajExMbCwsICTkxNmzJgBJycnWFhYICYmRt5FI0ShUbJICGm09evXcz936tQJS5cuRWhoKJYuXYpOnTrJjCOkKcXExGDSpEmwsrLijYVnZWWFSZMmUcJISCNQskgIabTc3NwmjSOkPsRiMZYtWwZ3d3fExsbC3t4e7du3h729PWJjY+Hu7o7ly5fTI2lCGoiSRUJIo5mbmwMAtLS0UFRUhJEjR6Jbt24YOXIkioqKuE4v0jhCmlJycjLy8vKwatUq3nRsAKCiogJ/f3/cunULycnJciohIYqNekMTQhpNmgS+fPkSNjY2uH37NoCq3tE2NjZ4+fIlL46QpnT//n0AwMCBA2Vul66XxhFC6ofuLBJCGu3u3bsAAIlEgjt37mDmzJm4ePEiZs6ciTt37kAikfDiCGlKJiYmAICsrCyZ26XrpXGEkPqhZJEQ0mhmZmYAAF1dXTDGcPjwYQwdOhSHDx8GYww6Ojq8OEKakqOjI8zMzLBp0ybui4mURCJBYGAgzM3N4ejoKKcStqywsDCYmZlBQ0MDdnZ2OHfuXK2xV65cwcSJE7nZlnbs2FEjZt26dRAIBLzF0tKyGWtAWhtKFgkhjWZlZQUAUFNTQ0lJCRYtWoRx48Zh0aJFKCkpgZqaGi+OkKakqqqK4OBgnDhxAp6enrze0J6enjhx4gSCgoLaxDy+R48ehZ+fH9auXYuLFy9i8ODBcHFxwYMHD2TGP3/+HD179sTmzZthbGxc63EHDBiA+/fvc8sff/zRXFUgrRAli4SQRnv06BEA4PHjx+jduzcGDRqEgwcPYtCgQejduzf++ecfXhwhTc3LywtRUVG4fPkyHBwcoKurCwcHB2RlZSEqKgpeXl7yLmKL2L59O+bNmwdvb2/0798f4eHh0NLSwoEDB2TGDx8+HNu2bcO0adMgFAprPa6amhqMjY25xdDQsLmqQFoh6uBCCGk0aVuwf//73zh69ChvDmg1NTXMmDEDERER1GaMNCsvLy94eHggOTkZ9+/fh4mJCRwdHdvEHUUAKC8vR3p6Ovz9/bl1KioqcHZ2RmpqaqOOnZubC1NTU2hoaGDEiBEIDAxE9+7dZcaWlZWhrKyMe11SUtKo9ybyR8kiIaTRpG3GSkpK8PTpU4SHh+PmzZvo1asXPvjgA0yZMqVNtRkj8qOqqooxY8bIuxhyUVRUBLFYDCMjI956IyMj5OTkNPi4dnZ2+Oabb9C3b1/cv38f69evh6OjI7Kysrj2yNUFBgbSAPxKhpJFQkijSduMTZo0CVOmTIG/vz98fHyQlZWFKVOm4MSJE4iKimozd3iI/IjF4jZ7Z7G5vPvuu9zPgwYNgp2dHXr06IFjx47Bx8enRry/vz/8/Py41yUlJejWrVuLlJU0jwa1WaxPTysAOH78OCwtLaGhoQErKyucOnWKt50xhoCAAJiYmEBTUxPOzs4yZ3o4efIk7OzsoKmpCQMDA3h6ejak+ISQZiBtM3bp0iVem7HLly+3qTZjRH7a+tzQhoaGUFVVRWFhIW99YWHhazuv1Je+vj769OmDGzduyNwuFAqhq6vLW4hiq3eyWN+eVikpKZg+fTp8fHyQkZEBT09PeHp68sbD2rp1K3bu3Inw8HCkpaVBW1sbLi4u3EC+ABAdHY1Zs2bB29sbf/31F/7880/MmDGjAVUmhDSXs2fP1hhLMT8/H2fPnpVTiUhbQXNDA+rq6rCxsUFCQgK3TiKRICEhASNGjGiy93n27Blu3rxJbZDbElZPtra2bNGiRdxrsVjMTE1NWWBgoMz4KVOmMDc3N946Ozs7tmDBAsYYYxKJhBkbG7Nt27Zx2588ecKEQiGLjIxkjDFWUVHBunTpwr7++uv6FpdTXFzMALDi4uIGH4M0Dzo3VRT9c1ixYgUDwIyMjNi+ffvY/fv32b59+5iRkREDwFasWCHvIjaIop+XulLkelZWVjIzMzM2fvx4JhaLedvEYjEbP348Mzc3Z5WVlXIqYcPV97wcOXKECYVC9s0337CrV6+y+fPnM319fSYSiRhjjM2aNYt9+umnXHxZWRnLyMhgGRkZzMTEhC1fvpxlZGSw3NxcLmbZsmUsKSmJ3bp1i/3555/M2dmZGRoasgcPHjRLHUjLqeu5qVeyWFZWxlRVVdkPP/zAWz979mw2YcIEmft069aNhYSE8NYFBASwQYMGMcYYu3nzJgPAMjIyeDFvvfUW+/jjjxljjKWlpTEA7MCBA8za2poZGxszV1dXdvny5VrL+vLlS1ZcXMwt+fn5dLG2UvSLpIoifw5lZWVMTU2NGRkZsYqKCt62iooKZmRkxNTU1FhZWZmcSthwinxe6kOR65mYmMgAsNTUVJnbU1JSGACWmJjYsgVrAg05L7t27WLdu3dn6urqzNbWlp09e5bbNnr0aDZnzhzu9a1btxiAGsvo0aO5mKlTpzITExOmrq7OunTpwqZOncpu3LjRrHUgLaOu56ZeHVwa0tNKJBLJjBeJRNx26braYv7++28AVaPIb9++HWZmZggODsaYMWNw/fp1dOjQocb7Um8sQlrO7t27UVlZiY0bN3IDcEupqalhw4YNWLBgAXbv3o0lS5bIp5BEadHc0Hy+vr7w9fWVuS0pKYn32szMDIyx1x7vyJEjTVU0oqAUYlBu6fRNn332GSZOnAgbGxscPHgQAoEAx48fl7mPv78/iouLuSU/P78li0xIm3Lz5k0AgLu7u8zt0vXSOEKaEs0NTUjzqley2JCeVsbGxq+Nl/77uhjpf/D+/ftz24VCIXr27Ik7d+7IfF/qjUVIy+nVqxcA4MSJEzK3S9dL4whpSjQ3NCHNq17JYkN6Wo0YMYIXDwDx8fFcvLm5OYyNjXkxJSUlSEtL42JsbGwgFApx7do1LqaiogJ5eXno0aNHfapACGkGH374IdTU1LB69WpUVlbytlVWViIgIABqamr48MMP5VTCltWUw4tVVFRg5cqVsLKygra2NkxNTTF79mzcu3ePd4yLFy/inXfegb6+Pjp27Ij58+fj2bNnzVK/1obmhiYtQSwWIykpCZGRkUhKSoJYLJZ3kVpOfRtD1ren1Z9//snU1NRYUFAQy87OZmvXrmXt2rXjdU7ZvHkz09fXZz/++CO7dOkS8/DwYObm5uzFixdczOLFi1mXLl3YL7/8wnJycpiPjw/r3Lkze/z4cZ3KTQ1sWy86N1UU/XOo3ht6z549rKCggO3Zs6fN9YY+cuQIU1dXZwcOHGBXrlxh8+bNY/r6+qywsFBm/J9//slUVVXZ1q1b2dWrV9nq1at5vyOfPHnCnJ2d2dGjR1lOTg5LTU1ltra2zMbGhjtGQUEBMzAwYB988AHLyclh586dYw4ODmzixInNVs/WKDo6mpmZmfE6apibm7Po6Gh5F63BlOG8KEMdZF1bZmZmCn1tMdZMvaGl6tPTijHGjh07xvr06cPU1dXZgAED2MmTJ3nbJRIJW7NmDTMyMmJCoZCNHTuWXbt2jRdTXl7Oli1bxjp37sx0dHSYs7Mzy8rKqnOZleFiVVZ0bqoow+ewYsUKpqamxvuFqqamprCJImP1Py9NPbyYLOfOnWMA2O3btxljjO3Zs4d17tyZN2zMpUuXGADeECjVKeOIEdHR0axHjx68669Hjx4K/QddGX4vKHodoqOjmUAgYOPHj2epqans6dOnLDU1lY0fP54JBII2cX01KFlURIp+sSozOjdVlOVzKCsrYyEhIczX15eFhIQo5HA51dXnvDTH8GKyxMfHM4FAwJVp586drGvXrryY3NxcBoAdPHhQ5jHWrl0rc8gURb3+lPUPujL8XlDkOijzGJ6M1f3cKERvaEKI4lBXV8eSJUuwa9cuLFmyBOrq6vIuUot53fBi0qHAXvWm4cVe9fLlS6xcuRLTp0/nOu69/fbbEIlE2LZtG8rLy/HPP//g008/BVD7cDHKNGKEWCzGsmXL4O7ujtjYWNjb26N9+/awt7dHbGws3N3dsXz58rbVxow0ieTkZOTl5WHVqlVQUeGnTCoqKvD398etW7eQnJwspxK2DEoWCSFEQVRUVGDKlClgjOGrr77i1g8YMACHDh1CcHAwtLS0YGxsDHNzcxgZGdX4AyelTCNG0B900lxoDM8qlCwSQkgTaY7hxaSkieLt27cRHx9fI7mbMWMGRCIRCgoK8OjRI6xbtw4PHz5Ez549m6BmrRv9QSfNhcbwrELJIiGENJHmGF4M+F+imJubi9OnT6Njx461lsHIyAjt27fH0aNHoaGhgXfeeaeRtWr96A86aS40hmcVShYJIU2qTY9FBsDPzw/79u3DoUOHkJ2djYULF6K0tBTe3t4AgNmzZ8Pf35+LX7x4MeLi4hAcHIycnBysW7cOFy5c4KZrq6iowKRJk3DhwgV8//33EIvFEIlEEIlEKC8v544TGhqKixcv4vr16wgLC4Ovry8CAwOhr6/fovWXB/qDTpoLjeH5/1qmv438KXJvLGVH56aKMnwOyjgWWUPOS1MOL3br1i2ZvZYBsMTERC5u1qxZrEOHDkxdXZ0NGjSIffvtt81ez9akem/olJQUVlJSwlJSUqg3dCugDHVQxjE8Gav7uREw9oYZxJVESUkJ9PT0UFxcrNANuZURnZsqiv45xMTEYNKkSXB3d8eqVaswcOBAZGVlYdOmTThx4gSioqLg5eUl72LWm6Kfl7pShnrGxMRg2bJlyMvL49aZm5sjKChIIa89QDnOizLUAah6apKcnIz79+/DxMQEjo6OCn9Hsa7nhpJFInd0bqoo8ucgFothYWEBKysrxMbG8nqkSiQSeHp6IisrC7m5uQr3y1WRz0t9KEs9le0PujKcF2Wog7Kq67lRa8EyEUKUlHToksjIyFqHLnFwcEBycjLGjBkjn0KSNkFVVZWuMdIslO2LSH1QBxdCSKPR0CWEEGUWExMDCwsLODk5YcaMGXBycoKFhQViYmLkXbQWQckiIaTRaOgSQoiykrbHtrKy4vWGtrKywqRJk9pEwkjJIiGk0WjoEkKIMqKpJKtQskgIaTQai4wQooyqTyXJGOONIcsYazNTSVIHF0JIk/Dy8kJUVBSWLVsGBwcHbr25ubnCDptDCGnbpO2sb968ienTp/OGZTIzM8PGjRt5ccqK7iwSQpqMl5cXbty4gcTERERERCAxMRG5ubmUKBJCFJK0nfWsWbNktlmcNWsWL05Z0Z1FQkiToqFLCCHKwsHBAWpqaujYsSNiYmKgplaVNtnb2yMmJgZdu3bFo0ePeE9TlBHdWSSEEEIIkSElJQWVlZUoLCyEl5cX786il5cXCgsLUVlZiZSUFHkXtVlRskgIIYQQIoO0LeLhw4dx6dIlODg4QFdXFw4ODrh8+TIOHz7Mi1NWlCwSQgghhMggbYuYn58PgUBQY/udO3d4ccqKkkVCCCGEEBkcHR3RqVMn+Pv7Y+DAgbzH0AMHDsSqVavQuXNnpR9DlpJFQgghhJBaVL+jyBjjlraEkkWicMLCwmBmZgYNDQ3Y2dnh3Llzr40/fvw4LC0toaGhASsrK5w6dYq3nTGGgIAAmJiYQFNTE87OzsjNzeXFfPHFF3BwcICWlhb09fVrfa9vvvkGgwYNgoaGBjp37oxFixY1uJ6EEELkKzk5GQ8ePEBgYCCysrJ4bRavXLmCTZs24cGDB0o/KDcli0ShHD16FH5+fli7di0uXryIwYMHw8XFBQ8ePJAZn5KSgunTp8PHxwcZGRnw9PSEp6cnbw7jrVu3YufOnQgPD0daWhq0tbXh4uKCly9fcjHl5eWYPHkyFi5cWGvZtm/fjs8++wyffvoprly5gtOnT8PFxaXpKk8IIaRFSTuu+Pr6yhxD1tfXlxentFgbUVxczACw4uJieReFvKI+58bW1pYtWrSIey0Wi5mpqSkLDAyUGT9lyhTm5ubGW2dnZ8cWLFjAGGNMIpEwY2Njtm3bNm77kydPmFAoZJGRkTWOd/DgQaanp1dj/ePHj5mmpiY7ffr0G+tQG7pGW6e2cl7aSj0VjTKcF0WuQ2JiIgPAUlNTWVlZGQsJCWG+vr4sJCSElZWVsZSUFAaAJSYmyruoDVLXc0ODchOFUV5ejvT0dPj7+3PrVFRU4OzsjNTUVJn7pKamws/Pj7fOxcUFsbGxAIBbt25BJBLB2dmZ266npwc7OzukpqZi2rRpdSpbfHw8JBIJCgoK0K9fPzx9+hQODg4IDg5Gt27dZO5TVlaGsrIy7nVJSUmd3osQQkjLcHR0hJmZGWbOnInbt2+jsrKS27ZixQr06NED5ubm1MGFkNaiqKgIYrEYRkZGvPVGRkYQiUQy9xGJRK+Nl/5bn2PK8vfff0MikWDTpk3YsWMHoqKi8PjxY7zzzjsoLy+XuU9gYCD09PS4pbakkhBCiHyoqqpi8ODBuHnzJlRUVDB9+nQEBwdj+vTpUFFRwc2bNzFo0CCoqqrKu6jNiu4sEtIEJBIJKioqsHPnTowbNw4AEBkZCWNjYyQmJspsu+jv78+761lSUkIJIyGEtCLl5eU4efIktLS08PLlS0RGRiIyMhJA1ZMtLS0tnDx5EuXl5VBXV5dzaZsPJYtEYRgaGkJVVRWFhYW89YWFhTA2Npa5j7Gx8Wvjpf8WFhbyBlUtLCyEtbV1ncsm3bd///7cuk6dOsHQ0JAbtPVVQqEQQqGwzu9BCCGkZe3evRuVlZWorKyEm5sbLCws8OLFC2hqauLGjRs4efIkF7dkyRL5FrYZ0WNoojDU1dVhY2ODhIQEbp1EIkFCQgJGjBghc58RI0bw4oGq9oXSeHNzcxgbG/NiSkpKkJaWVusxZRk5ciQA4Nq1a9y6x48fo6ioCD169KjzcQghhLQe0mHUBg0ahKysLHz55ZfYu3cvvvzyS2RlZWHQoEG8OGVFySJRKH5+fti3bx8OHTqE7OxsLFy4EKWlpfD29gYAzJ49m9cBZvHixYiLi0NwcDBycnKwbt06XLhwgRvuQCAQYMmSJdi4cSN++uknXL58GbNnz4apqSk8PT2549y5cweZmZm4c+cOxGIxMjMzkZmZiWfPngEA+vTpAw8PDyxevBgpKSnIysrCnDlzYGlpCScnp5b7gAghhDQZ6YDcly5dwqBBg3gzuAwaNAiXLl3ixSkregxNFMrUqVPx8OFDBAQEQCQSwdraGnFxcVwHlTt37kBF5X/fgRwcHBAREYHVq1dj1apV6N27N2JjYzFw4EAu5pNPPkFpaSnmz5+PJ0+eYNSoUYiLi4OGhgYXExAQgEOHDnGvhwwZAgBITEzEmDFjAADffvstli5dCjc3N6ioqGD06NGIi4tDu3btmvMjIYQQ0kyGDx8OoOrJVlRUFNcu0d7eHlFRUdDR0UF5eTkXp6wEjLWNOWtKSkqgp6eH4uJi6Orqyrs4pBo6N1Xoc2id2sp5aSv1VDTKcF4UuQ47duzA0qVLAVSNkrFhwwa4u7vjxIkTCAgI4NrEh4SEKGSbxbqeG7qzSAghhBAiQ6dOnQBUtW/Pz8/HggULuG1qamowNzfHrVu3uDhlRckiIYQQQogMXbp0AQDk5eXhvffeQ69evfDy5UtoaGjg5s2bOHXqFC9OWVGySAghhBAig3QGF0NDQ1y5coUbKgeouttoY2ODR48eKf0MLpQsEkIIIYTIoKqqiuDgYEyaNAlubm5Yvnw5NDU18eLFC8TFxeHkyZOIiopS+hlcaOgcQgghRImEhYXBzMwMGhoasLOzw7lz52qNvXLlCiZOnAgzMzMIBALs2LGj0cdUNl5eXoiKikJWVhZ8fX3h4+MDX19fXLlyBVFRUfDy8pJ3EZsdJYuEEEKIkjh69Cj8/Pywdu1aXLx4EYMHD4aLiwsePHggM/758+fo2bMnNm/eXOtMWPU9pjLy8vLCtWvXEBISAl9fX4SEhCAnJ6dNJIoAJYuEEEKI0ti+fTvmzZsHb29v9O/fH+Hh4dDS0sKBAwdkxg8fPhzbtm3DtGnTap1+tL7HVEYxMTHo27cvli5ditDQUCxduhR9+/ZFTEyMvIvWIihZJIQQQpRAeXk50tPT4ezszK1TUVGBs7MzUlNTW+yYZWVlKCkp4S2KLCYmBpMmTeLGVJQqLCzEpEmT2kTCSMkiIYQQogSKioogFou5Ga2kjIyMIBKJWuyYgYGB0NPT45Zu3bo16L1bA7FYjIULF4IxhrFjx/Km+xs7diwYY1i4cCHEYrG8i9qsKFkkhBBCSJPx9/dHcXExt+Tn58u7SA2WlJSEBw8eYNSoUfjxxx9hb2+P9u3bw97eHj/++CNGjhyJBw8eICkpSd5FbVaULBJCSBOrb8/R48ePw9LSEhoaGrCysuIG+gWAiooKrFy5ElZWVtDW1oapqSlmz56Ne/fu8Y5x/fp1eHh4wNDQELq6uhg1ahQSExObpX6kdTI0NISqqqrMx6W1dV5pjmMKhULo6uryFkUlTQLXr18PFRV+yqSiooJ169bx4pQVJYuEENKE6ttzNCUlBdOnT4ePjw8yMjLg6ekJT09PZGVlAajqrXrx4kWsWbMGFy9eRExMDK5du4YJEybwjuPu7o7KykqcOXMG6enpGDx4MNzd3Rv8+JEoHnV1ddjY2CAhIYFbJ5FIkJCQgBEjRrSaYyqq8vJy7NixAx999BF27NiB8vJyeRep5bA2ori4mAFgxcXF8i4KeQWdmyr0ObRO9T0vtra2bNGiRdxrsVjMTE1NWWBgoMz4KVOmMDc3N946Ozs7tmDBglrf49y5cwwAu337NmOMsYcPHzIA7Pfff+diSkpKGAAWHx9fp3LT9dc61fe8HDlyhAmFQvbNN9+wq1evsvnz5zN9fX0mEokYY4zNmjWLffrpp1x8WVkZy8jIYBkZGczExIQtX76cZWRksNzc3Dofs6nr0JqcPn2aAWBdunRhqqqqDAC3qKqqsi5dujAA7PTp0/IuaoPU9dzQDC6EENJEpD1H/f39uXVv6jmampoKPz8/3joXFxfExsbW+j7FxcUQCATQ19cHAHTs2BF9+/bFt99+i6FDh0IoFGLPnj3o3LkzbGxsZB6jrKwMZWVl3GtF77FKqkydOhUPHz5EQEAARCIRrK2tERcXx3VQuXPnDu9x6r179zBkyBDudVBQEIKCgjB69Gju0eqbjqnMxowZA01NTRQUFKBdu3aYMmUKhg8fjvPnzyMqKgoFBQXQ1NTEmDFj5F3UZkXJIiGENJHX9RzNycmRuY9IJKpXT9OXL19i5cqVmD59OtcWTCAQ4PTp0/D09ISOjg5UVFTQuXNnxMXFwcDAQOZxAgMDsX79+vpWkSgAX19f+Pr6ytz2ats6MzMzMMYadUxlJhaLuS9VlZWViIyMRGRkJPB/7d17XFRl/gfwzzDGgLexNB0wlSkxLFECA6FYbxSZt3mxXrJcyTU11zZd1ExXQVtz9qVSrpdy7eJljTSNqBe2FKK+lnJCAXHF8NaieGFMLQZCBZt5fn/wm5MTM8TowHBmPu/X67xozvmew/PM8zh9eeY8z0Hdvzug7g8vs9ns0Y/84z2LREQycfPmTYwbNw5CCLz99tvSfiEEZs6cic6dOyM3NxcHDx6ETqfDyJEjUV5ebvdanjRjlaipvPXWW7BYLAAAPz8/m2PW1xaLBW+99Vazl605MVkkInKR25k5qtFoGhVvTRTPnj2L7Oxsmxmme/fuRWZmJrZv347HHnsM4eHheOutt+Dv748tW7bY/b2eNGOVqKmcOnUKANCvXz/ce++9Nsfuvfde9OvXzybOUzFZJCJykduZORodHW0TDwDZ2dk28dZE8dSpU9izZw86duxoE3/t2jUAsLu0h3VUhIicZ/2q+ciRI+jbty/Wr1+P999/H+vXr0ffvn1x5MgRmzhPdVvJoivXEAPqvkJJTk5GQEAA/P39ERcX5zBLr6mpQVhYGBQKBYqKim6n+ERETSYpKQnvvPMOtmzZgpKSEsyYMQPV1dWYPHkyAGDSpEk2E2BmzZqFrKwspKam4vjx41iyZAny8/Ol+8Nu3ryJMWPGID8/Hx988AHMZjOMRiOMRqO0dEd0dDTuvvtuJCYm4siRIzh58iTmzZuH0tJSDB8+vPnfBCIP8eijjwIAlEoljh49ipkzZ+KPf/wjZs6ciaNHj0r3KVrjPJXTyaKr1xADgBUrVmDNmjXYsGED8vLy0KZNG8THx+PGjRv1rvfKK68gMDDQ2WITETWL8ePHY9WqVUhOTkZYWBiKiorqzUa99T7CmJgYpKWlYePGjejXrx927dqFjIwM9OnTBwBw4cIFfPbZZzh//jzCwsIQEBAgbQcOHABQ9/V3VlYWfvrpJwwZMgT9+/fHV199hU8//VT6moyInPfjjz8CqJvoUl5ejvnz5+PkyZOYP38+ysvLpcf8WeM8lrNr8rh6DTGLxSI0Go1YuXKldLyiokKoVCrx4Ycf2pz3+eefi5CQEHHs2DEBQBw+fLjR5ZbzOk+ejm1Th+9Dy+Qt7eIt9ZQbT2gXOddh69atAoBo3bq18PHxsVln0cfHR7Ru3VoAEFu3bnV3UW9Lk6yz2BRriJWWlsJoNCIuLk46rlarERUVBYPBgGeeeQZA3Q3fU6dORUZGBlq3bv2bZeUaYkRERHQnrl69CgC4fv06nn76afTs2RPXr1+Hv78/Tp8+Ld1WZ43zVE4li02xhpj1Z0MxQgg8//zzePHFF9G/f3+cOXPmN8vKNcSIiIjoTlhnQIeFheHYsWPYvXu3dEyr1SIsLAyHDx+uN1Pa08hiNvTatWtRVVVlM6L5W7iGGBEREd2Jrl27AgAOHz6M3r17IzY2Fg899BBiY2MREhKCw4cP28R5KqdGFptiDTHrz0uXLiEgIMAmJiwsDEDdGmIGgwEqlcrmOv3798dzzz1ndx0xlUpVL56IiIiosWJjYxEUFIQff/wR//73v+sdV6vVuOeeexAbG+uG0jUfp0YWm2INMa1WC41GYxNTWVmJvLw8KWbNmjU4cuQIioqKUFRUJN0jsGPHDrz++uvOVIGIiIioUZRKJe69917peexPPPEEli9fjieeeAIKhQImk0kaSPNkTj8bOikpCYmJiejfvz8iIyOxevXqemuIde3aFXq9HkDdGmIDBw5Eamoqhg8fju3btyM/Px8bN24EULeQ5ezZs7Fs2TIEBwdDq9Vi8eLFCAwMhE6nAwB0797dpgxt27YFADzwwAO47777brvyRERERI5cv34dhw4dQqtWraDRaJCdnY3s7GwAQLdu3VBeXo5Dhw5Jk148ldPJ4vjx43H58mUkJyfDaDQiLCys3hpitz5FwLqG2KJFi7Bw4UIEBwfbrCEG1K2dWF1djWnTpqGiogKPP/44srKy6j2HkYiIiKi5zJs3D0DdbXjnz5+3OXbu3DloNBoYjUbMmzcP69atc0cRm4VCCCHcXYjmUFlZCbVaDZPJxGegtjBsmzp8H1omb2kXb6mn3HhCu8i5DvHx8fjyyy8B1H0TOnHiRMydOxerVq3Ctm3bYE2hnnzySXzxxRfuLOptaWzbOD2ySEREROQNbr0N7tq1a9I3nlu3bsXGjRulr55/fbucp2GySERERGSH9dGcPj4+EEJg//79KC8vR0BAAKKiouDj4wOLxWLzCE9PxGSRiIiIyI6ysjIAdSu/NPT0OGucp5LFotxEREREze2BBx5waZxccWSRiIg8htlsRm5urvRVYWxsrMevgUdNZ/PmzejQoUOj4jwZRxaJiMgjpKeno2fPnhg8eDCeffZZDB48GD179kR6erq7i0YylZ+f79I4uWKySEREspeeno4xY8YgNDQUBoMBVVVVMBgMCA0NxZgxY5gw0m2xLpvjqji5YrJIRESyZjabMWfOHIwYMQIZGRkYMGAA2rZtiwEDBiAjIwMjRozA3LlzYTab3V1UkplPPvnEpXFyxWSRiIhkLTc3F2fOnMHChQttniAG1C15smDBApSWliI3N9dNJSS5unz5skvj5IrJIhERyZp1jbtbHyN7K+t+T18Lj1zv1qea2PtDxF6cJ2KySEREshYQEAAAKC4utnvcut8aR9RYGo3GpXFyxWSRiIhkLTY2FkFBQVi+fDksFovNMYvFAr1eD61Wi9jYWDeVkOTq5s2b0n/b61v24jwRk0UiIpI1pVKJ1NRUZGZmQqfT2cyG1ul0yMzMxKpVq7jeIjnt118932mcXHl27YiIyCskJCRg165dOHr0KGJiYtC+fXvExMSguLgYu3btQkJCgruLSDI0dOhQl8bJFZ/gQkREHiEhIQGjR4/mE1zIZTp16uTSOLliskhERB5DqVRi0KBB7i4GeYgrV664NE6u+DU0ERERkR15eXkujZMrJotEREREdpSUlLg0Tq6YLBIRERHZUVtb69I4uWKySERERGTHr9dWvNM4uWKySERERGSHr6+vS+PkiskiERERkR1MFuswWSTZWb9+PYKCguDn54eoqCgcPHiwwfidO3ciJCQEfn5+CA0Nxeeff25zXAiB5ORkBAQEwN/fH3FxcTh16pRNzOuvv46YmBi0bt0aHTp0aPD3Xb16Fffddx8UCgUqKipup4pERNQCdOvWzaVxcsVkkWRlx44dSEpKQkpKCgoLC9GvXz/Ex8fj+++/txt/4MABTJgwAVOmTMHhw4eh0+mg0+lQXFwsxaxYsQJr1qzBhg0bkJeXhzZt2iA+Ph43btyQYmprazF27FjMmDHjN8s4ZcoU9O3b984rS0REbnXr/wdcESdXTBZJVt544w1MnToVkydPxkMPPYQNGzagdevWeP/99+3G/+Mf/8BTTz2FefPmoXfv3vjb3/6G8PBwrFu3DkDdqOLq1auxaNEijB49Gn379sXWrVtx8eJFZGRkSNdZunQp/vKXvyA0NLTB8r399tuoqKjA3LlzXVZnIiJyD6PR6NI4uWKySLJRW1uLgoICxMXFSft8fHwQFxcHg8Fg9xyDwWATDwDx8fFSfGlpKYxGo02MWq1GVFSUw2s68u233+K1117D1q1bG/VQ+ZqaGlRWVtpsRETUctTU1Lg0Tq6YLJJsXLlyBWazGV26dLHZ36VLF4d/1RmNxgbjrT+duaY9NTU1mDBhAlauXInu3bs36hy9Xg+1Wi1tnn7PCxGR3HTs2NGlcXLFZJHIBRYsWIDevXtj4sSJTp1jMpmk7dy5c01YQmpOrpyEdfPmTcyfPx+hoaFo06YNAgMDMWnSJFy8eFGK2b9/PxQKhd3t0KFDTVZPIk/Xv39/l8bJFZNFko1OnTpBqVTi0qVLNvsvXboEjUZj9xyNRtNgvPWnM9e0Z+/evdi5cydatWqFVq1aYejQoVKZU1JS7J6jUqnQvn17m43kz9WTsK5du4bCwkIsXrwYhYWFSE9Px4kTJzBq1CjpGjExMSgvL7fZXnjhBWi1Wo//nxhRU+rRo4dL4+SKySLJhq+vLyIiIpCTkyPts1gsyMnJQXR0tN1zoqOjbeIBIDs7W4rXarXQaDQ2MZWVlcjLy3N4TXs+/vhjHDlyBEVFRSgqKsK7774LAMjNzcXMmTMbfR2SP1dPwlKr1cjOzsa4cePw4IMPYsCAAVi3bh0KCgpQVlYGoO7fhkajkbaOHTvi008/xeTJk6FQKJqt7tQyuHp5seeff77eiPVTTz3VlFVoMUwmk0vj5KqVuwtA5IykpCQkJiaif//+iIyMxOrVq1FdXY3JkycDACZNmoSuXbtCr9cDAGbNmoWBAwciNTUVw4cPx/bt25Gfn4+NGzcCABQKBWbPno1ly5YhODgYWq0WixcvRmBgIHQ6nfR7y8rK8MMPP6CsrAxmsxlFRUUAgJ49e6Jt27Z44IEHbMp55coVAEDv3r1/c11G8hzWSVgLFiyQ9jVmElZSUpLNvvj4eJvZ+L9mMpmgUCgc9q3PPvsMV69elf5d2FNTU2NzUz4nWHkG68j2hg0bEBUVhdWrVyM+Ph4nTpxA586d68VbR7b1ej1GjBiBtLQ06HQ6FBYWok+fPlLcU089hU2bNkmvVSpVs9TH3W693cMVcbIlvITJZBIAhMlkcndR6FecbZu1a9eK7t27C19fXxEZGSm++eYb6djAgQNFYmKiTfxHH30kevXqJXx9fcXDDz8sdu/ebXPcYrGIxYsXiy5dugiVSiWGDh0qTpw4YROTmJgoANTb9u3bZ7eM+/btEwDEjz/+2Kg6CcE+2lI50y4XLlwQAMSBAwds9s+bN09ERkbaPeeuu+4SaWlpNvvWr18vOnfubDf++vXrIjw8XDz77LMOyzFs2DAxbNiwBsuakpJit0+z/7Uszn4uREZGipkzZ0qvzWazCAwMFHq93m78uHHjxPDhw232RUVFienTp0uvExMTxejRo50v/P+T82fbI488Iv3b8PPzs/m3cuvrRx55xN1FvS2NbRt+DU2y89JLL+Hs2bOoqalBXl4eoqKipGP79+/H5s2bbeLHjh2LEydOoKamBsXFxXj66adtjisUCrz22mswGo24ceMG9uzZg169etnEbN68GUKIetugQYPslnHQoEEQQnBUkVzq5s2bGDduHIQQePvtt+3GnD9/Hl988QWmTJnS4LU4wcrzNMXyYlb79+9H586d8eCDD2LGjBm4evWqw3J40rJgtbW1AOpu9fj1qhkajUZ6zJ81zlPxa2giIhdpiklYVtZE8ezZs9i7d6/DCVGbNm1Cx44dbSbA2KNSqbzmq0Rv0dDyYsePH7d7zm8tLwbUfQWdkJAArVaL7777DgsXLsSwYcNgMBigVCrrXVOv12Pp0qUuqJH7Wf/gr62tRVVVFcaPHw+VSoWamhpkZ2dLSWK7du3cWMqmx5FFIiIXaYpJWMAvieKpU6ewZ88eh2u6CSGwadMmTJo0CXfddZcLakQEPPPMMxg1ahRCQ0Oh0+mQmZmJQ4cOYf/+/XbjPWnU+tZ713/44Qfs2LEDW7duxY4dO/DDDz9Ix279hssTMVkkInKhpKQkvPPOO9iyZQtKSkowY8aMepOwbp0AM2vWLGRlZSE1NRXHjx/HkiVLkJ+fj5deeglAXaI4ZswY5Ofn44MPPoDZbIbRaITRaKz31dfevXtRWlqKF154ofkqTC1GU45s3+r+++9Hp06dcPr0abvHPWlZsJdffvk3VxRQKBRYsmRJ8xTITZgsEhG50Pjx47Fq1SokJycjLCwMRUVFyMrKkr7qKysrQ3l5uRQfExODtLQ0bNy4Ef369cOuXbuQkZEhzUS9cOECPvvsM5w/fx5hYWEICAiQtgMHDtj87vfeew8xMTEICQlpvgpTi9FUI9u/dv78eVy9ehUBAQGuKXgL5uvri7lz5zYYM3fuXM+/P72JJ9q0GHKejeXp2DZ1+D60TN7SLt5ST7lxtl22b98uVCqV2Lx5s/j222/FtGnTRIcOHYTRaBRCCPGHP/xBvPrqq1L8119/LVq1aiVWrVolSkpKREpKirjrrrvE0aNHhRBCVFVViblz5wqDwSBKS0vFnj17RHh4uAgODhY3btxokjq0RPPmzRNKpdJmNnSrVq3EvHnz3F20O8LZ0ERERF7G1SPbSqUS//3vfzFq1Cj06tULU6ZMQUREBHJzc71qgtSKFStw7do1aU3UpKQkVFdXY8WKFW4uWfNQCCGEuwvRHCorK6FWq2EymWR9/4QnYtvU4fvQMnlLu3hLPeXGE9rFE+pgVVhYiIiICBQUFCA8PNzdxbljjW0bjiwSERERkUNMFomIiIjIISaLREREROQQk0UiIiIicojJIhERERE5xGSRiIiIiBxiskhEREREDjFZJCIiIiKHmCwSERERkUNMFomIiIjIodtKFtevX4+goCD4+fkhKioKBw8ebDB+586dCAkJgZ+fH0JDQ/H555/bHBdCIDk5GQEBAfD390dcXBxOnTolHT9z5gymTJkCrVYLf39/PPDAA0hJSUFtbe3tFJ+IiIiIGsnpZHHHjh1ISkpCSkoKCgsL0a9fP8THx+P777+3G3/gwAFMmDABU6ZMweHDh6HT6aDT6VBcXCzFrFixAmvWrMGGDRuQl5eHNm3aID4+Hjdu3AAAHD9+HBaLBf/85z9x7NgxvPnmm9iwYQMWLlx4m9UmIiIiokYRToqMjBQzZ86UXpvNZhEYGCj0er3d+HHjxonhw4fb7IuKihLTp08XQghhsViERqMRK1eulI5XVFQIlUolPvzwQ4flWLFihdBqtY0ut8lkEgCEyWRq9DnUPNg2dfg+tEze0i7eUk+58YR28YQ6WBUUFAgAoqCgwN1FcYnGto1TI4u1tbUoKChAXFyctM/HxwdxcXEwGAx2zzEYDDbxABAfHy/Fl5aWwmg02sSo1WpERUU5vCYAmEwm3HPPPQ6P19TUoLKy0mYjIiIiIuc4lSxeuXIFZrMZXbp0sdnfpUsXGI1Gu+cYjcYG460/nbnm6dOnsXbtWkyfPt1hWfV6PdRqtbR169at4coRERERUT2ymw194cIFPPXUUxg7diymTp3qMG7BggUwmUzSdu7cuWYsJREREZFncCpZ7NSpE5RKJS5dumSz/9KlS9BoNHbP0Wg0DcZbfzbmmhcvXsTgwYMRExODjRs3NlhWlUqF9u3b22xERERE5JxWzgT7+voiIiICOTk50Ol0AACLxYKcnBy89NJLds+Jjo5GTk4OZs+eLe3Lzs5GdHQ0AECr1UKj0SAnJwdhYWEAgMrKSuTl5WHGjBnSORcuXMDgwYMRERGBTZs2wcdHdoOiREREJAOnTp1CVVVVvf0lJSU2P+1p164dgoODm6xs7uBUsggASUlJSExMRP/+/REZGYnVq1ejuroakydPBgBMmjQJXbt2hV6vBwDMmjULAwcORGpqKoYPH47t27cjPz9fGhlUKBSYPXs2li1bhuDgYGi1WixevBiBgYFSQnrhwgUMGjQIPXr0wKpVq3D58mWpPI5GNInIPcxmM3Jzc1FeXo6AgADExsZCqVS6u1hERI1y6tQp9OrVq8GYiRMnNnj85MmTHpUwOp0sjh8/HpcvX0ZycjKMRiPCwsKQlZUlTVApKyuzGfWLiYlBWloaFi1ahIULFyI4OBgZGRno06ePFPPKK6+guroa06ZNQ0VFBR5//HFkZWXBz88PQN1I5OnTp3H69Gncd999NuURQtxWxYnI9dLT0zFnzhycOXNG2hcUFITU1FQkJCS4r2BERI1kHVHctm0bevfubXPs+vXrOHPmDIKCguDv71/v3JKSEkycONHuqKScKYSXZFuVlZVQq9UwmUy8f7GFYdvUkfv7kJ6ejjFjxmDEiBFYuHAh+vTpg+LiYixfvhyZmZnYtWuXLBNGubdLY3lLPeXGE9pFbnUoLCxEREQECgoKEB4e3mznukNj24Y3/hHRHTObzZgzZw5GjBiBjIwMDBgwAG3btsWAAQOQkZGBESNGYO7cuTCbze4uKhEROYnJIhHdsdzcXJw5cwYLFy6sN/nMx8cHCxYsQGlpKXJzc91UQiIiul1MFonojpWXlwOAzb3It7Lut8YREZF8MFkkojsWEBAAACguLrZ73LrfGkdERPLBZJGI7lhsbCyCgoKwfPlyWCwWm2MWiwV6vR5arRaxsbFuKiEREd0uJotEdMeUSiVSU1ORmZkJnU4Hg8GAqqoqGAwG6HQ6ZGZmYtWqVVxvkYhIhpxeZ5GIyJ6EhATs2rULc+bMQUxMjLRfq9XKdtkcIvJOmrYK+FecBC46N6bmX3ESmraKJiqV+zBZJCKXSUhIwOjRo/kEFyKStekRvuj9n+nAf5w7r/f/n+tpmCwSkUsplUoMGjTI3cUgIrpt/yyoxfjkzegdEuLUeSXHj+Ofqc9iVBOVy12YLBIRERHdwviTwPUOvYDAMKfOu260wPiT5z0YjxNciIiIiMghJotERERE5BCTRSIiF1u/fj2CgoLg5+eHqKgoHDx4sMH4nTt3IiQkBH5+fggNDcXnn38uHbt58ybmz5+P0NBQtGnTBoGBgZg0aRIuXrxY7zq7d+9GVFQU/P39cffdd0On07m6akTkhXjPIhGRC+3YsQNJSUnYsGEDoqKisHr1asTHx+PEiRPo3LlzvfgDBw5gwoQJ0Ov1GDFiBNLS0qDT6VBYWIg+ffrg2rVrKCwsxOLFi9GvXz/8+OOPmDVrFkaNGoX8/HzpOh9//DGmTp2K5cuXY8iQIfj5558dPlGHiBy7du0aAKCwsLDesevXr+PMmTMICgqCv79/veMlJSVNXj53UAghPO9OTDsqKyuhVqthMpnQvn17dxeHbsG2qcP3oWVytl2ioqLw6KOPYt26dQDqnmDTrVs3/PnPf8arr75aL378+PGorq5GZmamtG/AgAEICwvDhg0b7P6OQ4cOITIyEmfPnkX37t3x888/IygoCEuXLsWUKVOapZ7UPDyhXeRWh3fffRdTp069o2ucPHkSwcHBLipR02ls23BkkYjIRWpra1FQUIAFCxZI+3x8fBAXFweDwWD3HIPBgKSkJJt98fHxyMjIcPh7TCYTFAoFOnToAKBuBOTChQvw8fHBI488AqPRiLCwMKxcuRJ9+vSxe42amhrU1NRIrysrKxtZSyLPZr19IyQkBK1bt7Y5VlJSgokTJ2Lbtm3o3bu33fPbtWsni0TRGUwWiYhc5MqVKzCbzejSpYvN/i5duuD48eN2zzEajXbjjUaj3fgbN25g/vz5mDBhgjQS8L///Q8AsGTJErzxxhsICgpCamoqBg0ahJMnT+Kee+6pdx29Xo+lS5c6XUciT9epUye88MILDcb07t0b4eHhzVQi9+MEFyIimbh58ybGjRsHIQTefvttab/FYgEA/PWvf8Xvf/97REREYNOmTVAoFNi5c6fday1YsAAmk0nazp071yx1ICL54ciizJjNZj5KjVo0b+6jnTp1glKpxKVLl2z2X7p0CRqNxu45Go2mUfHWRPHs2bPYu3evzf1FAQEBAICHHnpI2qdSqXD//fejrKzM7u9VqVRQqVSNr5xMeHP/I2oqHFmUkfT0dPTs2RODBw/Gs88+i8GDB6Nnz55IT093d9GIALCP+vr6IiIiAjk5OdI+i8WCnJwcREdH2z0nOjraJh4AsrOzbeKtieKpU6ewZ88edOzY0SY+IiICKpUKJ06csDnnzJkz6NGjhyuqJgve3v+ImgqTRZlIT0/HmDFjEBoaCoPBgKqqKhgMBoSGhmLMmDH8MCS3Yx+tk5SUhHfeeQdbtmxBSUkJZsyYgerqakyePBkAMGnSJJsJMLNmzUJWVhZSU1Nx/PhxLFmyBPn5+XjppZcA1CV9Y8aMQX5+Pj744AOYzWYYjUYYjUbU1tYCANq3b48XX3wRKSkp+PLLL3HixAnMmDEDADB27Nhmfgfcg/2PqAkJL2EymQQAYTKZ3F0Up/38888iKChIjBw5UpjNZptjZrNZjBw5Umi1WvHzzz+7qYR3Rs5t40pyfh88uY/eTrusXbtWdO/eXfj6+orIyEjxzTffSMcGDhwoEhMTbeI/+ugj0atXL+Hr6ysefvhhsXv3bulYaWmpAGB327dvnxRXW1sr5syZIzp37izatWsn4uLiRHFxcZPWs6Vg/7O1bt060aNHD6FSqURkZKTIy8trMP6jjz4SDz74oFCpVKJPnz42/U8IISwWi1i8eLHQaDTCz89PDB06VJw8ebJJ69BSFRQUCACioKDA3UVxica2DZNFGdi3b58AIAwGg93jBw4cqPc/Djlxtm3c8UG4bNkyER0dLfz9/YVara73O4qKisQzzzwj7rvvPuHn5ydCQkLE6tWrG1UfK/bRlknO7eIMOdeT/e8X27dvF76+vuL9998Xx44dE1OnThUdOnQQly5dshv/9ddfC6VSKVasWCG+/fZbsWjRInHXXXeJo0ePSjF///vfhVqtFhkZGeLIkSNi1KhRQqvViuvXrzdJHVqa6upqUVBQIAoKCsS2bdsEALFt2zZpX0FBgaiurnZ3MW8Lk8VfkXNnTUtLEwBEVVWV3eOVlZUCgEhLS2vmkrmGM23jrg/C5ORk8cYbb4ikpCS7yeJ7770nXn75ZbF//37x3XffiX/961/C399frF27tkneh5bGk/uonNvFGXKuJ/vfLyIjI8XMmTOl12azWQQGBgq9Xm83fty4cWL48OE2+6KiosT06dOFEHV/TGs0GrFy5UrpeEVFhVCpVOLDDz9skjq0NNbRxIY2uY40Mln8FTl3Vk/+q1kI59rG3R+EmzZtspss2vOnP/1JDB48uFGxQrCPtlRybhdnyLme7H91ampqhFKpFJ988onN/kmTJolRo0bZPadbt27izTfftNmXnJws+vbtK4QQ4rvvvhMAxOHDh21ifve734mXX37Z7jVv3LghTCaTtJ07d062fUsI25HFr776Smzbtk189dVXXjWyyAkuMhAbG4ugoCAsX75cWk/NymKxQK/XQ6vVIjY21k0lbB7Wp2PExcVJ+xrzdIxb44G6p2NY40tLS2E0Gm1i1Go1oqKiHF6zsUwmk93FkK1qampQWVlps8kV+yi5E/tfnYYWhXe0yPtvLQpv/enMNfV6PdRqtbR169btturTUrRu3Rrh4eEIDw/HY489hueeew6PPfaYtC88PLzek148DZNFGVAqlUhNTUVmZiZ0Op3NTD+dTofMzEysWrXK49cSaykfhI1x4MAB7NixA9OmTXMY40kfqOyj5E7sfy0LF3z3PEwWZSIhIQG7du3C0aNHERMTg/bt2yMmJgbFxcXYtWsXEhIS3F1E+n/FxcUYPXo0UlJS8OSTTzqM87QPVPZRcif2v6ZZFN7605lrqlQqtG/f3mYjeeMTXGQkISEBo0eP9tqnEzT1B6H1KRjW12FhYU6X8dtvv8XQoUMxbdo0LFq0qMFYT3yChrf3UXIvb+9/ty4Kr9PpAPyyKLx13c5fsy4KP3v2bGnfrYvCa7VaaDQa5OTkSJ+JlZWVyMvLk9byJM/HZFFmlEolBg0a5O5iuEVL/yA8duwYhgwZgsTERLz++utO189TeHMfJffz9v6XlJSExMRE9O/fH5GRkVi9enW9ReG7du0KvV4PoG5R+IEDByI1NRXDhw/H9u3bkZ+fj40bNwIAFAoFZs+ejWXLliE4OBharRaLFy9GYGCg9DlMno/JIsmKuz4Iy8rK8MMPP6CsrAxmsxlFRUUAgJ49e6Jt27YoLi7GkCFDEB8fj6SkJOl+R6VSiXvvvbf53iAi8mrjx4/H5cuXkZycDKPRiLCwMGRlZUn3ZZeVlcHH55c70GJiYpCWloZFixZh4cKFCA4ORkZGBvr06SPFvPLKK6iursa0adNQUVGBxx9/HFlZWfDz82v2+pGbNNPsbLeT87IQns7ZtnHl0zGE+GVR7i5dugiVSiWGDh0qTpw4YROTmJjY4BM0UlJS7B7v0aNHk70P1Dy8pV28pZ5y4wnt4gl18FSNbRuFEEI0d4LqDpWVlVCr1TCZTLzZtoVh29Th+9AyeUu7eEs95cYT2sUT6uCpGts2nA1NRERERA4xWSQiIiIih5gsEhEREZFDTBaJiIiIyCEmi0RERETkEJNFIiIiInKIySIREREROeQ1T3CxLidZWVnp5pLQr1nbxEuW/HSIfbRl8pb+yf7XMnlC/2Pfarka27+8JlmsqqoCAHTr1s3NJSFHqqqqoFar3V0Mt2Efbdk8vX+y/7Vscu5/7Fst32/1L695govFYsHFixfRrl07KBQKdxfnjlRWVqJbt244d+6cR6yGL4RAVVUVAgMDbZ5Z6m3YR1smb+mf7H8tkyf0P/atlqux/ctrkkVPwkcnUUvHPkruxP5HTcVb+5Y8/0whIiIiombBZJGIiIiIHGKyKEMqlQopKSlQqVTuLgqRXeyj5E7sf9RUvLVv8Z5FIiIiInKII4tERERE5BCTRSIiIiJyiMkiERERETnEZJGIiIiIHGKySEREREQOMVmUmf/85z8YOXIkAgMDoVAokJGR4e4iEUnYP8md2P+oKXlz/2KyKDPV1dXo168f1q9f7+6iENXD/knuxP5HTcmb+1crdxeAnDNs2DAMGzbM3cUgsov9k9yJ/Y+akjf3L44sEhEREZFDTBaJiIiIyCEmi0RERETkEJNFIiIiInKIySIREREROcTZ0DLz008/4fTp09Lr0tJSFBUV4Z577kH37t3dWDIi9k9yL/Y/akre3L8UQgjh7kJQ4+3fvx+DBw+utz8xMRGbN29u/gIR3YL9k9yJ/Y+akjf3LyaLREREROQQ71kkIiIiIoeYLBIRERGRQ0wWiYiIiMghJotERERE5BCTRSIiIiJyiMkiERERETnEZJGIiIiIHGKySEREREQOMVkkIiIiIoeYLBIRERGRQ0wWiYiIiMih/wPK1D2JP8oV0QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmsElEQVR4nOzdeVgT1/oH8G8AE/aIIJtbEFRcUBQLglK0UqEFlYtbsRbkUvVWbW2x1mLdbcWqqK27rVpbizsXW9yKCLcoaBWk7hYUXFBQtAZlJzm/P/xlykhAgkBIeD/PM4/mzDuTM5lh8mbmzDkCxhgDIYQQQgghSuiouwKEEEIIIaT5omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaJkkRBCCCGE1IiSRUIIIYQQUiNKFgkhhBBCSI0oWSSEEEIIITWiZJEQojYSiQQCgQACgQAzZsyoNXbFihVcrJ6eXhPV8OVycnIgEAggkUjUXRVCCGkUlCwSQpqFn3/+GeXl5TXO37ZtW4O+HyV5hBBSN5QsEkLUrn///nj06BEOHjyodH5KSgquXbuG1157rYlr9nLt2rXD1atXkZCQoO6qEEJIo6BkkRCidv/+978B1Hz1cOvWrby45qRVq1ZwdHSEvb29uqtCCCGNgpJFQojaOTk5oX///vjtt9+Qm5vLm/fs2TPs3bsX7du3x7Bhw2pcR2VlJb7//nsMHjwYbdq0gUgkgp2dHT744APcuXOHFztx4kTY2dkBAG7dusW1hVRMCgsXLoRAIMDChQtx+/ZthIWFoUOHDmjVqhUmTpwI4OW3s4uLi7FmzRoMGjQIZmZmEIlE6NSpE4YPH47o6GherFQqxdy5c+Hk5AQjIyOIRCLY2tpi4MCBmD9/PioqKur6kRJCSINpPq3ECSEt2r///W+cO3cOP/zwA7744guufO/evXj27BlmzJgBHR3lv2+fPn2KESNGICkpCcbGxnBxcUHbtm1x8eJFbNq0Cfv27UN8fDz69u0LABg0aBCePXuGAwcOwMjICKNHj661bpmZmejbty+EQiEGDhwIxhgsLCxeuk137tyBr68vrly5AkNDQwwcOBDm5ubIzc1FcnIyLl68iPHjxwN4nlQOGjQIly5dQtu2bTF06FAYGRkhLy8P165dQ0pKCsLDw9G6des6fqKEENJAGCGEqEmnTp0YAJacnMyePHnCDAwMmIODAy9m4MCBTCAQsBs3brDs7GwGgOnq6vJixo8fzwAwf39/lp+fz5u3evVqBoB16dKFVVZWcuWKdXXq1KnG+i1YsIABYADYhAkTWGlpabWYmtYjk8lY//79GQA2bNgw9uDBA978kpISdujQIe71jh07GAD21ltvsfLy8mrrSkpKYmVlZTXWlRBCGgvdhiaENAtisRiBgYHIysrC//73PwDA9evXcerUKXh5eaFz585Kl7t69Sp27doFW1tbREdHw9LSkjf/448/xttvv43MzEwcOXKkXnVr06YN1q1bB5FIVOdlfv31V5w7dw42NjY4cOAA2rZty5uvr6+Pt99+m3udn58PAHjzzTfRqlUrXqyOjg68vLwgFArrVX9CCHkVlCwSQpqNFx90Ufxb24Mthw8fBmMMb731FkxMTJTGDB48GMDzp6rrw9vbG2KxWKVljh49CgAYP348jI2NXxqveNJ7+fLl+PHHH/H48WPVK0oIIY2AkkVCSLMxZMgQ2NnZYf/+/fj777/x448/wtTUtNY2hTdv3gTw/InpFx9UUUyfffYZAODhw4f1qld9+mK8desWAMDR0bFO8YMHD8bs2bPx4MEDhISEwMLCAt26dcO///1vHDx4EHK5XOU6EEJIQ6AHXAghzYZAIMDEiROxYMEChISEIC8vD5MnT4aBgUGNyyiSKGdnZ/Tp06fW9bu5udWrXrW9f0NatmwZ/vOf/+DXX3/FyZMncerUKWzfvh3bt2/Ha6+9hsTERBgZGTVJXQghRIGSRUJIszJx4kQsWrQIv/76K4CX963YoUMHAMDAgQOxbt26Rq9fXXXs2BEAcO3aNZWWk0gk+PDDD/Hhhx8CAM6ePYsJEybg7NmzWL58ORYtWtTgdSWEkNrQbWhCSLPSsWNHjBw5Eubm5hgwYMBLrwa+9dZbAIBffvkFpaWldX4fxcMilZWV9a9sLXx9fQEAu3btQlFRUb3X89prr2Hq1KkAgIyMjIaoGiGEqISSRUJIsxMTE4OCggKkpqa+NLZv374YNWoU7ty5g8DAQOTk5FSLKSoqws8//8w9cQwAbdu2hVAoRF5eXqM8TDJixAj07dsX9+7dw5gxY/Do0SPe/NLSUt7T2f/973/x+++/V2ubWFFRwT0s06lTpwavJyGEvAzdhiaEaLzt27fjyZMnOHLkCLp164Y+ffrAzs4OjDHk5OTgzz//RHl5Oa5evQorKysAz4fpGzFiBPbv3w9nZ2cMGjQIhoaGAIDvv//+leuko6OD//73v/Dx8cGRI0fQsWNHDBo0iOuU+88//0Tr1q255PZ///sfvvnmG1hYWKBv376wtLTE06dPcfr0aTx48ADt2rXjHtQhhJCmRMkiIUTjmZiY4LfffsOePXuwc+dOpKWlISMjA6amprCxscG7776LESNGVBu/efPmzTA3N8eRI0ewf/9+bji9hkgWgedXAs+dO4cNGzZg//79SE1NRXl5OaytreHl5cWN3gI8b6tpYGCAkydP4sqVK/jf//4HsViMjh074uOPP8bkyZNhbm7eIPUihBBVCBhjTN2VIIQQQgghzRO1WSSEEEIIITWiZJEQQgghhNSIkkVCCCGEEFIjShYJIYQQQkiNKFkkhBBCCCE1omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaJkkRBCCCGE1IiSRUIIIYQQUiNKFgkhhBDSIv3www8QCATIyclRd1WaNUoWCdFgZ8+ehYeHB4yMjCAQCJCRkaHuKhEtR8ccIS2PnrorQAipn4qKCowZMwb6+vpYvXo1DA0N0alTJ3VXi2gxOuYIaZkoWSREQ924cQO3bt3Cd999h/fff1/d1SEtAB1zhLRMdBu6GSsqKlJ3FUgz9uDBAwBA69atG2R9dLyRl6FjjrQEGzZsQM+ePSESiWBra4tp06bhyZMnvJjMzEyMGjUK1tbW0NfXR/v27fHOO+9AKpVyMfHx8Rg0aBBat24NY2NjdOvWDXPmzGnirWkYlCwqkZubi3//+9+wsrKCSCRCz549sW3bNm5+UlISBAIB9u7di6+++grt27eHvr4+hg4diqysrGrrO3PmDHx9fSEWi2FoaAgvLy+cOnWKF7Nw4UIIBAJcuXIF48ePh5mZGQYNGgQAkMvlWLhwIWxtbWFoaIghQ4bgypUrkEgkmDhxIgDg5s2bEAgEWL16dbX3T0lJgUAgwK5du+q0/Tk5ORAIBFi5ciXWr1+Pzp07w9DQEMOGDcOdO3fAGMOSJUvQvn17GBgYYOTIkXj8+DFvHQcPHoSfnx9sbW0hEolgb2+PJUuWQCaT1evzIXwTJ06El5cXAGDMmDEQCAQYPHgwAODEiRPw9PSEkZERWrdujZEjR+Lq1au85Ws73gBg586dcHV1haGhIczMzPD666/jt99+463jyJEj3PuYmJjAz88Ply9f5sXk5eUhNDQU7du3h0gkgo2NDUaOHKlSY3JFXf/66y9MmDABYrEYbdu2xbx588AYw507dzBy5EiYmprC2toaUVFR1daxdu1a9OzZk9ue/v37Izo6mhfzsr/7lo6Oubofc+Xl5Zg/fz5cXFwgFothZGQET09PJCYmVnsvuVyONWvWoGfPntDX14eVlRWmTJmCv//+u871JQ1n4cKFmDZtGmxtbREVFYVRo0Zh8+bNGDZsGCoqKgA8378+Pj44ffo0PvzwQ6xfvx6TJ0/GzZs3uaTy8uXL8Pf3R1lZGRYvXoyoqCiMGDFCc7/bGOHJy8tj7du3Zx06dGCLFy9mGzduZCNGjGAA2OrVqxljjCUmJjIArG/fvszFxYWtXr2aLVy4kBkaGjJXV1fe+hISEphQKGTu7u4sKiqKrV69mvXu3ZsJhUJ25swZLm7BggUMAOvRowcbOXIk27BhA1u/fj1jjLHPPvuMAWDDhw9n69atY5MmTWLt27dnFhYWLCQkhFvHwIEDmYuLS7Vtmjp1KjMxMWFFRUV1+gyys7MZAObs7Mx69OjBVq1axebOncuEQiEbMGAAmzNnDvPw8GDffvst++ijj5hAIGChoaG8dQQEBLCxY8eyFStWsI0bN7IxY8YwAOzTTz+t1+dD+FJSUticOXMYAPbRRx+xn376if32228sPj6e6enpsa5du7Lly5ezRYsWMQsLC2ZmZsays7O55Ws73hYuXMgAMA8PD7ZixQr2zTffsPHjx7PZs2dzy//4449MIBAwX19ftnbtWvb1118ziUTCWrduzXsfDw8PJhaL2dy5c9n333/Pli5dyoYMGcL+97//1XlbFXV1dnZmQUFBbMOGDczPz48BYKtWrWLdunVjH3zwAduwYQMbOHAgA8Bb/5YtWxgANnr0aLZ582b2zTffsLCwMPbRRx9xMXX5u2/p6Jir+zH38OFDZmNjw8LDw9nGjRvZ8uXLWbdu3VirVq3Y+fPnee/1/vvvMz09PTZp0iS2adMmNnv2bGZkZMRee+01Vl5ertpOIirbvn07A8Cys7PZgwcPmFAoZMOGDWMymYyLWbduHQPAtm3bxhhj7Pz58wwA27dvX43rXb16NQPAHj582Ojb0BQoWXxBWFgYs7GxYQUFBbzyd955h4nFYlZcXMwli927d2dlZWVczDfffMMAsIsXLzLGGJPL5axLly7Mx8eHyeVyLq64uJjZ2dmxN998kytTnJyCgoJ475uXl8f09PRYQEAAr1xxcq2aLG7evJkBYFevXuXKysvLqyWVL6NIFtu2bcuePHnClUdERDAArE+fPqyiooIrDwoKYkKhkJWWlvK28UVTpkxhhoaGXJwqnw+pTnEcVj1hOTs7M0tLS/bo0SOu7M8//2Q6OjosODiYK6vpeMvMzGQ6OjrsX//6F+9kyRjj9tHTp09Z69at2aRJk3jz8/LymFgs5sr//vtvBoCtWLHilbZTUdfJkydzZZWVlax9+/ZMIBCwZcuWceV///03MzAw4B3vI0eOZD179qz1Peryd0/omKvrMVdZWcn7blDEWVlZsX//+99cWXJyMgPAfv75Z17s0aNHlZaThlc1WYyOjmYA2OHDh3kxZWVlzNTUlI0aNYoxxtjNmzcZAPb+++/XeBFGsd7vv/++2nGtieg2dBWMMRw4cADDhw8HYwwFBQXc5OPjA6lUivT0dC4+NDQUQqGQe+3p6Qng+S1hAMjIyEBmZibGjx+PR48ecesqKirC0KFD8fvvv0Mul/Pq8J///If3OiEhAZWVlZg6dSqv/MMPP6xW/7Fjx0JfXx8///wzV3bs2DEUFBRgwoQJKn8eY8aMgVgs5l67ubkBACZMmAA9PT1eeXl5OXJzc7kyAwMD7v9Pnz5FQUEBPD09UVxcjGvXrgGo3+dDanb//n1kZGRg4sSJaNOmDVfeu3dvvPnmmzh8+HC1ZV483mJjYyGXyzF//nzo6PBPDwKBAMDzdjhPnjxBUFAQ729EV1cXbm5u3K02AwMDCIVCJCUlNcgttaoPVOjq6qJ///5gjCEsLIwrb926Nbp168b9DSrK7t69i7Nnzypdr6p/9+QfdMwpP+Z0dXW57wa5XI7Hjx+jsrIS/fv35x1L+/btg1gsxptvvsnbLhcXFxgbGyu9bU0az61btwAA3bp145ULhUJ07tyZm29nZ4fw8HB8//33sLCwgI+PD9avX89rrzhu3DgMHDgQ77//PqysrPDOO+9g7969GvudRk9DV/Hw4UM8efIEW7ZswZYtW5TGPHjwAGZmZgCAjh078uYpyhUnqczMTABASEhIje8plUq55YDnB2FVioPTwcGBV96mTRvecsDzk9bw4cMRHR2NJUuWAAB+/vlntGvXDm+88UaNdajJi9unSBw7dOigtLzqyfny5cuYO3cuTpw4gcLCQl684g+qPp8PqVlNJzoA6N69O44dO4aioiIYGRlx5S8ebzdu3ICOjg569OhR4/so9ltNx5SpqSkAQCQS4euvv8bMmTNhZWWFAQMGwN/fH8HBwbC2tlZt46D8eNTX14eFhUW18kePHnGvZ8+ejePHj8PV1RUODg4YNmwYxo8fj4EDBwKo+989qY6OuX/Kqx5zALBjxw5ERUXh2rVrXFs3gL/9mZmZkEqlsLS0VPr+dNw1X1FRUZg4cSIOHjyI3377DR999BEiIyNx+vRprj3/77//jsTERBw6dAhHjx7Fnj178MYbb+C3336Drq6uujdBJZQsVqHI+CdMmFBjAtO7d29cuXIFAGrc2Ywx3vpWrFgBZ2dnpbHGxsa811WvyNVHcHAw9u3bh5SUFDg5OeGXX37B1KlTq/1ir4uatu9l2/3kyRN4eXnB1NQUixcvhr29PfT19ZGeno7Zs2dzn0t9Ph/SsOpzvCn2208//aT0C7jqVeePP/4Yw4cPR2xsLI4dO4Z58+YhMjISJ06cQN++fVV6X2XH3cuOReB50nL9+nXExcXh6NGjOHDgADZs2ID58+dj0aJFdf67Jw2jJRxzO3fuxMSJExEQEIBZs2bB0tISurq6iIyMxI0bN3jbZWlpybsbVFXbtm1Vqi95NYo+Q69fv47OnTtz5eXl5cjOzoa3tzcv3snJCU5OTpg7dy5SUlIwcOBAbNq0CV9++SUAQEdHB0OHDsXQoUOxatUqLF26FF988QUSExOrrau5o2SxirZt28LExAQymazWHalIFl/G3t4ewPNfvfU9MBQHb1ZWFu8X6aNHj5TeZvH19UXbtm3x888/w83NDcXFxXjvvffq9d71lZSUhEePHiEmJgavv/46V56dnc2La4jPh/yj6onuRdeuXYOFhQXvCo8y9vb2kMvluHLlSo0JvGK/WVpa1mm/2dvbY+bMmZg5cyYyMzPh7OyMqKgo7Ny586XLNhQjIyOMGzcO48aNQ3l5OQIDA/HVV18hIiKizn/3pDo65pTbv38/OnfujJiYGO5WOgAsWLCgWj2PHz+OgQMHvvKFAvLqvL29IRQK8e2338LX15fbd1u3boVUKoWfnx8AoLCwEIaGhrwfKU5OTtDR0UFZWRkA4PHjx7ymGQC441sRo0mozWIVurq6GDVqFA4cOIBLly5Vm//w4UOV1ufi4gJ7e3usXLkSz549q9f6hg4dCj09PWzcuJFXvm7dOqXxenp6CAoKwt69e/HDDz/Aycmpya+KKH55V/2lXV5ejg0bNvDiGuLzIf+wsbGBs7MzduzYwesT7NKlS/jtt9/w9ttvv3QdAQEB0NHRweLFi6u1rVHsTx8fH5iammLp0qW822sKiv1WXFyM0tJS3jx7e3uYmJg06cnyxduDQqEQPXr0AGMMFRUVDf5335LQMaecsnPgmTNnkJqayosbO3YsZDIZ12yoqsrKymp9+5HG1bZtW0RERODo0aPw9fXF+vXr8dFHH+HDDz/Ea6+9xrX9P3HiBCQSCT755BNs3LgRa9euxdChQ7lzCQAsXrwY/fr1w7x58/D9999j6dKlmDx5Mtq3b8/rMkpT0JXFFyxbtgyJiYlwc3PDpEmT0KNHDzx+/Bjp6ek4fvx4tf4Ea6Ojo4Pvv/8eb731Fnr27InQ0FC0a9cOubm5SExMhKmpKX799dda12FlZYUZM2ZwfTT5+vrizz//xJEjR2BhYcH71aoQHByMb7/9FomJifj6669V/gxelYeHB8zMzBASEoKPPvoIAoEAP/30E+/ECTTM50P4VqxYgbfeegvu7u4ICwtDSUkJ1q5dC7FYjIULF750eQcHB3zxxRdYsmQJPD09ERgYCJFIhLNnz8LW1haRkZEwNTXFxo0b8d5776Ffv35455130LZtW9y+fRuHDh3CwIEDsW7dOvz1118YOnQoxo4dix49ekBPTw///e9/kZ+fj3feeafxP4z/N2zYMFhbW2PgwIGwsrLC1atXsW7dOvj5+cHExARAw/7dtzR0zFXn7++PmJgY/Otf/4Kfnx+ys7OxadMm9OjRg/fD2MvLC1OmTEFkZCQyMjIwbNgwtGrVCpmZmdi3bx+++eYbjB49usnqTZ73s9i2bVusW7cOn3zyCdq0aYPJkydj6dKlaNWqFQCgT58+8PHxwa+//orc3FwYGhqiT58+OHLkCAYMGAAAGDFiBHJycrBt2zYUFBTAwsICXl5eWLRoEe/BUY3R9A9gN3/5+fls2rRprEOHDqxVq1bM2tqaDR06lG3ZsoUxprz7CMb+6XJm+/btvPLz58+zwMBAZm5uzkQiEevUqRMbO3YsS0hI4GIUXTUo65OpsrKSzZs3j1lbWzMDAwP2xhtvsKtXrzJzc3P2n//8R+k29OzZk+no6LC7d++qvP2K7Xix+4matlvRRcDZs2e5slOnTrEBAwYwAwMDZmtryz777DN27NgxBoAlJibylq/L50Oqq2l/HD9+nA0cOJAZGBgwU1NTNnz4cHblyhVeTG3HG2OMbdu2jfXt25eJRCJmZmbGvLy8WHx8fLX39/HxYWKxmOnr6zN7e3s2ceJEdu7cOcYYYwUFBWzatGnM0dGRGRkZMbFYzNzc3NjevXtV2s6a6hoSEsKMjIyqxXt5efG6ytm8eTN7/fXXuePL3t6ezZo1i0mlUt5yL/u7J3TM1fWYk8vlbOnSpaxTp05MJBKxvn37sri4OBYSEsI6depUbfktW7YwFxcXZmBgwExMTJiTkxP77LPP2L1791SqNyGNRcDYC5d7iEZ48uQJzMzM8OWXX+KLL76oNr9v375o06YNEhIS1FA7QgghhGgLarOoAUpKSqqVrVmzBgC44baqOnfuHDIyMhAcHNzINSOEEEKItqMrixrghx9+wA8//IC3334bxsbGOHnyJHbt2oVhw4bh2LFjXNylS5eQlpaGqKgoFBQU4ObNm9DX1+fmy2SylzbWNzY2pu5qSJN49uyZ0gebqmrbtq3G9UdGmi865gipH3rARQP07t0benp6WL58OQoLC7mHXhR9OSns378fixcvRrdu3bBr1y5eoggAd+7cqdYh7osWLFhQp0bphLyqlStXYtGiRbXGZGdnQyKRNE2FiNajY46Q+qEriy1IaWkpTp48WWtM586deZ2REtJYbt68yRsiTZlBgwZV+9FDSH3RMUdI/VCySAghhBBCakS3oauQy+W4d+8eTExMlPZfSJoWYwxPnz6Fra1tvYYr1CZ0bDYvLeHYpGOu+dH0446OqeanrscUJYtV3Lt3Dx06dFB3NcgL7ty5g/bt26u7GmpFx2bzpM3HJh1zzZemHnd0TDVfLzumKFmsQjGaw507d2Bqaqrm2pDCwkJ06NCB2y8tGR2bzUtLODbpmGt+NP24o2Oq+anrMUXJYhWKy+KmpqZ0IDcjdLuCjs3mSpuPTTrmmi9NPe7omGq+XnZMaV6jB0IIIYQQ0mQoWSSEEEIIITWiZJEQQgghhNSIkkVCCCGEEFIjShYJIYQQQkiNKFkkhBBCCCE1omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaLh/rSMTCZDcnIy7t+/DxsbG3h6ekJXV1fd1SKEjk2iFnTckYbWEo8purKoRWJiYuDg4IAhQ4Zg/PjxGDJkCBwcHBATE6PuqpEWjo5Nog503JGG1lKPKUoWtURMTAxGjx4NJycnpKam4unTp0hNTYWTkxNGjx6t9Qcyab7o2CTqQMcdaWgt+ZgSMMaYuivRXBQWFkIsFkMqlcLU1FTd1akzmUwGBwcHODk5ITY2Fjo6//wGkMvlCAgIwKVLl5CZmalRl8o1dX80Bk39LOjY1FyavI103DVPmlz/ln5M0ZVFLZCcnIycnBzMmTOHdwADgI6ODiIiIpCdnY3k5GQ11ZC0VHRsEnWg4440tJZ+TFGyqAXu378PAOjVq5fS+YpyRRwhTYWOTaIOdNyRhtbSjylKFrWAjY0NAODSpUtK5yvKFXGENBU6Nok60HFHGlpLP6YoWdQCnp6ekEgkWLp0KeRyOW+eXC5HZGQk7Ozs4OnpqaYakpaKjk2iDnTckYbW0o8pSha1gK6uLqKiohAXF4eAgADeU1oBAQGIi4vDypUrNarRLdEOdGwSdaDjjjS0Fn9MMcKRSqUMAJNKpequSr0cOHCASSQSBoCb7Ozs2IEDB9RdtXrR9P3RkDT9s6BjU/NowzbScde8aHr9GWu5xxR1nVOFJj/Wr6BNPctrw/5oKNrwWdCxqVm0ZRvpuGs+NL3+Ci3xmKLh/rSMrq4uBg8erO5qEFINHZtEHei4Iw2tJR5T1GaREEIa2fr16yGRSKCvrw83Nzf88ccftcbv27cPjo6O0NfXh5OTEw4fPsybv3DhQjg6OsLIyAhmZmbw9vbGmTNnlK6rrKwMzs7OEAgEyMjIaKhNIoS0IPVKFhvyxFdRUYHZs2fDyckJRkZGsLW1RXBwMO7du8fFJCUlQSAQKJ3Onj0LAMjJyVE6//Tp0/XZREIIaRB79uxBeHg4FixYgPT0dPTp0wc+Pj548OCB0viUlBQEBQUhLCwM58+fR0BAADc6hELXrl2xbt06XLx4ESdPnoREIsGwYcPw8OHDauv77LPPYGtr22jbRwhpAVRtDLl7924mFArZtm3b2OXLl9mkSZNY69atWX5+vtL4U6dOMV1dXbZ8+XJ25coVNnfuXNaqVSt28eJFxhhjT548Yd7e3mzPnj3s2rVrLDU1lbm6ujIXFxduHWVlZez+/fu86f3332d2dnZMLpczxhjLzs5mANjx48d5ceXl5XXeNm1ofKtNaH/8gz6L5kWV/eHq6sqmTZvGvZbJZMzW1pZFRkYqjR87dizz8/Pjlbm5ubEpU6a8tD7Hjx/nlR8+fJg5Ojqyy5cvMwDs/PnzL63vi+ukY6750PR9oun110Z13ScqX1lctWoVJk2ahNDQUPTo0QObNm2CoaEhtm3bpjT+m2++ga+vL2bNmoXu3btjyZIl6NevH9atWwcAEIvFiI+Px9ixY9GtWzcMGDAA69atQ1paGm7fvg0AEAqFsLa25iZzc3McPHgQoaGhEAgEvPczNzfnxbZq1UrVTSSEkAZRXl6OtLQ0eHt7c2U6Ojrw9vZGamqq0mVSU1N58QDg4+NTY3x5eTm2bNkCsViMPn36cOX5+fmYNGkSfvrpJxgaGr60rmVlZSgsLORN2kAmkyEpKQm7du1CUlISZDKZuqtEiMZRKVlsihMfAEilUggEArRu3Vrp/F9++QWPHj1CaGhotXkjRoyApaUlBg0ahF9++aXW7dHWkyMhpHkoKCiATCaDlZUVr9zKygp5eXlKl8nLy6tTfFxcHIyNjaGvr4/Vq1cjPj4eFhYWAADGGCZOnIj//Oc/6N+/f53qGhkZCbFYzE0dOnSo62Y2WzExMXBwcMCQIUMwfvx4DBkyBA4ODoiJiVF31QjRKColi4154lMoLS3F7NmzERQUVONj3Fu3boWPjw/at2/PlRkbGyMqKgr79u3DoUOHMGjQIAQEBNSaMGrjyZEQ0jIMGTIEGRkZSElJga+vL8aOHcu1g1y7di2ePn2KiIiIOq8vIiICUqmUm+7cudNYVW8SMTExGD16NJycnHgdKDs5OWH06NGUMBKigmb1NHRFRQXGjh0Lxhg2btyoNObu3bs4duwYwsLCeOUWFhYIDw+Hm5sbXnvtNSxbtgwTJkzAihUranw/bTs5EkKaFwsLC+jq6iI/P59Xnp+fD2tra6XLWFtb1yneyMgIDg4OGDBgALZu3Qo9PT1s3boVAHDixAmkpqZCJBJBT08PDg4OAID+/fsjJCRE6fuKRCKYmpryJk0lk8kwc+ZM+Pv7IzY2FgMGDICxsTEGDBiA2NhY+Pv749NPP6Vb0oTUkUrJYmOe+BSJ4q1btxAfH1/jiWr79u0wNzfHiBEjXlpfNzc3ZGVl1Thfm06OhJDmRygUwsXFBQkJCVyZXC5HQkIC3N3dlS7j7u7OiweA+Pj4GuOrrresrAwA8O233+LPP/9ERkYGMjIyuB4o9uzZg6+++upVNkkjJCcnIycnB3PmzIGODv9rTkdHBxEREcjOzkZycrKaakiIZlGpU+6qJ76AgAAA/5z4pk+frnQZxYnv448/5spePPEpEsXMzEwkJibC3Nxc6boYY9i+fTuCg4Pr9OBKRkYGbGxs6r6BhBDSwMLDwxESEoL+/fvD1dUVa9asQVFREdfmOjg4GO3atUNkZCQAYMaMGfDy8kJUVBT8/Pywe/dunDt3Dlu2bAEAFBUV4auvvsKIESNgY2ODgoICrF+/Hrm5uRgzZgwAoGPHjrw6GBsbAwDs7e15zXe0VU5ODgCgsrIS6enpKCkpQU5ODiQSCQwMDFBZWQkAuH//vhprSYjmUHkEl4Y+8VVUVGD06NFIT09HXFwcZDIZ156xTZs2EAqF3HufOHEC2dnZeP/996vVa8eOHRAKhejbty+A5+1Vtm3bhu+//17VTSSEkAYzbtw4PHz4EPPnz0deXh6cnZ1x9OhRri337du3eVe/PDw8EB0djblz52LOnDno0qULYmNj0atXLwDPR4+4du0aduzYgYKCApibm+O1115DcnIyevbsqZZtbG7Ky8sBAJ6enrXG0cUEQuqoPv3yrF27lnXs2JEJhULm6urKTp8+zc3z8vJiISEhvPi9e/eyrl27MqFQyHr27MkOHTrEzVP0j6hsSkxM5K0nKCiIeXh4KK3TDz/8wLp3784MDQ2Zqakpc3V1Zfv27VNpu6gPqOaF9sc/6LNoXlrC/tDkbSwsLGS2trbs9ddfZ2fPnmU7d+5kANjOnTvZ2bNn2euvv84kEgmrrKxUd1VVosn7hDHNr782qus+ETDGmBpy1GZJWwY51xa0P/5Bn0Xz0hL2h6Zvo+JpaH9/fwQGBiI0NBTbt29HTEwM4uLisH//fgQGBqq7mirR9H2i6fXXRnXdJ83qaWhCXlVDj8HLGMP8+fNhY2MDAwMDeHt7IzMzk5ufk5ODsLAw2NnZwcDAAPb29liwYAF3G+xFWVlZMDExqbEPUUJIwwgMDMT+/ftx8eJFrplUaGgoLl26pJGJIiHqRMki0RqNMQbv8uXL8e2332LTpk04c+YMjIyM4OPjg9LSUgDAtWvXIJfLsXnzZly+fBmrV6/Gpk2bMGfOnGrvV1FRgaCgoJe2oyKENIzAwEBkZWVh8+bNAIDNmzcjMzOTEkVCVNUU98Q1BbWnaF5U3R8NPQavXC5n1tbWbMWKFdz8J0+eMJFIxHbt2lVjPZYvX87s7OyqlX/22WdswoQJbPv27UwsFtdpmxTo2GxeWsL+0KZtTEtLYwBYWlqauqvySlTdJ+vWrWOdOnViIpGIubq6sjNnztQYe+DAAebi4sLEYjEzNDRkffr0YT/++CMvRi6Xs3nz5jFra2umr6/Phg4dyv76669Gqz9pfI02NjQhzVFjDEWZnZ2NvLw8XoxYLIabm9tLh6ts06YNr+zEiRPYt28f1q9fX6ftoaEoCSGvQtU7LW3atMEXX3yB1NRUXLhwAaGhoQgNDcWxY8e4mJfdaSHai5JFohUaYyhKxb+qrDMrKwtr167FlClTuLJHjx5h4sSJ+OGHH+rcqJuGoiSEvIpVq1Zh0qRJCA0NRY8ePbBp0yYYGhpi27ZtSuMHDx6Mf/3rX+jevTvs7e0xY8YM9O7dGydPngTwvP32mjVrMHfuXIwcORK9e/fGjz/+iHv37iE2NlbpOulHr/agZJGQBpKbmwtfX1+MGTMGkyZN4sonTZqE8ePH4/XXX6/zumgoSkJIfdXnTktVjDEkJCTg+vXr3HmrPnda6Eev9qBkkWiFxhiKUvFvXdZ57949DBkyBB4eHlyH8wonTpzAypUroaenBz09PYSFhUEqlUJPT6/GX/k0FCUhpL7qc6cFeN6ExtjYGEKhEH5+fli7di3efPNNAPW700I/erUHJYtEKzTGGLx2dnawtrbmxRQWFuLMmTO8debm5mLw4MFwcXHB9u3bq41Fm5qayo3Rm5GRgcWLF8PExAQZGRn417/+9crbTgghDUFxXjp79iy++uorhIeHIykpqd7rox+92kPl4f4Iaa4aeihKgUCAjz/+GF9++SW6dOkCOzs7zJs3D7a2ttzY6IpEsVOnTli5ciUePnzI1Udx9bF79+68ep47dw46Ojrc8G2EENKQ6nOnBXh+q9rBwQEA4OzsjKtXryIyMhKDBw/m3WmpOkxifn4+nJ2dG34jSLNCySLRGg09Bi8AfPbZZygqKsLkyZPx5MkTDBo0CEePHoW+vj6A51cis7KykJWVhfbt2/Pqw2hwJEKIGlS906L4Yau40zJ9+vQ6r0cul6OsrAwA/06LIjlU3Gn54IMPGnoTSHPTFP34aArqA6p5of3xD/osmpeWsD+0aRtbYj+Lu3fvZiKRiP3www/sypUrbPLkyax169YsLy+PMcbYe++9xz7//HMufunSpey3335jN27cYFeuXGErV65kenp67LvvvuNili1bxlq3bs0OHjzILly4wEaOHMns7OxYSUlJg9efNI267hO6skgIIYRoGVXvtBQVFWHq1Km4e/cuDAwM4OjoiJ07d2LcuHFczMvutBDtJWCM7pUp0CDnzQvtj3/QZ9G8tIT9oU3bmJ6eDhcXF6SlpaFfv37qrk69afo+0fT6a6O67hN6GpoQQgghhNSIkkVCCCGEEFIjShYJIYQQQkiNKFkkhBBCCCE1omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaJkkRBCCCGE1IiSRUIIIYQQUiNKFgkhhBBCSI0oWSSEEEIIITXSU3cFCCEtg0wmQ3JyMu7fvw8bGxt4enpCV1dX3dUihBDyEnRlkRDS6GJiYuDg4IAhQ4Zg/PjxGDJkCBwcHBATE6PuqhFCCHkJShYJIY0qJiYGo0ePhpOTE1JTU/H06VOkpqbCyckJo0ePpoSREEKaOUoWCSGNRiaTYebMmfD398eBAwdQWlqKX3/9FaWlpThw4AD8/f3x6aefQiaTqbuqhBBCakDJIiGk0SQnJyMnJwceHh7o2rUr7zZ0165d4e7ujuzsbCQnJ6u7qoQQQmpAySIhpNHcv38fADBnzhylt6G/+OILXhwhhJDmh5JFQkijsbS0BAAMHDgQe/fuxenTpxEREYHTp09j7969GDhwIC+OEEJI80Nd5xBCGl12djZMTExQWVnJlc2aNQtWVlZqrBUhhJC6oCuLhJBG8+DBAwBAbm4udHR08PnnnyMzMxOff/45dHR0kJuby4sjhBDS/NCVRUJIozE3NwcAGBsbo3Xr1li2bBmWLVsGAOjQoQP+/vtvPHv2jIsjhBDS/FCySAhpNBcvXgQAGBgYIC8vjzfv/v37MDMzw7Nnz3Dx4kUMGzZMHVUkWiIzMxNPnz5VOu/q1au8f19kYmKCLl26NFrdCNF0lCwSQhpNTk4OAODhw4cQCoX4/PPPERYWhq1bt2LVqlV4+PAhL46Q+sjMzETXrl1fGjdhwoQa5/3111+UMBJSA0oWCSGNpmPHjgCeX1m0sLDg3Ybu2LEjHj58iJKSEi6OkPpQXFHcuXMnunfvXm1+SUkJcnJyIJFIYGBgwJt39epVTJgwocarkoQQShYJIU1AJpNxD7Mo3L17F3p6dAoiDad79+7o16+f0nmKbpoIIaqjp6EJIY3m9u3bAIDy8nIwxvDee+/h/PnzeO+998AYQ3l5OS+OEEJI80M/6wkhjUZxe1koFKK8vBw//fQTfvrpJwCAQCDgyuk2NCGENF/1urK4fv16SCQS6Ovrw83NDX/88Uet8fv27YOjoyP09fXh5OSEw4cPc/MqKiowe/ZsODk5wcjICLa2tggODsa9e/d465BIJBAIBLxJ0fZJ4cKFC/D09IS+vj46dOiA5cuX12fzCCENTCaTVStjjCktJ4QQ0ryonCzu2bMH4eHhWLBgAdLT09GnTx/4+PjU2KluSkoKgoKCEBYWhvPnzyMgIAABAQG4dOkSAKC4uBjp6emYN28e0tPTERMTg+vXr2PEiBHV1rV48WLcv3+fmz788ENuXmFhIYYNG4ZOnTohLS0NK1aswMKFC7FlyxZVN5EQ0kAUt5cVSaGPjw9OnToFHx8fXjndhiaEkOZL5dvQq1atwqRJkxAaGgoA2LRpEw4dOoRt27bh888/rxb/zTffwNfXF7NmzQIALFmyBPHx8Vi3bh02bdoEsViM+Ph43jLr1q2Dq6srbt++zbs9ZWJiAmtra6X1+vnnn1FeXo5t27ZBKBSiZ8+eyMjIwKpVqzB58mRVN5MQ0gA6dOgA4PktZ8YYjh07hmPHjnHzFeWKOEIIIc2PSlcWy8vLkZaWBm9v739WoKMDb29vpKamKl0mNTWVFw88v7pQUzwASKVSCAQCtG7dmle+bNkymJubo2/fvlixYgVvnNnU1FS8/vrrEAqFvPe5fv06/v77b6XvU1ZWhsLCQt5ECGk42dnZAJ7fclZGUa6II4QQ0vyolCwWFBRAJpPBysqKV25lZVVtdAaFvLw8leJLS0sxe/ZsBAUFwdTUlCv/6KOPsHv3biQmJmLKlClYunQpPvvss5e+j2KeMpGRkRCLxdxEVzcIaVg3b97kve7Rowd++eUX9OjRo9Y4QgghzUezehq6oqICY8eOBWMMGzdu5M0LDw/n/t+7d28IhUJMmTIFkZGREIlE9Xq/iIgI3noLCwspYSSkAb3493TlyhWl7ZHp744QQpovlZJFCwsL6OrqIj8/n1een59fY1tCa2vrOsUrEsVbt27hxIkTvKuKyri5uaGyshI5OTno1q1bje+jqIMyIpGo3okmIeTlLl++DOB528TCwkJ8//33uHHjBuzt7fH+++/D1NQUjDEujhBCSPOj0m1ooVAIFxcXJCQkcGVyuRwJCQlwd3dXuoy7uzsvHgDi4+N58YpEMTMzE8ePH4e5uflL65KRkQEdHR1YWlpy7/P777+joqKC9z7dunWDmZmZKptJCGkgilFbGGMwNzfnejG4f/8+zM3NuTaLL47uQgghpPlQ+TZ0eHg4QkJC0L9/f7i6umLNmjUoKirino4ODg5Gu3btEBkZCQCYMWMGvLy8EBUVBT8/P+zevRvnzp3jurSpqKjA6NGjkZ6ejri4OMhkMq6NYZs2bSAUCpGamoozZ85gyJAhMDExQWpqKj755BNMmDCBSwTHjx+PRYsWISwsDLNnz8alS5fwzTffYPXq1Q3yQRFCVNeuXTvcuXMHZmZm+Pvvv7F8+XJe/6eKcuqUm7wqa2MBDJ78BdxTrUc4gyd/wdpY0Ei1IkQ7qJwsjhs3Dg8fPsT8+fORl5cHZ2dnHD16lHuY5Pbt29DR+eeP1cPDA9HR0Zg7dy7mzJmDLl26IDY2Fr169QLw/IrCL7/8AgBwdnbmvVdiYiIGDx4MkUiE3bt3Y+HChSgrK4OdnR0++eQTXntDsViM3377DdOmTYOLiwssLCwwf/586jaHEDVaunQp3njjjRp7JFCUHzp0qCmrRbTQFBchuv8+BfhdteW6//+yhJCaCVhNfVq0QIWFhRCLxZBKpS9tM0kaH+2Pf2jqZ1FcXIxu3brh7t27AAAnJydcvHiR+xcAOnfujBs3bqizmirT1P2hCk3axvT0dPh59ceJg9Ho7uio0rJXr13DGyPH49D/zqFfv36NVMOGoUn7RBlNr782qus+aVZPQxNCtIuhoSHu3LkDBwcH3Lhxg0sQFf/a29sjKytLnVUkWiLvGUNJ666ArbNKy5XkyZH3jK6ZEFKbeo0NTQghqsjKysKTJ0/Qp08fAECfPn3w5MkTShQJIUQDULJICGkSYrEY27ZtAwBs27YNYrFYzTUihBBSF5QsEkIIIYSQGlGySAghhBBCakTJIiGEEEIIqREli0SrrF+/HhKJBPr6+nBzc8Mff/xRa/y+ffvg6OgIfX19ODk54fDhw7z5jDHMnz8fNjY2MDAwgLe3NzIzM7n5OTk5CAsLg52dHQwMDGBvb48FCxagvLyci0lKSsLIkSNhY2MDIyMjODs74+eff27YDSeEkBeocj787rvv4OnpCTMzM5iZmcHb27ta/MSJEyEQCHiTr69vY28GaQYoWSRaY8+ePQgPD8eCBQuQnp6OPn36wMfHBw8ePFAan5KSgqCgIISFheH8+fMICAhAQEAALl26xMUsX74c3377LTZt2oQzZ87AyMgIPj4+KC0tBQBcu3YNcrkcmzdvxuXLl7F69Wps2rQJc+bM4b1P7969ceDAAVy4cAGhoaEIDg5GXFxc434ghJAWS9XzYVJSEoKCgpCYmIjU1FR06NABw4YNqzYUp6+vL+7fv89Nu3btaorNIerGCEcqlTIATCqVqrsqhKm+P1xdXdm0adO41zKZjNna2rLIyEil8WPHjmV+fn68Mjc3NzZlyhTGGGNyuZxZW1uzFStWcPOfPHnCRCIR27VrV431WL58ObOzs6u1rm+//TYLDQ196TYpaMuxmZaWxgCwtLQ0dVfllWjL/qiNJm3jqxxXmnRMqrJPVD0fvqiyspKZmJiwHTt2cGUhISFs5MiRKtdbQZOOqZairvuEriwSrVBeXo60tDR4e3tzZTo6OvD29kZqaqrSZVJTU3nxAODj48PFZ2dnIy8vjxcjFovh5uZW4zoBQCqVok2bNrXW92UxZWVlKCws5E2EEFIX9Tkfvqi4uBgVFRXVzlNJSUmwtLREt27d8MEHH+DRo0c1roPOY9qDRnAhWqGgoAAymYwbo1zBysoK165dU7pMXl6e0vi8vDxuvqKsppgXZWVlYe3atVi5cmWNdd27dy/Onj2LzZs31xgTGRmJRYsW1TifEPKP4uJiAM+H/VOmpKQEOTk5kEgkMDAw4M27evVqo9evqdXnfPii2bNnw9bWlpdw+vr6IjAwEHZ2drhx4wbmzJmDt956C6mpqdDV1a22DjqPaQ9KFglpILm5ufD19cWYMWMwadIkpTGJiYkIDQ3Fd999h549e9a4roiICISHh3OvCwsL0aFDhwavMyHaQJEA1fR3VxcmJiYNVR2Nt2zZMuzevRtJSUnQ19fnyt955x3u/05OTujduzfs7e2RlJSEoUOHVlsPnce0ByWLRCtYWFhAV1cX+fn5vPL8/HxYW1srXcba2rrWeMW/+fn5sLGx4cU4Ozvzlrt37x6GDBkCDw8PbNmyRen7/e9//8Pw4cOxevVqBAcH17o9IpEIIpGo1hhCyHMBAQEAAEdHRxgaGlabf/XqVUyYMAE7d+5E9+7dq803MTFBly5dGruaTaY+50OFlStXYtmyZTh+/Dh69+5da2znzp1hYWGBrKwspckince0ByWLRCsIhUK4uLggISGB++KQy+VISEjA9OnTlS7j7u6OhIQEfPzxx1xZfHw83N3dAQB2dnawtrZGQkIClxwWFhbizJkz+OCDD7hlcnNzMWTIELi4uGD79u3Q0aneFDgpKQn+/v74+uuvMXny5IbZaEIIgOfJ0fvvv//SuO7du6Nfv35NUCP1qs/5EHje+8NXX32FY8eOoX///i99n7t37+LRo0e8H9NEO1GySLRGeHg4QkJC0L9/f7i6umLNmjUoKipCaGgoACA4OBjt2rVDZGQkAGDGjBnw8vJCVFQU/Pz8sHv3bpw7d467MigQCPDxxx/jyy+/RJcuXWBnZ4d58+bB1taWOwHn5uZi8ODB6NSpE1auXImHDx9y9VH8gk9MTIS/vz9mzJiBUaNGce0dhULhSx+EIYSQ+lD1fPj1119j/vz5iI6OhkQi4c5TxsbGMDY2xrNnz7Bo0SKMGjUK1tbWuHHjBj777DM4ODjAx8dHbdtJmkgTPZ2tEeix/ualPvtj7dq1rGPHjkwoFDJXV1d2+vRpbp6XlxcLCQnhxe/du5d17dqVCYVC1rNnT3bo0CHefLlczubNm8esrKyYSCRiQ4cOZdevX+fmb9++nQFQOimEhIQone/l5dWon0VzpEndlNRGW/ZHbbRpG1vqcafK+bBTp05Kz1MLFixgjDFWXFzMhg0bxtq2bctatWrFOnXqxCZNmsTy8vIarf6k8dV1nwgYY6ypEtPmrrCwEGKxGFKpFKampuquTotH++Mf2vJZpKenw8XFBWlpaRp9O1Bb9kdttGkb6bhrHjS9/tqorvuE+lkkhJBG1tDDUC5cuBCOjo4wMjLihmY7c+YMN78uw1ASQkhdUbJICCGNqDGGoezatSvWrVuHixcv4uTJk5BIJBg2bBjXZrYuw1ASQkhd0W3oKugSefNC++Mf2vJZtMTbgW5ubnjttdewbt06AM+fSu3QoQM+/PBDfP7559Xix40bh6KiIt7Y4QMGDICzszM2bdpUa32OHz+utAsTAFixYgU2btyImzdvKp1fVlaGsrIy3jo7dOig8ccc0DKPu+ZI0+uvjeg2NCGEqFljDEOp7D22bNkCsViMPn361FiXlw0xGRkZCbFYzE3UeTIhRIGSRUIIaSS1DbtW05CRLxuGUiEuLg7GxsbQ19fH6tWrER8fDwsLC6XrVAxDOWXKlBrrGhERAalUyk137typyyYSQloA6meREEI00JAhQ5CRkYGCggJ89913GDt2LM6cOQNLS0teXF2GoQRotA1CSM3oyiIhhDSSxhiGUsHIyAgODg4YMGAAtm7dCj09PWzdupUXU5dhKAkh5GUoWSSEkEZSddg1BcWwa4phJV+kGIayqqrDUNZELpfzHlBRjC5U2zCUhBBSF3QbmhBCGlFDD0NZVFSEr776CiNGjICNjQ0KCgqwfv165ObmYsyYMQDqNgwlIYTUFSWLhBDSiMaNG4eHDx9i/vz5yMvLg7OzM44ePco9xHL79m3eVT8PDw9ER0dj7ty5mDNnDrp06YLY2Fj06tULAKCrq4tr165hx44dKCgogLm5OV577TUkJyejZ8+eAJ5ficzKykJWVhbat2/Pqw/1lkYIURUli4QQ0simT5+O6dOnK52XlJRUrWzMmDHcVcIX6evrIyYmptb3mzhxIiZOnKhqNQkhRClqxEIIIYQQQmpEVxYJIQ0qMzMTT58+VTrv6tWrvH9fZGJigi5dujRa3QghhKiOkkVCSIPJzMxE165dXxo3YcKEGuf99ddflDASQkgzQskiIaTBKK4o7ty5E927d682v6SkBDk5OZBIJDAwMODNu3r1KiZMmFDjVUlCCCHqQckiIaTBde/eHf369VM6b+DAgU1cG0IIIa+CHnAhhBBCCCE1omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaKnoQkhDcraWACDJ38B91T7LWrw5C9YGwsaqVaEEELqi5JFQkiDmuIiRPffpwC/q7Zc9/9flhBCSPNCySIhpEFtTivHuPk/oLujo0rLXb12DZujxmNEI9WLEEJI/dSrzeL69eshkUigr68PNzc3/PHHH7XG79u3D46OjtDX14eTkxMOHz7MzauoqMDs2bPh5OQEIyMj2NraIjg4GPfu3eNicnJyEBYWBjs7OxgYGMDe3h4LFixAeXk5L0YgEFSbTp8+XZ9NJITUU94zhpLWXQFbZ5WmktZdkfeMqanWhBBCaqJysrhnzx6Eh4djwYIFSE9PR58+feDj44MHDx4ojU9JSUFQUBDCwsJw/vx5BAQEICAgAJcuXQIAFBcXIz09HfPmzUN6ejpiYmJw/fp1jBjxz/WFa9euQS6XY/Pmzbh8+TJWr16NTZs2Yc6cOdXe7/jx47h//z43ubi4qLqJhBBCCCHk/6l8G3rVqlWYNGkSQkNDAQCbNm3CoUOHsG3bNnz++efV4r/55hv4+vpi1qxZAIAlS5YgPj4e69atw6ZNmyAWixEfH89bZt26dXB1dcXt27fRsWNH+Pr6wtfXl5vfuXNnXL9+HRs3bsTKlSt5y5qbm8Pa2lrVzSKEEEIIIUqolCyWl5cjLS0NERERXJmOjg68vb2RmpqqdJnU1FSEh4fzynx8fBAbG1vj+0ilUggEArRu3brWmDZt2lQrHzFiBEpLS9G1a1d89tlnvCuULyorK0NZWRn3urCwsMZYQgghmqG4uBjXrl3jXl+9epX3LwA4OjrC0NCwyetGiCZSKVksKCiATCaDlZUVr9zKyor3h1lVXl6e0vi8vDyl8aWlpZg9ezaCgoJgamqqNCYrKwtr167lXVU0NjZGVFQUBg4cCB0dHRw4cAABAQGIjY2tMWGMjIzEokWLatxeQgghmufatWtKmyBNmDCB+39aWhr69evXlNUiRGM1q6ehKyoqMHbsWDDGsHHjRqUxubm58PX1xZgxYzBp0iSu3MLCgncF87XXXsO9e/ewYsWKGpPFiIgI3jKFhYXo0KFDA20NIYQQdXB0dERaWhr3uqSkBDk5OZBIJDAwMOBiCCF1o1KyaGFhAV1dXeTn5/PK8/Pza2wnaG1tXad4RaJ469YtnDhxQulVxXv37mHIkCHw8PDAli1bXlpfNze3au0hqxKJRBCJRC9dDyGEEM1haGhY7arhwIED1VQbQjSfSk9DC4VCuLi4ICEhgSuTy+VISEiAu7u70mXc3d158QAQHx/Pi1ckipmZmTh+/DjMzc2rrSc3NxeDBw+Gi4sLtm/fDh2dl1c9IyMDNjY2dd08QgghWkYmkyEpKQm7du1CUlISZDKZuqtEiMZR+TZ0eHg4QkJC0L9/f7i6umLNmjUoKirino4ODg5Gu3btEBkZCQCYMWMGvLy8EBUVBT8/P+zevRvnzp3jrgxWVFRg9OjRSE9PR1xcHGQyGdeesU2bNhAKhVyi2KlTJ6xcuRIPHz7k6qO4Qrljxw4IhUL07dsXABATE4Nt27bh+++/f4WPhxBCiKaKiYnBzJkzkZOTw5VJJBJERUUhMDBQfRUjRMOonCyOGzcODx8+xPz585GXlwdnZ2ccPXqUe4jl9u3bvKt+Hh4eiI6Oxty5czFnzhx06dIFsbGx6NWrF4DnVwx/+eUXAICzszPvvRITEzF48GDEx8cjKysLWVlZaN++PS+GsX868V2yZAlu3boFPT09ODo6Ys+ePRg9erSqm0gIIUTDxcTEYPTo0fD398euXbvQq1cvXLp0CUuXLsXo0aOxf/9+ShgJqSMBq5pttXCFhYUQi8WQSqU1PolNmg7tj39oymeRnp4OFxeXej1p+irLNjVN2R+vQpO3USaTwcHBAU5OToiNjeVdwJDL5dzAEJmZmdDV1VVjTVWjyfsE0Pz6a6O67pNm9TQ0IUSzFRcXA3ie+Cmj7KlUhap94BHyKpKTk5GTk4Ndu3aBMYakpCTcv38fNjY28PT0REREBDw8PJCcnIzBgweru7qENHuULBJCGoyiv9Wq3VqpysTEpKGqQ1qo+/fvAwBu3LiBoKCgam0Wv/zyS14cIaR2lCwSQhpMQEAAgJpHx7h69SomTJiAnTt3onv37tXmm5iYoEuXLo1dTaLlFL1gTJgwAcOHD6/WZlHROTf1lkFI3VCySAhpMBYWFnj//fdfGte9e/dm3y6RaC4PDw/o6enB3NwcMTEx0NN7/lU3YMAAxMTEoH379nj06BE8PDzUXFOiiWQyGZKTk3lNGzSp7Wt9qNTPIiGEENLcpaSkoLKyEg8ePEBgYCBSU1Px9OlTpKamIjAwEA8ePEBlZSVSUlLUXVWiYWJiYuDg4IAhQ4Zg/PjxGDJkCBwcHBATE6PuqjUqShYJIYRoFUVbxJ9++gkXL16Eh4cHTE1N4eHhgUuXLuGnn37ixRFSF4rumJycnHg/QJycnDB69GitThjpNjQhhBCtomiLaG9vj6ysrGq3DP/44w9eHCEvI5PJMHPmTPj7+/O6YxowYABiY2MREBCATz/9FCNHjtTKW9KULBJCCNEqnp6ekEgkWLp0KWJjY3nd48jlckRGRsLOzg6enp7qqyTRKFW7Y3pxuGEdHR2t746JbkMTQgjRKrq6uoiKikJcXBwCAgJ4twwDAgIQFxeHlStXauUVINI4FE0WFKPPvUhRrq1NGyhZJIQQonUCAwOxf/9+pW0Waag/oipFk4VLly4pna8o19amDXQbmhBCiFYKDAzEyJEjW1w3J6Thvdi04cUhJLW9aQNdWSSEEKK1dHV1MXjwYAQFBWHw4MEtKlFcv349JBIJ9PX14ebmxj3Yo8x3330HT09PmJmZwczMDN7e3tXiGWOYP38+bGxsYGBgAG9vb2RmZjb2ZjQLLb1pAyWLRKuocnIEgH379sHR0RH6+vpwcnLC4cOHefNfdnLMyclBWFgY7OzsYGBgAHt7eyxYsADl5eW89Vy4cAGenp7Q19dHhw4dsHz58obbaEIIecGePXsQHh6OBQsWID09HX369IGPjw8ePHigND4pKQlBQUFITExEamoqOnTogGHDhiE3N5eLWb58Ob799lts2rQJZ86cgZGREXx8fFBaWtpUm6VWLbppAyMcqVTKADCpVKruqhCm+v7YvXs3EwqFbNu2bezy5cts0qRJrHXr1iw/P19p/KlTp5iuri5bvnw5u3LlCps7dy5r1aoVu3jxIhezbNkyJhaLWWxsLPvzzz/ZiBEjmJ2dHSspKWGMMXbkyBE2ceJEduzYMXbjxg128OBBZmlpyWbOnMnbDisrK/buu++yS5cusV27djEDAwO2efPmRvssmqu0tDQGgKWlpam7Kq9EW/ZHbVrCNmoaVfaJq6srmzZtGvdaJpMxW1tbFhkZWaf3qqysZCYmJmzHjh2MMcbkcjmztrZmK1as4GKePHnCRCIR27VrV4PXvzmrrKxkiYmJLDo6miUmJrLKykp1V6ne6rpPKFmsQlsOZG2h6v5Q9eQ4duxY5ufnxytzc3NjU6ZMYYzV/+S4fPlyZmdnx73esGEDMzMzY2VlZVzZ7NmzWbdu3eq0XYxpz7FJyaLm0JZtbIlf7GVlZUxXV5f997//5ZUHBwezESNG1Om9CgsLmb6+Pvv1118ZY4zduHGDAWDnz5/nxb3++uvso48+UrqO0tJSJpVKuenOnTtacUxpk7oeU3QbmmiF8vJypKWlwdvbmyvT0dGBt7c3UlNTlS6TmprKiwcAHx8fLj47Oxt5eXm8GLFYDDc3txrXCQBSqRRt2rThvc/rr78OoVDIe5/r16/j77//VrqOsrIyFBYW8iZCiGpa6tBsBQUFkMlksLKy4pVbWVkhLy+vTuuYPXs2bG1tufOfYjlV1hkZGQmxWMxNHTp0UHVTSDNBySLRCvU5Oebl5dUaX5+TY1ZWFtauXYspU6a89H2qvseL6CRLyKtpyUOzvaply5Zh9+7d+O9//wt9ff16ryciIgJSqZSb7ty504C1JE2JkkVCGkhubi58fX0xZswYTJo06ZXWRSdZQurvxaHZBgwYAGNjY25oNn9/f3z66aeQyWTqrmqjsLCwgK6uLvLz83nl+fn5sLa2rnXZlStXYtmyZfjtt9/Qu3dvrlyxnCrrFIlEMDU15U1EM1GySLRCfU6O1tbWtcarcnK8d+8ehgwZAg8PD2zZsqVO71P1PV6kLSfZ4uJipKenc9PVq1cBAFevXuXKiouL1VxLom0UQ7PNmTOnxqHZsrOzkZycrKYaNi6hUAgXFxckJCRwZXK5HAkJCXB3d69xueXLl2PJkiU4evQo+vfvz5tnZ2cHa2tr3joLCwtx5syZWtdJtAMli0Qr1Ofk6O7uzosHgPj4eC6+rifH3NxcDB48GC4uLti+fXu1Lyd3d3f8/vvvqKio4L1Pt27dYGZmVv+N1gDXrl2Di4sLN02YMAEAMGHCBK7s2rVraq4l0TYtfWg2AAgPD8d3332HHTt24OrVq/jggw9QVFSE0NBQAEBwcDAiIiK4+K+//hrz5s3Dtm3bIJFIkJeXh7y8PDx79gwAIBAI8PHHH+PLL7/EL7/8gosXLyI4OBi2trYICAhQxyaSptRED9xoBG15+k9b1KfrHJFIxH744Qd25coVNnnyZNa6dWuWl5fHGGPsvffeY59//jkXf+rUKaanp8dWrlzJrl69yhYsWKC065zWrVuzgwcPsgsXLrCRI0fyus65e/cuc3BwYEOHDmV3795l9+/f5yaFJ0+eMCsrK/bee++xS5cusd27dzNDQ8MW0XVOUVERS0tL46aTJ0+ynTt3spMnT3JlRUVF6q6myjR1f6hCk7cxMTGRAWCpqalK56ekpDAALDExsWkr9opU3Sdr165lHTt2ZEKhkLm6urLTp09z87y8vFhISAj3ulOnTgxAtWnBggVcjFwuZ/PmzWNWVlZMJBKxoUOHsuvXrzda/Unjo65z6oEO5OalPvtDlZMjY4zt3buXde3alQmFQtazZ0926NAh3vyXnRy3b9+u9AT74u+wP//8kw0aNIiJRCLWrl07tmzZMhU+CTo2m5uWsD80eRsrKyuZRCJhw4cPZzKZjDdPJpOx4cOHMzs7O43rRkeT9wljml9/bVTXfSJgjLEmuYSpAQoLCyEWiyGVSjW2jZg2of3xD/osmpeWsD80fRsVT0P7+/sjIiICvXr1wqVLlxAZGYm4uDiNHHFD0/eJptdfG9V1n+g1YZ0IIYSQJqEYmm3mzJnw8PDgyu3s7DQyUSREnShZJIQQopUCAwMxcuRIJCcn4/79+7CxsYGnpyd0dXXVXTVCNAoli4QQQrSWrq4uBg8erO5qEKLRqOscQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaI2i4QQQrSWTCajB1wIeUV0ZZEQQohWiomJgYODA4YMGYLx48djyJAhcHBwQExMjLqrRohGoSuLhBBCtI6iU24/Pz/MmjULBgYGKCkpwZEjRzB69Gjqa5EQFVCySAghRKvIZDLMnDkTLi4uuHTpEuLi4rh5EokELi4u+PTTTzFy5Ei6JU1IHdBtaEIIIVolOTkZOTk5SEtLg5OTE1JTU/H06VOkpqbCyckJaWlpyM7ORnJysrqrSohGoCuLhJAmQQ8akKaSm5sLAPD19UVsbCx0dJ5fFxkwYABiY2Ph7++PI0eOcHGEkNrRlUVCSKOjBw1IU3r48CGA58P9KRJFBR0dHQQEBPDiCCG1o2SRENKoFA8aKLsdOHr0aEoYSYNr27YtgOfHnlwu582Ty+WIjY3lxRFCakfJIiGk0SgeNPD390dsbCwGDBgAY2Nj3u3ATz/9FDKZTN1VJVqkXbt2AIAjR44gICCA9yMlICAAR44c4cURQmpHbRYJIY1G8aDBrl27lN4OjIiIgIeHB5KTkzF48GD1VJJoHU9PT0gkElhYWODChQvw8PDg5kkkEvTv3x+PHj2Cp6enGmtJiOagZJEQ0mju378PAOjVq5fS+YpyRRwhDUFXVxdRUVFK+1k8evQoDh06hP3799MDVoTUESWLhJBGY2NjAwC4dOkSBgwYUG3+pUuXeHGENJTAwEDs378fM2fO5PWzaGdnRx1yE6IiShYJIY1GcTtw6dKlvC5MgOcPGkRGRsLOzo5uB5JGERgYiJEjR1KXTYS8ono94LJ+/XpIJBLo6+vDzc0Nf/zxR63x+/btg6OjI/T19eHk5ITDhw9z8yoqKjB79mw4OTnByMgItra2CA4Oxr1793jrePz4Md59912YmpqidevWCAsLw7Nnz3gxFy5cgKenJ/T19dGhQwcsX768PptHCGkgituBcXFxSh80iIuLw8qVK+nLmzQaXV1dDB48GEFBQRg8eDAda4TUg8rJ4p49exAeHo4FCxYgPT0dffr0gY+PDx48eKA0PiUlBUFBQQgLC8P58+cREBCAgIAA7vZTcXEx0tPTMW/ePKSnpyMmJgbXr1/HiBEjeOt59913cfnyZcTHxyMuLg6///47Jk+ezM0vLCzEsGHD0KlTJ6SlpWHFihVYuHAhtmzZouomEkIakOJ2oOJBA1NTU3h4eODixYt0O5AQQjQBU5GrqyubNm0a91omkzFbW1sWGRmpNH7s2LHMz8+PV+bm5samTJlS43v88ccfDAC7desWY4yxK1euMADs7NmzXMyRI0eYQCBgubm5jDHGNmzYwMzMzFhZWRkXM3v2bNatW7ca36e0tJRJpVJuunPnDgPApFJpLZ8AaSpSqZT2x//T9M/iwIEDTCKRMADcJJFI2IEDB9RdtXrR9P1RFy1hGzWNpu8TTa+/NqrrPlHpymJ5eTnS0tLg7e3Nleno6MDb2xupqalKl0lNTeXFA4CPj0+N8QAglUohEAjQunVrbh2tW7dG//79uRhvb2/o6OjgzJkzXMzrr78OoVDIe5/r16/j77//Vvo+kZGREIvF3NShQ4faPwBCiMqoU+6GbboDAAsXLoSjoyOMjIxgZmYGb29v7lyoUJemO4QQUhcqJYsFBQWQyWSwsrLilVtZWSEvL0/pMnl5eSrFl5aWYvbs2QgKCoKpqSm3DktLS16cnp4e2rRpw62npvdRzFMmIiICUqmUm+7cuaM0jhBSP9Qpd8M33QGArl27Yt26dbh48SJOnjwJiUSCYcOG8Yave1nTHUIIqatmNYJLRUUFxo4dC8YYNm7c2OjvJxKJYGpqypsIIQ1H0Sn3nDlzauyUOzs7G8nJyWqqYeNbtWoVJk2ahNDQUPTo0QObNm2CoaEhtm3bpjT+m2++ga+vL2bNmoXu3btjyZIl6NevH9atW8fFjB8/Ht7e3ujcuTN69uyJVatWobCwEBcuXAAAXL16FUePHsX3338PNzc3DBo0CGvXrsXu3burPTyoUFZWhsLCQt5ECCGAismihYUFdHV1kZ+fzyvPz8+HtbW10mWsra3rFK9IFG/duoX4+Hhe4mZtbV3tV3hlZSUeP37Mraem91HMI4Q0vZbeKXdTNN0pLy/Hli1bIBaL0adPH24dL2u68yJqlkMIqYlKyaJQKISLiwsSEhK4MrlcjoSEBLi7uytdxt3dnRcPAPHx8bx4RaKYmZmJ48ePw9zcvNo6njx5grS0NK7sxIkTkMvlcHNz42J+//13VFRU8N6nW7duMDMzU2UzCSENpGqn3Mpoe6fcjdl0Jy4uDsbGxtDX18fq1asRHx8PCwsLbh0va7rzImqWQwipicq3ocPDw/Hdd99hx44duHr1Kj744AMUFRUhNDQUABAcHIyIiAgufsaMGTh69CiioqJw7do1LFy4EOfOncP06dMBPE8UR48ejXPnzuHnn3+GTCZDXl4e8vLyUF5eDgDo3r07fH19MWnSJPzxxx84deoUpk+fjnfeeQe2trYAnt+WEQqFCAsLw+XLl7Fnzx588803CA8Pf+UPiRBSP1U75ZbL5bx51Cn3qxkyZAgyMjKQkpICX19fjB07tsZ2kHVBzXIIITVROVkcN24cVq5cifnz58PZ2RkZGRk4evQo90v49u3bvFtKHh4eiI6OxpYtW9CnTx/s378fsbGx3O2n3Nxc/PLLL7h79y6cnZ1hY2PDTSkpKdx6fv75Zzg6OmLo0KF4++23MWjQIF4fimKxGL/99huys7Ph4uKCmTNnYv78+dSgmxA1aumdcjdm0x0jIyM4ODhgwIAB2Lp1K/T09LB161ZuHS9rukMIIXXWND35aAbqA6p5of3xD03/LJT1s2hnZ9ci+ll0dXVl06dP517LZDLWrl27Wvum9ff355W5u7vX2jctY4x17tyZLViwgDH2T9+0586d4+YfO3aM1zfty2j6MaeNNH2faHr9tVFd9wmNDU0IaXQteYze8PBwhISEoH///nB1dcWaNWuqNd1p164dIiMjATxvuuPl5YWoqCj4+flh9+7dOHfuHHcnpaioCF999RVGjBgBGxsbFBQUYP369cjNzcWYMWMA8JvubNq0CRUVFdWa7rQUMpmsRR53hDQkShYJIU1CMUZvSzNu3Dg8fPgQ8+fPR15eHpydnas13anarZCi6c7cuXMxZ84cdOnShdd0R1dXF9euXcOOHTtQUFAAc3NzvPbaa0hOTkbPnj259fz888+YPn06hg4dCh0dHYwaNQrffvtt0268msXExGDmzJnIycnhyiQSCaKiomiYSUJUIGCMMXVXorkoLCyEWCyGVCqlxt3NAO2Pf9Bn0by0hP2h6duoGDnI398fc+bMQa9evXDp0iUsXboUcXFxGjkuuabvE02vvzaq6z5pVp1yE0IIIa+KRg4ipGFRskgIaRIymQxJSUnYtWsXkpKS6IuaNBoaOYiQhkVtFgkhjY7ajpGm1NJHDiKNqyU+NEVXFgkhjUrRdszJyYnXz6KTkxNGjx6NmJgYdVeRaJmWPnIQaTwxMTFwcHDAkCFDMH78eAwZMgQODg5afx6jZJEQ0mio7RhRh6ojB1VUVPCaP1RUVNDIQaReWvIPX7oNTQhpNIq2Y7t27aqx7ZiHhweSk5NbZLc6pHEoRg4aPXo0xGIxSkpKuHkGBgYoLS3F/v37tf7WIWk4L/7wVZzPFD98AwIC8Omnn2LkyJFaeVzRlUVCSKOhtmNEnZT1DCcQCJSWE1Kblv7QFCWLhJBGU7XtmLKnoantGGkMiqtAw4cPh1QqRWJiIqKjo5GYmIgnT55g+PDh1PyBqKSl//Cl29CEkEajaDv24YcfoqCgoNrT0BYWFtR2jDS4qs0fWrVqVa2JAzV/IKqq+sN3wIAB1eZr+w9furJICGk0urq6GDNmDM6dO4eSkhJs2bIF9+7dw5YtW1BSUoJz585h9OjRWtnGh6hPS78KRBpe1Yem5HI5b55cLtf6h6YoWSSENBqZTIZ9+/ahf//+EIlEmDx5MmxtbTF58mTo6+ujf//+2L9/P90OJA2Kus4hDU3x0FRcXBwCAgJ4T0MHBAQgLi4OK1eu1NofvpQsEkIajeJ24KhRo6o1ChcIBAgMDNTqRuFEPVr6VSDSOAIDA7F//35cvHgRHh4eMDU1hYeHBy5duqSRY42rgpJFQkijUdzmi4iIUNo32Zw5c3hxhDSEln4VSGH9+vWQSCTQ19eHm5sb/vjjjxpjL1++jFGjRkEikUAgEGDNmjXVYhYuXAiBQMCbHB0dG3ELmp/AwEBkZWXxHprKzMzU6kQRoGSRENKILC0tAQCDBg3CgQMHUFpail9//RWlpaU4cOAABg4cyIsjpKG05KtAALBnzx6Eh4djwYIFSE9PR58+feDj44MHDx4ojS8uLkbnzp2xbNkyWFtb17jenj174v79+9x08uTJxtqEZktXVxeDBw9GUFAQBg8erPU/OgBKFokWUeVXNADs27cPjo6O0NfXh5OTEw4fPsybzxjD/PnzYWNjAwMDA3h7eyMzM5MX89VXX8HDwwOGhoZo3bq10vc5e/Yshg4ditatW8PMzAw+Pj74888/X2lbNc2jR4/QpUsX3hBZXbp0waNHj9RdNaLFWupVIABYtWoVJk2ahNDQUPTo0QObNm2CoaEhtm3bpjT+tddew4oVK/DOO+9AJBLVuF49PT1YW1tzk4WFRY2xZWVlKCws5E1EM1GySLSCqr+iU1JSEBQUhLCwMJw/fx4BAQEICAjgNYhfvnw5vv32W2zatAlnzpyBkZERfHx8UFpaysWUl5djzJgx+OCDD5S+z7Nnz+Dr64uOHTvizJkzOHnyJExMTODj44OKioqG/RCaIcXnf/XqVZSWlvKehi4tLcW1a9d4cYQ0tJZ4Fai8vBxpaWnw9vbmynR0dODt7Y3U1NRXWndmZiZsbW3RuXNnvPvuu7h9+3aNsZGRkRCLxdzUoUOHV3pvokaMcKRSKQPApFKpuqtSb5WVlSwxMZFFR0ezxMREVllZqe4q1Zsq+8PV1ZVNmzaNey2TyZitrS2LjIxUGj927Fjm5+fHK3Nzc2NTpkxhjDEml8uZtbU1W7FiBTf/yZMnTCQSsV27dlVb3/bt25lYLK5WfvbsWQaA3b59myu7cOECA8AyMzNful0KmnpsHj9+nAFgjo6OTCKRMADcZGdnxxwdHRkAdvz4cXVXVSWauj9U0RK2UdPUdZ/k5uYyACwlJYVXPmvWLObq6vrS9+nUqRNbvXp1tfLDhw+zvXv3sj///JMdPXqUubu7s44dO7LCwkKl6yktLWVSqZSb7ty5oxXHVEv8nqUri1okJiYGDg4OvFt9Dg4OWj24OVC/X9Gpqam8eADw8fHh4rOzs5GXl8eLEYvFcHNzU+mXebdu3WBubo6tW7eivLwcJSUl2Lp1K7p37w6JRFLjctp2+8bCwgJ//fUX73bg9evXYW5uru6qEULq6K233sKYMWPQu3dv+Pj44PDhw3jy5An27t2rNF4kEsHU1JQ3abqYmBjY29vzvmft7e21/nuWkkUtERMTg9GjRyt94nT06NFafSAXFBRAJpPBysqKV25lZYW8vDyly+Tl5dUar/hXlXUqY2JigqSkJOzcuRMGBgYwNjbG0aNHceTIEejp1TyAkrbcvlHcXj558iRGjRoFkUgEf39/iEQijBo1CqdOneLFEUJenYWFBXR1dZGfn88rz8/Pr/XhFVW1bt0aXbt2RVZWVoOtszmLiYnBqFGjqp2vHjx4gFGjRmn19ywli1pAMQ6qv78/YmNjMWDAABgbG2PAgAGIjY2Fv78/jYOqJiUlJQgLC8PAgQNx+vRpnDp1Cr169YKfnx9KSkpqXC4iIgJSqZSb7ty504S1bjiKTo8jIyOVPpW6dOlSXhwh5NUJhUK4uLggISGBK5PL5UhISIC7u3uDvc+zZ89w48aNFvH3K5PJ8J///AcAMHToUN5FmaFDhwIAPvjgA639nqWxobVA1XFQX+z4WEdHR+vHQa3Pr2hra+ta4xX/5ufn806E+fn5cHZ2rnPdoqOjkZOTg9TUVG7fREdHw8zMDAcPHsQ777yjdDmRSFTrE4maQtE5ckpKCv766y+cOnUK9+/fh42NDQYOHIhRo0ZR58iENILw8HCEhISgf//+cHV1xZo1a1BUVITQ0FAAQHBwMNq1a4fIyEgAz5vzXLlyhft/bm4uMjIyYGxsDAcHBwDAp59+iuHDh6NTp064d+8eFixYAF1dXQQFBalnI5tQUlISHj58iEGDBuHgwYPc+XzAgAE4ePAgvLy8cPLkSSQlJXHJozahK4taoKWPg1qfX9Hu7u68eACIj4/n4u3s7GBtbc2LKSwsxJkzZ1T6ZV5cXAwdHR0IBAKuTPH6xZEltFHVzpGV3YZuKZ0jE9LUxo0bh5UrV2L+/PlwdnZGRkYGjh49yjWtuX37Nu874d69e+jbty/69u2L+/fvY+XKlejbty/ef/99Lubu3bsICgpCt27dMHbsWJibm+P06dNo27Ztk29fU0tKSgIALFq0SOlFmQULFvDitA1dWdQCVcdBHTBgQLX5LWEcVFV/Rc+YMQNeXl6IioqCn58fdu/ejXPnzmHLli0Ang9F9/HHH+PLL79Ely5dYGdnh3nz5sHW1hYBAQHc+96+fRuPHz/G7du3IZPJkJGRAQBwcHCAsbEx3nzzTcyaNQvTpk3Dhx9+CLlcjmXLlkFPTw9Dhgxp0s9IXRSdI8+cORMeHh5cuZ2dXYvoHJkQdZk+fTqmT5+udN6LSY1EIgFjrNb17d69u6GqRjRN0zycrRk0tauIyspKJpFI2PDhw5lMJuPNk8lkbPjw4czOzk7jHu9XdX+sXbuWdezYkQmFQubq6spOnz7NzfPy8mIhISG8+L1797KuXbsyoVDIevbsyQ4dOsSbL5fL2bx585iVlRUTiURs6NCh7Pr167yYkJAQXncwiikxMZGL+e2339jAgQOZWCxmZmZm7I033mCpqamN+lk0Ry2xuwlN1hK2UdNo+j7R5PorugEbNGiQ0u/ZgQMHanU3YJQsVqHJB/KBAweYQCBgw4cPZykpKaywsJClpKSw4cOHM4FAwA4cOKDuKqpMk/dHQ6PPonlpCfujJWyjptH0faLJ9a+srGSWlpYMAPP39+d9z/r7+zMAzNLSUuN+BNd1n9BtaC1Bt/oIIYSQxqGrq4uNGzdi9OjRSEhIQFxcHDfPwMAAAoEAGzdu1Nr215QsapHAwECMHDkSycnJ3BOnnp6eWnvwEkLIy8hkMjonkgYRGBiIESNG4ODBg7zykpISjBw5UqsvylCyqGUU46AS0tzQlzZpajExMZg5cyZycnK4MolEgqioKK3+YieN47PPPsPBgwdhaWmJ4OBgdO7cGTdv3sSPP/6IgwcP4rPPPsPy5cvVXc1GQV3nEEIaXUsdipKoT0se1Yo0vPLycqxevRpWVlbIzc3FihUr8MEHH2DFihXIzc2FlZUVVq9ejfLycnVXtVFQskgIaVT0pU2aGo1qRRrahg0bUFlZiS+//LLaUK16enpYvHgxKisrsWHDBjXVsHFRskgIaTT0pU3UQTGq1Zw5c2oc1So7OxvJyclqqiHRNDdu3AAA+Pv7QyaTISkpCbt27UJSUhJkMhn8/f15cdqG2iwSQhpNSx+KkqhH1VGtlLWV1fZRrUjDs7e3BwAsXrwYR44cqdYO1tfXlxenbShZJIQ0mpY+FCVRD8VoVevWrcPmzZurfbFPnjyZF0fIy0ydOhUzZ87Exo0b8fbbb2PWrFkwMDBASUkJDh06hE2bNkFHRwdTp05Vd1UbBSWLhJBGQ0NREnXw9PSEpaUlIiIi4O/vj127dqFXr164dOkSvvrqK8yZMweWlpbw9PRUd1WJhtDV1YWxsTEKCwtx9OhRHD58mJunuGtibGystT08UJtFQkij8fT0hEQiwdKlSyGXy3nz5HI5IiMjYWdnR1/apMGxKuMcs+ejlb107GNCapKcnIzCwkIAqHYcKV4XFhZqbTtYShYJIY1GV1cXUVFRiIuLQ0BAAO9p6ICAAMTFxWHlypVa+2ucqEdycjIePnyIyMhIXLp0CR4eHjA1NYWHhwcuX76MpUuX4sGDB1r7xU4aXm5uLgDgrbfeQnFxMVavXo3p06dj9erVKC4uxltvvcWL0zaULBJCGpViKMqLFy/yvrQvXbpEQ1GSRqFoAzt9+nRkZWUhMTER0dHRSExMRGZmJqZPn86LI+RlHj58COD5+axVq1ZwdnaGh4cHnJ2d0apVKwQEBPDitA21WSSENIkXb928eFuakIbyYlvZF5+0p7ayRFVt27YF8Ly/xSVLluD27dvcvI4dO8Lc3JwXp23qdWVx/fr1kEgk0NfXh5ubG/74449a4/ft2wdHR0fo6+vDycmJ1zAUeN5p77Bhw2Bubg6BQICMjAze/JycHAgEAqXTvn37uDhl83fv3l2fTSSENBBFp9y9e/fm3Ybu3bs3dcpNGgW1lSUNrV27dgCA8+fP4+7du7x5d+/exfnz53lx2kblZHHPnj0IDw/HggULkJ6ejj59+sDHxwcPHjxQGp+SkoKgoCCEhYXh/PnzCAgIQEBAAPfLDgCKioowaNAgfP3110rX0aFDB9y/f583LVq0CMbGxlw7AYXt27fz4hSXhgkhTY865SbqQG1lSUPz8PDgnnoWiUS8eYrXOjo68PDwaPK6NQmmIldXVzZt2jTutUwmY7a2tiwyMlJp/NixY5mfnx+vzM3NjU2ZMqVabHZ2NgPAzp8//9J6ODs7s3//+9+8MgDsv//978s34v+VlpYyqVTKTXfu3GEAmFQqrfM6SOORSqW0P/6fpn4WiYmJDABLTU1VOj8lJYUBYImJiU1bsVekqftDFdqwjQcOHGASiYQB4CY7Ozt24MABdVetXjR9n2hy/Y8fP84dQ35+fmzdunVs69atbN26dczPz4+bd/z4cXVXVSV13ScqXVksLy9HWloavL29uTIdHR14e3sjNTVV6TKpqam8eADw8fGpMb4u0tLSkJGRgbCwsGrzpk2bBgsLC7i6umLbtm21dpUQGRkJsVjMTR06dKh3nQgh1VGn3ESdAgMDlT7gQg9VEVUlJSUBABYuXIjLly9j+vTpCAsLw/Tp03HlyhUsWLCAF6dtVHrApaCgADKZDFZWVrxyKysrXLt2TekyeXl5SuPz8vJUrOo/tm7diu7du1e73Lt48WK88cYbMDQ0xG+//YapU6fi2bNn+Oijj5SuJyIiAuHh4dzrwsJCShgJaUDUKTdRN11dXRpKkjSoFy9CtYSH9TTuaeiSkhJER0dj3rx51eZVLevbty+KioqwYsWKGpNFkUhUre0BIaThVH3QIDY2ljc+ND1oQAjRFIMHD8aXX36JhQsXws/PD5999hk33N/hw4exaNEiLk4bqZQsWlhYQFdXF/n5+bzy/Px8WFtbK13G2tpapfiX2b9/P4qLixEcHPzSWDc3NyxZsgRlZWWUFBKiBooHDUaPHo2AgABERERww65FRkYiLi4O+/fvpwcNCCHNmqenJ3R0dCCXy5GQkIBDhw5x8/T19QE8b5anrT98VWqzKBQK4eLigoSEBK5M8cG5u7srXcbd3Z0XDwDx8fE1xr/M1q1bMWLEiDr1ZZSRkQEzMzNKFAlRI+qUmxCi6VJSUrjbzeXl5bx5FRUVAJ7nQykpKU1et6ag8m3o8PBwhISEoH///nB1dcWaNWtQVFSE0NBQAEBwcDDatWuHyMhIAMCMGTPg5eWFqKgo+Pn5Yffu3Th37hy2bNnCrfPx48e4ffs27t27BwC4fv06gOdXJategczKysLvv/9erZ9GAPj111+Rn5+PAQMGQF9fH/Hx8Vi6dCk+/fRTVTeRENLAAgMDMXLkSCQnJ+P+/fuwsbGBp6cnXVEkhGgExTB+ffv2xd9//42cnBxuXseOHdG6dWucP39ea4f7UzlZHDduHB4+fIj58+cjLy8Pzs7OOHr0KPcQy+3bt3ntkjw8PBAdHY25c+dizpw56NKlC2JjY3lPR/7yyy9csgkA77zzDgBgwYIFWLhwIVe+bds2tG/fHsOGDatWr1atWmH9+vX45JNPwBiDg4MDVq1ahUmTJqm6iYSQRkAPGhBCNJViGL+pU6ciODgYGzZswI0bN2Bvb4+pU6fihx9+wJQpU7R2uD8Bq61vmRamsLAQYrEYUqkUpqam6q5Oi0f74x/0WTQvLWF/tIRt1DSavk80uf4///wzJkyYoPTKokQigZmZGc6fP4+dO3fi3XffVV9FVVTXfaJxT0MTQgghhDSlqsP9Vb17Cjy/o6pIHmm4P0IIIYSQFqjqcH96evzrbK1atQKg3cP9UbJICCGEEFKL5ORk7mnoF68sCgQCAM+fhk5OTm7yujUFShYJIYQQQmpRdRi/srIy3ryqr2m4P0IIIYSQFqjqkH5vv/023n77bd4ILopOurV16D9KFgkhhBBCamFmZgYAMDU1RWxsLK/d4uTJk9GmTRs8ffqUi9M2dBtay8hkMiQlJWHXrl1ISkqCTCZTd5UIIYQQjfb3338DeN7VzL/+9S+kpqbi6dOnSE1Nxb/+9S88ffqUF6dt6MqiFomJicEnn3yC27dvc2UdO3bE6tWraUg1QgghpJ6qPtSSkJCAuLg47rWhoaHSOG2inVvVAsXExGDUqFG8RBF43v/TqFGjEBMTo6aaEUIIIZpNMfqUo6MjLCwsePMsLCzg6OjIi9M2lCxqAZlMhvfee6/WmPfee49uSRNCCCH1MHjwYFhaWuLatWvVhvR78OABrl27BktLS0oWSfMVHx+P4uLiWmOKi4sRHx/fRDUihBBCtIeuri5CQkIAVO86p7y8HAAQEhICXV3dJq9bU6BkUQtERkY2aBwhhBBC/iGTybBv3z7Y29tXa5eoo6MDe3t77N+/X2vv4FGyqAVOnTrVoHGEEEII+UdycjJycnJw8+ZNCIVC3rxWrVrh5s2byM7OphFcSPNV118y2vqLhxBCCGlMubm5AADGWLWOt+VyORhjvDhtQ8milrGwsMCWLVtw7949bNmypdpTW4QQQghRTV5eHvd/ZbehlcVpE0oWtUxBQQEmT54MW1tbTJ48GQUFBequEiGEEKLRqn6XDh06lNcp99ChQ5XGaRPqlJsQQgghpBZ37tzh/i+Xy7Fr1y6UlpZCX1+fd1u6apw2oWRRCwiFQu7R/ZfFEUIIIUQ1ijaJJiYmOHz4cLX5JiYmePr0KRenbeg2tBbYunVrg8YRQggh5B8SiQQA8PTpUwiFQowfPx6rVq3C+PHjIRQKubGhFXHahpJFLRAUFNSgcYQQQjTf+vXrIZFIoK+vDzc3N/zxxx81xl6+fBmjRo2CRCKBQCDAmjVrXnmd2uT111/n/q+rq4vo6GiEh4cjOjqa1xF31ThtQsmiFtDV1cWBAwdqjTlw4IDW9ixPSHOn6hfsvn374OjoCH19fTg5OfFue1VUVGD27NlwcnKCkZERbG1tERwcjHv37vHW8ddff2HkyJGwsLCAqakpBg0ahMTExEbZPtL87NmzB+Hh4ViwYAHS09PRp08f+Pj44MGDB0rji4uL0blzZyxbtgzW1tYNsk5tcvnyZe7/JSUlvHlVX1eN0yaULGqJwMBAHDhwAB06dOCVd+zYEQcOHEBgYKCaakZIy6bqF2xKSgqCgoIQFhaG8+fPIyAgAAEBAbh06RKA51/q6enpmDdvHtLT0xETE4Pr169jxIgRvPX4+/ujsrISJ06cQFpaGvr06QN/f3+t7dqD8K1atQqTJk1CaGgoevTogU2bNsHQ0BDbtm1TGv/aa69hxYoVeOeddyASiRpkndokOzu7QeM0DiMcqVTKADCpVKruqtRbZWUl27x5MwPANm/ezCorK9VdpXpTdX+sW7eOderUiYlEIubq6srOnDlTa/zevXtZt27dmEgkYr169WKHDh3izZfL5WzevHnM2tqa6evrs6FDh7K//vqLF/Pll18yd3d3ZmBgwMRicY3vtX37dubk5MREIhFr27Ytmzp1ap22SUEbjk1tosr+cHV1ZdOmTeNey2QyZmtryyIjI5XGjx07lvn5+fHK3Nzc2JQpU2p8jz/++IMBYLdu3WKMMfbw4UMGgP3+++9cTGFhIQPA4uPjX1pnxuiYa47quk/KysqYrq4u++9//8srDw4OZiNGjHjp+3Tq1ImtXr36lddZWlrKpFIpN925c0djj6kVK1YwAMzAwIB16tSJAeAmiUTCDAwMGAC2YsUKdVdVJXU9puhpaA2WmZnJNaqtysjIiPv3zz//VLqsiYkJunTp0qj1a0qKqzebNm2Cm5sb1qxZAx8fH1y/fh2WlpbV4hVXbyIjI+Hv74/o6GgEBAQgPT0dvXr1AgAsX74c3377LXbs2AE7OzvMmzcPPj4+uHLlCvT19QE8H0B+zJgxcHd3r/EBolWrViEqKgorVqyAm5sbioqKkJOT02ifBWk+ysvLkZaWhoiICK5MR0cH3t7eSE1NVbpMamoqwsPDeWU+Pj6IjY2t8X2kUikEAgFat24NADA3N0e3bt3w448/ol+/fhCJRNi8eTMsLS3h4uKidB1lZWUoKyvjXhcWFtZxK0lzU1BQAJlMBisrK165lZUVrl271mTrjIyMxKJFi+r1fs2Vnp4erly5gi1btuDGjRuwt7fH5MmTa7x1rzWaKHnVCJr0S/qvv/7i/bKpz/TiVbLmRp1Xb+RyObO2tub9Snzy5AkTiURs165d1da3fft2pVcWHz9+zAwMDNjx48dfug210aRjsyWo6/7Izc1lAFhKSgqvfNasWczV1VXpMq1atWLR0dG8svXr1zNLS0ul8SUlJaxfv35s/PjxvPI7d+4wFxcXJhAImK6uLrOxsWHp6ek11nXBggVKzxN0zDUfjXncVaXsymJ91qlNVxanT5/O/U3o6Ojw/kaqvp4+fbq6q6oSurKo5RRXFHfu3Inu3bvz5pWUlCAnJwcSiQQGBgbVlr169SomTJig9KqkJmqMqzfZ2dnIy8uDt7c3N18sFsPNzQ2pqal455136lS3+Ph4yOVy5Obmonv37nj69Ck8PDwQFRVVrX1pVXSVh9RFRUUFxo4dC8YYNm7cyJUzxjBt2jRYWloiOTkZBgYG+P777zF8+HCcPXsWNjY21dYVERHB+5soLCys9RglzZeFhQV0dXWRn5/PK8/Pz6/3FbD6rFMkEtXY/lHT2Nvbc/9nL/SlWPV11ThtQg+4aDBrYwH62eiin7UObxpoZ4R3h/TEQDujavP6Weugn40urI0F6q5+g6nt9khNjfnz8vJqjVf8q8o6lbl58ybkcjmWLl2KNWvWYP/+/Xj8+DHefPPNWjtSj4yMhFgs5ib60tZM9fmCtba2rlO8IlG8desW4uPjYWpqys07ceIE4uLisHv3bgwcOBD9+vXDhg0bYGBggB07dih9X5FIBFNTU95ENJNQKISLiwsSEhK4MrlcjoSEBLi7uzebdWqSKVOmAHj+ORQWFmL16tWYPn06Vq9ejcLCQm7QC0WctqErixpsiosQ3X+fAvyu2nLd/39Z0vjkcjkqKirw7bffYtiwYQCAXbt2wdraGomJifDx8VG6HF3l0Q5Vv2ADAgIA/PMFO336dKXLuLu7IyEhAR9//DFXFh8fz/tCViSKmZmZSExMhLm5OW8dxcXFAJ5fYa9KR0eHNzQZ0V7h4eEICQlB//794erqijVr1qCoqAihoaEAgODgYLRr1w6RkZEAnt+huXLlCvf/3NxcZGRkwNjYGA4ODnVapzY7c+YMgOefjYODA9599104Ojri5s2bcHBw4H78nzlzBoMHD1ZjTRsHJYsaqri4GJvTytFn7OdwdHTkzSsrK8O9e/dga2ur9BZAdnY2Nqd9gRHV5mimxrh6o/g3Pz+fd8suPz8fzs7Oda6bYtkePXpwZW3btoWFhQVu375d43LadPumpVP1S3vGjBnw8vJCVFQU/Pz8sHv3bpw7dw5btmwB8DxRHD16NNLT0xEXFweZTMZd7W7Tpg2EQiHc3d1hZmaGkJAQzJ8/HwYGBvjuu++QnZ0NPz8/9XwQpEmNGzcODx8+xPz585GXlwdnZ2ccPXqUu1ty+/Zt3o+Je/fuoW/fvtzrlStXYuXKlfDy8kJSUlKd1qnN7t+/DwDw8/PDoUOHsGrVKt58RbkiTus0QftJjaFJDxF899139IBLFa6urryGxTKZjLVr167WB1z8/f15Ze7u7tUecFm5ciWvPqo+4HL9+nUGgPeAy6NHj5iOjg47duzYS7er6ntryrHZEqi6P9auXcs6duzIhEIhc3V1ZadPn+bmeXl5sZCQEF783r17WdeuXZlQKGQ9e/bkdeuUnZ1d4990YmIiF3f27Fk2bNgw1qZNG2ZiYsIGDBjADh8+3GjbSBqfpu8TTa5/YmJinb5Xq/4NaoK67hMBY1o66nU9FBYWQiwWQyqVNvv2OgUFBYiNjYWjoyMMDQ158xQPsCh7+EVBE7rOUWV/7NmzByEhIdi8eTN39Wbv3r24du0arKysql29SUlJgZeXF5YtW8ZdvVm6dCmv65yvv/4ay5Yt43Wdc+HCBV7XObdv38bjx4/xyy+/YMWKFUhOTgYAODg4wNjYGAAQEBCArKwsbNmyBaampoiIiMDNmzeRkZGBVq1aNfhnQRpfS9gfLWEbNY2m7xNNrn95eTn09fXBGIOlpSWCg4PRuXNn3Lx5Ez/++CMePHgAgUCA0tJSrv2iJqjzPmmKzFVTaPKvHoUnT56wPn36MACsT58+7MmTJ+quUr2p8+oNY/90ym1lZcVEIhEbOnQou379Oi8mJCTkpb8upVIp+/e//81at27N2rRpw/71r3+x27dvN+pnQRpXS9gfLWEbNY2m7xNNrv+xY8e487tQKOSd76u+VuWOUXNAVxbrQZN/9QDPr2bduHGjWrm9vT2ysrLUUKNXo+n7oyHRZ9G8tIT90RK2UdNo+j7R5Pq/99572LlzJwBAIBDwusup+nrChAn46aef1FLH+qjrPqEHXLRETYkiANy4cQMODg4amTASQggh6la1X+K3334bDg4OKCkpgYGBAbKysnDo0KFqcdqEkkUtIJVKa0wUFW7cuAGpVAqxWNxEtSKEEEK0g6KHDJFIhAsXLnDJIQB06NABQqEQ5eXlWjvsH3XKrQWGDh3aoHGEEEII+YeZmRmA513T3blzhzfvzp07XD+LijhtQ8miFkhPT2/QOEIIIYT848UO7l81TtNo51a1MHV9RomeZSKEEEJUp2jCJRAIoKury5unp6cHgUDAi9M21GaREEIIIaQWFy5cAPD8oouPjw8cHBxQWloKfX19ZGVl4fDhw7w4bUPJIiGEEEJILYqKirj/JyYmcskhAN7AGFXjtAndhiaEEEIIqYWnpycAoFOnTrC0tOTNs7S0RKdOnXhx2qZeyeL69eshkUigr68PNzc3/PHHH7XG79u3D46OjtDX14eTkxMvIweAmJgYDBs2DObm5hAIBMjIyKi2jsGDB0MgEPCm//znP7yY27dvw8/PD4aGhrC0tMSsWbNQWVlZn00khBBCCAEATJ8+HTo6Orh16xYePHjAm5efn49bt25BR0cH06dPV1MNG5fKyeKePXsQHh6OBQsWID09HX369IGPj0+1D08hJSUFQUFBCAsLw/nz5xEQEICAgABcunSJiykqKsKgQYPw9ddf1/rekyZNwv3797lp+fLl3DyZTAY/Pz+Ul5cjJSUFO3bswA8//ID58+eruomEEEIIIRyhUIjhw4cDAEpKSnjzFK+HDx+uUeNCq0TVcQRdXV3ZtGnTuNcymYzZ2tqyyMhIpfFjx45lfn5+vDI3Nzc2ZcqUarHZ2dkMADt//ny1eV5eXmzGjBk11uvw4cNMR0eH5eXlcWUbN25kpqamrKys7CVb9ZymjlsJJWMT1zRpEk3dH42BPovmpSXsj5awjZpG0/eJJte/srKSicXiWr9fxWIxq6ysVHdVVVLXfaLSlcXy8nKkpaXB29ubK9PR0YG3tzdSU1OVLpOamsqLBwAfH58a42vz888/w8LCAr169UJERASKi4t57+Pk5AQrKyve+xQWFuLy5ctK11dWVobCwkLeRAghhBBS1YkTJyCVSiESiZTOF4lEkEqlOHHiRBPXrGmolCwWFBRAJpPxEjIAsLKyQl5entJl8vLyVIqvyfjx47Fz504kJiYiIiICP/30EyZMmPDS91HMUyYyMhJisZibOnTooFKdCCGEEKL9fvrpJwDPLzIpoyhXxGkbjek6Z/Lkydz/nZycYGNjg6FDh+LGjRuwt7ev1zojIiIQHh7OvS4sLNTIhFFHRwdyubxOcYQQQghRjVQqbdA4TaNS9mBhYQFdXV3k5+fzyvPz82scPNva2lql+Lpyc3MDAGRlZdX6Pop5yohEIpiamvImTSSRSBo0jhBCCCH/kMlkDRqnaVRKFoVCIVxcXJCQkMCVyeVyJCQkwN3dXeky7u7uvHgAiI+PrzG+rhTd69jY2HDvc/HiRd5T2fHx8TA1NUWPHj1e6b2au6ptNxsijhBCCCH/uHnzZoPGaRqVb0OHh4cjJCQE/fv3h6urK9asWYOioiKEhoYCAIKDg9GuXTtERkYCAGbMmAEvLy9ERUXBz88Pu3fvxrlz57BlyxZunY8fP8bt27dx7949AMD169cBPL8iaG1tjRs3biA6Ohpvv/02zM3NceHCBXzyySd4/fXX0bt3bwDAsGHD0KNHD7z33ntYvnw58vLyMHfuXEybNq3GBqnagtHY0IQQQkijefjwYYPGaRqVG7GNGzcOK1euxPz58+Hs7IyMjAwcPXqUe5jk9u3buH//Phfv4eGB6OhobNmyBX369MH+/fsRGxuLXr16cTG//PIL+vbtCz8/PwDAO++8g759+2LTpk0Anl/RPH78OIYNGwZHR0fMnDkTo0aNwq+//sqtQ1dXF3FxcdDV1YW7uzsmTJiA4OBgLF68uH6fjAZ5/fXXGzSOEEIIIf+oOqRfQ8RpGgGjy02cwsJCiMViSKVSjWq/ePToUbz11lsvjTty5Ah8fX2boEYNQ1P3R2Ogz6J5aQn7oyVso6bR9H2iyfXv06cPLly4AOD5w6KdO3fmHi69efMm95Bp79698eeff6qzqiqp6z7RmKehSc1atWrVoHGEEEII+UfVK4ZyuZx7uLa2OG1Cfalogbr2Walq35aEEEIIAYyNjRs0TtNQsqgFFA1qP/jgA3Tq1Ik3TyKRYMqUKbw4QgghhNRd3759GzRO09BtaC3Qtm1bAEBOTg4yMzNx6tQp3L9/HzY2Nhg4cCBGjhzJiyOEEEJI3T179qxB4zQNXVnUAu3atQPw/AGWUaNGQSQSwd/fHyKRCKNGjcKRI0d4cYQQQgipO4FA0KBxmoauLGoBT09PSCQSWFhY4M8//4SHhwc3r1OnTujfvz8ePXoET09PNdaSEEII0Ux1HVa4vsMPN3eULGoBXV1dREVFYdSoUdXm3bp1C7du3cKBAwegq6urhtoRQgghmq1qEmhtbc17YNTGxobrX1pbk0W6Da0lTp8+DeB5/09VKRJExXxCCCGEqGbJkiXc/6sOKwwA+fn5SuO0CSWLWqC8vByrV6+GlZUViouLkZiYiOjoaCQmJqKoqAhWVlZYvXo1ysvL1V1VQgghROM8fvyY+7+iA25lr6vGaRNKFrXAhg0bUFlZiS+//BIikQiDBw9GUFAQBg8eDJFIhMWLF6OyshIbNmxQd1UJIYQQjVN1iOKGiNM0lCxqgRs3bgAA/P39IZPJkJSUhF27diEpKQkymQz+/v68OEIIIYTUXVhYWIPGaRp6wEULKBrULl68GEeOHEFOTg43TyKRwMfHhxdHCCGEkLrbs2dPneMUfRtrE0oWtcDUqVMxc+ZMbNy4EX5+fpg1axYMDAxQUlKCw4cPY/PmzdDR0cHUqVPVXVVCCCFE42RkZDRonKahZFEL6OrqwsTEBFKpFIcPH8ahQ4e4eYoOQk1MTKjrHEIIIaQeFF3jNFScpqE2i1ogOTkZUqm01hipVIrk5OQmqhEhhBCiPWQyWYPGaRpKFrVAbm4uAMDOzq7aUEMCgQB2dna8OEIIIYTUXatWrRo0TtNQsqgFHj58CADIzs5G27Zt8d133+H+/fv47rvv0LZtW2RnZ/PiCCGEEFJ3de2nWFv7M6Y2i1rAzMwMACAUCnH79m0IhUIAwPvvv4/g4GCYmJigvLyciyOEEEJI3ZWWljZonKahZFELnD17FsDzXzSjRo2Cr68v9zT00aNHuV86Z8+eRUhIiDqrSgghhGgcXV1dVFZW1ilOG1GyqAUYYwCATp064ciRI4iLi+Pm6enpoVOnTrh16xYXRwghhJC6e+2113Dy5MmXxrm5uTVBbZoeJYtaoEuXLgCAW7duwdLSEu+99x46d+6Mmzdv4qeffsKtW7d4cYQQQgipu7Fjx9YpWZwzZ04T1KbpCRhdbuIUFhZCLBZDKpXC1NRU3dWps5KSEhgaGkJPTw/t2rXjkkPg+Qgud+/eRWVlJYqLi2FgYKDGmqpGU/dHY6DPonlpCfujJWyjptH0faLJ9X/69CksLS1rbZNoaGiIwsJCjboVXdd9Qk9Da4EzZ84AACorK1FSUoLw8HCsX78e4eHhKC4u5tpZKOIIIYQQUncmJib4+eefa4356aefNCpRVAUli1pA0WP8jBkz8PjxY6xatQrTpk3DqlWr8PjxY8yYMYMXRwghhBDVBAYG4sCBA+jUqROvXCKR4MCBAwgMDFRTzRofJYtawMbGBgBgbW0NW1tb3jxbW1tYWVnx4gghhGi/9evXQyKRQF9fH25ubvjjjz9qjd+3bx8cHR2hr68PJycnHD58mDd/4sSJEAgEvMnX17cxN6HZCQwMxI0bN7B582YAwObNm5GVlaXViSJAyaJW8PT0RNu2bREREYHevXsjNTUVT58+RWpqKnr37o05c+bA0tISnp6e6q4qIYSQJrBnzx6Eh4djwYIFSE9PR58+feDj44MHDx4ojU9JSUFQUBDCwsJw/vx5BAQEICAgAJcuXeLF+fr64v79+9y0a9eupticZkVXVxf9+/cHAPTv319rbz1XRcmillAM88cYQ1paGvbu3Yu0tDTqLocQQlqgVatWYdKkSQgNDUWPHj2wadMmGBoaYtu2bUrjv/nmG/j6+mLWrFno3r07lixZgn79+mHdunW8OJFIBGtra26iwR5aBuo6RwskJyfjwYMHePfdd7Fnzx4cOnSIm6enp4fx48cjOjoaycnJGDx4sPoqSgghpNGVl5cjLS0NERERXJmOjg68vb2RmpqqdJnU1FSEh4fzynx8fBAbG8srS0pKgqWlJczMzPDGG2/gyy+/hLm5udJ1lpWVoaysjHtdWFhYzy0i6kZXFrWA4sGV6Oho+Pr6Yv369di2bRvWr18PX19f7jZBS3jApaHb6DDGMH/+fNjY2MDAwADe3t7IzMzkxXz11Vfw8PCAoaEhWrduXev7PXr0CO3bt4dAIMCTJ0/qs4mEEFKrgoICyGQyrr26gpWVFfLy8pQuk5eX99J4X19f/Pjjj0hISMDXX3+N//3vf3jrrbcgk8mUrjMyMhJisZibOnTo8IpbRtSFkkUtYGlpCQAYOHAgDh48iKlTpyI0NBRTp07FwYMHMXDgQF6ctmqMNjrLly/Ht99+i02bNuHMmTMwMjKCj48Pr6+t8vJyjBkzBh988MFL6xgWFobevXu/+sYSQkgTe+eddzBixAg4OTkhICAAcXFxOHv2LJKSkpTGR0REQCqVctOdO3eatsKkwVCyqGVkMhmSkpKwa9cuJCUlQSaTtZh2iw3dRocxhjVr1mDu3LkYOXIkevfujR9//BH37t3j3ZpZtGgRPvnkEzg5OdVav40bN+LJkyf49NNPG2ybCSHkRRYWFtDV1UV+fj6vPD8/H9bW1kqXsba2VikeADp37gwLCwtkZWUpnS8SiWBqasqbiGaiZFELKK6cnTx5EmKxGEOGDMH48eMxZMgQiMVinDp1ihenjRRtdLy9vbmyurTRqRoPPG+jo4jPzs5GXl4eL0YsFsPNza3GddbkypUrWLx4MX788Ufo6Lz8z66srAyFhYW8iRBC6kIoFMLFxQUJCQlcmVwuR0JCAtzd3ZUu4+7uzosHgPj4+BrjAeDu3bt49OgRdcvWAlCyqAWq/qG+OBRR1dfa/AfdGG10FP+qsk5lysrKEBQUhBUrVqBjx451Woba+hBCXkV4eDi+++477NixA1evXsUHH3yAoqIihIaGAgCCg4N5D8DMmDEDR48eRVRUFK5du4aFCxfi3LlzmD59OgDg2bNnmDVrFk6fPo2cnBwkJCRg5MiRcHBwgI+Pj1q2kTQdehpaC3h4eEBHRwdyuRxvvfUW/Pz8YGBggJKSEhw6dAiHDx+Gjo4OPDw81F3VFikiIgLdu3fHhAkTVFqm6pOJhYWFlDASQups3LhxePjwIebPn4+8vDw4Ozvj6NGj3I/f27dv8+5yeHh4IDo6GnPnzsWcOXPQpUsXxMbGolevXgCe9y144cIF7NixA0+ePIGtrS2GDRuGJUuWQCQSqWUbSdOhZFELJCcnQy6XA3je3yJjjJsU/S/K5XIkJydj6NCh6qxqo2mMNjqKf/Pz83lXZfPz8+Hs7Fznup04cQIXL17E/v37AYBrQ2phYYEvvvgCixYtqraMSCSiEzAh5JVMnz6duzL4ImUPpYwZMwZjxoxRGm9gYIBjx441ZPWIBqHb0FpA8Uc/duxYHDt2DNOnT0dYWBj+r737D2rizP8A/g7UBFRAkVPEqlC1BYUDi4JwWvXqgA5Ycwr2dFR640l7SquH/XF4Cq1VM63i2fOcUq5Xder4W2SsqDfW4lUHqidIr7SgtgWxxaAWDZTfxOf7h99siSQ0oYGQ5f2a2ZHsfrJ5NvsZfNh9ns8mJSXh3//+N+bPn28UJ0ddMUbHz88P3t7eRjE1NTW4cOFCh+N4HnbkyBF8/vnnKCoqQlFREd5//30ADzr5K1assHg/RERE9sArizJy8OBBxMbGYtasWdJt6JMnT+LgwYP2blq3SE5ORkJCAiZMmICwsDBs27at3RidYcOGQaPRAHgwRmfq1KlIT09HTEwM9u/fj0uXLiEzMxPAg6u0q1atwoYNGzBmzBj4+flh3bp18PHxgVqtlj63oqIC1dXVqKiogF6vR1FREQBg9OjR6N+/P0aNGmXUzjt37gAAAgICfrYuIxERkb2xsygDTz31FABg4MCBOHr0KB555KfTmpiYiMGDB+Pu3btSnFzZeowOALz66quoq6tDYmIi7t27h8mTJ+PUqVNwcXGRYlJTU7F7927p9fjx4wEAubm5fGIOERE5PHYWZcDQAbp79y7UanW7K4t37941ipMzW47RAR5cXVy/fj3Wr19vNmbXrl3YtWuXxW2cNm1ar6l9SUREjo+dRRloWz8xJyfH6NnQhgkuD8cRERERWUL+l5p6gY7qJ7a9giXnOotERETUNTrVWdyxYwd8fX3h4uKC8PBwXLx4scP4Q4cOwd/fHy4uLggKCsKJEyeMtmdlZSEqKgqDBg2CQqGQJggYVFdX48UXX8QTTzwBV1dXjBgxAi+99BJ0Op1RnEKhaLfs37+/M4foUAx1FjvCOotERETUGVZ3Fg8cOIDk5GSkpaWhsLAQwcHBiI6ONnuLMy8vDwsWLMDSpUtx+fJlqNVqqNVqFBcXSzF1dXWYPHky3nrrLZP7qKysRGVlJbZs2YLi4mLs2rULp06dwtKlS9vF7ty5Ezdv3pSWtrNW5aptnUVzDHUWiYiIiKxh9ZjFrVu3YtmyZVI5koyMDOTk5OCDDz7AX/7yl3bx77zzDmbOnIlXXnkFAPDmm2/i9OnT+Mc//oGMjAwAwOLFiwEA5eXlJj8zMDAQR44ckV6PGjUKGzduxKJFi9Da2mo0+3fAgAEdPvhcjj7++GOL4+RalJuIiIi6hlVXFpubm1FQUIAZM2b8tAMnJ8yYMQP5+fkm35Ofn28UDwDR0dFm4y2l0+ng7u5u1FEEgBUrVsDLywthYWH44IMPOpx12tTUhJqaGqPFEf33v/+VflYqlVi4cCG2bt2KhQsXQqlUmowjIiIisoRVncU7d+5Ar9dLdesMhgwZAq1Wa/I9Wq3WqnhL2/Hmm28iMTHRaP369etx8OBBnD59GvPmzcPy5cuxfft2s/vRaDTw8PCQFkd99m5dXZ30c3V1NZYtWwZvb28sW7YM1dXVJuOIiIiILOFwpXNqamoQExODsWPH4vXXXzfatm7dOunn8ePHo66uDps3b8ZLL71kcl8pKSlITk422rcjdhh/+OEH6WcvLy80NjZKr9sWj24bR0RERGQJq64senl5wdnZGVVVVUbrq6qqzI4T9Pb2tiq+I7W1tZg5cybc3Nxw9OhR9OnTp8P48PBwfPfdd2hqajK5XaVSwd3d3WhxRG5ubtLPbTuKD79uG0dERERkCas6i0qlEqGhoThz5oy07v79+zhz5gwiIiJMviciIsIoHgBOnz5tNt6cmpoaREVFQalU4tixY0ZXzMwpKirCwIEDoVKprPosRzNx4kSbxhGRbdmy3FhLSwtee+01BAUFoV+/fvDx8cGSJUtQWVnZbj85OTkIDw+Hq6srBg4c2CuqQxCR7Vl9Gzo5ORkJCQmYMGECwsLCsG3bNtTV1Umzo5csWYJhw4ZBo9EAAFauXImpU6ciPT0dMTEx2L9/Py5duoTMzExpn9XV1aioqJB+2V25cgXAg6uS3t7eUkexvr4ee/bsMZqM8qtf/QrOzs746KOPUFVVhUmTJsHFxQWnT5/Gpk2b8PLLL/+yb8gBxMbG4r333rMojoi6l6HcWEZGBsLDw7Ft2zZER0fjypUrGDx4cLt4Q7kxjUaD2NhY7N27F2q1GoWFhQgMDER9fT0KCwuxbt06BAcH4+7du1i5ciWeeeYZXLp0SdrPkSNHsGzZMmzatAm//e1v0draalSyjIg6du3aNdTW1prcVlJSYvTvw9zc3DBmzJgua1u3E52wfft2MWLECKFUKkVYWJj47LPPpG1Tp04VCQkJRvEHDx4Ujz/+uFAqlWLcuHEiJyfHaPvOnTsFgHZLWlqaEEKI3Nxck9sBiLKyMiGEECdPnhQhISGif//+ol+/fiI4OFhkZGQIvV5v8XHpdDoBQOh0us58LXazdu1as99P22Xt2rX2bqpVHPV8dAV+Fz2LNecjLCxMrFixQnqt1+uFj4+P0Gg0JuPnz58vYmJijNaFh4eL559/3uxnXLx4UQAQ169fF0II0dLSIoYNGybef/99Sw7HJOZcz+Po58SR2n/16lWL/l/taLl69aq9D+NnWXpOOjXBJSkpCUlJSSa3nT17tt26+Ph4xMfHm93fc889h+eee87s9mnTpnVYAgcAZs6ciZkzZ3YYI3c+Pj4mb0UNHToUN2/etEOLiHo3Q7mxlJQUaZ0l5cbaTrwDHpQby87ONvs5Op0OCoUCAwYMAAAUFhbi+++/h5OTE8aPHw+tVouQkBBs3rwZgYGBJvfR1NRkNL7bUUuJEdmC4Yrinj17EBAQ0G57Q0MDysvL4evrC1dXV6NtJSUlWLRokdmrko7I4WZDU3vTpk3Dhg0bUFlZCS8vLwQGBkIIAYVCgeLiYqmjOG3aNPs2lKiX6ajcWGlpqcn3WFturLGxEa+99hoWLFggTdL79ttvAQCvv/46tm7dCl9fX6Snp2PatGm4evUqPD092+1Ho9HgjTfesPoYieQsICAATz75pMltv/nNb7q5NfbTqWdDU8/S9pnPEydORFxcHJYsWYK4uDijSS18NjSRvLS0tGD+/PkQQuDdd9+V1hse//nXv/4V8+bNQ2hoKHbu3AmFQoFDhw6Z3FdKSgp0Op203Lhxo1uOgYh6Pl5ZlIG2k1tOnjyJkydPmo1btWpVN7WKiLqy3Jiho3j9+nV88sknRqW/hg4dCgAYO3astE6lUuGxxx5DRUWFyc9VqVSyrxxBRJ3DK4sy8M0339g0johso6vKjRk6iteuXcPHH3+MQYMGGcWHhoZCpVJJlSUM7ykvL8fIkSNtcWgOQ6/X4+zZs9i3bx/Onj0LvV5v7yYRORxeWZQBX19fm8YRke3YutxYS0sL4uLiUFhYiOPHj0Ov10vjGT09PaFUKuHu7o4XXngBaWlpGD58OEaOHInNmzcDQIeTDeUmKysLq1evRnl5ubTOMH5z7ty59msYkYPhlUUZeOKJJ6SfnZyMT2nb123jiKh7PPvss9iyZQtSU1MREhKCoqIinDp1SprEUlFRYVStIDIyEnv37kVmZiaCg4Nx+PBhZGdnS7OYv//+exw7dgzfffcdQkJCMHToUGnJy8uT9rN582b8/ve/x+LFizFx4kTpdvXAgQO79wuwk6ysLMTFxSEoKAj5+fmora1Ffn4+goKCEBcXh6ysLHs3kchhKMTP1aTpRWpqauDh4QGdTudQj/5buHAh9u3bBwB45JFH8NRTT0lldD799FO0trYCABYsWIC9e/fas6lWcdTz0RX4XfQsveF8OPIx6vV6jB49GkFBQcjOzjb6o/n+/ftQq9UoLi7GtWvX4OzsbMeWWseRzwngWO0vLCxEaGgoCgoKzM6G7or3djdLzwlvQ8vA//73PwAPxkc1Nzfjk08+MdpuWG+IIyKSs3PnzqG8vBz79u0zebclJSUFkZGROHfuHEuKEVmAt6FlQKFQAHhQANgUw3pDHBGRnBlu65srQG5Yz4cVEFmGnUUZMFVd/pfEERE5MkPpIHPPwjasN8QRUcd4G1oGPDw8bBpH1BX0ej3OnTuHmzdvYujQoZgyZYpDjRcjxzFlyhT4+vpi06ZNJscsajQa+Pn5YcqUKXZsJfV03v0VcL13Fai07rqa672r8O4vrzt57CzKwJdffmnTOCJbYwkT6k7Ozs5IT09HXFwc1Go1UlJSEBgYiOLiYmg0Ghw/fhyHDx/mHyvUoedDlQj49HngU+veF/D/75UTdhZlwNwzYzsbR2RLhhImsbGx2Ldvn/Sf9qZNmxAXF4fDhw+zw0g2N3fuXBw+fBirV682etSpn58fc44s8l5BM55N3YUAf3+r3ldSWor30hfimS5qlz2wsygD3t7eKCsrA/DTzGeDtq/NPV6MqKvo9XqsXr0asbGxRrcDJ02ahOzsbKjVarz88suYM2cOr/KQzc2dOxdz5szh8AfqFO2PAg0DHgd8Qqx6X4P2PrQ/yqsqITuLMjBu3Djk5+cDeDAucfr06ejbty/q6+uRm5uL27dvS3FE3YklTMjenJ2dmVtEvxA7izLg5eUl/Xz79m0cPHjwZ+OIugNLmBAROT6WzpGBRx6xrM9vaRyRrbCECRGR42PvQQYM5R9cXFzQ1NSEtk9wdHJyQp8+fdDU1MQyEdTtWMKEiBxRfX09gAeP7jOloaEB5eXl8PX1haurq9G2kpKSLm9fd2NnUQYMg7UbGxuhUqnQ1NQkbTN0FNvGEXUXljAhIkdUWloKAFi2bFmn9+Hm5mar5tgdO4sycOvWLennlpYWo22tra0m44i6C0uYEJGjUavVAAB/f3/07du33faSkhIsWrQIe/bsMfl0NDc3N4wZM6arm9lt2FmUgcGDBwN4kNT19fWoqKiQtj366KNwdXVFaWmpFEfU3VjChIgciZeXF/74xz/+bFxAQACefPLJbmiRfbGzKDMPlydRKOT1yCFyXCxhQkTkmDgbWgYMt5dLS0vR0NCAzMxMVFZWIjMzEw0NDdLYC96GJiIiImvxyqIMGG4vBwQEoL6+HomJidI2X19f+Pv78zY0ERERdQo7izIyaNAgFBYWIiMjA9988w1GjRqFF154ATNmzLB304ig1+s5ZpG6HfOO6JdjZ1EGDLeXz58/D09PTzQ0NEjb1qxZI73mbWiyl6ysLKxevRrl5eXSOl9fX6Snp3M2NHUZ5h2RbXDMogx09PSLthNc+JQMsoesrCzExcUhKCgI+fn5qK2tRX5+PoKCghAXF4esrCx7N5FkiHlHZDsK0fZxH71cTU0NPDw8oNPp4O7ubu/mWKy5uRn9+vXDoEGDcP36deTn50u3XCIiIjBy5Ej88MMPqKurg1KptHdzLeao56MrOOp3odfrMXr0aAQFBZl8gotarUZxcTGuXbvmULcGHfV8WMORj5F51zM5evvbKiwsRGhoKAoKChy6dI6l54RXFmUgLy8Pra2tuHXrFuLj46FSqRAbGwuVSoX4+HjcunULra2tyMvLs3dTqZc5d+4cysvLsWbNmnZlnZycnJCSkoKysjKcO3fOTi0kOWLeka3V19ejsLBQWgyP9CspKZHWGR4RKEfsLMrAzZs3AQAffvghvvjiC0RGRsLd3R2RkZEoLi7Ghx9+aBRH1F0MORcYGGhyu2E9c5NsiXn3wI4dO+Dr6wsXFxeEh4fj4sWLHcYfOnQI/v7+cHFxQVBQEE6cOGG0XQiB1NRUDB06FK6urpgxYwauXbvWlYfQY5SWliI0NFRaFi1aBABYtGiRtM5Qpk6O2FmUAcNYxFGjRuHrr79Gbm4u9u7di9zcXFy7dg2PPfaYURxRdzHkXHFxscnthvXMTbIl5h1w4MABJCcnIy0tDYWFhQgODkZ0dLTZiY55eXlYsGABli5disuXL0OtVku36w3efvtt/P3vf0dGRgYuXLiAfv36ITo6Go2Njd11WHbj7++PgoICaTl//jz27NmD8+fPS+v8/f3t3cyuI0ii0+kEAKHT6ezdFKu0trYKX19fMXv2bKHX64226fV6MXv2bOHn5ydaW1vt1MLOcdTz0RUc9btgbjouRz5G5p0QYWFhYsWKFdJrvV4vfHx8hEajMRk/f/58ERMTY7QuPDxcPP/880IIIe7fvy+8vb3F5s2bpe337t0TKpVK7Nu3z+Q+GxsbhU6nk5YbN244bE7JlaU5xSuLMuDs7Iz09HQcP34carXaaOafWq3G8ePHsWXLFocayE3ywNwke+jtedfc3IyCggKjGrtOTk6YMWMG8vPzTb4nPz+/XU3e6OhoKb6srAxardYoxsPDA+Hh4Wb3qdFo4OHhIS3Dhw//pYdGdsLOokzMnTsXhw8fNjlm8fDhw6wpRnbD3CR76M15d+fOHej1egwZMsRo/ZAhQ6DVak2+R6vVdhhv+NeafaakpECn00nLjRs3OnU8ZH/sLMrI3LlzTY5ZlPMvxYfZY0D3xo0bERkZib59+2LAgAHtPuPzzz/HggULMHz4cLi6uiIgIADvvPPOLz5WR8LcJHtg3tmXSqWCu7u70UKOiU9wkRlnZ2dMmzbN3s2wC8OA7oyMDISHh2Pbtm2Ijo7GlStXTD4X2zCgW6PRIDY2Fnv37oVarUZhYaE0W9IwoHv37t3w8/PDunXrEB0dja+++gouLi4AHtzyiY+PR0REBP71r3+1+5yCggIMHjwYe/bswfDhw5GXl4fExEQ4OzsjKSmpa7+UHqQ35ybZT2/MOy8vLzg7O6OqqspofVVVFby9vU2+x9vbu8N4w79VVVVGE4OqqqoQEhJiw9ZTj9Q9QygdgyMP6JYja8+HvQd079y5U3h4eFjU1uXLl4vp06dbFCsEc7On6Q3nozcco6OxdoJLUlKS9Fqv14thw4Z1+PswNjbWaF1ERES734dbtmwxak9HE1x+Sfupe3CCC/UqPWVAt6V0Oh08PT3Nbm9qakJNTY3RQkRkqeTkZPzzn//E7t27UVJSgj/96U+oq6vDH/7wBwDAkiVLkJKSIsWvXLkSp06dQnp6OkpLS/H666/j0qVL0t0PhUKBVatWYcOGDTh27Bi++OILLFmyBD4+PlCr1fY4ROpGvA1NstDRgG5zhVK7YkC3JfLy8nDgwAHk5OSYjdFoNHjjjTc6/RlE1Ls9++yzuH37NlJTU6HVahESEoJTp05Jv88qKiqMnm4TGRmJvXv3Yu3atVizZg3GjBmD7Oxso8Lmr776Kurq6pCYmIh79+5h8uTJOHXqlDQkh+SLnUWiblRcXIw5c+YgLS0NUVFRZuNSUlKQnJwsva6pqWHZCSKySlJSktlx0WfPnm23Lj4+HvHx8Wb3p1AosH79eqxfv95WTSQHwdvQJAtdPaDb0n125KuvvsLTTz+NxMRErF27tsNYziIkIqKeolOdRVuXJ8nKykJUVBQGDRoEhUKBoqKidvtobGzEihUrMGjQIPTv3x/z5s1r9594RUUFYmJi0LdvXwwePBivvPIKWltbO3OI5GCUSiVCQ0Nx5swZad39+/dx5swZREREmHxPRESEUTwAnD59Wor38/ODt7e3UUxNTQ0uXLhgdp/mfPnll5g+fToSEhKwceNGq95LRERkT1Z3FrvieZN1dXWYPHky3nrrLbOf++c//xkfffQRDh06hP/85z+orKw0qpWl1+sRExOD5uZm5OXlYffu3di1axdSU1OtPURyUPYa0F1RUYGioiJUVFRAr9ejqKgIRUVF+PHHHwE8uPU8ffp0REVFITk5GVqtFlqtFrdv3+6+L4eIiKizrJ1mbevyJG2VlZUJAOLy5ctG6+/duyf69OkjDh06JK0rKSkRAER+fr4QQogTJ04IJycnodVqpZh3331XuLu7i6amJouOjdP6e5bOnI/t27eLESNGCKVSKcLCwsRnn30mbZs6dapISEgwij948KB4/PHHhVKpFOPGjRM5OTlG2+/fvy/WrVsnhgwZIlQqlXj66afFlStXjGISEhIEgHZLbm6uEEKItLQ0k9tHjhzZpd8FdZ3ecD56wzE6Gkc/J47efjmy9JxY1VlsamoSzs7O4ujRo0brlyxZIp555hmT7xk+fLj429/+ZrQuNTVV/PrXv24Xa66zeObMGQFA3L1712j9iBEjxNatW4UQQqxbt04EBwcbbf/2228FAFFYWGiybXzIec/GXyw/4XfRs/SG89EbjtHROPo5cfT2y1GX1FnsiudNWkKr1UKpVLZ7lNrDZU5MfY5hmyl8yDkRERFRx3p16ZyHy5PodDqMGDGCBZB7CMN5EELYuSX2Z/gOmJs9Q2/ITeZcz+Poecec6nkszSmrOotdUZ7EEt7e3mhubsa9e/eMri4+XObk4VnZhs8191kqlQoqlUp6bfjSeIWxZ6mtrYWHh4e9m2FXtbW1AJibPY2cc5M513M5at4xp3qun8spqzqLbcuTGGaDGsqTmCv8aShPsmrVKmld2/IklggNDUWfPn1w5swZzJs3DwBw5coVVFRUSPuJiIjAxo0bcevWLQwePFj6HHd3d4wdO9aiz/Hx8cGNGzfg5uYGhUJhcft6GkMB5xs3bjh0fT4hBGpra+Hj42Pvptgdc7Nn6Q25KZecA5h3PQVzquexNKesvg2dnJyMhIQETJgwAWFhYdi2bVu78iTDhg2DRqMB8KA8ydSpU5Geno6YmBjs378fly5dQmZmprTP6upqVFRUoLKyEsCDjiDw4Iqgt7c3PDw8sHTpUiQnJ8PT0xPu7u548cUXERERgUmTJgEAoqKiMHbsWCxevBhvv/02tFot1q5dixUrVhhdPeyIk5MTHn30UWu/kh5LDsWcHfGv567A3Ox55J6bcss5gHlnb8ypnsminOrM7BlblyfZuXOnydIiaWlpUkxDQ4NYvny5GDhwoOjbt6/43e9+J27evGm0n/LycjFr1izh6uoqvLy8xOrVq0VLS0tnDtGhccYZ9VTMTbIH5h3ZWm/LKYUQDjpSlsyqqamBh4cHdDqdw//FQ/LC3CR7YN6RrfW2nOKzoWVIpVIhLS3N4tvvRN2FuUn2wLwjW+ttOcUri0RERERkFq8sEhEREZFZ7CwSERERkVnsLBIRERGRWewsEhEREZFZ7CwSERERkVnsLMrIp59+itmzZ8PHxwcKhQLZ2dn2bhIRAOYm2Qfzjmytt+YUO4syUldXh+DgYOzYscPeTSEywtwke2Deka311pyy+tnQ1HPNmjULs2bNsncziNphbpI9MO/I1nprTvHKIhERERGZxc4iEREREZnFziIRERERmcXOIhERERGZxc4iEREREZnF2dAy8uOPP+Lrr7+WXpeVlaGoqAienp4YMWKEHVtGvR1zk+yBeUe21ltzSiGEEPZuBNnG2bNnMX369HbrExISsGvXru5vENH/Y26SPTDvyNZ6a06xs0hEREREZnHMIhERERGZxc4iEREREZnFziIRERERmcXOIhERERGZxc4iEREREZnFziIRERERmcXOIhERERGZxc4iEREREZnFziIRERERmcXOIhERERGZxc4iEREREZn1f4XIz28PPKtRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -490,7 +490,7 @@ "metadata": {}, "outputs": [], "source": [ - "!rm -rf project config_full.yaml eval.log\n" + "# !rm -rf project config_full.yaml eval.log\n" ] }, { diff --git a/examples/02_Molecular_Dynamics.ipynb b/examples/02_Molecular_Dynamics.ipynb index 35d5f1a2..5c0ea519 100644 --- a/examples/02_Molecular_Dynamics.ipynb +++ b/examples/02_Molecular_Dynamics.ipynb @@ -36,7 +36,15 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There is already a config file in the working directory.\n" + ] + } + ], "source": [ "!apax template train --full # generating the config file in the cwd" ] @@ -51,10 +59,10 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732124364.370900 457478 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732124364.374063 457478 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "Epochs: 0%| | 0/100 [00:00" ] @@ -326,80 +334,80 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732124446.453100 458649 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732124446.456299 458649 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "INFO | 17:40:48 | reading structure\n", - "INFO | 17:40:48 | Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig'\n", - "INFO | 17:40:48 | Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory\n", - "INFO | 17:40:49 | initializing model\n", - "INFO | 17:40:49 | loading checkpoint from /SCR1/segreto/dev/apax/examples/project/models/etoh_md/best\n", - "INFO | 17:40:49 | Building Standard model\n", - "INFO | 17:40:49 | initializing simulation\n", - "INFO | 17:40:57 | running simulation for 5.0 ps\n", - "Simulation: 5%|█▊ | 500/10000 [00:02<00:54, 174.57it/s, T=151.1 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 94679.55it/s]\u001b[A\n", + "E0000 00:00:1732192548.207012 473799 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732192548.210026 473799 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "INFO | 12:35:51 | reading structure\n", + "INFO | 12:35:51 | Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig'\n", + "INFO | 12:35:51 | Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory\n", + "INFO | 12:35:51 | initializing model\n", + "INFO | 12:35:52 | loading checkpoint from /SCR1/segreto/dev/apax/examples/project/models/etoh_md/best\n", + "INFO | 12:35:52 | Building Standard model\n", + "INFO | 12:35:52 | initializing simulation\n", + "INFO | 12:36:00 | running simulation for 5.0 ps\n", + "Simulation: 5%|█▊ | 500/10000 [00:02<00:54, 172.75it/s, T=219.0 K]\n", + "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 96442.95it/s]\u001b[A\n", "\n", - "Creating groups: 100%|██████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1375.45it/s]\u001b[A\n", + "Creating groups: 100%|██████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1377.71it/s]\u001b[A\n", "\n", - "Creating observables: 100%|█████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1709.87it/s]\u001b[A\n", - "Simulation: 15%|█████ | 1500/10000 [00:04<00:18, 453.30it/s, T=182.4 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 106535.53it/s]\u001b[A\n", + "Creating observables: 100%|█████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1746.90it/s]\u001b[A\n", + "Simulation: 15%|█████ | 1500/10000 [00:04<00:18, 451.01it/s, T=351.5 K]\n", + "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 105676.59it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1104.29it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1103.13it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1354.75it/s]\u001b[A\n", - "Simulation: 25%|████████▌ | 2500/10000 [00:05<00:11, 632.12it/s, T=468.3 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 82727.89it/s]\u001b[A\n", + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1321.04it/s]\u001b[A\n", + "Simulation: 25%|████████▌ | 2500/10000 [00:05<00:11, 630.34it/s, T=187.4 K]\n", + "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 82338.12it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1115.86it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1094.89it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1358.70it/s]\u001b[A\n", - "Simulation: 35%|███████████▉ | 3500/10000 [00:06<00:08, 733.60it/s, T=213.5 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 111372.92it/s]\u001b[A\n", + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1349.52it/s]\u001b[A\n", + "Simulation: 35%|███████████▉ | 3500/10000 [00:06<00:08, 733.28it/s, T=124.0 K]\n", + "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 98550.38it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1113.37it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1105.86it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1379.71it/s]\u001b[A\n", - "Simulation: 45%|███████████████▎ | 4500/10000 [00:07<00:06, 787.25it/s, T=368.6 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 110696.86it/s]\u001b[A\n", + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1385.63it/s]\u001b[A\n", + "Simulation: 45%|███████████████▎ | 4500/10000 [00:07<00:06, 787.98it/s, T=265.5 K]\n", + "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 106131.17it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1108.43it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1112.84it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1381.98it/s]\u001b[A\n", - "Simulation: 55%|██████████████████▋ | 5500/10000 [00:08<00:05, 814.36it/s, T=549.4 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 79769.95it/s]\u001b[A\n", + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1368.45it/s]\u001b[A\n", + "Simulation: 55%|██████████████████▋ | 5500/10000 [00:08<00:05, 817.04it/s, T=345.3 K]\n", + "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 76664.30it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1104.00it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1107.90it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1374.28it/s]\u001b[A\n", - "Simulation: 65%|██████████████████████ | 6500/10000 [00:10<00:04, 828.10it/s, T=277.2 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 116025.01it/s]\u001b[A\n", + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1321.87it/s]\u001b[A\n", + "Simulation: 65%|██████████████████████ | 6500/10000 [00:10<00:04, 831.74it/s, T=187.6 K]\n", + "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 106861.25it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1113.32it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1095.46it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1369.35it/s]\u001b[A\n", - "Simulation: 75%|█████████████████████████▌ | 7500/10000 [00:11<00:02, 834.13it/s, T=303.9 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 110726.08it/s]\u001b[A\n", + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1338.32it/s]\u001b[A\n", + "Simulation: 75%|█████████████████████████▌ | 7500/10000 [00:11<00:02, 837.36it/s, T=418.3 K]\n", + "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 109198.23it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1106.68it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1088.75it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1351.69it/s]\u001b[A\n", - "Simulation: 85%|████████████████████████████▉ | 8500/10000 [00:12<00:01, 837.66it/s, T=332.7 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 78208.17it/s]\u001b[A\n", + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1358.70it/s]\u001b[A\n", + "Simulation: 85%|████████████████████████████▉ | 8500/10000 [00:12<00:01, 839.68it/s, T=249.0 K]\n", + "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 65423.55it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1110.78it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1094.89it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1381.07it/s]\u001b[A\n", - "Simulation: 95%|████████████████████████████████▎ | 9500/10000 [00:13<00:00, 839.11it/s, T=288.9 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 112357.46it/s]\u001b[A\n", + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1337.47it/s]\u001b[A\n", + "Simulation: 95%|████████████████████████████████▎ | 9500/10000 [00:13<00:00, 840.71it/s, T=514.8 K]\n", + "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 107463.59it/s]\u001b[A\n", "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1109.02it/s]\u001b[A\n", + "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1090.79it/s]\u001b[A\n", "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1365.78it/s]\u001b[A\n", - "Simulation: 100%|█████████████████████████████████| 10000/10000 [00:14<00:00, 705.17it/s, T=461.2 K]\n", - "WARNING | 17:41:11 | SaveArgs.aggregate is deprecated, please use custom TypeHandler (https://orbax.readthedocs.io/en/latest/custom_handlers.html#typehandler) or contact Orbax team to migrate before August 1st, 2024.\n", - "INFO | 17:41:12 | simulation finished after: 14.24 s\n", - "INFO | 17:41:12 | performance summary: 30.34 ns/day, 158.23 mu s/step/atom\n" + "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1328.15it/s]\u001b[A\n", + "Simulation: 100%|█████████████████████████████████| 10000/10000 [00:14<00:00, 705.16it/s, T=442.2 K]\n", + "WARNING | 12:36:14 | SaveArgs.aggregate is deprecated, please use custom TypeHandler (https://orbax.readthedocs.io/en/latest/custom_handlers.html#typehandler) or contact Orbax team to migrate before August 1st, 2024.\n", + "INFO | 12:36:14 | simulation finished after: 14.23 s\n", + "INFO | 12:36:14 | performance summary: 30.35 ns/day, 158.15 mu s/step/atom\n" ] } ], @@ -422,7 +430,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjpUlEQVR4nO3dfXBU5fnG8SshZBOF3ZgIu0QTiEoNiCgvAiu0tpiaoejAEK04lCIw0tKAQFoxGUXrCwZfCggGqA4GHKGpjEBFKgxGieMYQIM4KoqoSFJhl1rNLi9loeT8/nDYnwtBspvdJ9nk+5k5M+5zznly3wk5uXx292yCZVmWAAAADEls6QIAAED7QvgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYFRSSxdwpoaGBh04cECdO3dWQkJCS5cDAACawLIsHT58WJmZmUpM/PG1jVYXPg4cOKCsrKyWLgMAAESgrq5Ol1566Y8e0+rCR+fOnSV9X7zdbm/hagAAQFP4/X5lZWUF/47/mFYXPk4/1WK32wkfAADEmaa8ZIIXnAIAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwKikli4ArUuP4o1RmeereSOjMg8AoO1h5QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgVFjh49SpU5ozZ45ycnKUmpqqyy+/XI888ogsywoeY1mWHnjgAXXr1k2pqanKy8vT3r17o144AACIT2GFj8cff1xLly7VM888o08++USPP/64nnjiCS1evDh4zBNPPKFFixZp2bJl2r59uy688ELl5+fr+PHjUS8eAADEn7Bur/7OO+9o1KhRGjny+1tn9+jRQ3/729+0Y8cOSd+veixcuFD333+/Ro0aJUl64YUX5HQ6tX79eo0dOzbK5QMAgHgT1srH9ddfr8rKSn322WeSpA8++EBvv/22RowYIUnat2+fPB6P8vLyguc4HA4NHjxY1dXVjc4ZCATk9/tDNgAA0HaFtfJRXFwsv9+v3NxcdejQQadOndLcuXM1btw4SZLH45EkOZ3OkPOcTmdw35lKS0v10EMPRVI7AACIQ2GtfLz00ktatWqVVq9erZ07d2rlypV66qmntHLlyogLKCkpkc/nC251dXURzwUAAFq/sFY+7rnnHhUXFwdfu3H11Vdr//79Ki0t1YQJE+RyuSRJXq9X3bp1C57n9Xp17bXXNjqnzWaTzWaLsHwAABBvwlr5OHbsmBITQ0/p0KGDGhoaJEk5OTlyuVyqrKwM7vf7/dq+fbvcbncUygUAAPEurJWPW265RXPnzlV2drauuuoqvf/++5o/f74mTZokSUpISNDMmTP16KOPqmfPnsrJydGcOXOUmZmp0aNHx6J+AAAQZ8IKH4sXL9acOXP0hz/8QYcOHVJmZqZ+97vf6YEHHggeM3v2bB09elRTpkxRfX29hg0bpk2bNiklJSXqxQMAgPiTYP3w9qStgN/vl8PhkM/nk91ub+ly2p0exRujMs9X80ZGZR4AQHwI5+83n+0CAACMCutpF6CpWEEB2hd+5xEOVj4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUUktXQAAoOX0KN7Y0iWgHWLlAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRYYWPHj16KCEh4aytsLBQknT8+HEVFhYqIyNDnTp1UkFBgbxeb0wKBwAA8Sms8PHuu+/q4MGDwW3Lli2SpNtuu02SNGvWLG3YsEFr1qxRVVWVDhw4oDFjxkS/agAAELfCusNply5dQh7PmzdPl19+uW644Qb5fD4tX75cq1ev1vDhwyVJ5eXl6tWrl7Zt26YhQ4ZEr2oAABC3In7Nx4kTJ/Tiiy9q0qRJSkhIUE1NjU6ePKm8vLzgMbm5ucrOzlZ1dfU55wkEAvL7/SEbAABouyIOH+vXr1d9fb3uvPNOSZLH41FycrLS0tJCjnM6nfJ4POecp7S0VA6HI7hlZWVFWhIAAIgDEYeP5cuXa8SIEcrMzGxWASUlJfL5fMGtrq6uWfMBAIDWLaJPtd2/f79ef/11rV27Njjmcrl04sQJ1dfXh6x+eL1euVyuc85ls9lks9kiKQMAAMShiFY+ysvL1bVrV40cOTI4NmDAAHXs2FGVlZXBsT179qi2tlZut7v5lQIAgDYh7JWPhoYGlZeXa8KECUpK+v/THQ6HJk+erKKiIqWnp8tut2v69Olyu9280wUAAASFHT5ef/111dbWatKkSWftW7BggRITE1VQUKBAIKD8/HwtWbIkKoUCAIC2IezwcdNNN8myrEb3paSkqKysTGVlZc0uDAAAtE18tgsAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAqKRwT/j6669177336rXXXtOxY8d0xRVXqLy8XAMHDpQkWZalBx98UM8995zq6+s1dOhQLV26VD179ox68QDQXvUo3tjSJQARC2vl47vvvtPQoUPVsWNHvfbaa9q9e7f+8pe/6KKLLgoe88QTT2jRokVatmyZtm/frgsvvFD5+fk6fvx41IsHAADxJ6yVj8cff1xZWVkqLy8PjuXk5AT/27IsLVy4UPfff79GjRolSXrhhRfkdDq1fv16jR07NkplAwCAeBXWyscrr7yigQMH6rbbblPXrl3Vr18/Pffcc8H9+/btk8fjUV5eXnDM4XBo8ODBqq6ubnTOQCAgv98fsgEAgLYrrPDx5ZdfBl+/sXnzZk2dOlV33323Vq5cKUnyeDySJKfTGXKe0+kM7jtTaWmpHA5HcMvKyoqkDwAAECfCCh8NDQ3q37+/HnvsMfXr109TpkzRXXfdpWXLlkVcQElJiXw+X3Crq6uLeC4AAND6hRU+unXrpt69e4eM9erVS7W1tZIkl8slSfJ6vSHHeL3e4L4z2Ww22e32kA0AALRdYYWPoUOHas+ePSFjn332mbp37y7p+xefulwuVVZWBvf7/X5t375dbrc7CuUCAIB4F9a7XWbNmqXrr79ejz32mH79619rx44devbZZ/Xss89KkhISEjRz5kw9+uij6tmzp3JycjRnzhxlZmZq9OjRsagfAADEmbDCx3XXXad169appKREDz/8sHJycrRw4UKNGzcueMzs2bN19OhRTZkyRfX19Ro2bJg2bdqklJSUqBcPAADiT9h3OL355pt18803n3N/QkKCHn74YT388MPNKgwAALRNfLYLAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKOSwjn4z3/+sx566KGQsSuvvFKffvqpJOn48eP64x//qIqKCgUCAeXn52vJkiVyOp3RqxiN6lG8saVLaNWi9f35at7IqMyD9onfU+B7Ya98XHXVVTp48GBwe/vtt4P7Zs2apQ0bNmjNmjWqqqrSgQMHNGbMmKgWDAAA4ltYKx+SlJSUJJfLdda4z+fT8uXLtXr1ag0fPlySVF5erl69emnbtm0aMmRI86sFAABxL+yVj7179yozM1OXXXaZxo0bp9raWklSTU2NTp48qby8vOCxubm5ys7OVnV19TnnCwQC8vv9IRsAAGi7wgofgwcP1ooVK7Rp0yYtXbpU+/bt009/+lMdPnxYHo9HycnJSktLCznH6XTK4/Gcc87S0lI5HI7glpWVFVEjAAAgPoT1tMuIESOC/923b18NHjxY3bt310svvaTU1NSICigpKVFRUVHwsd/vJ4AAANCGNeuttmlpafrJT36izz//XC6XSydOnFB9fX3IMV6vt9HXiJxms9lkt9tDNgAA0HY1K3wcOXJEX3zxhbp166YBAwaoY8eOqqysDO7fs2ePamtr5Xa7m10oAABoG8J62uVPf/qTbrnlFnXv3l0HDhzQgw8+qA4dOuiOO+6Qw+HQ5MmTVVRUpPT0dNntdk2fPl1ut5t3ugAAmoR78rQPYYWPf/3rX7rjjjv0n//8R126dNGwYcO0bds2denSRZK0YMECJSYmqqCgIOQmYwAAAKeFFT4qKip+dH9KSorKyspUVlbWrKIAAEDbxWe7AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMCosN5qCwDtUbRufAXge6x8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIxKaukCALS8HsUbozLPV/NGRmWeaIlWXwCii5UPAABgFOEDAAAYRfgAAABGNSt8zJs3TwkJCZo5c2Zw7Pjx4yosLFRGRoY6deqkgoICeb3e5tYJAADaiIjDx7vvvqu//vWv6tu3b8j4rFmztGHDBq1Zs0ZVVVU6cOCAxowZ0+xCAQBA2xBR+Dhy5IjGjRun5557ThdddFFw3Ofzafny5Zo/f76GDx+uAQMGqLy8XO+88462bdsWtaIBAED8iih8FBYWauTIkcrLywsZr6mp0cmTJ0PGc3NzlZ2drerq6uZVCgAA2oSw7/NRUVGhnTt36t133z1rn8fjUXJystLS0kLGnU6nPB5Po/MFAgEFAoHgY7/fH25JAAAgjoQVPurq6jRjxgxt2bJFKSkpUSmgtLRUDz30UFTmQtvT2m4S1VZvxhUtfH8ANEVYT7vU1NTo0KFD6t+/v5KSkpSUlKSqqiotWrRISUlJcjqdOnHihOrr60PO83q9crlcjc5ZUlIin88X3Orq6iJuBgAAtH5hrXzceOON+vDDD0PGJk6cqNzcXN17773KyspSx44dVVlZqYKCAknSnj17VFtbK7fb3eicNptNNpstwvIBAEC8CSt8dO7cWX369AkZu/DCC5WRkREcnzx5soqKipSeni673a7p06fL7XZryJAh0asaAADErah/sNyCBQuUmJiogoICBQIB5efna8mSJdH+MgDU+l4TAwBN0ezwsXXr1pDHKSkpKisrU1lZWXOnBgAAbRCf7QIAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMCoqH+wHIDz4wPhfhzfH6BtY+UDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYFRY4WPp0qXq27ev7Ha77Ha73G63XnvtteD+48ePq7CwUBkZGerUqZMKCgrk9XqjXjQAAIhfYYWPSy+9VPPmzVNNTY3ee+89DR8+XKNGjdLHH38sSZo1a5Y2bNigNWvWqKqqSgcOHNCYMWNiUjgAAIhPCZZlWc2ZID09XU8++aRuvfVWdenSRatXr9att94qSfr000/Vq1cvVVdXa8iQIU2az+/3y+FwyOfzyW63N6e0dqVH8caWLgEAWo2v5o1s6RLanXD+fkf8mo9Tp06poqJCR48eldvtVk1NjU6ePKm8vLzgMbm5ucrOzlZ1dfU55wkEAvL7/SEbAABou8IOHx9++KE6deokm82m3//+91q3bp169+4tj8ej5ORkpaWlhRzvdDrl8XjOOV9paakcDkdwy8rKCrsJAAAQP8IOH1deeaV27dql7du3a+rUqZowYYJ2794dcQElJSXy+XzBra6uLuK5AABA65cU7gnJycm64oorJEkDBgzQu+++q6efflq33367Tpw4ofr6+pDVD6/XK5fLdc75bDabbDZb+JUDAIC41Oz7fDQ0NCgQCGjAgAHq2LGjKisrg/v27Nmj2tpaud3u5n4ZAADQRoS18lFSUqIRI0YoOztbhw8f1urVq7V161Zt3rxZDodDkydPVlFRkdLT02W32zV9+nS53e4mv9MFAAC0fWGFj0OHDum3v/2tDh48KIfDob59+2rz5s365S9/KUlasGCBEhMTVVBQoEAgoPz8fC1ZsiQmhQMAgPjU7Pt8RBv3+YgM9/kAgP/HfT7MM3KfDwAAgEgQPgAAgFFhv9UW0cXTJQCA9oaVDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRSS1dAAAA0dajeGNU5vlq3siozINQrHwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMCqs8FFaWqrrrrtOnTt3VteuXTV69Gjt2bMn5Jjjx4+rsLBQGRkZ6tSpkwoKCuT1eqNaNAAAiF9hhY+qqioVFhZq27Zt2rJli06ePKmbbrpJR48eDR4za9YsbdiwQWvWrFFVVZUOHDigMWPGRL1wAAAQn8K6w+mmTZtCHq9YsUJdu3ZVTU2Nfvazn8nn82n58uVavXq1hg8fLkkqLy9Xr169tG3bNg0ZMiR6lQMAgLjUrNd8+Hw+SVJ6erokqaamRidPnlReXl7wmNzcXGVnZ6u6urrROQKBgPx+f8gGAADarojDR0NDg2bOnKmhQ4eqT58+kiSPx6Pk5GSlpaWFHOt0OuXxeBqdp7S0VA6HI7hlZWVFWhIAAIgDEYePwsJCffTRR6qoqGhWASUlJfL5fMGtrq6uWfMBAIDWLaJPtZ02bZpeffVVvfXWW7r00kuD4y6XSydOnFB9fX3I6ofX65XL5Wp0LpvNJpvNFkkZAAAgDoW18mFZlqZNm6Z169bpjTfeUE5OTsj+AQMGqGPHjqqsrAyO7dmzR7W1tXK73dGpGAAAxLWwVj4KCwu1evVq/eMf/1Dnzp2Dr+NwOBxKTU2Vw+HQ5MmTVVRUpPT0dNntdk2fPl1ut5t3ugAAAElhho+lS5dKkn7+85+HjJeXl+vOO++UJC1YsECJiYkqKChQIBBQfn6+lixZEpViAQBA/AsrfFiWdd5jUlJSVFZWprKysoiLAgAAbRef7QIAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwKuzw8dZbb+mWW25RZmamEhIStH79+pD9lmXpgQceULdu3ZSamqq8vDzt3bs3WvUCAIA4F3b4OHr0qK655hqVlZU1uv+JJ57QokWLtGzZMm3fvl0XXnih8vPzdfz48WYXCwAA4l9SuCeMGDFCI0aMaHSfZVlauHCh7r//fo0aNUqS9MILL8jpdGr9+vUaO3Zs86oFAABxL6qv+di3b588Ho/y8vKCYw6HQ4MHD1Z1dXWj5wQCAfn9/pANAAC0XVENHx6PR5LkdDpDxp1OZ3DfmUpLS+VwOIJbVlZWNEsCAACtTIu/26WkpEQ+ny+41dXVtXRJAAAghqIaPlwulyTJ6/WGjHu93uC+M9lsNtnt9pANAAC0XVENHzk5OXK5XKqsrAyO+f1+bd++XW63O5pfCgAAxKmw3+1y5MgRff7558HH+/bt065du5Senq7s7GzNnDlTjz76qHr27KmcnBzNmTNHmZmZGj16dDTrBgAAcSrs8PHee+/pF7/4RfBxUVGRJGnChAlasWKFZs+eraNHj2rKlCmqr6/XsGHDtGnTJqWkpESvagAAELcSLMuyWrqIH/L7/XI4HPL5fO3i9R89ije2dAkAgHP4at7Ili4hboTz97vF3+0CAADal7CfdgEAoL2I1uo0KyihWPkAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYlxWrisrIyPfnkk/J4PLrmmmu0ePFiDRo0KFZfrsl6FG9s6RIAAO1Ma/vb89W8kS369WOy8vH3v/9dRUVFevDBB7Vz505dc801ys/P16FDh2Lx5QAAQByJSfiYP3++7rrrLk2cOFG9e/fWsmXLdMEFF+j555+PxZcDAABxJOpPu5w4cUI1NTUqKSkJjiUmJiovL0/V1dVnHR8IBBQIBIKPfT6fJMnv90e7NElSQ+BYTOYFACBexOJv7Ok5Lcs677FRDx/ffPONTp06JafTGTLudDr16aefnnV8aWmpHnroobPGs7Kyol0aAACQ5FgYu7kPHz4sh8Pxo8fE7AWnTVVSUqKioqLg44aGBn377bfKyMhQQkJCC1Z2bn6/X1lZWaqrq5Pdbm/pcoxpr31L7bf39tq31H57b699S+2392j1bVmWDh8+rMzMzPMeG/XwcfHFF6tDhw7yer0h416vVy6X66zjbTabbDZbyFhaWlq0y4oJu93erv6BntZe+5bab+/ttW+p/fbeXvuW2m/v0ej7fCsep0X9BafJyckaMGCAKisrg2MNDQ2qrKyU2+2O9pcDAABxJiZPuxQVFWnChAkaOHCgBg0apIULF+ro0aOaOHFiLL4cAACIIzEJH7fffrv+/e9/64EHHpDH49G1116rTZs2nfUi1Hhls9n04IMPnvV0UVvXXvuW2m/v7bVvqf323l77ltpv7y3Rd4LVlPfEAAAARAmf7QIAAIwifAAAAKMIHwAAwCjCBwAAMIrwIamsrEw9evRQSkqKBg8erB07dpzz2JMnT+rhhx/W5ZdfrpSUFF1zzTXatGlTs+ZsSdHuvbS0VNddd506d+6srl27avTo0dqzZ0+s2whbLH7mp82bN08JCQmaOXNmDCpvvlj0/vXXX+s3v/mNMjIylJqaqquvvlrvvfdeLNsIW7T7PnXqlObMmaOcnBylpqbq8ssv1yOPPNKkz7Uw6a233tItt9yizMxMJSQkaP369ec9Z+vWrerfv79sNpuuuOIKrVix4qxjWvs1LhZ9x8v1LVY/89Oico2z2rmKigorOTnZev75562PP/7Yuuuuu6y0tDTL6/U2evzs2bOtzMxMa+PGjdYXX3xhLVmyxEpJSbF27twZ8ZwtJRa95+fnW+Xl5dZHH31k7dq1y/rVr35lZWdnW0eOHDHV1nnFou/TduzYYfXo0cPq27evNWPGjBh3Er5Y9P7tt99a3bt3t+68805r+/bt1pdffmlt3rzZ+vzzz021dV6x6Hvu3LlWRkaG9eqrr1r79u2z1qxZY3Xq1Ml6+umnTbXVJP/85z+t++67z1q7dq0lyVq3bt2PHv/ll19aF1xwgVVUVGTt3r3bWrx4sdWhQwdr06ZNwWPi4RoXi77j4fpmWbHp/bRoXePaffgYNGiQVVhYGHx86tQpKzMz0yotLW30+G7dulnPPPNMyNiYMWOscePGRTxnS4lF72c6dOiQJcmqqqqKTtFREKu+Dx8+bPXs2dPasmWLdcMNN7TK8BGL3u+9915r2LBhsSk4SmLR98iRI61Jkyb96DGtTVP+EM2ePdu66qqrQsZuv/12Kz8/P/g4Xq5xp0Wr7zO1xuvbmaLZezSvce36aZcTJ06opqZGeXl5wbHExETl5eWpurq60XMCgYBSUlJCxlJTU/X2229HPGdLiEXvjfH5fJKk9PT0KFTdfLHsu7CwUCNHjgyZuzWJVe+vvPKKBg4cqNtuu01du3ZVv3799Nxzz8WmiQjEqu/rr79elZWV+uyzzyRJH3zwgd5++22NGDEiBl2YU11dfda/4fz8/OD3Kl6uceE6X9+NaW3Xt0g1tfdoXuPadfj45ptvdOrUqbPuvOp0OuXxeBo9Jz8/X/Pnz9fevXvV0NCgLVu2aO3atTp48GDEc7aEWPR+poaGBs2cOVNDhw5Vnz59ot5DJGLVd0VFhXbu3KnS0tKY1t8cser9yy+/1NKlS9WzZ09t3rxZU6dO1d13362VK1fGtJ+milXfxcXFGjt2rHJzc9WxY0f169dPM2fO1Lhx42LaT6x5PJ5Gv1d+v1///e9/4+YaF67z9X2m1nh9i1RTeo/2Na5dh49IPP300+rZs6dyc3OVnJysadOmaeLEiUpMbPvfynB7Lyws1EcffaSKigrDlUbX+fquq6vTjBkztGrVqrP+bzneNeVn3tDQoP79++uxxx5Tv379NGXKFN11111atmxZC1bePE3p+6WXXtKqVau0evVq7dy5UytXrtRTTz3VakIXYqutXN+aIhbXuLb/F/NHXHzxxerQoYO8Xm/IuNfrlcvlavScLl26aP369Tp69Kj279+vTz/9VJ06ddJll10W8ZwtIRa9/9C0adP06quv6s0339Sll14akx4iEYu+a2pqdOjQIfXv319JSUlKSkpSVVWVFi1apKSkJJ06dSrmfTVFrH7m3bp1U+/evUPO69Wrl2pra6PfRARi1fc999wTXP24+uqrNX78eM2aNatVr341hcvlavR7ZbfblZqaGjfXuHCdr+8faq3Xt0idr/dYXOPadfhITk7WgAEDVFlZGRxraGhQZWWl3G73j56bkpKiSy65RP/73//08ssva9SoUc2e06RY9C5JlmVp2rRpWrdund544w3l5OTErIdIxKLvG2+8UR9++KF27doV3AYOHKhx48Zp165d6tChQ0x7aqpY/cyHDh161tsNP/vsM3Xv3j26DUQoVn0fO3bsrFW/Dh06qKGhIboNGOZ2u0O+V5K0ZcuW4PcqXq5x4Tpf31Lrv75F6ny9x+QaF/FLVduIiooKy2azWStWrLB2795tTZkyxUpLS7M8Ho9lWZY1fvx4q7i4OHj8tm3brJdfftn64osvrLfeessaPny4lZOTY3333XdNnrO1iEXvU6dOtRwOh7V161br4MGDwe3YsWOm2zunWPR9ptb6bpdY9L5jxw4rKSnJmjt3rrV3715r1apV1gUXXGC9+OKLpts7p1j0PWHCBOuSSy4JvtV27dq11sUXX2zNnj3bdHs/6vDhw9b7779vvf/++5Yka/78+db7779v7d+/37IsyyouLrbGjx8fPP702y7vuece65NPPrHKysoafatta7/GxaLveLi+WVZsej9Tc69x7T58WJZlLV682MrOzraSk5OtQYMGWdu2bQvuu+GGG6wJEyYEH2/dutXq1auXZbPZrIyMDGv8+PHW119/HdacrUm0e5fU6FZeXm6oo6aJxc/8h1pr+LCs2PS+YcMGq0+fPpbNZrNyc3OtZ5991kQrYYl2336/35oxY4aVnZ1tpaSkWJdddpl13333WYFAwFRLTfLmm282+jt5ut8JEyZYN9xww1nnXHvttVZycrJ12WWXNfr729qvcbHoO16ub7H6mf9Qc69xCZbVym7HBwAA2rR2/ZoPAABgHuEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUf8HJd6kcuDSU9IAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjPklEQVR4nO3df3BU1f3/8VdCyCYK2UiEXSIJBKSGn8oPhRVaWkzNUGRgyFhxkEZgoGMDAmlFUgULikHGAoIBqoMBR2gqI1DRFgajhGFM+BHAEX8gKpJU2KVWswvYLJTczx9+2a8LUdhk9yQbno+ZO+Oee+/Z9z2z3Lw8e+/eGMuyLAEAABgS29QFAACAawvhAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRcU1dwKXq6up04sQJtW3bVjExMU1dDgAAuAqWZen06dNKTU1VbOyPz200u/Bx4sQJpaWlNXUZAACgAaqrq9WpU6cf3abZhY+2bdtK+q74pKSkJq4GAABcDZ/Pp7S0tMDf8R/T7MLHxa9akpKSCB8AAESZq7lkggtOAQCAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgVFxTF4DmpcucN8PSzxeLRoalHwBAy8PMBwAAMIrwAQAAjCJ8AAAAowgfAADAqJDCx4ULFzR37lxlZGQoMTFR3bp105NPPinLsgLbWJalefPmqWPHjkpMTFRWVpaOHj0a9sIBAEB0Cil8PPPMM1q1apWef/55ffTRR3rmmWe0ePFirVixIrDN4sWLtXz5cq1evVp79uzR9ddfr+zsbNXW1oa9eAAAEH1CutX23Xff1ejRozVy5He3UXbp0kV//etftXfvXknfzXosW7ZMjz/+uEaPHi1Jevnll+VwOLRlyxaNGzcuzOUDAIBoE9LMx5133qnS0lJ98sknkqT33ntPu3fv1ogRIyRJx44dk9vtVlZWVmAfu92uQYMGqby8vN4+/X6/fD5f0AIAAFqukGY+5syZI5/Pp8zMTLVq1UoXLlzQwoULNX78eEmS2+2WJDkcjqD9HA5HYN2lCgsLNX/+/IbUDgAAolBIMx+vvvqq1q9frw0bNujAgQNat26dnn32Wa1bt67BBRQUFMjr9QaW6urqBvcFAACav5BmPh555BHNmTMncO1Gnz59dPz4cRUWFio3N1dOp1OS5PF41LFjx8B+Ho9Ht912W7192mw22Wy2BpYPAACiTUgzH99++61iY4N3adWqlerq6iRJGRkZcjqdKi0tDaz3+Xzas2ePXC5XGMoFAADRLqSZj1GjRmnhwoVKT09Xr169dPDgQS1ZskSTJk2SJMXExGjmzJl66qmn1L17d2VkZGju3LlKTU3VmDFjIlE/AACIMiGFjxUrVmju3Ln63e9+p1OnTik1NVW//e1vNW/evMA2s2fP1tmzZzV16lTV1NRo6NCh2rZtmxISEsJePAAAiD4x1vd/nrQZ8Pl8stvt8nq9SkpKaupyrjld5rwZln6+WDQyLP0AAKJDKH+/ebYLAAAwKqSvXQAAiCRmX68NzHwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwKiQwkeXLl0UExNz2ZKXlydJqq2tVV5enlJSUtSmTRvl5OTI4/FEpHAAABCdQgof+/bt08mTJwPLjh07JEn33nuvJGnWrFnaunWrNm7cqLKyMp04cUJjx44Nf9UAACBqxYWycfv27YNeL1q0SN26ddOwYcPk9Xq1Zs0abdiwQcOHD5ckFRcXq0ePHqqoqNDgwYPDVzUAAIhaDb7m49y5c3rllVc0adIkxcTEqLKyUufPn1dWVlZgm8zMTKWnp6u8vPwH+/H7/fL5fEELAABouRocPrZs2aKamho9+OCDkiS32634+HglJycHbedwOOR2u3+wn8LCQtnt9sCSlpbW0JIAAEAUaHD4WLNmjUaMGKHU1NRGFVBQUCCv1xtYqqurG9UfAABo3kK65uOi48eP66233tKmTZsCbU6nU+fOnVNNTU3Q7IfH45HT6fzBvmw2m2w2W0PKAAAAUahBMx/FxcXq0KGDRo4cGWgbMGCAWrdurdLS0kDbkSNHVFVVJZfL1fhKAQBAixDyzEddXZ2Ki4uVm5uruLj/v7vdbtfkyZOVn5+vdu3aKSkpSdOnT5fL5eJOFwAAEBBy+HjrrbdUVVWlSZMmXbZu6dKlio2NVU5Ojvx+v7Kzs7Vy5cqwFAoAAFqGkMPH3XffLcuy6l2XkJCgoqIiFRUVNbowAADQMvFsFwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAY1aCfVwcA4Pu6zHmzqUtAFGHmAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGBVy+Pjyyy/1wAMPKCUlRYmJierTp4/2798fWG9ZlubNm6eOHTsqMTFRWVlZOnr0aFiLBgAA0Suk8PHNN99oyJAhat26tf75z3/qww8/1J///GfdcMMNgW0WL16s5cuXa/Xq1dqzZ4+uv/56ZWdnq7a2NuzFAwCA6BMXysbPPPOM0tLSVFxcHGjLyMgI/LdlWVq2bJkef/xxjR49WpL08ssvy+FwaMuWLRo3blyYygYAANEqpJmP119/XQMHDtS9996rDh06qF+/fnrxxRcD648dOya3262srKxAm91u16BBg1ReXl5vn36/Xz6fL2gBAAAtV0gzH59//rlWrVql/Px8/fGPf9S+ffv08MMPKz4+Xrm5uXK73ZIkh8MRtJ/D4Qisu1RhYaHmz5/fwPIBALhclzlvhqWfLxaNDEs/CBbSzEddXZ369++vp59+Wv369dPUqVM1ZcoUrV69usEFFBQUyOv1Bpbq6uoG9wUAAJq/kMJHx44d1bNnz6C2Hj16qKqqSpLkdDolSR6PJ2gbj8cTWHcpm82mpKSkoAUAALRcIYWPIUOG6MiRI0Ftn3zyiTp37izpu4tPnU6nSktLA+t9Pp/27Nkjl8sVhnIBAEC0C+maj1mzZunOO+/U008/rV//+tfau3evXnjhBb3wwguSpJiYGM2cOVNPPfWUunfvroyMDM2dO1epqakaM2ZMJOrH/xOu7zcBAIi0kMLH7bffrs2bN6ugoEALFixQRkaGli1bpvHjxwe2mT17ts6ePaupU6eqpqZGQ4cO1bZt25SQkBD24gEAQPQJKXxI0j333KN77rnnB9fHxMRowYIFWrBgQaMKAwAALRPPdgEAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgVEjh409/+pNiYmKClszMzMD62tpa5eXlKSUlRW3atFFOTo48Hk/YiwYAANEr5JmPXr166eTJk4Fl9+7dgXWzZs3S1q1btXHjRpWVlenEiRMaO3ZsWAsGAADRLS7kHeLi5HQ6L2v3er1as2aNNmzYoOHDh0uSiouL1aNHD1VUVGjw4MGNrxYAAES9kGc+jh49qtTUVHXt2lXjx49XVVWVJKmyslLnz59XVlZWYNvMzEylp6ervLw8fBUDAICoFtLMx6BBg7R27VrdcsstOnnypObPn6+f/vSnOnz4sNxut+Lj45WcnBy0j8PhkNvt/sE+/X6//H5/4LXP5wvtCAAAQFQJKXyMGDEi8N99+/bVoEGD1LlzZ7366qtKTExsUAGFhYWaP39+g/ZF89Vlzpth6eeLRSPD0g8AoPlo1K22ycnJ+slPfqJPP/1UTqdT586dU01NTdA2Ho+n3mtELiooKJDX6w0s1dXVjSkJAAA0c40KH2fOnNFnn32mjh07asCAAWrdurVKS0sD648cOaKqqiq5XK4f7MNmsykpKSloAQAALVdIX7v84Q9/0KhRo9S5c2edOHFCTzzxhFq1aqX7779fdrtdkydPVn5+vtq1a6ekpCRNnz5dLpeLO10AAEBASOHjX//6l+6//3795z//Ufv27TV06FBVVFSoffv2kqSlS5cqNjZWOTk58vv9ys7O1sqVKyNSOAAAiE4hhY+SkpIfXZ+QkKCioiIVFRU1qigAANBy8WwXAABgFOEDAAAYFfLPqwMAmh6/pYNoxswHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKB4sBwDXsHA9oA4IBTMfAADAKMIHAAAwivABAACM4poPIATh+n78i0Ujw9IPAEQjZj4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARvEjY7gmtNSHZ/GjZwCiETMfAADAKMIHAAAwivABAACMalT4WLRokWJiYjRz5sxAW21trfLy8pSSkqI2bdooJydHHo+nsXUCAIAWosHhY9++ffrLX/6ivn37BrXPmjVLW7du1caNG1VWVqYTJ05o7NixjS4UAAC0DA0KH2fOnNH48eP14osv6oYbbgi0e71erVmzRkuWLNHw4cM1YMAAFRcX691331VFRUXYigYAANGrQeEjLy9PI0eOVFZWVlB7ZWWlzp8/H9SemZmp9PR0lZeXN65SAADQIoT8Ox8lJSU6cOCA9u3bd9k6t9ut+Ph4JScnB7U7HA653e56+/P7/fL7/YHXPp8v1JIAAEAUCWnmo7q6WjNmzND69euVkJAQlgIKCwtlt9sDS1paWlj6BQAAzVNI4aOyslKnTp1S//79FRcXp7i4OJWVlWn58uWKi4uTw+HQuXPnVFNTE7Sfx+OR0+mst8+CggJ5vd7AUl1d3eCDAQAAzV9IX7vcddddev/994PaJk6cqMzMTD366KNKS0tT69atVVpaqpycHEnSkSNHVFVVJZfLVW+fNptNNputgeUDAIBoE1L4aNu2rXr37h3Udv311yslJSXQPnnyZOXn56tdu3ZKSkrS9OnT5XK5NHjw4PBVDQAAolbYHyy3dOlSxcbGKicnR36/X9nZ2Vq5cmW43wbXiJb6QDiY0dwevMfnOfo0t89QS9Ho8LFz586g1wkJCSoqKlJRUVFjuwYAAC0Qz3YBAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgVNgfLAfg2sVDuABcDWY+AACAUYQPAABgFOEDAAAYxTUfTSxc35EDiBz+nQLhxcwHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKB4sB4AHpwEwipkPAABgFOEDAAAYRfgAAABGhXTNx6pVq7Rq1Sp98cUXkqRevXpp3rx5GjFihCSptrZWv//971VSUiK/36/s7GytXLlSDocj7IUD0YxrLABcy0Ka+ejUqZMWLVqkyspK7d+/X8OHD9fo0aP1wQcfSJJmzZqlrVu3auPGjSorK9OJEyc0duzYiBQOAACiU0gzH6NGjQp6vXDhQq1atUoVFRXq1KmT1qxZow0bNmj48OGSpOLiYvXo0UMVFRUaPHhw+KoGAABRq8HXfFy4cEElJSU6e/asXC6XKisrdf78eWVlZQW2yczMVHp6usrLy3+wH7/fL5/PF7QAAICWK+Tf+Xj//fflcrlUW1urNm3aaPPmzerZs6cOHTqk+Ph4JScnB23vcDjkdrt/sL/CwkLNnz8/5MIBtFxcEwO0bCHPfNxyyy06dOiQ9uzZo4ceeki5ubn68MMPG1xAQUGBvF5vYKmurm5wXwAAoPkLeeYjPj5eN998syRpwIAB2rdvn5577jndd999OnfunGpqaoJmPzwej5xO5w/2Z7PZZLPZQq8cAABEpUb/zkddXZ38fr8GDBig1q1bq7S0NLDuyJEjqqqqksvlauzbAACAFiKkmY+CggKNGDFC6enpOn36tDZs2KCdO3dq+/btstvtmjx5svLz89WuXTslJSVp+vTpcrlc3OkCAAACQgofp06d0m9+8xudPHlSdrtdffv21fbt2/XLX/5SkrR06VLFxsYqJycn6EfGAAAALoqxLMtq6iK+z+fzyW63y+v1KikpqanLiTiu6geAlu+LRSObuoSIC+XvN892AQAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABgVUvgoLCzU7bffrrZt26pDhw4aM2aMjhw5ErRNbW2t8vLylJKSojZt2ignJ0cejyesRQMAgOgVUvgoKytTXl6eKioqtGPHDp0/f1533323zp49G9hm1qxZ2rp1qzZu3KiysjKdOHFCY8eODXvhAAAgOsWFsvG2bduCXq9du1YdOnRQZWWlfvazn8nr9WrNmjXasGGDhg8fLkkqLi5Wjx49VFFRocGDB4evcgAAEJUadc2H1+uVJLVr106SVFlZqfPnzysrKyuwTWZmptLT01VeXl5vH36/Xz6fL2gBAAAtV4PDR11dnWbOnKkhQ4aod+/ekiS32634+HglJycHbetwOOR2u+vtp7CwUHa7PbCkpaU1tCQAABAFGhw+8vLydPjwYZWUlDSqgIKCAnm93sBSXV3dqP4AAEDzFtI1HxdNmzZNb7zxhnbt2qVOnToF2p1Op86dO6eampqg2Q+PxyOn01lvXzabTTabrSFlAACAKBTSzIdlWZo2bZo2b96st99+WxkZGUHrBwwYoNatW6u0tDTQduTIEVVVVcnlcoWnYgAAENVCmvnIy8vThg0b9Pe//11t27YNXMdht9uVmJgou92uyZMnKz8/X+3atVNSUpKmT58ul8vFnS4AAEBSiOFj1apVkqSf//znQe3FxcV68MEHJUlLly5VbGyscnJy5Pf7lZ2drZUrV4alWAAAEP1CCh+WZV1xm4SEBBUVFamoqKjBRQEAgJaLZ7sAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjAo5fOzatUujRo1SamqqYmJitGXLlqD1lmVp3rx56tixoxITE5WVlaWjR4+Gq14AABDlQg4fZ8+e1a233qqioqJ61y9evFjLly/X6tWrtWfPHl1//fXKzs5WbW1to4sFAADRLy7UHUaMGKERI0bUu86yLC1btkyPP/64Ro8eLUl6+eWX5XA4tGXLFo0bN65x1QIAgKgX1ms+jh07JrfbraysrECb3W7XoEGDVF5eXu8+fr9fPp8vaAEAAC1XWMOH2+2WJDkcjqB2h8MRWHepwsJC2e32wJKWlhbOkgAAQDPT5He7FBQUyOv1Bpbq6uqmLgkAAERQWMOH0+mUJHk8nqB2j8cTWHcpm82mpKSkoAUAALRcYQ0fGRkZcjqdKi0tDbT5fD7t2bNHLpcrnG8FAACiVMh3u5w5c0affvpp4PWxY8d06NAhtWvXTunp6Zo5c6aeeuopde/eXRkZGZo7d65SU1M1ZsyYcNYNAACiVMjhY//+/frFL34ReJ2fny9Jys3N1dq1azV79mydPXtWU6dOVU1NjYYOHapt27YpISEhfFUDABBFusx5s6lLCPLFopFN+v4xlmVZTVrBJXw+n+x2u7xe7zVx/Udz+0ACAFq+SISPUP5+N/ndLgAA4NpC+AAAAEaFfM0HvsPXJQAANAwzHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwKi4pi7AtC5z3mzqEgAAuKYx8wEAAIwifAAAAKMIHwAAwKiIhY+ioiJ16dJFCQkJGjRokPbu3RuptwIAAFEkIuHjb3/7m/Lz8/XEE0/owIEDuvXWW5Wdna1Tp05F4u0AAEAUiUj4WLJkiaZMmaKJEyeqZ8+eWr16ta677jq99NJLkXg7AAAQRcJ+q+25c+dUWVmpgoKCQFtsbKyysrJUXl5+2fZ+v19+vz/w2uv1SpJ8Pl+4S5Mk1fm/jUi/AABEi0j8jb3Yp2VZV9w27OHjq6++0oULF+RwOILaHQ6HPv7448u2Lyws1Pz58y9rT0tLC3dpAABAkn1Z5Po+ffq07Hb7j27T5D8yVlBQoPz8/MDruro6ff3110pJSVFMTEwTVnZ1fD6f0tLSVF1draSkpKYup0kwBt9hHBiDixgHxuCia2kcLMvS6dOnlZqaesVtwx4+brzxRrVq1Uoejyeo3ePxyOl0Xra9zWaTzWYLaktOTg53WRGXlJTU4j9YV8IYfIdxYAwuYhwYg4uulXG40ozHRWG/4DQ+Pl4DBgxQaWlpoK2urk6lpaVyuVzhfjsAABBlIvK1S35+vnJzczVw4EDdcccdWrZsmc6ePauJEydG4u0AAEAUiUj4uO+++/Tvf/9b8+bNk9vt1m233aZt27ZddhFqS2Cz2fTEE09c9tXRtYQx+A7jwBhcxDgwBhcxDvWLsa7mnhgAAIAw4dkuAADAKMIHAAAwivABAACMInwAAACjCB/1KCoqUpcuXZSQkKBBgwZp7969P7jt+fPntWDBAnXr1k0JCQm69dZbtW3btkb12RyEewwKCwt1++23q23bturQoYPGjBmjI0eORPowGiUSn4OLFi1apJiYGM2cOTMClYdXJMbhyy+/1AMPPKCUlBQlJiaqT58+2r9/fyQPo1HCPQYXLlzQ3LlzlZGRocTERHXr1k1PPvnkVT0Toyns2rVLo0aNUmpqqmJiYrRly5Yr7rNz5071799fNptNN998s9auXXvZNtF2XozEOETjuTEsLAQpKSmx4uPjrZdeesn64IMPrClTpljJycmWx+Opd/vZs2dbqamp1ptvvml99tln1sqVK62EhATrwIEDDe6zqUViDLKzs63i4mLr8OHD1qFDh6xf/epXVnp6unXmzBlThxWSSIzBRXv37rW6dOli9e3b15oxY0aEj6RxIjEOX3/9tdW5c2frwQcftPbs2WN9/vnn1vbt261PP/3U1GGFJBJjsHDhQislJcV64403rGPHjlkbN2602rRpYz333HOmDisk//jHP6zHHnvM2rRpkyXJ2rx5849u//nnn1vXXXedlZ+fb3344YfWihUrrFatWlnbtm0LbBNt50XLisw4RNu5MVwIH5e44447rLy8vMDrCxcuWKmpqVZhYWG923fs2NF6/vnng9rGjh1rjR8/vsF9NrVIjMGlTp06ZUmyysrKwlN0mEVqDE6fPm11797d2rFjhzVs2LBmHz4iMQ6PPvqoNXTo0MgUHAGRGIORI0dakyZN+tFtmqur+aM7e/Zsq1evXkFt9913n5WdnR14HW3nxUuFaxwu1dzPjeHC1y7fc+7cOVVWViorKyvQFhsbq6ysLJWXl9e7j9/vV0JCQlBbYmKidu/e3eA+m1IkxqA+Xq9XktSuXbswVB1ekRyDvLw8jRw5Mqjv5ipS4/D6669r4MCBuvfee9WhQwf169dPL774YmQOopEiNQZ33nmnSktL9cknn0iS3nvvPe3evVsjRoyIwFGYV15eftlnPDs7OzBm0XZebKgrjUN9mvO5MZwIH9/z1Vdf6cKFC5f9EqvD4ZDb7a53n+zsbC1ZskRHjx5VXV2dduzYoU2bNunkyZMN7rMpRWIMLlVXV6eZM2dqyJAh6t27d9iPobEiNQYlJSU6cOCACgsLI1p/uERqHD7//HOtWrVK3bt31/bt2/XQQw/p4Ycf1rp16yJ6PA0RqTGYM2eOxo0bp8zMTLVu3Vr9+vXTzJkzNX78+Igejylut7veMfP5fPrvf/8bdefFhrrSOFyquZ8bw4nw0UjPPfecunfvrszMTMXHx2vatGmaOHGiYmOvnaENdQzy8vJ0+PBhlZSUGK40cq40BtXV1ZoxY4bWr19/2f8VtyRX81moq6tT//799fTTT6tfv36aOnWqpkyZotWrVzdh5eFzNWPw6quvav369dqwYYMOHDigdevW6dlnn22WAQzmtMRz4w+5dv5CXoUbb7xRrVq1ksfjCWr3eDxyOp317tO+fXtt2bJFZ8+e1fHjx/Xxxx+rTZs26tq1a4P7bEqRGIPvmzZtmt544w2988476tSpU0SOobEiMQaVlZU6deqU+vfvr7i4OMXFxamsrEzLly9XXFycLly4EPHjClWkPgsdO3ZUz549g/br0aOHqqqqwn8QjRSpMXjkkUcCsx99+vTRhAkTNGvWrKiZFbsSp9NZ75glJSUpMTEx6s6LDXWlcfi+aDg3hhPh43vi4+M1YMAAlZaWBtrq6upUWloql8v1o/smJCTopptu0v/+9z+99tprGj16dKP7bAqRGANJsixL06ZN0+bNm/X2228rIyMjYsfQWJEYg7vuukvvv/++Dh06FFgGDhyo8ePH69ChQ2rVqlVEj6khIvVZGDJkyGW3En7yySfq3LlzeA8gDCI1Bt9+++1lM4OtWrVSXV1deA+gibhcrqAxk6QdO3YExizazosNdaVxkKLr3BhWTX3Fa3NTUlJi2Ww2a+3atdaHH35oTZ061UpOTrbcbrdlWZY1YcIEa86cOYHtKyoqrNdee8367LPPrF27dlnDhw+3MjIyrG+++eaq+2xuIjEGDz30kGW3262dO3daJ0+eDCzffvut6cO7KpEYg0tFw90ukRiHvXv3WnFxcdbChQuto0ePWuvXr7euu+4665VXXjF9eFclEmOQm5tr3XTTTYFbbTdt2mTdeOON1uzZs00f3lU5ffq0dfDgQevgwYOWJGvJkiXWwYMHrePHj1uWZVlz5syxJkyYENj+4i2mjzzyiPXRRx9ZRUVF9d5qG03nRcuKzDhE27kxXAgf9VixYoWVnp5uxcfHW3fccYdVUVERWDds2DArNzc38Hrnzp1Wjx49LJvNZqWkpFgTJkywvvzyy5D6bI7CPQaS6l2Ki4sNHVHoIvE5+L5oCB+WFZlx2Lp1q9W7d2/LZrNZmZmZ1gsvvGDiUBos3GPg8/msGTNmWOnp6VZCQoLVtWtX67HHHrP8fr+pQwrJO++8U++/34vHnZubaw0bNuyyfW677TYrPj7e6tq1a73/1qPtvBiJcYjGc2M4xFhWM/1JPQAA0CJxzQcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMCo/wNcbZpV68KIsQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] diff --git a/examples/03_Transfer_Learning.ipynb b/examples/03_Transfer_Learning.ipynb index cda9a8cd..9d77aaa1 100644 --- a/examples/03_Transfer_Learning.ipynb +++ b/examples/03_Transfer_Learning.ipynb @@ -157,23 +157,23 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732124930.427330 459463 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732124930.430484 459463 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "INFO | 17:48:53 | Running on [CudaDevice(id=0)]\n", - "INFO | 17:48:53 | Initializing Callbacks\n", - "INFO | 17:48:53 | Initializing Loss Function\n", - "INFO | 17:48:53 | Initializing Metrics\n", - "INFO | 17:48:53 | Running Input Pipeline\n", - "INFO | 17:48:53 | Reading data file project/benzene_mod.xyz\n", - "INFO | 17:49:00 | Found n_train: 1000, n_val: 200\n", - "INFO | 17:49:00 | Computing per element energy regression.\n", - "INFO | 17:49:01 | Building Standard model\n", - "INFO | 17:49:01 | initializing 1 model(s)\n", - "INFO | 17:49:08 | Initializing Optimizer\n", - "INFO | 17:49:08 | Beginning Training\n", - "Epochs: 0%| | 0/100 [00:00= n_epochs: \u001b[31m│\u001b[0m\n", - "\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m 90 \u001b[2m│ │ \u001b[0m\u001b[94mraise\u001b[0m \u001b[96mValueError\u001b[0m( \u001b[31m│\u001b[0m\n", - "\u001b[31m│\u001b[0m \u001b[2m 91 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[33mf\u001b[0m\u001b[33m\"\u001b[0m\u001b[33mn_epochs <= current epoch from checkpoint (\u001b[0m\u001b[33m{\u001b[0mn_epochs\u001b[33m}\u001b[0m\u001b[33m <=\u001b[0m \u001b[31m│\u001b[0m\n", - "\u001b[31m│\u001b[0m \u001b[2m 92 \u001b[0m\u001b[2m│ │ \u001b[0m) \u001b[31m│\u001b[0m\n", - "\u001b[31m│\u001b[0m \u001b[2m 93 \u001b[0m \u001b[31m│\u001b[0m\n", - "\u001b[31m╰──────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n", - "\u001b[1;91mValueError: \u001b[0mn_epochs <= current epoch from checkpoint \u001b[1m(\u001b[0m\u001b[1;36m200\u001b[0m <= \u001b[1;36m200\u001b[0m\u001b[1m)\u001b[0m\n" + "E0000 00:00:1732193427.067501 479680 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732193427.070561 479680 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "INFO | 12:50:28 | Running on [CudaDevice(id=0)]\n", + "INFO | 12:50:28 | Initializing Callbacks\n", + "INFO | 12:50:28 | Initializing Loss Function\n", + "INFO | 12:50:28 | Initializing Metrics\n", + "INFO | 12:50:28 | Running Input Pipeline\n", + "INFO | 12:50:28 | Reading training data file project/benzene_ccsd_t-train_mod.xyz\n", + "INFO | 12:50:28 | Reading validation data file project/benzene_ccsd_t-test_mod.xyz\n", + "INFO | 12:50:29 | Found n_train: 1000, n_val: 500\n", + "INFO | 12:50:29 | Computing per element energy regression.\n", + "INFO | 12:50:30 | Building Standard model\n", + "INFO | 12:50:30 | initializing 1 model(s)\n", + "INFO | 12:50:36 | Initializing Optimizer\n", + "INFO | 12:50:36 | Beginning Training\n", + "Epochs: 0%| | 0/200 [00:00" + "" ] }, "execution_count": 13, @@ -471,7 +431,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHACAYAAABONwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe4ElEQVR4nO2deXhU9fX/33fWTLaZJGQhJCxhDYrKohREoUIFaV3qrohiKWgrWhUX1Kq11mKt/mq1i7tWhVq1ytfSiqIIKCJBNgUhAmFJSEKWSSaTTGa/vz/ufO7cmcxyZzKZ9byeZx7IzJ07nzuZzH3fc97nHI7neR4EQRAEQRAZiCLRCyAIgiAIgkgUJIQIgiAIgshYSAgRBEEQBJGxkBAiCIIgCCJjISFEEARBEETGQkKIIAiCIIiMhYQQQRAEQRAZCwkhgiAIgiAyFhJCBEEQBEFkLCSECIIgCILIWEgIDRD//e9/MXXqVOh0OhQUFOCSSy4Juq3D4cC9996LCRMmICcnB+Xl5bj++uvR2Njos93OnTvxox/9CAaDAUVFRVi6dCm6u7vFx1977TVwHBfw1tLSInvtN910E0aOHAmdTofi4mJcfPHFOHDgQMTvAUEQBEEkOySEBoB///vfWLhwIW688Ubs2bMHW7ZswbXXXht0e4vFgp07d+LBBx/Ezp078d5776G2thYXXXSRuE1jYyPmzJmDUaNGYdu2bVi3bh327duHRYsWidtcddVVaGpq8rnNnTsXM2fORElJiez1T548Ga+++ir279+Pjz76CDzP4/zzz4fL5Yrq/SAIgiCIpIUnYorD4eCHDBnCv/TSS/3aT01NDQ+AP3bsGM/zPP/888/zJSUlvMvlErf55ptveAD8wYMHA+6jpaWFV6vV/Ouvv+5z/5o1a/iJEyfyWq2WHzFiBP+b3/yGdzgcQdeyZ88eHgB/6NChfh0TQRAEQSQbFBGKMTt37sSJEyegUCgwceJEDB48GBdccAH27t0b0X5MJhM4joPBYAAA2Gw2aDQaKBTeX5lOpwMAfPHFFwH38frrryM7OxuXX365eN/nn3+O66+/Hr/61a/w3Xff4fnnn8drr72Gxx57LOA+enp68Oqrr2LEiBGorKyM6BgIgiAIItkhIRRj6urqAAC/+c1v8Otf/xpr165FQUEBZs2aBaPRKGsfVqsV9957L6655hrk5+cDAM477zw0Nzfjj3/8I+x2Ozo6OrBixQoAQFNTU8D9vPzyy7j22mtFwQQAjzzyCFasWIEbbrgBVVVV+NGPfoRHH30Uzz//vM9z//a3vyE3Nxe5ubn48MMPsX79emg0mojfD4IgCIJIZkgIyWTFihVBjcjsduDAAbjdbgDAAw88gMsuu0z023Ach3feeSfs6zgcDlx55ZXgeR5///vfxftPOeUU/OMf/8BTTz2F7OxslJWVYcSIESgtLfWJEjG2bt2K/fv3Y/HixT7379mzB7/97W9FkZObm4slS5agqakJFotF3G7BggXYtWsXNm3ahDFjxuDKK6+E1WqN9u0jCIIgiKSE43meT/QiUoHW1la0t7eH3KaqqgpbtmzBeeedh88//xwzZswQH5s6dSrmzJkTNAUFeEVQXV0dNmzYgKKiooDbnTx5Ejk5OeA4Dvn5+XjrrbdwxRVX+GyzePFi7Ny5E7t27fK5X6fT4ZFHHsGll14acP2BRJXdbkdBQQFeeuklXHPNNSHfA4IgCIJIJVSJXkCqUFxcjOLi4rDbTZ48GVqtFrW1taIQcjgcOHr0KIYNGxb0eUwEHTx4EJ999llQEQQApaWlAIBXXnkFWVlZ+NGPfuTzeHd3N95++22sXLmyz3MnTZqE2tpajBo1KuyxMHieB8/zsNlssp9DEARBEKkACaEYk5+fj5tvvhkPP/wwKisrMWzYMPzxj38EAJ+ozbhx47By5Ur89Kc/hcPhwOWXX46dO3di7dq1cLlcaG5uBgAUFhaK3py//OUvmD59OnJzc7F+/XrcfffdePzxx0VDNeNf//oXnE4nrrvuuj7re+ihh/CTn/wEQ4cOxeWXXw6FQoE9e/Zg7969+N3vfoe6ujr861//wvnnn4/i4mI0NDTg8ccfh06nw/z58wfoXSMIgiCIBJHQmrU0xW6388uXL+dLSkr4vLw8fs6cOfzevXt9tgHAv/rqqzzP8/yRI0d4AAFvn332mfichQsX8oWFhbxGo+FPO+20PmXxjGnTpvHXXntt0PWtW7eOnz59Oq/T6fj8/Hz+rLPO4l944QWe53n+xIkT/AUXXMCXlJTwarWar6io4K+99lr+wIED/XtTCIIgCCIJIY8QQRAEQRAZC1WNEQRBEASRsZAQIgiCIAgiYyGzdBjcbjcaGxuRl5cHjuMSvRyCIAiCIGTA8zzMZjPKy8sDtoZhkBAKQ2NjI42WIAiCIIgUpb6+HhUVFUEfJyEUhry8PADCG8nGXRAEQRAEkdx0dXWhsrJSPI8HI2WEkNFoxK233or//Oc/UCgUuOyyy/DnP/8Zubm5QZ/zwgsvYPXq1di5cyfMZjM6Ojr69NwJB0uH5efnkxAiCIIgiBQjnK0lZczSCxYswL59+7B+/XqsXbsWmzdvxtKlS0M+x2KxYN68ebj//vvjtEqCIAiCIFKJlOgjtH//fowfPx7bt2/HlClTAADr1q3D/Pnz0dDQgPLy8pDP37hxI374wx9GFRHq6uqCXq+HyWSiiBBBEARBpAhyz98pERHaunUrDAaDKIIAYM6cOVAoFNi2bVtMX8tms6Grq8vnRhAEQRBEepISHqHm5maUlJT43KdSqVBYWCjO5IoVK1euxCOPPBLTfRIEQRDJjdvtht1uT/QyiAhQq9VQKpX93k9ChdCKFSvwhz/8IeQ2+/fvj9NqBO677z7ceeed4s/MdU4QBEGkJ3a7HUeOHIHb7U70UogIMRgMKCsr61efv4QKoeXLl2PRokUht6mqqkJZWRlaWlp87nc6nTAajSgrK4vpmrRaLbRabUz3SRAEQSQnPM+jqakJSqUSlZWVIRvvEckDz/OwWCyiNhg8eHDU+0qoECouLkZxcXHY7aZNm4bOzk7s2LEDkydPBgBs2LABbrcbU6dOHehlEgRBEGmK0+mExWJBeXk5srOzE70cIgJ0Oh0AoKWlBSUlJVGnyVJC+lZXV2PevHlYsmQJampqsGXLFixbtgxXX321WDF24sQJjBs3DjU1NeLzmpubsXv3bhw6dAgA8O2332L37t0wGo0JOQ6CIAgiuXC5XAAAjUaT4JUQ0cDEq8PhiHofKSGEAGDVqlUYN24cZs+ejfnz52PGjBl44YUXxMcdDgdqa2thsVjE+5577jlMnDgRS5YsAQCce+65mDhxIj744IO4r58gCIJIXmiWZGoSi99bSvQRSiTUR4ggCAKAyQSYzUCgmU0NDUBeHqDXx39d/cRqteLIkSMYMWIEsrKyEr0cIkJC/f7Sqo8QQRAEkUBMJmDePGDmTKC+3vex+nrh/nnzhO2IpOfo0aPgOA67d+8e0NdZtGgRLrnkkgF9jVhAQoggCIIIjdkMtLQAdXXArFleMVRfL/xcVyc8bjYncpVEgggmrP785z/jtddeS8iaIoGEEEEQBBGaigpg40agqgqoq4Nr1g9h/XyLVwRVVQmPB0qbpTsmk5AaDERDQ0ZHyfR6fcRjrRIBCSGCIAgiPJWVohi6cfL1OPvtozCdOOkVQZnYeDbBKcN3330XEyZMgE6nQ1FREebMmYOenh4AwEsvvYTq6mpkZWVh3Lhx+Nvf/hZyX3v37sUFF1yA3NxclJaWYuHChWhraxMfd7vdeOKJJzBq1ChotVoMHToUjz32GABgxIgRAICJEyeC4zjMmjULQN/UmM1mw2233YaSkhJkZWVhxowZ2L59u/j4xo0bwXEcPv30U0yZMgXZ2dmYPn06amtrY/F2BYWEEEEQBCGPykrgjTewc0g12nMM2DlkHPDGG5kpgoCEpgybmppwzTXX4Gc/+xn279+PjRs34tJLLwXP81i1ahUeeughPPbYY9i/fz9+//vf48EHH8Q//vGPgPvq7OzEeeedh4kTJ+Lrr7/GunXrcPLkSVx55ZXiNvfddx8ef/xxPPjgg/juu++wevVqlJaWAoDYtuaTTz5BU1MT3nvvvYCvc8899+Df//43/vGPf2Dnzp0YNWoU5s6d26elzQMPPICnnnoKX3/9NVQqFX72s5/F4i0LDk+ExGQy8QB4k8mU6KUQBEEkluPHeb6qih951xp+2L1r+b9NvYznq6qE+1OU3t5e/rvvvuN7e3uj24HnPeEB4d8tW3x/HqD3ZseOHTwA/ujRo30eGzlyJL969Wqf+x599FF+2rRpPM/z/JEjR3gA/K5du8THzj//fJ/t6+vreQB8bW0t39XVxWu1Wv7FF18MuBb//TFuuOEG/uKLL+Z5nue7u7t5tVrNr1q1Snzcbrfz5eXl/BNPPMHzPM9/9tlnPAD+k08+Ebf573//ywMI+vsJ9fuTe/5OiaGrBEEQRILxRDkcR4/BqRROHfurJgDb/i1EPzI1PcZShiwCdPbZwv0DnDI8/fTTMXv2bEyYMAFz587F+eefj8svvxwajQaHDx/G4sWLxR56gNBBWx+kvcGePXvw2WefITc3t89jhw8fRmdnJ2w2G2bPnh31eg8fPgyHw4Gz2fsDYWjqWWed1Wem6GmnnSb+n43OaGlpwdChQ6N+/VCQECIIgiBC09Agnuh7x4wX7z5wxtnAtipvamjTpsw0THtShpCc5Ac6ZahUKrF+/Xp8+eWX+Pjjj/Hss8/igQcewH/+8x8AwIsvvthnBFWwERTd3d248MILAw5BHzx4MOrq6mJ/ACFQq9Xi/1nDxIEciEseIYIgCCI0eXlASQlQVQXr//1HvPtwpx3WTzYI0Y+SEmG7TKS+Hli40Pe+hQv7GqhjDMdxOPvss/HII49g165d0Gg02LJlC8rLy1FXV4dRo0b53Jip2Z9JkyZh3759GD58eJ/n5OTkYPTo0dDpdPj0008DPp+NJ2HjSgIxcuRIcX0Mh8OB7du3Y/z48UGfFw8oIkQQBEGERq8H1q0DzGZYdYUAhFSGy83jkMaAUzdtStnO0v1GaoyuqhIiQQsXeqNkA5Qe27ZtGz799FOcf/75KCkpwbZt29Da2orq6mo88sgjuO2226DX6zFv3jzYbDZ8/fXX6OjowJ133tlnX7fccgtefPFFXHPNNbjnnntQWFiIQ4cO4a233sJLL72ErKws3Hvvvbjnnnug0Whw9tlno7W1Ffv27cPixYtRUlICnU6HdevWoaKiAllZWX3ScDk5OfjFL36Bu+++G4WFhRg6dCieeOIJWCwWLF68OObvTySQECIIgiDCo9cDej16m30roA40m3Hq5AxMhwE+KUMfT5DUMzRAKcP8/Hxs3rwZTz/9NLq6ujBs2DA89dRTuOCCCwAIw0j/+Mc/4u6770ZOTg4mTJiA22+/PeC+ysvLsWXLFtx77704//zzYbPZMGzYMMybNw8KhZA4evDBB6FSqfDQQw+hsbERgwcPxs033wwAUKlUeOaZZ/Db3/4WDz30EM455xxs3Lixz+s8/vjjcLvdWLhwIcxmM6ZMmYKPPvoIBQUFMX1vIoVmjYWBZo0RBEF42V3fiUv+6k1vLJ4xAg/+JLGpjf7Qr1ljrI9QS0vfyA+LFJWUCNG0TIyWxYFYzBqjiBBBEAQhm167rw/kQHNXglaSBEhShn0iPpWVQiQoU1OGKQQJIYIgCEI2VocghDRKBewuN/Y3mcHzvFjdk3F4UoYBycQKuhSEqsYIgiAI2TAhNLYsDwoOMPbY0Wq2JXhVBBE9JIQIgiAI2fR6hJAhW40Rg3IAAPubYz9CgiDiBQkhgiAIQjZMCOnUSlQPFgyo+5tS3ydEdUOpSSx+bySECIIgIqChw4Jzn/gML39xJNFLSQjMLK3TeIXQgRQWQqzbst1uT/BKiGiwWCwAfLtRRwqZpQmCSFu2HzVi6+F23PLDUVAqYmPm/fJQO44bLfjw2yYsnhG4U286Y3MKow6yVEqMKxM6Se9vSt3UmEqlQnZ2NlpbW6FWq8W+OURyw/M8LBYLWlpaYDAYgo4PkQMJIYIg0pZH136HbxpMqB6cjx+NL43JPlu7BWOw1Rl8nEA6EygidLi1GzuPd0DJcSjNz0KZPsJ+PAmE4zgMHjwYR44cwbFjxxK9HCJCDAYDysrK+rUPEkIEQaQtrJpp1/GO2Akhzz4t9gwVQh6PUJZaicH6LORnqdBldeLSv30JAFBwwMd3nItRJakzd0yj0WD06NGUHksx1Gp1vyJBDBJCBEGkLaZeBwChG3KsYELImuFCSKdWguM4/PKHo/DmV8fA88J7Y3e5caTNklJCCAAUCkXknaWJtICEEEEQaYnd6RajNt80mOB281DEwCfEUmNMEGQaTABmqQUvzc0zR+LmmSMBAFc89yW2H+2A0+VO2PoIIlLIFUYQRFrCokEA0G1zoq6tOyb7bTNnuBByej1C/jBDutNNpehE6kBCiCCItMTU6+v32F1visl+xdSYww13Bp7we+1ej5A/Kk/FlSsD3xcidSEhRBBEWiKNCAHA7vqOfu+z1+6C2eYUf2al5JmE1CPkj0pJESEi9SAhRBBEWtJp8RVCe2IQEWrr9p2plYnpsV6Hp49QwIiQRwiRR4hIIUgIEQSRlrCIUBWbh9XUJQ4MjZZWEkKwhYgIkUeISEVICBEEkZYwIVRdno9BuRo43Ty+6+coCP8p6712Z5At0xcxNabpe/ogjxCRipAQIggiLWGpMYNOjdMrDACA3cc7+7XPvkIo81JAIc3S5BEiUhASQgRBpCUsIqTXqXF6pQEAsKehs1/77COEMjA1FsoszVJjLnfmCUQidaGGigRBpCVMCBmy1RhXJszE2tPPDtPkEQJsMszSDhdFhIjUgSJCBEGkJdKI0GkVegDA0XYLOi3Rz5Nq65Mayywh5HS5YfdUhAWOCJFHiEg9SAgRBJGWMMGj16lhyNZghKd6bE9D9GX0/hGh/lahpRpWSd+kQJ2lVVQ1RqQgKSOEjEYjFixYgPz8fBgMBixevBjd3cFb5huNRtx6660YO3YsdDodhg4dittuuw0mU2y6yxIEkdx4I0IaAMDI4lwAQL3REvU+mUeoKEfYZ6alxqQRMK0qQNWYkjxCROqRMkJowYIF2LdvH9avX4+1a9di8+bNWLp0adDtGxsb0djYiCeffBJ79+7Fa6+9hnXr1mHx4sVxXDVBEIlCmhoDgJJ8LQCgxS+9JRee50UhVFmYDSDzUmMsApalVoDj+g6w9TZUpIgQkTqkhFl6//79WLduHbZv344pU6YAAJ599lnMnz8fTz75JMrLy/s859RTT8W///1v8eeRI0fisccew3XXXQen0wmVKiUOnSCIKOB53scsDQAleYIQajVbo9qn2eYUR2oMLczG7vrOjIsIWUNUjAFejxClxohUIiUiQlu3boXBYBBFEADMmTMHCoUC27Ztk70fk8mE/Px8EkEEkeZY7C6xckmMCOVlAQBauqKLCDGjdJ5WhUKWGsuwiFCo0nnAGxEiszSRSqSEImhubkZJSYnPfSqVCoWFhWhubpa1j7a2Njz66KMh02kAYLPZYLN5vyi7uvrXiZYgiPjDokFqJYdsj6mXRYSiTY2xtFhxnlYsHc+0iJDYTDGAURqQjtggjxCROiQ0IrRixQpwHBfyduDAgX6/TldXF3784x9j/Pjx+M1vfhNy25UrV0Kv14u3ysrKfr8+QRDxhXWV1uvUopfF6xGKLjXGKsYG5WnFiEjGCSHmEVIFFkJqJUWEiNQjoRGh5cuXY9GiRSG3qaqqQllZGVpaWnzudzqdMBqNKCsrC/l8s9mMefPmIS8vD++//z7UanXI7e+77z7ceeed4s9dXV0khggixfA3SgPe1Fhbtx0uNy9GL+QiRoRyteKcLWuGpcasnmaKgUrnAa9HiBoqEqlEQoVQcXExiouLw243bdo0dHZ2YseOHZg8eTIAYMOGDXC73Zg6dWrQ53V1dWHu3LnQarX44IMPkJWVFfa1tFottFqt/IMgCCLpMPV6ewgxBuVqwHFCtMLYY0dxXmR/59LUWKZGhMKZpckjRKQiKWGWrq6uxrx587BkyRLU1NRgy5YtWLZsGa6++mqxYuzEiRMYN24campqAAgi6Pzzz0dPTw9efvlldHV1obm5Gc3NzXC5MuvLiyAyDW/FmEa8T6VUiP1/okmPtXWTR0hMjQWtGqOGikTqkRJmaQBYtWoVli1bhtmzZ0OhUOCyyy7DM888Iz7ucDhQW1sLi0VolrZz506xomzUqFE++zpy5AiGDx8et7UTBBFfAqXGAKA4Lwtt3Xa0mG04JcJ9+qbGPEIow1Jj7HiDpcaooSKRiqSMECosLMTq1auDPj58+HDwvPcqZNasWT4/EwSROUjN0lJK8rTY3wS0RlFC3yqJCPEQvlsyb8QGM0sHTiaoWB8h8ggRKURKpMYIgiAiIVhEyFtCH3lqjEWEBuVmbmrMGi4iRKkxIgUhIUQQRNrR6ddVmhHxmA2TCWhogNvNo61bMGBLzdIWqyNGK04NwjVUJI8QkYqQECIIIu3oChoRiqC7tMkEzJsHzJyJzkNHxUqoolwNdMZWAIC1tV3YLkMIZ5YmjxCRipAQIggi7QjlEQJkpsbMZqClBairQ+tVCwEAhTkaqBtPQHe98HMvpxK2yxB67YLACSqEyCNEpCAkhAiCSDv8B64yIkqNVVQAGzcCVVVo7egGABQrnMCsWdDVHQQA9GqywA8ZEruFJznMLK1TBz51UGqMSEVICBEEkXZ0Wvo2VAQkqTGzTV5VaWUlsHEjWkeMBQAM+nYnUFeHrCGDAQBuHrC7MicNRGZpIh0hIUQQRFrhcvMw25wAAL1O4/MY6yZtd7rRZXXK22FlJdp/dhMAoMjSCQDQvfyC+LDVnjlCKGxDRfIIESkICaF0wFPZEpCGhowycxKE2eoAC/b4R4Sy1ErkZwnt01rlltDX16Pj3TUAgIJewQ+kvuF6qD3Rj0wqoQ9XNSZGhMgjRKQQJIRSHUllC+rrfR+rrxfunzePxBCRMTB/ULZGCU2Axn8l+RFUjtXXA7NmocMqRDgM11wBVFUJ6TFrD4DMEkJs6Go4szTNGiNSCRJCqY6ksgWzZnnFkOcLHHV1wuMZVNlCZDbBKsYY3sqxMEKooUH8G+ocVAYAKBhbJRqodbZeAIClvjEm604FxKGrYUZskEeISCVICKU6ksoW1NWBnzUL+PJLrwiq8nxxV1Qkdp0EESeCdZVmyC6hz8sDSkqAqip0/GAGAKAgRyMaqHWcEB2xarJitPLkR5w1FrahInmEiNSBhFA64PlidowchXmz7sTSJ//nK4IqKxO9QoKIG53hhJDc1JheD6xbB2zahA6X8FVZwKbZV1ZCN0z4u+rV6GKw6tQgbENFjxBykUeISCFSZugqEYbKSpz42yuo3dCFukJPX5M33iARRGQcwXoIMWSnxgBBDOn16LTUApAIIQBZ2VlAuzXDPEJMCFEfISJ9oIhQulBfD/u9KwAADqUaLk4BLFzY10BNEGmOKUgPIUZxFINXOzz7lIorXYYNXnW7edicQsorWGpMrfR0liYhRKQQJITSAY8x2t50UrzLPmp0XwM1QWQA3oiQJuDj0qaKcui1u0QBUJDj3We2xzDMmgwOFNvq2nH/+9+i2yaz79EAwbpKA8HN0mJEKIOaTBKpDwmhVEdS2WKrHCbebfvvh6KBGrNmBe8zRBBpRliztGfMRquc8nl4o0FqJYcciQDI0kQXETrW3oNDLd2yt//rxsNYve04Ptrb7HP/h982YervP8G2uvaIXj9aeiWCL0sVxiNEESEihSAhlOpIKlvsz/5FvNtWOthbTVZSImxHEBkAK5/PD1M1ZrY5fU7uwTD2sLSYBhzHifdHkxrrtbtw6d++xE//tgUWu7wIj9kqHE9zl28q7397m3Gyy4ZP9p8M9LSYw45To1JAoeACbkMeISIVIbN0qsMqW8xm2C1aAHUAAJvDLRilN20SRJBen9h1EkScEFNjQYRQrlYFnVqJXocLLWYrhhXlhNwfE1YFfuZrUQhFkBrbcqgN7R5h1Wa2Y2hR+K9gtv9mk68QOun5udEk3+vUH1gzxWD+IMDrEaKIEJFKUEQoHdDrgYoK2J3evLyN5fMrKkgEERlFuNQYx3ERTaH3GqV9PUe6KFJj0uhNlyfSEw62/5N+ESEWIWrq7JX9+v3BGma8BuAbEZI11JYgkgASQmmErxAisyKRmQSq8PJHLKGX4RNik+z9I0JZEUaE3G4en+xvEX+WLYQ8+z8pEW08z3uFUJwiQr1hukoDXo8QQFEhInUgIZRGOCSVGtYMKeklCCluN4/2bkG4sDL5QAzKFR5r75ETERIES2GOX0QoQo/QnoZOtHV7X6+rV55HSIwISQRPp8UhXvic7LLGpUqLCbJgzRQBb0QIIJ8QkTqQEEojKCJEZDqdvQ7xBFyUE1wI5WcJ0R2zNbwYCZoa8zQVlCuE/E3N5ggjQq3dNjHKIjVOu3n5rQD6Q7hmioB36CpAESEidSAhlEbYXAE8QgSRQbR6BEFBtjrg5HlGbpZgUpbTmyeYWTpbI+xDbh+hT74T0mIsktQlQ4Q5XG5R2LncvBjB8q8gazINvE+oV4ZHiA1dBSgiRKQOJITSCJ+IkIMiQkTmwbpFh0qLAULlGAB09yMiFEkfoePtFtSeNEOp4DC7ugSAvIiQxU9knTTZPP/6CqHGzoH3CckyS0vaC1BTRSJVICGURlBqjMh0WEQonBDK80SE5IiRjh5mlo7eI8TSYmcNL0RFQTYAeR4hf68fqxxLSESIeYRCmKUVCg7MJkSpMSJVICGURgQsnyeIDEIUQrkyI0IyUmMdMegjxITQnPGlyNfJF2H++2YCiAkiJjriERHq9USZg3WVZjCfEKXGiFSBhFAaYXd5vzQpIkRkInIjQrliRKgfZmmN8PUZrkKz1+5CzREjAGBOdQnyPEZtOeXz/qmxFhYR8qTGxpblA4hPREhMjWlCnzaUNGaDSDFICKUR5BEiMp3WbrmpMUGMhIsIOV1uUSwF6yPkL1b8aeu2wenmoVMrMawoB/kRiDD/tNtJT98j9u/EoQYA8eklJMcjBHgN0w7yCBEpAgmhNIJSY0SmIzsiJDM11tnrjdr4d6qW6xFis8pYH6L8CCJC/tEm/9TYxEoDgHilxmQKIYoIESkGCaE0wu7TUJGuxojMw+sRygq5XZ7MqAzrKq3XqaFS+n5dsg7L4VJjRtaZOkcQQF6PUPiIUJ+qsS4rbE6XOK9s4tACAELUaaAvfphfSRtGCCnJI0SkGCSE0ggbRYQImdQcMeKbhs5ELyPmyE2NyS2fD2aUBoBstbAPh4sPmQbyrzoTPUK9MszSHpHFokknu6ziWBCNSoGqQTnQevolsdJ6OfA8j//bfQKHWsyyn2N1hh+6ClBEiEg9SAilEf0tn//6qBH/7+Nayu2nOV1WB657eRuueG5rn0GeqYzN6RKbH8o1S9td7pAXDUzE+BulASBLYhoOFRUKlhozW51hB5OyZo3Di4SS+w6LA/VGCwCgNF8LhYLDYL0Q/WqMwDC983gHfvXWbix/5xvZz2ERoVCzxgDfwasEkQqQEEoj+muW/v3/9uOZDYew9XB7LJdFJBktXTbYnW7YnG48v6kupvu22OXNzxoI2IwxlYKDIcjkeUaOpys0EDoq1BFk4CoAaJQKsXw9lE/Iuw8WERJe2+nmw/qL2Ps5WK8TO2V/c8IEACjLzxIfAyKrHPv+ZDcA4Ghbj+znyDVLqz1maWqoSKQKJITSCHs/R2ywShQ53gUidTFJUjKra475DALtD69tOYJTH/4Inx1oCb/xACA1Siskwz8DoVRwyPFENkIZpr2psb4RIY7jRFFgtQc/6Rt7fIe2ZmuUYtQk3N8a692j0yhRmi9EuVhKs5QJIYMnIhSBYfq4J6pk6nXIHtDcK84ao4gQkV6QEEoj+psaY1euNLk+vTH12sX/Wx1uvPzFkZjsd/uxDrh54OtjxpjsL1LkVowx8mQMXg3WQ4ihkzFmQ/QIeYQQx3FiVCicT4jtN1ujRGmeIHj21PtGhMqjiAix9Brg7UkUDjlDVwFvQ0XyCBGpQsoIIaPRiAULFiA/Px8GgwGLFy9Gd3d3yOfcdNNNGDlyJHQ6HYqLi3HxxRfjwIEDcVpx/OmPELI6XGKFipWM1mkNiwixiMjrXx4Vq6P6tV9P9ISlqOKNaJQO01WaIaepYmdPcLM04I2OhBJCrGqsUCKmvCX03tf+v90n8MD73/qklHo9qTGdWilGgE50CoKnTO8bEWqKICLkI4Rk+sTkls9TRIhINVJGCC1YsAD79u3D+vXrsXbtWmzevBlLly4N+ZzJkyfj1Vdfxf79+/HRRx+B53mcf/75cLnS80Tfn9RYh+RESM0Y0xsmWGaNLcG4sjz02F14dcvRfu+30xNpilWqLVIijQjJ6SUkRoRygkSExKaKIfbR41s+D3h9QtJeQn/48ABWbTuOPQ0m8T5pOooJIUapX0SoMYKmisclQkiuYd4q0yzNPEIuN32PEKlBSgih/fv3Y926dXjppZcwdepUzJgxA88++yzeeustNDY2Bn3e0qVLce6552L48OGYNGkSfve736G+vh5Hjx6N3+LjSH/M0qyyBaCIULrDmgTqs9W49bzRAIBXtxzx+fxEtV+PwGpLVEQo4tQYE0LB01OdIcrnAXm9hJiYKszpGxFi0SiXm8dJz/ql6bJej/coW+IRYvSJCMlMjZmtDtH7BMgXQpFGhBwuiggRqUFKCKGtW7fCYDBgypQp4n1z5syBQqHAtm3bZO2jp6cHr776KkaMGIHKysqBWmpC6U9qTCqEKCKU3rDUmF6nxgWnlkGjUqDL6ux3KT3bb3tPikWEZFWNhY4I9QYxS7vdvCg6pKkxf4+QsccuemrMkghVr8OTGtMoReHD8K8a67Q4ZA2ArTf6CqZmmf2H5JqlySNEpBopIYSam5tRUlLic59KpUJhYSGam5tDPvdvf/sbcnNzkZubiw8//BDr16+HRhP4Sw0AbDYburq6fG6pglT8RGp4pohQ5sAEi0GnhkLBocQjHFrM0Qsh6UyulPEIeYSQOcqqMaCvWbqjx+7zt2e2OkVBIDVc5+t8I0LS914qzJiwyVIrUZLnK4RKPBGi/CyV6PeSExWSpsUAeREht5sXu9VT1RiRbiRUCK1YsQIcx4W89dfcvGDBAuzatQubNm3CmDFjcOWVV8JqDf6Hv3LlSuj1evGWStEjX49QZFGdDooIZQzMI8RmZzGvCetYHA1S06/F7kpIP6FYV43xPC+ayKX+HinSeWP1RgvOfeIzLH1jh/g4M0rnalViHyDhtX09QtL3XpqqYwUM/qmxwhwNtCrhtTmOw2ADqxwLL2qYUZp1pJZjlpaawZmADIaKPEJEihH6Ez3ALF++HIsWLQq5TVVVFcrKytDS4tubxOl0wmg0oqysLOTzmaAZPXo0fvCDH6CgoADvv/8+rrnmmoDb33fffbjzzjvFn7u6ulJGDPVn6KpR4hmg8RzpjTQ1BkCMCPlHBk509qLZZMXkYQVh9+lfddbebUd2Yfy+Xniejzw1lhU6NWa2OcWoRrjUmNXuwn+/bYLZ5sRXde1wu3koFJwYafUXUl6PkEcISSJCUmEmbWIoNUv7G6cH67NwqKUbjZ3hI0L1HYIQmjjUgK/qjLLK53s8UTMFJ6d8njxCRGqRUCFUXFyM4uLisNtNmzYNnZ2d2LFjByZPngwA2LBhA9xuN6ZOnSr79XieB8/zsNmCX/lqtVpotfK+SJON/niEpBEhGtia3kjN0gAkqTHfv4uf/+Nr7G/qwhf3/hAVBdkh92ny64fT3mNHZWHo58SSHrtLjFoMkpkaywtTNcZK57PUiqDpoCxJamxjrXCxZne60dZjQ0lelvh3VegnpLweIU9qTBIRkgohqUE5R6tCnlYFs82JMj/jtLeXUHhRw1JjZw4vxFd1RrSYreB5HhwXvAkle49yNKqQ2wHeoavkESJShZTwCFVXV2PevHlYsmQJampqsGXLFixbtgxXX301ysvLAQAnTpzAuHHjUFNTAwCoq6vDypUrsWPHDhw/fhxffvklrrjiCuh0OsyfPz+RhzNg+KTGIq0ak5bPU0QorekTEWKpMYkQcrl5fH9SGMgpx0PS6S+EIiyhb+u24bynNuJP67+P6HkMFg3K0QiCQQ7h+giFM0oD3ojQcaMFu+o7xftPdAiRGe/ked99eD1CLCIkTY35phkBrxeJ+YL8jdMsCibnfWdCaJIn0udw8T4ewUCwdch5b1XkESJSjJQQQgCwatUqjBs3DrNnz8b8+fMxY8YMvPDCC+LjDocDtbW1sFiEP/KsrCx8/vnnmD9/PkaNGoWrrroKeXl5+PLLL/sYr9MBl5v3uQKzOV1hBzpKSemIkMkENDQEfqyhQXicACBEReWkxlrMVvHzJEdUmyz+Qigyw/TOYx2oa+3B61uPRvS5ZUSaFgOkfYQCl8+H6yoNeIXQR/uaIV02a3oYLCKUL3qEBNEjfe+7A6XGPEKICSD/1Fi2lvUzCn0R43bzaPCItFHFuRiUK6wrnE+IiTP2OqFQMo8QzRojUoSEpsYiobCwEKtXrw76+PDhw32+QMvLy/G///0vHktLCvx7wLh54YqMNTcLh0/5fCpFhEwmYN48oKUF2LgRkPq56uuBWbOAkhJg3TpAr0/UKpMGq8MtflbYCZ5FhFolUQmp10ROFaG/R6gtwhJ6Jgg6LA4cN1owrCgnoudHJYTCRITC9RACvAKF7YPjAJ6XERHq4xGSpMZs0j5Cvr17Jg8rxJZD7Zg01Ne3xYbIhhNCLWZh4K7SM7W+ND8Lbd12nOyy4pTy4H8fzPwezigNUESISD1SJiJEhCZQM7xIfELSztIpFREymwURVFcniJ76euF+JoLq6oTHzeZErjJpYNEg6dDRQB6hE5JxDXI+D/6psTZzZBEhaRPBXcc7I3ouALR6zMaRCKH8rNAeoUhSY4w51aUAAkSEcvw9Qp4RGx6PkFSEsogQz/Ow+EWE7pgzGjt+PQfnjvH1VmZ7Hu8JU63H0mLlhiyolAqxF1G4XkLdNm/1WjhYHyESQkSqQEIoieB5HjuOGfHXzw7Jqv6QYvOMDZH6GG0yewnxPJ+6EaGKCiESVFUliiF+yxavCKqqEh6vqEjwQpMDaVqMmV5ZmsXYYxcFdZM0IiTjc8T2y0rEI22qKB01set4R0TPBSLvIQQAuVpBjASrGvv2hJBSrSjQBd2HdNzE8KJszBorCBSWfgrWhyhfx6JRDvA871s15hFmNqdbTLcxwcVxHIoCHCPz7lhsoX9XrHR+qMfIXupJtYVLjVlskUeEyCxNpAopkxpLZ+xON1ZtO4bV247jYIswSPZoWw/+eMXpEe0DADRKBXjPz1aZEaFum9On1DWlIkKAkA7buBGYNQvPDzoDz/3rGN7qcmEsE0Ep0v4gHrAUlkHnTfcUZKuhVnJwuHi0dtswxKDzTY1F4BGqGpSDA83miD1C0vTUbonpWC79So0FiAi53Dw21rYCEGayBUMaETr/lDIM8fTzYakxb0TIN73GIkI9dhfauu0+f3/svZAK0HBjLSKNCDEhVCb2kJLpEdKEP2Uwj5CTyueJFIEiQknAy18cwSP/+Q4HW7rFiE7tychSOaIQUinERmlyI0IdPb5pjUi7UicFlZXAG29gzfhZ6MjWY8eQccAbb5AI8oNFbvIlQojjODGSwk6IvqkxGR4hz35HFucCiHzwqjQ1tq+xK+LPYH/M0nanu08UdNfxDhh77MjPUmHK8OB9lKRl9eePLxWjRyc6e4VIa5D0GiufB4DDrd0+j7EIFfP7aJQKqJShv6rFiFAYjxCLCLHWBqxJY7iIUI8t8qoxaqhIpAokhJKAI23CF+GlE4fg3ZunC/e19kRUPcNK57UqhdhxVq5HyOhndI20B1FSUF8Px/U34NAgQfhY1FnAwoVez1Ac+L/dJ/DeziDVa0mCf8UYw7+EXhoRkvN5YJGmkcWCybk9TDm2P9LUmNPNY19jZJV+YmosCiEE9E2PfbJf6Ak0a2wJ1CFECPMZFeVoMHFoAco9EaFumxNdvc6gHiG1UiFGeQ55osDMq9XrcMHpcktme4X/mhYjQiHGhQB9I0KlokcoTGrMzvoIyfcIOSg1RqQIJISSAHby+UFVEU4dkg8FJ4TrWyO4qpamxsSIkExBw76sc2RM0k5KPMbowyYHHErhBN9bOrivgXoAsTpcWP72Htz97jcJGS8hF3HOmF8llGiY9kQGGk3ReYRGlggRIWOPHe4IToQsHcTmVEVqmBYjQrlZYbb0olRwooDwN0x/uv8kAGB2dehWG1OrirB4xgj88YrTPPtTiaKnvsMiRsr8q8YAr0+ICSEWTQOECEyvOF4jfBQmW2bVGOsqXelpkMnK8cP1ihIbKsqJCCnJI0SkFiSEkoCTnq6yJflaaFVKsYtvXWuP7H34pMbUkaXGmFGazStKqYhQQ4NojD5wqrfLuOX6G30M1EH7DMWI9h47nJ5eTqwSKBkJHhHyVo712Jxi6Tggr3ye7XfEICEi5HLzfbpNh4JFhCZ7ysJ3RegTYqZkf4EXjrwAJfTH2y042NINpYLDrDGhhZBSweHBn4zHeeNKxftYemxfo0k0Oxt0fdfFfEIsNVZu0InRny6rw9tVWkYUhl3EWOzOoJFkq8Mlftf4e4Q6LI6QgpcJLDlmaXHoKnmEiBSBhFASwEp/2XTpKk964UhblEIowtQYKxMe7Lk6tDvdEV3NJ4ImUy92HDMCeXlCn6CqKuy/ebn4eG9WjrearKRE2G4AkTakDGdYTSRBhVCed/Cq/wTzcA0VheGkwn6L87TiviOpHGPi8dwxgwAAuyOICDlc3t5Ick7UUnIDjNn4xBMNOnN4gTiGJBKYYZpVnel16oAeH5ZWO8xSY/labyWbzekzeT4c2Z7jcPPB/+4bPNGgPK1KFIx6nVqMIIcauhtJQ0XyCBGpBgmhBON0uUU/BbsqZ1fVdX4mylDYXAHM0nI9Qj2+QgjwHdeRjNyyaicuf24rdnfxQrPETZuwX6Ibe2xOwSi9aVNcmilK+zCFK2GOJ18eahMNsoC3SaC/EGKm2ZNmq49RGgifGuuxu8SeMQadBkWebsVtEVSOsYjQ2aMGgeMEs3G4SiaGNB0k50QtJTerbwn9pwcEIcR6AkWKKIQaBCHk7w9isIhQo4ldCGnFCFW3zSlGhOT07pFWlQXzCTF/UEVhttg6geM40Sd00hz8/Y6koaKSGioSKQYJoQTT1m0HzwtXUawNf5XHKxBVRMjHIySzasxzEi/Te/ulJLNPyO5045sGIe3w6f6TgsipqMCBpi5xG9aIDhUVceko3SFJJQVr0BdvDrV049qXtuEXq3aI98mJCPn3sAr3WWBGaY1KgSy1AoNy2NwreUKI53kxNVVu0GFsqRC921XfCZebx2e1LahtDl5FyU7SKgUHTZjqKn/Y4FXWzbnL6sC2OiMAYHa0QsiTGtvvWXOwztT5fcRoljdCZXX26SodCqWCE7cL5hNiXiQWcWaUyTBMexsqhhdCzFxOqTEiVSAhlGCYSXFQrhYKz5VUlRgRii41xkLpcgevsohQcZ5WDGsncy+hI2094tXm5oNtAIRhk9LOyL1hTKOxRpoaSxazNIsEHWgyw+mJ8AUTQsWS7tJMCLHPQrjIon+TRhYRkpsas9hdorE2P0uNiUMNAIA3vzqGC/68GTe+uh0/e2170Of3SLoeh5uM7o9UeADA5u9b4XTzGFmcI0ZmI4VFhNjfZPCIkK+okEaEpB4hOakxAMjRhu4l9P1JQQiNKfFNE5fKMExbRLO0PFEGUESISB1ICCUYdvJmqQnAe8V23GiBQ2aKyiuElFGnxgqzNV4RlcTdpaU9lr5t6ITJ4sABv4hBvMWINDWWLBGhzl5hTU7JoE1v1ZjvyZmlR9p7bH26D4eLCLFmiswQLKbGzPKEEEuLqRQcstQKnFFpAAB8frBNPHm3hEjb9ETQ9dgf/6aKLBoUqoliOIb4daIONqKDzRtjlORl+XiWvFVj8oQQi9b0BEnNHvT83YwpzfW5v4z1EgoREWLvcY6MiBB5hIhUg4RQgmkRZyR5/Tll+VnQqZVwunkff0comKdHo1RAq46sDN4o6XXCRFQyR4S+l4geNw98ebgN+z1pMZYeSGxEKDlEpLTy60i7EF0MFhEqytFAqeDA88A3Hm8LE+ThPgudfiX5RZ7UWJvMXkLMKJ3viSjNGF2MHI0SeVoVlpwzAgDgcPFBLwpYBCQ7GiHkFxH63iMWTinPj3hfjApDts/PsiNC+VpRmHVbvR4hOakxwCuYAl0EuN282LV+dKlfRIilxkJEhCIpn6eIEJFqkBBKMC2S0nkGx3ESw7S89BiLCGmjMEszf0thTmpFhJi/Y/PBNuxvEu47vVLwA8VbjEg9QuGa2sULqRA62iY06AwmhBQKDoM8kZw6jzeNedXClc97DdjC89l+2mX2wWIT2FkV1RCDDl/cex62PTAbd80dK24X7HfKzOlymv354z94VRQLfumjiPapU4mfTSBwDyFhO+/vID9LhSy1UjKVXuIRkh0RCu4ROtHZC4vdBY1SgeFFvkItXC8hnucjKp+nWWNEqkFCKMGw1FiJX0dcdjVe1yavcizgiA0ZYsbl5kWza0GOOjUiQh4hdNWZQhfpzw+2ihGhSZ4+NPEXQpLy+SSpGpP28Tna1oNum1M8OQXqt1OS59uMkInxcJ8Ff3HFhoLKNUuz1JhUGBTkaJCtUUGjVIgRhmBRPjEiJCNt4480AtPebYOxxw6OA0aV5IZ5ZnA4jvNJjxUGTY1518s6e0tTY5YIhZB3zEZfIX6wRfibqSrO6VPKHy4iZHO6xeiOrPJ5z/4dZJYmUgQSQgmGlQj7n4QirRzzSY1F0Eeoq9cBduFWkK0R02rJGhHqtbvEMuDrpw2HWsmhoaMX+5sFITR5mCCEeuNc9eZTPt9Pf9K+RhPu/NdusVtytHRK1nSk3eIzIT6QAVfqU1NwwDCPRyjcZ4F5kbypMWaWjiw15p8qAgRRkc3SnUF+p0wwyDHy+sP69nRZnaIfqbIgW7b4CAYzTAMhIkISjxB773MlDR6jTY0FEuLs2PzTYoC3qi1YI1DpRYUcj5CSPEJEikFCKMEEMksD3sqxwzJTY7aAnaXDfxGxOWN5WSqoJaX3yRoROtTSDZ4XTrZDi7LFCBDPC1fTYzxf9PFOT0kH1/bXLP3o2u/w3q4TePvr/o0G6fBLjQVLizGkPrXS/CwxwhDuc9TXLO3xCEWcGgu8Ll0I7wsgMfL2wyzdbXPgkCdqMrof0SCGT0QoJ/BxSYUfuxDyRoS8nZ7lCqEcTfCIEIuiBjo29r712AJ3pWbvb5baG50LhYo8QkSKQUIowbSYg0WEovMIRZoa8x8KyVr8J2sfIeYPGu2pfDln9CDxsbFleeJVsc3pjqtHwTciFP17Z+yxo+aIULkUbv4T42hbD85+fANe+eKIz/2dktRYQ4dFjDAFGvcA+KZnhXEP8kz3nX7jLZhHyGx1yvoMdnmMysGEEPudBk2NRdDjxp88SSoqVNQkUnwiQsFSY5LfA3vvpSM/mKCR7RHSBo8IHWSl86XBhZDTzQeMIvdE0EwRkEaESAgRqQEJoQTicvNi912pWRomE0bYhcqdtm6bz2RuNDQApr6TuaMdscEqxtiXtdcsnZwRIXZly5ruzRhdLD42rizP52QYr/SY1eHyET/9iQh98t1JMVUZauSBlG1H2nGisxf//bbJ536TRJy5eWBfo5A+DBYRYl4RwHfuVVgh5EmN6T2fIb1OLUYFjDLSY10ewRYoNQYAujADRSOZjO6P1CP0fZDy8mjwjQiFrxpjHiHfztLC32B/I0JuNy82Uwwk8qTprkDvMYsIyRWabPo8NVQkUgUSQgmkvccGl5sHx3l9FTCZgHnzkPej81CcLXzxHGFRofp6YOZMYN68PmLI7hK+wDRKhXgCkyNmWCSDfVl7U2PJGREST1Zlwhf6hCF68cRePTgfWWoFWE+9ePUSklZn9fd1P9rXLP4/1MgDKazrr38qikWE2ImUTXQPNpjUNyKU5Y0IhW2oKBwv+z34NFWUYZgOZJaWEqoaCuhf+bxUeByKQcUYgw1OVnDBI13S+9l7L84aszphjbhqzJPi8nufTnT2otchVIwx35cUpad/ExA4pcw+X3JTj2z6vJM8QkSKQEIogbAr/qIcrbeSw2wGWlqAujpUHd0PwGOYrq8Xp6yjpUXYTkLAiJAMMdOeahGhZnbVLpyslAoOS84ZgapBOZhTXeprro1T5Zg0LQZ4TxyR0m1z4nNPp2xAfkSInbykosMtmf4+oUJoKbDbM9E9mOCQRiWHGHSiKHa5fXv4bKtrx28+2Ce+vyzyJE25ib2EZPiEvKmxIBEh0SwdxMzbj/J5lu5p77GjPQYVY4wxpbkoy8/CWSMKxY7x/mRrlGIaqU9qzOaExRFZaoyZxf0/9+ziIVDFGCPQ8FmG2FVa5jqofJ5INUgIJZDWQEbpigpxanpV42EAQN2uA14RVFUlPF5R4bOvaPsIMY8Qu4JP5ohQl9UhDqiUjglYdt5obLhrltgPJVwqJdZ0+KV/LFGmxjbWtsDucouCoNVsC2he9YedvLptTvH31mV1gD11oqdTMxMlslJjep1PZZn0s/T0Jwfx2pdH8e7OBgB9GyoCiCwiJKbGwpmlQ0eEojFL53kiMOy9qijQ9btiDBCiM5vv+SFW//wHQbfhOA6VBTooFd6+YUyQmK2OiGaNAd73yT+qI47WCOF9khqm/YmkmSJADRWJ1IOEUALxGqV9K8ZQWQls3IgqThiLUPd/H/uKoMrKPvuyu/pWjckRM0ZPtVOfiFASCiE2IqAsPwv6IOkdIHwqJdaw6qxQ6QU5rNsrpMUunyz8fu0ud5+0WyCkV/FM7LDn5WpVfSIcBl1gz0pRjkZMK5ZLIkKA72eJRZo2HmiB3ekW32fpfgdFUDkmRoTCpMbCmaWjKZ/3f47/HK7+oFEpgkaDGK/deBbevmlaH4+Q1eEWB9FG7hHyfZ+CjdYI9NyAEaEImikCXo8QRYSIVIGEUAI5ybpK+1WMAQAqK1F84wIAQIfO0+7/jTcCiiDAf/q8/PSW1yMknIQi7UodT7xVPaFTF6FGDQwErAUB84X4ezTkYHO6sLG2FQBw4emDxd4uLTJ6CbHxEABE832npFTef3ioXhf4hKZSKnDpxApMGmrAqJJccBwXMELI3tcvD7eLYp7jfM2/zPMmpxeSf2dpf8IKoX40VFQpFT5CIxYVY5EwfFCO2PsK8I26sLS1/FljgYeufs/aAoQ4tlwxItT3Pe4WzdIyU2Mej5DcOYkEkWhICCUQMSLk10MIAFBfj7xn/gQAMGs9BseFCwWvUABsAcvno68aS8bUWG2zb8VYMMKlUmJNp+c9ZCXT0QiwLw+1o9vmRGm+FqdXGERxHGrYKEMagWKDTlkzRUO2GsP9hVCIaNpTV56O9355NjSez5D38+D9LDGh1+twYf13JwEIxl9p9IOlKZtktACQzhoLhE7tiXQEa6goeoQiF0KAt3IMiE0Pof6glggzFlGRP33e8z5JxIy0Yix0aixwWg2QVOXJjgiRR4hILUgIJRBxzph/asxjjM47VgcAMI8aJ6TF6uoEr1AAMRRtHyF2xc48HclslvavGAtGuAhCrPFGhAQh5HDxEXfm/tgjKOaeUgaFghPF8UkZhmmz5OTV3iNsb5L4dopyND6zr4KlxgIRqIReerJcs+uE+DpSyj2isKmzN+xrsKqxYOXzsiNCUaTG/F83lFiIF7l+70Oks8akEaH6DgusDje0KgWGBqgYY+SEMEtHmnokjxCRapAQSiDinDGJSRUNDaIxOq9YCJmbOZVooBbFUEODz74CTZ8P1xG41+7CCc+JasQg4Uo4mc3SrLlkuKt2MYIQr4iQx4/DUmOA71W5HA63ClftLE1S7BHHEUeEPKkxZuA26DTgOM4nKhQs8hIIb5pVOB63m/d5X/d4JtX7N2kczCJCptDrtzpcoogPGhEKk+oUR2xEGRFiIjFWFWP9Jc8v8iI3JeWdNeb9/bB08sji3JBdoXNDmKUj7dxNHiEi1SAhlEC8c8YkEaG8PKCkBKiqQu4brwHwmEk9BmpUVQmP5/leuQaOCIUWQuzkW5Ct9vYRSuKIEItysNLsYLArVzkpKqfLjc3ft4o+lWhg6cVBuRrxvY+0qSIzFbOUGKvgklNCH9As7VfJJRVCwarGApHlN65F2qRSel7V+3VPZhGhk11WOEN4RZghmOOA3CBCJpz53VvVFF1EiEVgYlUx1l/8I2NZqkhnjXk/Dw0dwlw+f5+YP2LVWKCGimLDSqoaI9ITEkIJgud5tHYHiAjp9cC6dcCmTcgfMRSAIHJsTpcghjZtEh7X6332JxVCWTIHpzIhJL0KTtaIkNPlFk/C4U54kaTGPtjTiOtfqcFTH38f9dqYH6cgWyNeWUcajWLenuI8QVCU9DMi5D/2YkSRN1oVrKFiILxNFYXjYSdFjgOmDCsUt/MXV4NytVApOLj50IZvlhbL1aqCVljpQvSFcrjc4mc/ao+Q53cWy4qx/iBNjWllVJ4xmFlcOl5GKtJDkROk9B6IvKGimjVUJLM0kSKQEEoQHRYHHJ4W9MW5fhEOvR6oqPD5QhQrgyoq+oggwJsai6SP0OEWb9icEcgc2x/au21Y8NJXeCfMAFFjjz1kFEV6pervofAnnLlWCjOSMlEYDcwjVJCjFn0qkUSErA6XWELOys5Fs7Qcj5C0aszs5xHy+IGijgipfD8PPRJj8qxx3vEm/qkxpYITo1pNpuA+IdZDKFj3ZSC0+V16X7QeIfba8a4YC4a0TF1uWsx/WxYNZcK4MGwUNXhqjPXFyiWPEJGmkBBKEOxKvyBbLVbo+KNUcOKVmvRkFwhv+bxSFEJ2pztkQ75DISJCkZp9g/H21w3Ycqgdr289FvDxZpMV97//Lc567BNc9Jcvgq6XfUGrlZzoWwlGJBEhlkqS0/gvGJ2SXkyhJoAHg5VJq5WcKFJYk81w5fMOl9tH8DKzNItSsQoxlhrJ1iihDtJdOBD+Pal6JKXUs8aUiNsFijKVGwQh1NgZPKoVroeQ8FrBhS17n1UKDpoIjkvKNVOH4kfjS3H1mYFbU8QbNmYDkN9DCBD+dpkIYQKxvdu3GCIYoczS3vJ58ggR6Ul0sWSi37ArfWk330DkZanRY3fJF0Iqr1kaEKJCwcpvD7cI5uORJQMXEdpwQKiG8h++6XbzePLjWrz0xRFx7XWtPWg123xThR4iMWwG67AbCFY1xwREpNidbrFqqyBbI7myli8kWRSnKEcLjmMjF4T34GSXFTzPi/f743+MolmapcY8AmPCED3OH1+KcYPzZa8L6Pt5EI3JWhWqB+ehNF+Lk122gFGmwXodgI6QEaFwPYQAqbANXtGUrVEGfY/CMWloAV68fkpUzx0IpB6hrAgiQhzHIVujhNnq9I5dkZkaE83SAd5j6e9cDkolRYSI1IIiQgnipMcoXexfOu+HOHsojJk3kFkaCF455nS5hRlmAEYVD0xEqKPHjh3HOoT/+83j+r7FjL9tPAy7040zhxeInhhW5eKPaIiVcVUqmmtlpMZaJREhdxRf3GzyuoITohqhUgzBYFGpQXnekxUrn7c53WLUJBD+V/AdFjucLreYGivwmOBVSgVeuH4K7vzRGNnrAvp6xrzjLAThcd3UYVBwwNQRRX2eO1hORMjTQyjYeA3AK2x7A/w+e8S0Tfpc00mFUCSpMaBvd2l2ASI3NRZoTl5PhGZ01keIPEJEqkBCKEGIpfOBukpLYF+KoU6GAGDzfOmolRxUCk6s6AkmaBo6emF3Cf1FWCNAILYRoU3ft4JpC4vd5WPAZhGx0SW5ePumaTjDMw+L9Qryh135yznhRZIaYxEhp5sXjbuR0NHj7eAsTWVGkhpjQkjqFctSKyUzx4ILCfa+GLLV4DhhZpbRYvc2VIzADxQI/75SFjECI6xt2Xmj8P3vLhAHu0op13t6CYXyCImT5+VEhIJXNEUzeT5ZkX7GI0mNAV6fFBMvbbJTY8GjqJFWjTEh5OYR1cUFQcQbEkIJolXsIRT6Si3Xc6UcKiLE87xPREgYjRC6DJ6ZhKuKc32qUsRy6RiUz396oMXnZ2lUiF2pFucJ6SDWyO5gS2AhFEmJtE6mT8ft5sVUEgCf/8ulQzRKCyeabE3wK+tgsNcd5GeaZynCUE0Vu21eIVaY7R1rwSJCobpIy8G/oaIYHfCIE47jgk40l9NLyJsaC+ERCtEXqj+T55MVaXRMbldphjQiZHN6U+qDwkSEgvURcrrc4kVRpH2EAMAlY2gwQSSalBFCRqMRCxYsQH5+PgwGAxYvXozubnmVPjzP44ILLgDHcVizZs3ALlQmOVolhhh0PtGYQLCIUKgqJFZ9BgBapfDFqVWHTnEFKp0HJA30+lk+73C5sbHWVwhJfULtYsheOHmz+WHhUmO5IU6YjByZEaHOXoePobNdxoDQPvuQlM4D3sqaSCJCTBQP8kuTyimh75ZUcTEhdbTNIkbiIqkQC4RYNeZXPi8nAsN6CUlTY3Wt3Zj7p834YE8jAMl4jRAeIWlqzN9M3585Y8lKbj9SY9KeSyxaqVJwISNuQHCztDS9LLuztNJ7YUWGaSIVSBkhtGDBAuzbtw/r16/H2rVrsXnzZixdulTWc59++umojZQDxd1zx2HLivNw3Q+GhdwuX/QIBT+x2iW5eFaB5vV2hI4IjSz2bbQmRgD66RH6+mgHzFYnCnM0othiX8wAYOxhBmFBQLCI0PcnzQErx3oiKOGVO2vMfyBoe0/kESGjpGIM8AqESMrnmU/JPyIkp6kia6uQm6US0x/sd5utUYatsAtHll+XcnESuQzhwSJCbd02UZC/u6MBtSfNeH7TYQDS1Fh4jxDP9/08e428aRQR6k9qTDJmg6XFCnM0Yb//pP2vpH9/7O8ukqo8lSTCTIZpIhVICSG0f/9+rFu3Di+99BKmTp2KGTNm4Nlnn8Vbb72FxsbGkM/dvXs3nnrqKbzyyitxWm1syZORGrM7Awmh0KmxcBEhh4vv19UcqxabNbZYrFgxSlJj7X79TaqKc6BUcDBbnQFTQZGZpeU1NewjhKKICImpMU8KSjyhRFE15l/ZwyJCoVJjUrMwE1KHxI7h8meKBSNYakxOz57CHG+n7ZMm4Rj2NHQCAL5r6kKnxS6vj5BEDPhH2iId/5AKSCNCkXa6zhY/f05R2Bf59ykLAHv/XG7e5ztD+v7KvZj0EUJkmCZSgJQQQlu3boXBYMCUKd4S1zlz5kChUGDbtm1Bn2exWHDttdfir3/9K8rKymS9ls1mQ1dXl88tkbCrw5ARIc8Xl1LBiX1EskKkxniel0SEfIUQe16w58qF+YNmjysV01+dlgCpMc/JX6tSYpin+3Egw3QkJ7xsmYbl1m6r389ReIT8Unzstbv7aZYG5M0bM0uEkH9EqL9pMcArjJkQimSuF8dxYlSo0dQLt5vHN/XCbDKeB76qM4qf62ADVwHhc80Elb+47fEzb6cD0veCNQeVi9gh2u7y9hDKCS+IsyViUxrNjKRIgaGkiBCRYqSEEGpubkZJSYnPfSqVCoWFhWhubg76vDvuuAPTp0/HxRdfLPu1Vq5cCb1eL94qKxPbZC1PTmpMbKbo/XWGigi1dtvQZXWC4/rOIJKmUsINbQ3GkbYe1LX2QKXgcM6YQTB4IhNSjxD7v/RLmo04CCWE5HwhswhCfCJCbJSFcBw5kityuTCztH8rBWaWDtVUUSoQWUSozhMRimSURjD8zfPdEUSEANZLSKgcq2vrFoUbAGw93CYrNQZIKsf8vGsWsaIpfVJjPlVjmsi+orMlhQLi31iYijEAUCi4gLPKpA005cJx3gsy8ggRqUBChdCKFSvAcVzI24EDB6La9wcffIANGzbg6aefjuh59913H0wmk3irrw89GmKgYamxUKXddpdwcpB2qBb7AQUQM6yRYmVBdp+qFKWCE2cFResT+swTDTpzeCHys7zVTB0BhFChVAh5DNMHAximI5l3xL60pTOXAsEECDvZR9NdmqXGCnOE3xOLlAQaXhkIu9Pb86ePR4hFhLpCmaW9ERUWUWKiJRZCSKv2jwhFVkot7SW02xMNYp+vLw+3S8zS4YSQ8Hr+Bvh0LJ/Pk3SWjjTS5S2Dd4mf73BDir3P7etv64mwmSKDxmwQqURCvz2WL1+ORYsWhdymqqoKZWVlaGnxrUByOp0wGo1BU14bNmzA4cOHYTAYfO6/7LLLcM4552Djxo0Bn6fVaqHVyvviiAe5QarGLHYndGqhqZ1NUjrPCFU1Fmi0hpQslRIOlzPqiNDmg60AgB96ZlGx0nKjxSvmAoXtx5R5IkIBSuhZmXi4OWOA78mj1+EKGkViEaGxZfnYU98ZVXdpJoQMollafldrwNvRWqXg+qSy5ESEpN4p/yt/vS4WHqEgs8ZknhilvYRYP6FLzhiCd3c24GBLt+gnCVfVFMwAn47l89LPeKTl89KIEPsMyokIAUIkqtVs8+mKHmkzRYZKwcEO8ggRqYFsIXT55Zfj5z//OebOnRuzCqzi4mIUFxeH3W7atGno7OzEjh07MHnyZACC0HG73Zg6dWrA56xYsQI///nPfe6bMGEC/vSnP+HCCy/s/+LjRKDUWGNnL2Y/tQlzTynF01dPDJ0aCxgRClwxJj5XrYDZFl1EyOpw4au6dgDAuWOE3y2LlrCIkMPl7ZYsNXKyyrFDJ7v7jJXwehXCfyFnqRVic0GL3RlWCI0rzROEUD88Qt7y+cimz7eZvekL/ynjzCxtsbvQbQt8HNKqMf+IUkEsUmMq3yrCSFNRLCLU1GkVBd2ssSXY19iF75q6xIhBqM7SgDQ15meWtsv3jqUKSk+aymJ3RVw1liMRjCx6JscjBARuqhhpM0WGiiJCRAohOzXW0dGBH//4xxg6dCgeeugh1NXVDeS6fKiursa8efOwZMkS1NTUYMuWLVi2bBmuvvpqlJeXAwBOnDiBcePGoaamBgBQVlaGU0891ecGAEOHDsWIESPitvb+kh+gauybBhN6HS7UHDEC8HqEtIFSYwHETLCKMe9zo+8uvf2oEVaHG6X5Woz1CJsCP48QEw8Kzrfz8fCiHKgUHMw2Z58mfJFUjXEcJ5o/Q/USEoXQYGGdbf3wCDGxJ5qlZUaEmGHbX8QAwsmdiZ+TQdJj0rYC/n2IYuMR8v0ssBSl3FQUM0sfae/B/iah8OCMoQZMH+k7kiOUWRoI7vvyRqjSJyIEeAV15H2EvEK8LYKqMcD7t9UdwCMUqdBkTTbJI0SkArKF0Keffoq6ujosXrwYb775JkaPHo3zzjsPq1evhs0W3cDKSFi1ahXGjRuH2bNnY/78+ZgxYwZeeOEF8XGHw4Ha2lpYLJYBX0s8CRQRYn1n2nrsQldpV4DUmMrX5ColWMWY+FyWVouiqeLm74W02Dmji8WIDvMBsTRSuySKIo2CaFQK0bztb5iOdKaUTkYJPXsfx5UJg0i7rM6IKuWkM70M/hEhmUKIRYSCzZwTmyoGKaH3Vo2p+1z5G2KQGvN6zaKMCHlSY3WtPXC6eQzK1aJcn4Xpo7xCKFujhDpMj5pgqbF0bKgIeNNjEafGJFGddkkfIVmvGaC7dHeUQlP0CLlICBHJT0Rm6WHDhuE3v/kN6urqsH79epSXl2PJkiUYPHgwbrnlFuzYsWOg1onCwkKsXr0aZrMZJpMJr7zyCnJzvSfy4cOHg+d5zJo1K+g+eJ7HJZdcMmBrHAhYysBid4n5dhbJsDvd6LY5fcZrMIJVjbWabWgyWcFxwFiPJ8cfbzfhyCNCm79vAwDMHONNeUojQjzPBzRKM8RRG36G6UivTLPDNFV0uNyiMBtZkiOG8o0RNFVkIgjwRrayJWZpOXOWgjVTZIQroZd6OLLUSp9mfP0drwH0nTUWrUeIcUalHhzH4czhheLJMlw0CAg+b8wi6aydTlR5LgiGFmZH9DzpiA2jzMnz4nO13s8uwxJtRMivaqzH5sTWw+0UISKSkqirxs477zy8+eabaG5uxsqVK/HWW28F9esQ0SM9SbCQtbTsu73bHtgjFCSqs6e+E4AwcT6YLyPaiFCzyYrak2ZwHDBj1CDxfiZ4bE43eh2uPuM1pHhHbfhGhLqjFkKBIzOCKBOuXItytOJaIvEJNXextJZGTAVII1aBpqX70xZGCIXrLt0jqRoDfI2x/R24CkhTY9FVjeXrVD7pHTZcNy9LjdM8g1rDVYwB3n46QSNCaZYae+rKM7D21hkYX54f0fPYe93WbRPfK9mpsQARoWg9QkzkOtzCd9OTH9fimhe/wn+/bYpoPwQRD/pVPn/kyBE8+eST+P3vfw+TyYQ5c+bEal2EB7VSIZZ3s/SYjxDqsQVMjflfyTN2e4QQOyEFItqIEKsWO63CIFaKAcKXM1ubsccOY4iJ2OKojRZvRIjneZ8ycTmEG7PB3sOiHA2UCk4UIpH4hJo9PqYyjw8G8Bq1Ae9JJBTegauBr9qHeyIDq2uOB6xE8xeIUkFVIDMlEgppZ2m3mxffT7nCQ9pUEQBOl3zumE8oXA8hQBoR8q+ejLzhXyqg16lx6hB9xM9jnwMm0jUqhew0Zm4gs3SEEUCG2s8jVG/s9fybXtYFIj2IWAhZrVa8+eabOO+88zB69Gi8/vrrWLx4MY4cOYJ169YNxBoznlwtM0x7hJDkZN0mjQjJ8AixEQenhxJCUUaENnn8QTNHD/K5n+M4sYKpo8cRMiLEegkdOmkWU0tWh1scIhppRCiYWVocdOoRDkyURRIRYobusnxv+ofjOG8vIRljNth4jWAeoRunD0dZfhaOtPXgNx/s6/O4v4lcKoRiGhFyun0HcEYQISiXDBY+rcIg/v8np5VDq1JgWlVRgGf5EizVKTZ4TKPy+f7A3gc2LmyQjDlj3ueGMEtH+P76e4RYtV8kM/gIIl7I/jarqanBK6+8gn/961+wWq346U9/inXr1mH27NlJN9A03cjPUqGt2yZWjrWZpULI+3/f8vm+VWNuNy8rIqSNIiLkcvP44qDHHzS2b0uEgmwNTnbZ0GGxS4RQ35P/0EIhAtJjd8HU60BBjsbnyzNbpnk0WCqF0eonQJiAiKSXEIsISSMegODX6bY5ZfUSCpcaK8jR4E9XnYFrX/oK7+xowLljinHh6UKlpNPlFqu5AqXG5ERawsGigy43L3qiFJzvKJZwsPenqjjHp1dS9eB87H1kblijNOA7gZ7hcLnFi4B08whFi/+Fgty0GBDYLB1tewJ/jxD7O5TbX4sg4onsb7Mf/OAH2LZtGx599FE0NjZi9erVmDNnDomgOCCtHON5PrhHKIBZWloCf6S9B2arE1qVIqhRGogsIsTzPI629eC1L4/C1OtAXpYKp0uu+hnSyjGj2PG2b0RIo1Ig33O8TDBJr0r9e+0Eg1W5BPMIsagaE0JsLW3RRIT8hZCm7wklGP7rCMS0kUW4ZdYoAMD9730rphekESf/1JhOrYy44igQWongYW0PcjTyB3ACwLAiQdxOGlrQ5zE5IggIHOGTitx08whFi39kTG7FGCDtLC1tqNjPqjGPR4j93rpDjAoiiEQhW+Z//fXXmDRp0kCuhQiCOIHe5kBXr1P0BAFCh2YW/QnXWXr38U4AwIQh+pAnoHCT6xk7jhlx0xs7faJS544uFo3DUsTu0j32sDOQinK16LJ6ZyVFapQG5KfGRCEUhUeIdUouN/hHhOQ1VXS43Oi0BB6v4c+v5ozGlsNt2HW8E69sOYKHLzwFZk+3ba1KIf4+WS+hWPQQYvtmMGEaqei45qyhcLp4XDZ5SNTrCNQOgYlclYLziYZmMv5tBOR2lQZi3FDR8/tgqTG2H0qNEcmI7G8PqQj6/PPPcd1112HatGk4ceIEAOCNN97AF198EfsVEj4RIf+J6W099tANFSURITn+IMDXIBuKj/edRFu3DRqlAmdUGrBo+nDcN39cwG2l88ZY+inY1aq3gkvYLtIeQoAkNRbkGFr9Jr5H4xFqDuARAuQ3VWSvpVRwYf08aqUCV00RBgAfaRNmxQWaDF7sOQ7W16i/cJx38rvR83uL9KRYmKPBr+aMRkVBZKXgUsSGio5A0YrIIlTpjFLB+XwPhBPYUsTUmD2ARyjK1BjrLM0uSOQUEBBEvIn4Murf//435s6dC51Oh127donNFE0mE37/+9/HfIGErxDynzvV3i2pGgszfZ75g8IJIW2QijN/2JiMZeeNwppbzsZvLjol6MnOO29MEhEKMgxSFEIsNWb3jpGQi2iu9XyRf3m4DfOe3owdxzoABPIIsdeUFxHieV5Mjfl7hLxjNkJ/6bdJ5q3JSfmx97ahQ4hEBZq/Nn3UIJwzehBuPHu4jKOQB0uxMeGWiDRUoKqxaI286Y5UtESXGut/1Zj/9HkWyeuWUUBAEPEmYiH0u9/9Ds899xxefPFFqNXeq9izzz4bO3fujOniCAExNWZ1iidwdsUV3CPkmxqzOlziiIOJ4SJCKnkRIWbelhOpKfSkatrMdnT2srEUQVJjkjSa8DqRh+f9y+ffqqnHgWYz/vjRAWEdfiZl0SwtMyLU1esUjbv+HqFs0XQa+v0L10zRn4oCIfLU0GHxtBTo20wwP0uNNxZPxZWe6FEsYBHCdolHKN4EaoeQjpPnY4HUJyR3zhgg7YouvMc8z0vM0pEPXQUEj5DbzYt/K2SWJpKRiIVQbW0tzj333D736/V6dHZ2xmJNhB/sC8psdYhCiI3HaO+xh5k+Lzz2XVMXHC4ehTka8YQaDDEiFGbWGBMocnr7sIhQXVu3WNobbChooZ8QiuaqVIwIeb6A2Xy1r+qMONTSHdQj1N4tdL8OR1NXr3gM/qbkQP1YAhGudN4fNsDU6nDD2GP3Gbg6kLDoIjO5J2LAaaDZcek4eT4WSIVqJKkx/4aKFrtL/FuNtqGi08XD6vTuh4QQkYxELITKyspw6NChPvd/8cUXqKqqismiCF98PUK+g0I7LHbx5KBRek8IWX7T5/dIyubD+Sm0fhPHg+FtchjemMvEDfO3GLLVAU3VgESU+FWNyZk8z5Capd1uHnWtPeJjr2w5Ioo4/6oxu8stpvxC0dTJ0mJ9RaV0zEYovM0U5Z2stColSvOFbRs6eqPyTkUDiwgZPSNJEtGzJzuAWTpd54z1F2nqMrLUmEfA24XqVJaCzctSRfw7lzZUlP7OyCxNJCMRC6ElS5bgV7/6FbZt2waO49DY2IhVq1bhrrvuwi9+8YuBWGPGI51AzyIZY0rzwHFC4zRpF1mGf9WY6A8KUNruj/9YhWCw1Fi+nIiQx7zr8FSRhPqC9qbGhGONrmrM69NpNPX69J955+t6AL6l+llqpSgo2mVUjgXzBwHeCEXYiBBLjeXJP1lJfULmuAkhT0QoCVJj0t8jO8EmIkKVzEh/PxFVjXme5+aF97nOE0WtKs6N2IyulJilpVG8HptTVsSVIOJJxN8gK1asgNvtxuzZs2GxWHDuuedCq9Xirrvuwq233joQa8x4pBEhVoVRmp+FwmwN2nvsYhm3RqUATCbAbIZWJUSMbE4hR7/zuGASPqMofPQm1OR6Kd7UWPh9+o97COVd8J/7FU3kQxoROuyJBlUV58Dhcovt/otztT5f8EW5QvPG9h47qvr2hPSh2fOe+/uDAOnwytBCSEzPRZC+GGLQYcexDpzotIg9ogZaCLDoIhOICUmNBWiHIB04S3jR+XiE5H+2sjVK8eKq2+YU08kji3MiXoO3oaLb5+/AzQupXR2lM4kkIuKIEMdxeOCBB2A0GrF371589dVXaG1txaOPPjoQ6yPgFRrdNqePt4WlVFiaRuOwAfPmATNnQtvWAkAQM098VIt6Yy+0LjvOuHWRIJZCID8iJN+jUuhXzh0qItTHIxRFd1upufawZ27ZmJI8XHPWUHEbf29OkV/ZfihCRYSy/bwWwQjXVToQXsN0b1Qpw2jQ+pulE1g1Zne54fRUSTLvGKXGfGERyWyNMiLB4T8ehqWTmR8xEqQRoWBjUQgiWYi6C5lGo8H48eNx1llnITc38j8UQj7SiFCbpP8NC3uzFInWYQNaWoC6OmgXLgAgiInnNh0GAPzhf89A31QPmM3+L+GDnIiQyx3ZIFSdRukzliFU6392XMKEeN4ruKJKjblwiF3ZluTgismVUCuFL2l/AeJtqhi+coylI8sCeIRytV4RForjng7R4czrUgKnxmLTPDEYTBiz30MihIf0hM4M8Bax2R9FF6QwIR5JWowhbaoYi4iQ08X3aWpKQohINqgdawrAhEanZE5XcZ62j5jQFA8CNm4EqqqgPXLY57HbtvwTl1iPC49XVIR8PW9EKLgQkoa75U6El0aF5KTGnG4eXb3OfqXGLHanGBEaWZyL4jwt5p5SBgAo0/u+f5GU0Dd2CqmxgBGhAMMr/bE6XDjh2ceIQfJPNEMkJfTxSg1JG/TF4/UCoVEqwFot+Tfno/J5X5gwjCQtJj5X0kuoTkwpR36hK3aWDhARosoxItkgIZQCsNRTj6ecVcEJYsFfTGhUCqCyEti4Edoh5eL9P96/Gbc3fiWIoMrw/WUCDWz1h0UHNCqFWF4dDqlPKFRqTKuSGJd7bFGVz4udiO0u8cp2VInwhf7Aj6tx7dSh+NnZI3yew5oqhhuzEaqZItC3H0sgjrVbwPOC0TySyh4WPTrR0SuWz8sVotHi3x4gEWZpjuP6VI5ZxM7aFBGSwt6nSHoIMdhn90hbD8w2JxQcMKwo8o7gUo+Qf2NRiggRyQZdSqUA+X5m5KJcLZQKTjxxM8TO0pWV0L/8HC55/H3YlWo89b+nodj0mSwRBHhPfKH6CLGKsbwIxEmhTCHEHu+2CfPGuqOIfLCIkM3phs0T4WFXtoP1Ovz+pxP6PMc7eDW0EDLbnOLJOJBZmr12KLP0kTZBnI2IsCJniEHn2bdLLG8ecLO0OvERIUBIj3XbnOKJlcrnA8OihlVRpLSYyP2mQfARVhZmy77QkRLKI0QRISLZkP0N8tBDD+Hiiy/G5MmTB3I9RACEoZqcWHrunY/llxpjKYz6enDXX4+n6+q8Dy5cKDsiJMcsHUkzRUaBT2osdNi+MEeD40YL2nvs3hEbEZzw/cVBWX5W2OcXet7PDkvo1BibMabXqQOehP0b0wWiztNPqSqCtBgg/G4G5WrR1m0TI10DXj7vdyJMlPDwrxyLdjJ6uvPTiUNQlp+FScMKIn4u++x+e6ITQHRGacDXI0RmaSLZkZ0aa2howAUXXICKigr84he/wIcffgi7Xf6ASiJ6OI7zKVH3zscKIITq64FZs4C6OqCqCtiyRfi3rk64v74+7OvJMUt3R1A6z4gkIiQdsxHN4EetSgFpoIWlxULBBp+yifDBCJUWA6Tl88GF5BGP/yISfxCDpcdYK4V49RFiJCwixLpLO/w8QhQR8kGtVODcMcVRfS5YmvFAk1BQEalQZygVEo+Qn/AJN3qGIOKNbCH0yiuvoLm5Gf/85z+Rl5eH22+/HYMGDcJll12G119/HUajcSDXmfFIIy/esRB+qTFjm68I2rgRmD5dNFCLYqihIeRryYkIdbHUWLQRoTAVLdIS+miqxjiOE8cyAPIqXwzZMoVQZ/AeQoDXrGp3uuFwBRaTrMN2NOkL/yqzgR6x4Z8aS3REyN8jlAjPUrrCRDwT2SNlXEAEglVmutxuscqPQakxItmIyCytUChwzjnn4IknnkBtbS22bduGqVOn4vnnn0d5eTnOPfdcPPnkkzhx4sRArTdjCSSEBvmllzR5uUBJiVcEsTSYx0CNqirh8by8kK/FIkJONy/2bPEnqtRYjjd6VJAdRgh5hFJLl1WMTEV6hauTnCDlRITYmjp7Q0c6w0WEpEIhmGGaCaFoIkJD/ITQQAsBf4/IQEeggsHe175VY5QaixX+UdfoI0KBO0sDlBojko9+faNVV1ejuroa99xzD1pbW/HBBx/ggw8+AADcddddMVkgIZAn6RXj9Qj5igmtIR9Yt07oE+RfIl9ZCWzaJIggvT7ka0lTITanO+BMMG+URn5qjAmNvCyVzziQQDCRV+8xBAORm4Kl85HkeB30noiQ1eGG1eHqkxJiNJuCzxkDWCWdAjanG6Zeh7hfhsniENsgDC+KJiLkW8Uz8FVj/hGhxJmlAUlEyM6qxigiFCv8RXW0ESFv1RgvRpZZ12qKCBHJRsy+QYqLi7F48WIsXrw4VrskJOQGiAhle5oUsn4/GpUC0IcQOmH6BzGkfWOsDldAAWKOIjXG1l0iY9o6S40daxciJxqlIqx48sdHCMn4Qs/TqqBUcHC5eXRaHCjTBz7hN4nNFANHhABgaGE2DrZ040h7D4b6lR/XeSrGyvKzoqr48k+NDXTVmLaPRygxwsPbEkE4kbLIQqKEWToi9X/lZ6miKsEHvB4hh4sXvXJsJFC40TMEEW+oj1CKECg1xnGcT/VVpEIhGAoFJ5biBzNMs5OQnIGrjDOHF+KmmVX49U/Gh92WpcbqxRLxyE92LIKQp1XJEl8cx3kN0yHSY2zOWLDUGOCNQLFmjlL6kxYDgAqDVwhpVApx0vdAIY2MKbi+DRbjhbRqzNTrgN3z2YzEsE+ERhpdG1kS+bBVhkriEWKpMfa91U1maSLJICGUIuQHqBoD4NNLSBPDEyKbLxXMMB3JwFWGUsHhvguq8cOxJWG3ZVei7GQXTRSCnTirIvhC18swTLPZbiGFUIkgclj0R4oohKIwSgO+HqFI+jhFS5ZE+ORoVVGfHPuLmBpzuPD1UaE4Y8SgHOh1JIRihfTvrGpQ9KOTVD59hITvClEIWUMXIxBEvCEhlCIEiggBviX0sYoIAV6DbLCIEEuNDVTFkn95fTQ+EGaujWRWkreEPnBEyGx1iDO+As0ZY7CTyOGWnj6PRdtDiJGt8aYs4pGmkkaEElmhJY0IfVXXDgD4QVVhwtaTjvhGhKL7fAJes7RL0lCRfW9R+TyRbER85uzp6fvFTgw8TAhpVQqfKIDUMN1vIWQyiaX1Wf4RoYYGn6n1XQM83sG/4WI0QoiJmrGloavkpIiVY0EiQswonadVhVwT8ySxpodS6vrRQ4jBokLxMApLU2GJrNDyjthwYtsRISI0dURRwtaTjgxMRMg/NUYeISK5iPjMWVpaip/97Gf44osvBmI9RBBYCqo4T+uTmpB2l+5XasxkAubNA2bOBOrrfZsq1tcL98+bJ4qhaFJjkaDTKEVzLBBd5OPmWSPxy1kjcfWZQ2U/R0yN9QYWQsfahYnxlYWh5y+x/kAtZpsYPQMAt5vHUbGHUPQnmoo4CqFkiQixz0OL2Ya9J4TP4VSKCMUUqRdvVH8iQmzoqsvrESrJE1LJZJYmko2Iz5xvvvkmjEYjzjvvPIwZMwaPP/44GhsbB2JthAQW3SjN9/WlsBSJRqnon3fDbAZaWsSmi1m88OVlbTzpbdLY0iJsB6DbFnnVWKRI02PRnPBHFufinnnj+pSvh8KgE14z2JiNY0ZBCA0fFFoI5WepxStgFgECgJNmK3odLqgUXJ/qr0hgJfQD3UwR8BNCCY0ICa+9rc4INy8MAw3WwoCIDuZFVCo4DC2MXgipfVJjvh4hKp8nko2IhdAll1yCNWvW4MSJE7j55puxevVqDBs2DD/5yU/w3nvvwemkD/lAcO6YYlxzViV+NXu0z/3MI9TvtFhFhU8Hau2B/QAA630P+Haq9pTgs4hQJFVjkSJN+8XrBFzgEU2mIKkxVs4/TEb/H+ZNkqbH2GiNoYXZ/ar2Yum+UIbtWCHtI5TQiBDzCHnStT+gtFjMqSjQ4Wdnj8AD86v79Z0ibajYI0aEKDVGJCdRf6sVFxfjzjvvxJ133olnn30Wd999N/73v/9h0KBBuPnmm7FixQpkZ4e+aibkk6NVYeWlp/W5n4mFmBilWQfqWbOQ1d0FDAJ+fcZl+Fv1jzD0rNPwkL4YJQB4no+qoWKkSCNC8epdE27MxlFPamx4UfjPdlVxLr6qM/oIobp+ls4zLjqjHDlaVVzMwtKIUHYCmxfq/PoZUVos9nAch4cuDN/eIhysfN7udIuVn0wIWR1uOF2BG7USRCKI+pN48uRJPPHEExg/fjxWrFiByy+/HJ9++imeeuopvPfee7jkkktiuEwiGMOLcsBx8poUyqKyEnjjDUxqFCJCbTkF+KZwGNYeMmHNbmF0Sq/DBZdnFlG8UmPxKBMHAH12mNRYO4voyIkICR4gaWqsvz2EGGqlAvNOLYMhzKiSWCCdPp+TwOaF/jPOplZRRChZYQ0VuyT+OGm1a6iBxAQRbyI+u7z33nt49dVX8dFHH2H8+PH45S9/ieuuuw4Gg0HcZvr06aiuro7lOokgVBZm459LfhC7FEl9PbBwIe6qq8NVez5Ga24BXpt5DT4YOgUnPM0N2eR5pYIb0K6+0tYA8YoIiamxAGZph8uNBs97EM4jBAROjdV5/h9tD6FEoJWkxhI56V0n+axVFuowxED+oGSFVY119QrfFQpO8PmplZzQbdrmpP5PRNIQcUToxhtvRHl5ObZs2YLdu3dj2bJlPiIIAMrLy/HAAw/Eao1EGH5QVSTLsxKW+nqf6fWVH76PSVkOnHmgBgDQ2NwBwFs6nzvAzfUSkhrTBS+fb+zshcvNQ6tSoDQvvPBkEaGjbRa43DzsTjf2NAjVTqP6UTEWb6Tl87lJYJYGyB+U7DAhxComczTCdwX7OybDNJFMRCyEmpqa8Pzzz+PMM88Muo1Op8PDDz/cr4X5YzQasWDBAuTn58NgMGDx4sXo7u7bo0XKrFmzwHGcz+3mm2+O6brShoYGHxGEjRuB6dOBjRsxOFv48mrauQ9oaIhqzlg09LdqLBqYRyhQaoz5g4YVZUOhCC8Ayw06aFUK2F1uNHRY8On+kzD22FGSp8XkYQWxXfgAwnGcKIYS6RGSCiFKiyU3zCPEvIQsmsfM9mYSQkQSEfG3mtPpRFdXV5/7OY6DVquFRjMwnoUFCxagqakJ69evh8PhwI033oilS5di9erVIZ+3ZMkS/Pa3vxV/JgN3EPLygBLP6IuNGwWvEABUVqL82T8C/zqIppxCIC8P5pOCSBhocVKUgIgQK7W3OftOoI+kYgwQUocjBuXgQLMZh1u78db2egDA5ZMrUs4omqVWwuZ0J41HaOoIMkonM8wj5PR4CZmIzaWIEJGERHx2MRgMIdMhFRUVWLRoER5++GEoFLH5st+/fz/WrVuH7du3Y8qUKQCAZ599FvPnz8eTTz6J8vLyoM/Nzs5GWVlZTNaR1uj1wLp1Qp8gvyn15WOHAziIdk0OrNm5MFtbAPjOPxsIfFNj8TkBh5pAf7RNfsUYY2RxLg40m/H5wTZsPtgKALhySmVsFx0HstQKmHoT6xEalKvBj08bjPwsVdiGlkRiUflFTNnnhv0dkxAikomIlcprr72G8vJy3H///VizZg3WrFmD+++/H0OGDMHf//53LF26FM888wwef/zxmC1y69atMBgMoggCgDlz5kChUGDbtm0hn7tq1SoMGjQIp556Ku677z5YLJaQ29tsNnR1dfncMga9vo8IAgC9Ti2WLjeZrHFppgj4jtnIG8AyfSnSCfT+6TGxYiwCPxYzTK/66jh4XohkDO9nxVgiYJGxeEXmAsFxHP567aSAbSSI5KKvEPL9/NAEeiKZiPhb7R//+AeeeuopXHnlleJ9F154ISZMmIDnn38en376KYYOHYrHHnsM999/f0wW2dzcjJIS34nlKpUKhYWFaG5uDvq8a6+9FsOGDUN5eTm++eYb3HvvvaitrcV7770X9DkrV67EI488EpN1pwscx2GwIQt1rT1o6uyVjNcYYI9QAhoqAkJ6rL3H3scwLXaVjiQi5Jk5ZncJvVSuPiv1okGA19uRr0ucECJSB+YRYjCPEPvOoIgQkUxEHBH68ssvMXHixD73T5w4EVu3bgUAzJgxA8ePHw+7rxUrVvQxM/vfDhw4EOkSRZYuXYq5c+diwoQJWLBgAV5//XW8//77OHz4cNDn3HfffTCZTOKtvr4+6tdPJ1ipcqPJ6q0aG2AhlKNRoiw/C1qVwqcHyUDDBq+aer0RIZebx3GxmaL8iI50cGVelgoXnDo4RquML8vPH4NF04fjzOHkzSHCo/SzRWT7maWpuzSRTER8JqusrMTLL7/cJ/X18ssvo9JjsG1vb0dBQfiqmOXLl2PRokUht6mqqkJZWRlaWlp87nc6nTAajRH5f6ZOnQoAOHToEEaOHBlwG61WC602fifdVIH1KRIiQiw1NrDpKo7j8PZN09Bjdw74a0nxpsa8EaHmLivsLjfUSi6ink1Vkn5BF59R7mO+TiVmV5didnVpopdBpAj+qbEc0SNEESEi+YhYCD355JO44oor8OGHH4ol9F9//TUOHDiAd999FwCwfft2XHXVVWH3VVxcjOLi4rDbTZs2DZ2dndixYwcmT54MANiwYQPcbrcobuSwe/duAMDgwal5VZ5I2HDLRlMvHK6B7yrNGBpBGipW6AOM2Tjm6QhdWZAdUcVXjlaFcWV5ONjSjWvOGhrbhRJEkqJUBE6NUdUYkYxEfCa76KKLUFtbi+effx61tbUAgAsuuABr1qzB8OHDAQC/+MUvYrrI6upqzJs3D0uWLMFzzz0Hh8OBZcuW4eqrrxYrxk6cOIHZs2fj9ddfx1lnnYXDhw9j9erVmD9/PoqKivDNN9/gjjvuwLnnnovTTiOzZaSUG4QoSGOnVTROxzNKE09YaqxTkhqT9hCKlFcWnQljjx2nlOtjs0CCSHLUSjJLE6lDRELI4XBg3rx5eO6557By5cqBWlNAVq1ahWXLlmH27NlQKBS47LLL8Mwzz/isrba2VqwK02g0+OSTT/D000+jp6cHlZWVuOyyy/DrX/86rutOF1hEqMnUK/p1BnLyfCJhqbHOHklEyBhZDyEp5QYdymkcBJFB9PUICd8VuVQ+TyQhEZ3J1Go1vvnmm4FaS0gKCwtDNk8cPnw4eJ4Xf66srMSmTZvisbSMgJ3Imzqtos8lXt2e4404gV4SETrWFn1EiCAyjfDl8ySEiOQh4qqx6667Di+//PJArIVIYlhqzGxzorHTCiB9U2NsorvUI3TU00MokooxgshU/D1CJISIZCaqERuvvPIKPvnkE0yePBk5Ob4nhv/3//5fzBZHJA/ZGhX0OjVMvQ60ddsAxMcsnQgMfmZpnudxrB8eIYLINPwjQjoxNUZmaSL5iPhMtnfvXkyaNAkA8P333/s8NpCTyInEM1ifBVOvN0qStkJI52uWbjXb0OtwQcEBFQUkhAgiHP6VlTl+ESESQkQyEfGZ7LPPPhuIdRApQLlBhwPNZvHneI29iDf+EaGDLd0AgCEFOmhUqTUslSASQbjyeUqNEclE1N/qhw4dwkcffYTe3l4A8DEqE+kJ8wkxBrqzdKIwSCbQ99pd+OJQGwBgyjDqqkwQcgg2dFVMjdlddM4gkoaIhVB7eztmz56NMWPGYP78+WhqagIALF68GMuXL4/5AonkgZXQA0Ko2/+qL13I1arEL/LOXju+OCgIoRmjBiVyWQSRMgQ3Swv/utw8bE533NdFEIGIWAjdcccdUKvVOH78OLKzvX6Jq666CuvWrYvp4ojkQhoRSteKMcAzgd4TFTrS1oO9jSYAwDmjSQgRhByCls9rvFFkSo8RyULEuY2PP/4YH330ESoqKnzuHz16NI4dOxazhRHJhzQilK5GaYZep0Zbtx3//aYJPA+MLc1DSb78GWMEkcn0jQgJ3xcKBYdsjRIWuws9NicG5dJcRyLxRBwR6unp8YkEMYxGIw0rTXPKJUIoXf1BDNZL6MO9zQCAGRQNIgjZcBznExXK1nqHDVMvISLZiFgInXPOOXj99dfFnzmOg9vtxhNPPIEf/vCHMV0ckVyU6rVgHRLSOTUGAAWe1JixRyihJyFEEJEhjQplq71CyNtLiOaNEclBxJf1TzzxBGbPno2vv/4adrsd99xzD/bt2wej0YgtW7YMxBqJJEGrUmJQrhatZlv6psZMJsBsht7TSwgANEoFpo4oBBoagLw8QE/DUwkiHCoFBxuEvx9pXyFmmO62OYI8kyDiS8QRoVNPPRXff/89ZsyYgYsvvhg9PT249NJLsWvXLowcOXIg1kgkEeV6wSeTlgNXTSZg3jxg5kwYXFbx7snDCpB9sgmYOVN43GRK4CIJIjVg4of1EGIwwzRNoCeShajOZnq9Hg888ECs10KkAIP1OuxpMKXnwFWzGWhpAerqUPDma8CEnwAAZpSogVmzgLo673YUFSKIkDCPUI6fEKIxG0SyEdXZrLOzEzU1NWhpaYHb7dsL4vrrr4/JwojkZEKFHuv2NWNUSW6ilxJ7KiqAjRuBWbOgbzwGTBDuPud3ywURVFUlPO5XMUkQRF+YR6hPRIiEEJFkRCyE/vOf/2DBggXo7u5Gfn6+z3wxjuNICKU5N51bhdnVJRhbmpfopQwMlZXAxo0wXHcHAKDAYsIpOz/3iqDKysSujyBSBBYRytb4nmZYxSlVjRHJQsQeoeXLl+NnP/sZuru70dnZiY6ODvFmNBoHYo1EEqFSKjCuLD+9B+xWVuKsh2/HyPZ6/Hz7Gih5N/DGGySCCCIClEomhCg1RiQ3EUeETpw4gdtuuy1gLyGCSAvq61G65AZ8yjxBALBwIUWECCIC1ArhOttfCJFZmkg2Io4IzZ07F19//fVArIUgEk99vdcYXVUFbNki/FtXJ9xfX5/oFRJESqAMkhpj5fMUESKShYgjQj/+8Y9x991347vvvsOECROgVvs21rvoootitjiCiCsNDb4iiEWAPAZqUQxt2kSGaYIIQzCzNKXGiGQjYiG0ZMkSAMBvf/vbPo9xHAeXi8KdRIqSlweUlAj/l6bBpGKopETYjiCIkKiUgcvnacQGkWxELIT8y+UJIm3Q64F164Q+Qf4Rn8pKIRJEnaUJQhZKBWuo6Fc1RkKISDLSsCseQfQDvT640KF0GEHIRq0IXDVGfYSIZEO2WXr+/PkwSUYLPP744+js7BR/bm9vx/jx42O6OIIgCCI1UQYVQmzWGNkoiORAthD66KOPYLPZxJ9///vf+/QNcjqdqK2tje3qCIIgiJREpQzSUJEiQkSSIVsI8Twf8meCIAiCYAwx6AAAw4p8e84xIdTrcMHlpvMIkXjII0QQBEHEnEcuOhXXTxuOU8rzfe7PkQxs7rE7kZ+l9n8qQcQV2REhjuP6jFVI6zELBEEQRNToNEqcOkTf5zyhVSnEOWSUHiOSAdkRIZ7nsWjRImi1WgCA1WrFzTffjJycHADw8Q8RBEEQRCA4jkOOVgVTr4OEEJEUyBZCN9xwg8/P1113XZ9taPI8QRAEEY5cjxCiyjEiGZAthF599dWBXAdBEASRIdC8MSKZiHjoKkEQBEH0BxqzQSQTJIQIgiCIuCKO2bCSECISDwkhgiAIIq7keJos9thJCBGJh4QQQRAEEVcoNUYkEykjhIxGIxYsWID8/HwYDAYsXrwY3d3dYZ+3detWnHfeecjJyUF+fj7OPfdc9Pb2xmHFBEEQRCByySxNJBEpI4QWLFiAffv2Yf369Vi7di02b96MpUuXhnzO1q1bMW/ePJx//vmoqanB9u3bsWzZMigUKXPYBEEQaUduFps3RuXzROJJiREb+/fvx7p167B9+3ZMmTIFAPDss89i/vz5ePLJJ1FeXh7weXfccQduu+02rFixQrxv7NixcVkzQRAEERhKjRHJREqERrZu3QqDwSCKIACYM2cOFAoFtm3bFvA5LS0t2LZtG0pKSjB9+nSUlpZi5syZ+OKLL+K1bIIgCCIANIGeSCZSQgg1NzejpKTE5z6VSoXCwkI0NzcHfE5dXR0A4De/+Q2WLFmCdevWYdKkSZg9ezYOHjwY9LVsNhu6urp8bgRBEETsYFVjFBEikoGECqEVK1aIw1yD3Q4cOBDVvt1uNwDgpptuwo033oiJEyfiT3/6E8aOHYtXXnkl6PNWrlwJvV4v3iorK6N6fYIgCCIwORQRIpKIhHqEli9fjkWLFoXcpqqqCmVlZWhpafG53+l0wmg0oqysLODzBg8eDAAYP368z/3V1dU4fvx40Ne77777cOedd4o/d3V1kRgiCIKIId7UGJmlicSTUCFUXFyM4uLisNtNmzYNnZ2d2LFjByZPngwA2LBhA9xuN6ZOnRrwOcOHD0d5eTlqa2t97v/+++9xwQUXBH0trVYLrVYbwVEQBEEQkcBmjVFqjEgGUsIjVF1djXnz5mHJkiWoqanBli1bsGzZMlx99dVixdiJEycwbtw41NTUAAA4jsPdd9+NZ555Bu+++y4OHTqEBx98EAcOHMDixYsTeTgEQRAZTS5VjRFJREqUzwPAqlWrsGzZMsyePRsKhQKXXXYZnnnmGfFxh8OB2tpaWCwW8b7bb78dVqsVd9xxB4xGI04//XSsX78eI0eOTMQhEARBEPD1CPE8D47jErwiIpPheJ7nE72IZKarqwt6vR4mkwn5+fmJXg5BEETKY+p14PRHPgYAHHh0HrLUygSviEhH5J6/UyI1RhAEQaQPLDUGUOUYkXhICBEEQRBxRangoFOzeWNUOUYkFhJCBEEQRNyhMRtEskBCiCAIgog74gR6OwkhIrGQECIIgiDiDkWEiGSBhBBBEAQRd2jMBpEskBAiCIIg4o7YVNFKQohILCSECIIgiLhDqTEiWSAhRBAEQcQd0SxN5fNEgiEhRBAEQcSdHI3HI0RVY0SCISFEEARBxB1KjRHJAgkhgiAIIu7kZVHVGJEckBAiCIIg4g6VzxPJAgkhgiAIIu5QaoxIFkgIEQRBEHGHqsaIZIGEEEEQBBF3xKoxiggRCYaEEEEQBBF3KDVGJAskhAiCIIi4k0tCiEgSSAgRBEEQcYdFhCx2F9xuPsGrITIZEkIEQRBE3GERIYC6SxOJhYQQQRAEEXey1AooOOH/VDlGJBISQgRBEETc4TiOfEJEUkBCiCAIgkgIudRdmkgCSAgRBEEQCYHGbBDJAAkhgiAIIiFQLyEiGVCF34QgCIIgYojJBJjN3tSYtGqsoQHIywP0+gQtjsg0KCJEEARBxA+TCZg3D5g5EzluOwCgm1WN1dcDM2cKj5tMCVwkkUmQECIIgiDih9kMtLQAdXXI2bAeANBtdQoiaNYsoK5OeNxsTuw6iYyBhBBBEAQRPyoqgI0bgaoq5La3AgB6Dh/1iqCqKuHxiooELpLIJEgIEQRBEPGlshLYuBH5OjUAoPH9//mKoMrKxK6PyChICBEEQRDxp7IS5y65DADw0egfoEedBbzxBokgIu6QECIIgiDiT309zrz9ZxhubESPNhv/G3s2sHCh4BUiiDhCQoggCIKILx5jNFdXhytO7AAAvHPWhUJ6bNYsEkNEXCEhRBAEQcSPhgYfY/RlT94DBQfUFI9C3WlTvWKooSHRKyUyBBJCBEEQRPzIywNKSkRjdFl1FWaOKQYAvPvAM8L9JSXCdgQRB1JGCBmNRixYsAD5+fkwGAxYvHgxuru7g25/9OhRcBwX8PbOO+/EceUEQRCEiF4PrFsHbNokGqOvnCL8++9DXXB+tlF4nDpLE3EiZYTQggULsG/fPqxfvx5r167F5s2bsXTp0qDbV1ZWoqmpyef2yCOPIDc3FxdccEEcV04QBEH4oNf79AmaXV2KwhwNTnbZsNmiIRFExBWO53k+0YsIx/79+zF+/Hhs374dU6ZMAQCsW7cO8+fPR0NDA8rLy2XtZ+LEiZg0aRJefvll2a/d1dUFvV4Pk8mE/Pz8qNZPEARBhOa3//kOr2w5grwsFR656BT8dOIQcByX6GURKYzc83dKRIS2bt0Kg8EgiiAAmDNnDhQKBbZt2yZrHzt27MDu3buxePHikNvZbDZ0dXX53AiCIIiB5ZYfjsQZlQaYrU7c+fYe/OLNnTD22BO9LCIDSAkh1NzcjJKSEp/7VCoVCgsL0dzcLGsfL7/8MqqrqzF9+vSQ261cuRJ6vV68VVJzL4IgiAGnKFeLd2+ehrvOHwOVgsO6fc247qVtsEgn0xPEAJBQIbRixYqghmZ2O3DgQL9fp7e3F6tXrw4bDQKA++67DyaTSbzVUz8LgiCIuKBSKrDsvNFYc8vZKMrR4LumLtz1zh643Unv4CBSGFUiX3z58uVYtGhRyG2qqqpQVlaGlpYWn/udTieMRiPKysrCvs67774Li8WC66+/Puy2Wq0WWq027HYEQRDEwHDqED2eWzgZ1774Ff73bTOeKT2I2+eMSfSyiDQloUKouLgYxcXFYbebNm0aOjs7sWPHDkyePBkAsGHDBrjdbkydOjXs819++WVcdNFFsl6LIAiCSDxnDi/E7y45Fff++1s8/clBjCnNw/wJgxO9LCINSQmPUHV1NebNm4clS5agpqYGW7ZswbJly3D11VeLFWMnTpzAuHHjUFNT4/PcQ4cOYfPmzfj5z3+eiKUTBEEQUXLVmUNx49nDAQD3vvsN6o2WxC6ISEtSQggBwKpVqzBu3DjMnj0b8+fPx4wZM/DCCy+IjzscDtTW1sJi8f1DeeWVV1BRUYHzzz8/3ksmCIIg+skD86sxaagBZpsTy9/eAxf5hYgYkxJ9hBIJ9REiCIJILMfbLbjgz5vRY3fh7rljccsPRyV6SUQKkFZ9hAiCIIjMZWhRNn5z0SkAgD+t/x7fNHQmdkFEWkFCiCAIgkh6Lp9cgfkTyuB087j9rd3UX4iIGSSECIIgiKSH4zj8/qcTUJafhbq2Hjy6dn+il0SkCSSECIIgiJTAkK3BU1eeDgD4Z81xfLxP3mQBgggFCSGCIAgiZTh71CAsOWcEAGDFe9+ixWxN8IqIVIeEEEEQBJFS3DV3LKoH58PYY8dd73xDIziIfkFCiCAIgkgptCol/nz1GdCqFNj8fSue23w40UsiUhgSQgRBEETKMaY0D494Suqf+vh71BwxJnhFRKpCQoggCIJISa46sxI/nTgELjeP2/65C+3dtkQviUhBSAgRBEEQKQnHcfjdJadiZHEOmrusuO2tXbA6XIleFpFikBAiCIIgUpYcrQp/WzAZWWoFthxqxw2v1MBsdSR6WUQKQUKIIAiCSGnGluXhHzeehVytCtuOGLHgpW0w9tgTvSwiRSAhRBAEQaQ8U6uK8M8lP0BhjgbfNJhwxXNf4lh7T6KXRaQAJIQIgiCItGBChR5v3zQNg/VZONzag4v/ugVbD7cnellEkkNCiCAIgkgbRpXkYs0tZ+P0Cj06LQ4sfHkb/llzPNHLIpIYEkIEQRBEWlGan4V/3TQNF55eDqebx33vfYsXqOkiEQQSQgRBEETakaVW4pmrz8CyH44CAPz+fwfwt42HErwqIhkhIUQQBEGkJRzH4a65Y3HHnDEAgCfW1eIvGw4meFVEskFCiCAIgkhrfjVnNO6eOxYA8OTH3+Odr+sTvCIimSAhRBAEQaQ9t/xwFG49T0iTPbBmL/bUdyZ2QUTSQEKIIAiCyAjumDMGc6pLYXe6cfObO9BqptlkBAkhgiAIIkNQKDj86arTUVWcgyaTFbes2gmHy53oZREJhoQQQRAEkTHkZanxwsIpyNWqUHPUiLeox1DGQ0KIIAiCyChGleTinnmCefrpTw6i2+ZM8IqIREJCiCAIgsg4rjlrKEYMykF7jx0vbKJmi5kMCSGCIAgi41ArFbjHU1L/4udHcLLLmuAVEYmChBBBEASRkcw7tQwThxrQ63Dh6U++T/RyiARBQoggCILISDiOw/3zqwEA/9pej0Mt3QleEZEISAgRBEEQGcuZwwsxp7oEbh54+Yu6RC+HSAAkhAiCIIiMZum5IwEA/955Au3d1GQx0yAhRBAEQWQ0Zw4vwGkVetidbrz5FfUVyjRICBEEQRAZDcdxWDxjBADgja+OwupwJXhFRDwhIUQQBEFkPPMnDMZgfRbauu34YE9jopdDxBESQgRBEETGo1YqsGj6cADAy58fAc/ziV0QETdICBEEQRAEgKvPGopsjRK1J834/GBbopdDxImUEUJGoxELFixAfn4+DAYDFi9ejO7u0D0fmpubsXDhQpSVlSEnJweTJk3Cv//97zitmCAIgkgl9Do1rjqzEgDw/GYau5EppIwQWrBgAfbt24f169dj7dq12Lx5M5YuXRryOddffz1qa2vxwQcf4Ntvv8Wll16KK6+8Ert27YrTqgmCIIhUYvGMEVAqOGw51I5vG0yJXg4RB1JCCO3fvx/r1q3DSy+9hKlTp2LGjBl49tln8dZbb6GxMbip7csvv8Stt96Ks846C1VVVfj1r38Ng8GAHTt2xHH1BEEQRKpQUZCNi04vBwA8R1GhjCAlhNDWrVthMBgwZcoU8b45c+ZAoVBg27ZtQZ83ffp0/Otf/4LRaITb7cZbb70Fq9WKWbNmBX2OzWZDV1eXz40gCILIHJaeWwUA+PDbJhxr70nwaoiBJiWEUHNzM0pKSnzuU6lUKCwsRHNzc9Dnvf3223A4HCgqKoJWq8VNN92E999/H6NGjQr6nJUrV0Kv14u3ysrKmB0HQRAEkfxUD87HrLHFcPPAC5tp7Ea6k1AhtGLFCnAcF/J24MCBqPf/4IMPorOzE5988gm+/vpr3Hnnnbjyyivx7bffBn3OfffdB5PJJN7q6+ujfn2CIAgiNbl5pjB2450dDWg109iNdEaVyBdfvnw5Fi1aFHKbqqoqlJWVoaWlxed+p9MJo9GIsrKygM87fPgw/vKXv2Dv3r045ZRTAACnn346Pv/8c/z1r3/Fc889F/B5Wq0WWq028oMhCIIg0oapIwpxRqUBu+s78ZcNB/HIxacmeknEAJFQIVRcXIzi4uKw202bNg2dnZ3YsWMHJk+eDADYsGED3G43pk6dGvA5FosFAKBQ+Aa9lEol3G53P1dOEARBpDMcx+GeuWNx7Uvb8MZXx3D1WUNRPTg/0csiBoCU8AhVV1dj3rx5WLJkCWpqarBlyxYsW7YMV199NcrLBXf/iRMnMG7cONTU1AAAxo0bh1GjRuGmm25CTU0NDh8+jKeeegrr16/HJZdcksCjIQiCIFKB6aMGYf6EMrh54OEP9lG36TQlJYQQAKxatQrjxo3D7NmzMX/+fMyYMQMvvPCC+LjD4UBtba0YCVKr1fjf//6H4uJiXHjhhTjttNPw+uuv4x//+Afmz5+fqMMgCIIgUogHfjweWWoFao4YaQZZmsLxJHFD0tXVBb1eD5PJhPx8CosSBEFkGn/ZcBBPfvw9SvO12LB8FnK0CXWVEDKRe/5OmYgQQRAEQSSCn59ThaGF2TjZZcMfP6pN9HKIGENCiCAIgiBCkKVW4tFLhKqx1748ii9oIGtaQUKIIAiCIMIwc0wxrvvBUADA3e/uganXkeAVEbGChBBBEARByOD++dUYMSgHTSYrHv6/vYleDhEjSAgRBEEQhAyyNSo8deXpUHDAmt2N+O83TYleEhEDSAgRBEEQhEwmDS3ALT8U5lU+/MFemCyUIkt1SAgRBEEQRAQsO28URpXkoq3bjpUf7k/0coh+QkKIIAiCICJAq1Ji5aUTAABvba/Htrr2BK+I6A8khAiCIAgiQs4cXohrzhKqyO57/1vYnK4Er4iIFhJCBEEQBBEFKy4Yh+I8Lepae/Dsp4cSvRwiSkgIEQRBEEQU6HVqPHLRKQCAv208hB3HOhK8IiIaSAgRBEEQRJTMnzAYl5xRDjcP3Pn2bvTYnIleEhEhJIQIgiAIoh88cvGpGGLQ4Vi7BY+u/S7RyyEihIQQQRAEQfQDvU6Np648HRwnVJH9bu13WLe3GfVGC3ieT/TyiDBwPP2WQtLV1QW9Xg+TyYT8/PxEL4cgCIJIUlZ+uB/Pb6rzua8oR4Mpwwtw5vBCjC/Px/CiHJTlZ0Gh4BK0ysxB7vmbhFAYSAgRBEEQcnC5efx7RwO2HzXiu6YuHDzZDbvL3Wc7jUqBYYXZGFaUg+FF2RhdmotTyvUYU5oHjUoBnudhc7phc7qhVHBQeUSTzemG3emGRqmAPlsd78OLHJMJMJuBioq+jzU0AHl5gF4/YC9PQihGkBAiCIIgosHmdGHvCRO2H+3A10c7UNfajeNGC5zuwKddtZJDfpYaZqszoICSUpSjwciSXIwqycWoYuHfMaV5KNNnDcShRI7JBMybB7S0ABs3ApWV3sfq64FZs4CSEmDdugETQ3LP36oBeXWCIAiCyHC0KiUmDyvE5GGFwEzhPqfLjSaTFUfaenCsvQdH2iyoPdmFvSe6YOp1oL3HLmvf7T12tB8xouaI0ef+IQYdpo4oxClD9DBbHTjZZUNHjx1qlQI6tQLZGhWGF2VjTGkeRpXkQqngYHW6YXO4UJynRV5WjCJNZrMggurqBNHDxBATQXV13u0GMCokB4oIhYEiQgRBEMRAw/M8Gjp60WN3Ij9LjXydGhqlAm6eh9PNg+d5aFVKqJUcLHYX6lp7cKjVjEMt3TjU0o2DLd042taDIMEm2QzK1WB4UQ5K8rUwZGtg0KmRrVFCo1JAo1TA6ebRa3ehxy500s5SK5ClViJL5flXrUS2RglDtgZ6Uztw441o7LKiaUQ1jNctgu29NbCbewC9HoOXXI/y4YNRbtBhWFF27ESYB0qNxQgSQgRBEEQq0G1zYuexDmw/asTBk90oyNGgNF+LohyNIGAcLnT1OnG4tRvfnzTjuNECnococroT2APp1z+uxs/PqYrpPik1RhAEQRAZRK5WhXPHFOPcMcWytne43FBynFjB1mV14Hi7BUfbe9DebUeHxY5OiwO9dhfsLsGorVRwyNEqoVML8sHqdMHqcMHmcMPqcMHqdKHb5kJXrwOdFjvcPDBY7Ub5zq0YZOlElsMO7ZWXwVk2GM0mKxo7e3Gi04ohBt2AvS/hICFEEARBEBmIWunbSjA/S41Th+hx6pAYenb8PUEAUPexxzN0Suxepx9QQ0WCIAiCIGKPVARVVQFbtgj/MgN1fX2iVwiAhBBBEARBELGmocFXBG3cCEyfLvwrFUMNDYldJyg1RhAEQRBErMnLE/oEAb59hCorhZ9ZH6G8vAQt0AsJIYIgCIIgYoteLzRLDNRZurIS2LRpwDtLy4WEEEEQBEEQsUevDy50Ao3dSBDkESIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgiAIgshYSAgRBEEQBJGxkBAiCIIgCCJjoc7SYeB5HgDQ1dWV4JUQBEEQBCEXdt5m5/FgkBAKg9lsBgBUsoFxBEEQBEGkDGazGfoQM804PpxUynDcbjcaGxuRl5cHjuNitt+uri5UVlaivr4e+fn5MdtvspOJx03HnBnHDGTmcWfiMQOZedypdsw8z8NsNqO8vBwKRXAnEEWEwqBQKFAxgMPh8vPzU+IDFWsy8bjpmDOHTDzuTDxmIDOPO5WOOVQkiEFmaYIgCIIgMhYSQgRBEARBZCwkhBKEVqvFww8/DK1Wm+ilxJVMPG465swhE487E48ZyMzjTtdjJrM0QRAEQRAZC0WECIIgCILIWEgIEQRBEASRsZAQIgiCIAgiYyEhlCD++te/Yvjw4cjKysLUqVNRU1OT6CXFjJUrV+LMM89EXl4eSkpKcMkll6C2ttZnG6vViltuuQVFRUXIzc3FZZddhpMnTyZoxbHn8ccfB8dxuP3228X70vWYT5w4geuuuw5FRUXQ6XSYMGECvv76a/Fxnufx0EMPYfDgwdDpdJgzZw4OHjyYwBX3D5fLhQcffBAjRoyATqfDyJEj8eijj/q08U+HY968eTMuvPBClJeXg+M4rFmzxudxOcdoNBqxYMEC5Ofnw2AwYPHixeju7o7jUURGqGN2OBy49957MWHCBOTk5KC8vBzXX389GhsbffaRTsfsz8033wyO4/D000/73J9qx+wPCaEE8K9//Qt33nknHn74YezcuROnn3465s6di5aWlkQvLSZs2rQJt9xyC7766iusX78eDocD559/Pnp6esRt7rjjDvznP//BO++8g02bNqGxsRGXXnppAlcdO7Zv347nn38ep512ms/96XjMHR0dOPvss6FWq/Hhhx/iu+++w1NPPYWCggJxmyeeeALPPPMMnnvuOWzbtg05OTmYO3curFZrAlcePX/4wx/w97//HX/5y1+wf/9+/OEPf8ATTzyBZ599VtwmHY65p6cHp59+Ov76178GfFzOMS5YsAD79u3D+vXrsXbtWmzevBlLly6N1yFETKhjtlgs2LlzJx588EHs3LkT7733Hmpra3HRRRf5bJdOxyzl/fffx1dffYXy8vI+j6XaMfeBJ+LOWWedxd9yyy3izy6Xiy8vL+dXrlyZwFUNHC0tLTwAftOmTTzP83xnZyevVqv5d955R9xm//79PAB+69atiVpmTDCbzfzo0aP59evX8zNnzuR/9atf8Tyfvsd877338jNmzAj6uNvt5svKyvg//vGP4n2dnZ28Vqvl//nPf8ZjiTHnxz/+Mf+zn/3M575LL72UX7BgAc/z6XnMAPj3339f/FnOMX733Xc8AH779u3iNh9++CHPcRx/4sSJuK09WvyPORA1NTU8AP7YsWM8z6fvMTc0NPBDhgzh9+7dyw8bNoz/05/+JD6W6sfM8zxPEaE4Y7fbsWPHDsyZM0e8T6FQYM6cOdi6dWsCVzZwmEwmAEBhYSEAYMeOHXA4HD7vwbhx4zB06NCUfw9uueUW/PjHP/Y5NiB9j/mDDz7AlClTcMUVV6CkpAQTJ07Eiy++KD5+5MgRNDc3+xy3Xq/H1KlTU/a4p0+fjk8//RTff/89AGDPnj344osvcMEFFwBIz2P2R84xbt26FQaDAVOmTBG3mTNnDhQKBbZt2xb3NQ8EJpMJHMfBYDAASM9jdrvdWLhwIe6++26ccsopfR5Ph2OmWWNxpq2tDS6XC6WlpT73l5aW4sCBAwla1cDhdrtx++234+yzz8app54KAGhuboZGoxG/PBilpaVobm5OwCpjw1tvvYWdO3di+/btfR5L12Ouq6vD3//+d9x55524//77sX37dtx2223QaDS44YYbxGML9HlP1eNesWIFurq6MG7cOCiVSrhcLjz22GNYsGABAKTlMfsj5xibm5tRUlLi87hKpUJhYWFavA9WqxX33nsvrrnmGnHuVjoe8x/+8AeoVCrcdtttAR9Ph2MmIUQMKLfccgv27t2LL774ItFLGVDq6+vxq1/9CuvXr0dWVlailxM33G43pkyZgt///vcAgIkTJ2Lv3r147rnncMMNNyR4dQPD22+/jVWrVmH16tU45ZRTsHv3btx+++0oLy9P22MmfHE4HLjyyivB8zz+/ve/J3o5A8aOHTvw5z//GTt37gTHcYlezoBBqbE4M2jQICiVyj7VQidPnkRZWVmCVjUwLFu2DGvXrsVnn32GiooK8f6ysjLY7XZ0dnb6bJ/K78GOHTvQ0tKCSZMmQaVSQaVSYdOmTXjmmWegUqlQWlqadscMAIMHD8b48eN97quursbx48cBQDy2dPq833333VixYgWuvvpqTJgwAQsXLsQdd9yBlStXAkjPY/ZHzjGWlZX1KQBxOp0wGo0p/T4wEXTs2DGsX7/eZwp7uh3z559/jpaWFgwdOlT8Xjt27BiWL1+O4cOHA0iPYyYhFGc0Gg0mT56MTz/9VLzP7Xbj008/xbRp0xK4stjB8zyWLVuG999/Hxs2bMCIESN8Hp88eTLUarXPe1BbW4vjx4+n7Hswe/ZsfPvtt9i9e7d4mzJlChYsWCD+P92OGQDOPvvsPq0Rvv/+ewwbNgwAMGLECJSVlfkcd1dXF7Zt25ayx22xWKBQ+H51KpVKuN1uAOl5zP7IOcZp06ahs7MTO3bsELfZsGED3G43pk6dGvc1xwImgg4ePIhPPvkERUVFPo+n2zEvXLgQ33zzjc/3Wnl5Oe6++2589NFHANLkmBPt1s5E3nrrLV6r1fKvvfYa/9133/FLly7lDQYD39zcnOilxYRf/OIXvF6v5zdu3Mg3NTWJN4vFIm5z880380OHDuU3bNjAf/311/y0adP4adOmJXDVsUdaNcbz6XnMNTU1vEql4h977DH+4MGD/KpVq/js7Gz+zTffFLd5/PHHeYPBwP/f//0f/8033/AXX3wxP2LECL63tzeBK4+eG264gR8yZAi/du1a/siRI/x7773HDxo0iL/nnnvEbdLhmM1mM79r1y5+165dPAD+//2//8fv2rVLrJCSc4zz5s3jJ06cyG/bto3/4osv+NGjR/PXXHNNog4pLKGO2W638xdddBFfUVHB79692+e7zWaziftIp2MOhH/VGM+n3jH7Q0IoQTz77LP80KFDeY1Gw5911ln8V199leglxQwAAW+vvvqquE1vby//y1/+ki8oKOCzs7P5n/70p3xTU1PiFj0A+AuhdD3m//znP/ypp57Ka7Vafty4cfwLL7zg87jb7eYffPBBvrS0lNdqtfzs2bP52traBK22/3R1dfG/+tWv+KFDh/JZWVl8VVUV/8ADD/icDNPhmD/77LOAf8c33HADz/PyjrG9vZ2/5ppr+NzcXD4/P5+/8cYbebPZnICjkUeoYz5y5EjQ77bPPvtM3Ec6HXMgAgmhVDtmf2j6PEEQBEEQGQt5hAiCIAiCyFhICBEEQRAEkbGQECIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgiAIgshYSAgRBJFSLFq0CJdcckmil0EQRJpAQoggCIIgiIyFhBBBECnLrFmzcOutt+L2229HQUEBSktL8eKLL6Knpwc33ngj8vLyMGrUKHz44Yfic1wuFxYvXowRI0ZAp9Nh7Nix+POf/+yzX6fTidtuuw0GgwFFRUW49957ccMNN/hEotxuN1auXCnu5/TTT8e7774br0MnCCJGkBAiCCKl+cc//oFBgwahpqYGt956K37xi1/giiuuwPTp07Fz506cf/75WLhwISwWCwBBwFRUVOCdd97Bd999h4ceegj3338/3n77bXGff/jDH7Bq1Sq8+uqr2LJlC7q6urBmzRqf1125ciVef/11PPfcc9i3bx/uuOMOXHfdddi0aVM8D58giH5C0+cJgkgpFi1ahM7OTqxZswazZs2Cy+XC559/DkCI9uj1elx66aV4/fXXAQDNzc0YPHgwtm7dih/84AcB97ls2TI0NzeLEZ2ysjLcdddduOuuu8T9VlVVYeLEiVizZg1sNhsKCwvxySefYNq0aeJ+fv7zn8NisWD16tUD+RYQBBFDVIleAEEQRH847bTTxP8rlUoUFRVhwoQJ4n2lpaUAgJaWFvG+v/71r3jllVdw/Phx9Pb2wm6344wzzgAAmEwmnDx5EmeddZbPfidPngy32w0AOHToECwWC370ox/5rMVut2PixIkxP0aCIAYOEkIEQaQ0arXa52eO43zu4zgOAEQR89Zbb+Guu+7CU089hWnTpiEvLw9//OMfsW3bNtmv2d3dDQD473//iyFDhvg8ptVqozoOgiASAwkhgiAyii1btmD69On45S9/Kd53+PBh8f96vR6lpaXYvn07zj33XABCamznzp1i1Gj8+PHQarU4fvw4Zs6cGdf1EwQRW0gIEQSRUYwePRqvv/46PvroI4wYMQJvvPEGtm/fjhEjRojb3HrrrVi5ciVGjRqFcePG4dlnn0VHR4cYXcrLy8Ndd92FO+64A263GzNmzIDJZMKWLVuQn5+PG264IVGHRxBEhJAQIggio7jpppuwa9cuXHXVVeA4Dtdccw1++ctf+pTY33vvvWhubsb1118PpVKJpUuXYu7cuVAqleI2jz76KIqLi7Fy5UrU1dXBYDBg0qRJuP/++xNxWARBRAlVjREEQYTB7XajuroaV155JR599NFEL4cgiBhCESGCIAg/jh07ho8//hgzZ86EzWbDX/7yFxw5cgTXXnttopdGEESMoYaKBEEQfigUCrz22ms488wzcfbZZ+Pbb7/FJ598gurq6kQvjSCIGEOpMYIgCIIgMhaKCBEEQRAEkbGQECIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgiAIgshYSAgRBEEQBJGx/H9s6abPNMCm9gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHACAYAAABONwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdvUlEQVR4nO2deXhTdfbG35s9XZJ0L6VlKaAFF2QRBFEYQUScUcddK4rDD9QRdx1xHPdxcBydRWdx30EdZ9RRZkRBBBSRQlmUrSxl6UJpoW3SNm3W+/vj5ntzb/aUpEma83mePLQ39958b0iTN+e85xyO53keBEEQBEEQaYgi0QsgCIIgCIJIFCSECIIgCIJIW0gIEQRBEASRtpAQIgiCIAgibSEhRBAEQRBE2kJCiCAIgiCItIWEEEEQBEEQaQsJIYIgCIIg0hYSQgRBEARBpC0khAiCIAiCSFtICMWJ//73v5g4cSL0ej1ycnJw6aWXBt3X4XDggQcewGmnnYbMzEyUlJTghhtuQGNjo2y/zZs34/zzz4fJZEJeXh4WLFiAzs5O8f4333wTHMcFvDU3N0e89ptvvhnDhg2DXq9HQUEBLrnkEuzevTvq54AgCIIgkh0SQnHg3//+N+bMmYObbroJ27Ztw7p163DdddcF3d9qtWLz5s14+OGHsXnzZnz00UeoqanBxRdfLO7T2NiIGTNmYPjw4diwYQOWL1+OHTt2YO7cueI+V199NY4cOSK7XXDBBZg6dSoKCwsjXv+4cePwxhtvYNeuXfjiiy/A8zxmzpwJl8vVq+eDIAiCIJIWnogpDoeDHzhwIP/qq6+e0Hmqqqp4APyhQ4d4nuf5l156iS8sLORdLpe4zw8//MAD4Pfu3RvwHM3Nzbxarebffvtt2fZPPvmEHzNmDK/VavmhQ4fyjz32GO9wOIKuZdu2bTwAft++fSd0TQRBEASRbFBEKMZs3rwZDQ0NUCgUGDNmDAYMGIALL7wQ27dvj+o8ZrMZHMfBZDIBAGw2GzQaDRQK73+ZXq8HAHz77bcBz/H2228jIyMDV1xxhbjtm2++wQ033IA777wTO3fuxEsvvYQ333wTTz31VMBzdHV14Y033sDQoUNRVlYW1TUQBEEQRLJDQijG1NbWAgAee+wx/OY3v8GyZcuQk5ODadOmobW1NaJz9PT04IEHHsC1114Lg8EAADjvvPPQ1NSEP/zhD7Db7Whra8OiRYsAAEeOHAl4ntdeew3XXXedKJgA4PHHH8eiRYtw4403ory8HOeffz6efPJJvPTSS7Jj//73vyMrKwtZWVn4/PPPsWLFCmg0mqifD4IgCIJIZkgIRciiRYuCGpHZbffu3XC73QCAhx56CJdffrnot+E4Dh9++GHYx3E4HLjqqqvA8zz+8Y9/iNtPOeUUvPXWW3juueeQkZGB4uJiDB06FEVFRbIoEWP9+vXYtWsX5s2bJ9u+bds2PPHEE6LIycrKwvz583HkyBFYrVZxv8rKSmzZsgVr1qzBSSedhKuuugo9PT29ffoIgiAIIinheJ7nE72IVKClpQXHjx8PuU95eTnWrVuH8847D9988w2mTJki3jdx4kTMmDEjaAoK8Iqg2tparFq1Cnl5eQH3O3r0KDIzM8FxHAwGA95//31ceeWVsn3mzZuHzZs3Y8uWLbLter0ejz/+OC677LKA6w8kqux2O3JycvDqq6/i2muvDfkcEARBEEQqoUr0AlKFgoICFBQUhN1v3Lhx0Gq1qKmpEYWQw+HAwYMHMXjw4KDHMRG0d+9efP3110FFEAAUFRUBAF5//XXodDqcf/75svs7Ozvxz3/+E4sXL/Y7duzYsaipqcHw4cPDXguD53nwPA+bzRbxMQRBEASRCpAQijEGgwG33HILHn30UZSVlWHw4MH4wx/+AACyqE1FRQUWL16Mn//853A4HLjiiiuwefNmLFu2DC6XC01NTQCA3Nxc0Zvz17/+FZMnT0ZWVhZWrFiB+++/H08//bRoqGZ88MEHcDqduP766/3W98gjj+CnP/0pBg0ahCuuuAIKhQLbtm3D9u3b8dvf/ha1tbX44IMPMHPmTBQUFKC+vh5PP/009Ho9Zs+eHadnjSAIgiASREJr1vopdrudv/fee/nCwkI+OzubnzFjBr99+3bZPgD4N954g+d5nj9w4AAPIODt66+/Fo+ZM2cOn5uby2s0Gv7000/3K4tnTJo0ib/uuuuCrm/58uX85MmTeb1ezxsMBn7ChAn8yy+/zPM8zzc0NPAXXnghX1hYyKvVar60tJS/7rrr+N27d5/Yk0IQBEEQSQh5hAiCIAiCSFuoaowgCIIgiLSFhBBBEARBEGkLmaXD4Ha70djYiOzsbHAcl+jlEARBEAQRATzPo6OjAyUlJQFbwzBICIWhsbGRRksQBEEQRIpSV1eH0tLSoPeTEApDdnY2AOGJZOMuCIIgCIJIbiwWC8rKysTP8WCQEAoDS4cZDAYSQgRBEASRYoSztZBZmiAIgiCItIWEEEEQBEEQaUvKCKHW1lZUVlbCYDDAZDJh3rx56OzsDHnMyy+/jGnTpsFgMIDjOLS3t/fNYgmCIAiCSAlSxiNUWVmJI0eOYMWKFXA4HLjpppuwYMECLF26NOgxVqsVs2bNwqxZs/Dggw/24WoJgiCIVMLtdsNutyd6GUQUqNVqKJXKEz5PSozY2LVrF0aNGoWNGzdi/PjxAIDly5dj9uzZqK+vR0lJScjjV69ejZ/85Cdoa2vzG1AaDovFAqPRCLPZTGZpgiCIfojdbseBAwfgdrsTvRQiSkwmE4qLiwMaoiP9/E6JiND69ethMplEEQQAM2bMgEKhwIYNG/Dzn/88Zo9ls9lgs9nE3y0WS8zOTRAEQSQXPM/jyJEjUCqVKCsrC9l4j0geeJ6H1WpFc3MzAGDAgAG9PldKCKGmpiYUFhbKtqlUKuTm5qKpqSmmj7V48WI8/vjjMT0nQRAEkZw4nU5YrVaUlJQgIyMj0cshokCv1wMAmpubUVhY2Os0WUKl76JFi8BxXMjb7t27+3RNDz74IMxms3irq6vr08cnCIIg+g6XywUA0Gg0CV4J0RuYeHU4HL0+R0IjQvfeey/mzp0bcp/y8nIUFxeL4S+G0+lEa2sriouLY7omrVYLrVYb03MSBEEQyQ3NkkxNYvH/llAhVFBQgIKCgrD7TZo0Ce3t7aiursa4ceMAAKtWrYLb7cbEiRPjvUyCIAiCIPopKeEKGzlyJGbNmoX58+ejqqoK69atw8KFC3HNNdeIFWMNDQ2oqKhAVVWVeFxTUxO2bt2Kffv2AQB+/PFHbN26Fa2trQm5DoIgCIJINAcPHgTHcdi6dWtcH2fu3Lm49NJL4/oYsSAlhBAALFmyBBUVFZg+fTpmz56NKVOm4OWXXxbvdzgcqKmpgdVqFbe9+OKLGDNmDObPnw8AOPfcczFmzBh8+umnfb5+giAIguiPBBNWf/nLX/Dmm28mZE3RkBJVYwCQm5sbsnnikCFD4NsS6bHHHsNjjz0W55URBJEOdNtd0GtOvHkb0c8wm4GODqC01P+++nogOxswGvt+XUmAMUWuO2UiQgRBEImi+lAbTn/8C/zt632JXgqRTJjNwKxZwNSpgG+FcV2dsH3WLGG/OPCvf/0Lp512GvR6PfLy8jBjxgx0dXUBAF599VWMHDkSOp0OFRUV+Pvf/x7yXNu3b8eFF16IrKwsFBUVYc6cOTh27Jh4v9vtxjPPPIPhw4dDq9Vi0KBBeOqppwAAQ4cOBQCMGTMGHMdh2rRpAPxTYzabDXfccQcKCwuh0+kwZcoUbNy4Ubx/9erV4DgOX331FcaPH4+MjAxMnjwZNTU1sXi6gkJCiCAIIgzbG8xwuHhUH2pL9FKIZKKjA2huBmprgWnTvGKork74vbZWuL+jI+YPfeTIEVx77bX4xS9+gV27dmH16tW47LLLwPM8lixZgkceeQRPPfUUdu3ahd/97nd4+OGH8dZbbwU8V3t7O8477zyMGTMGmzZtwvLly3H06FFcddVV4j4PPvggnn76aTz88MPYuXMnli5diqKiIgAQvbkrV67EkSNH8NFHHwV8nF/96lf497//jbfeegubN2/G8OHDccEFF/j5dh966CE899xz2LRpE1QqFX7xi1/E4ikLDk+ExGw28wB4s9mc6KUQBJEgXl6znx/8wDL+2pfXJ3opRIzp7u7md+7cyXd3d/fuBIcP83x5Oc8Dwr/r1sl/P3w4tgv2UF1dzQPgDx486HffsGHD+KVLl8q2Pfnkk/ykSZN4nuf5AwcO8AD4LVu2iPfNnDlTtn9dXR0PgK+pqeEtFguv1Wr5V155JeBafM/HuPHGG/lLLrmE53me7+zs5NVqNb9kyRLxfrvdzpeUlPDPPPMMz/M8//XXX/MA+JUrV4r7/Pe//+UBBP3/CfX/F+nnd8p4hAiCIBKF3SXMoOpxuBK8EiLpKCsDVq/2RoDOPlvYXl4ubC8ri8vDjh49GtOnT8dpp52GCy64ADNnzsQVV1wBjUaD/fv3Y968eWKhECD03gvm2dm2bRu+/vprZGVl+d23f/9+tLe3w2azYfr06b1e7/79++FwOHA2e34gDE2dMGECdu3aJdv39NNPF39mozOam5sxaNCgXj9+KEgIEQRBhMHmZEKIhnISASgrA955xyuCAOH3OIkgAFAqlVixYgW+++47fPnll3jhhRfw0EMP4bPPPgMAvPLKK3599oKNoOjs7MTPfvYz/P73v/e7b8CAAaitrY39BYRArVaLP7OGifEciEseIYIgiDDYnEIkqMdJESEiAHV1wJw58m1z5vgbqGMMx3E4++yz8fjjj2PLli3QaDRYt24dSkpKUFtbi+HDh8tuzNTsy9ixY7Fjxw4MGTLE75jMzEyMGDECer0eX331VcDj2XgSNq4kEMOGDRPXx3A4HNi4cSNGjRp1As/CiUMRIYIgiDDYPREhG0WECF+kxujyciESNGeO10Adp/TYhg0b8NVXX2HmzJkoLCzEhg0b0NLSgpEjR+Lxxx/HHXfcAaPRiFmzZsFms2HTpk1oa2vDPffc43eu2267Da+88gquvfZa/OpXv0Jubi727duH999/H6+++ip0Oh0eeOAB/OpXv4JGo8HZZ5+NlpYW7NixA/PmzUNhYSH0ej2WL1+O0tJS6HQ6vzRcZmYmbr31Vtx///3Izc3FoEGD8Mwzz8BqtWLevHkxf36igYQQQRBEGOxO8ggRAaivl4sgJnqknqFp04A1awL3GToBDAYD1q5diz//+c+wWCwYPHgwnnvuOVx44YUAhGGkf/jDH3D//fcjMzMTp512Gu66666A5yopKcG6devwwAMPYObMmbDZbBg8eDBmzZoFhUJIHD388MNQqVR45JFH0NjYiAEDBuCWW24BAKhUKjz//PN44okn8Mgjj+Ccc87B6tWr/R7n6aefhtvtxpw5c9DR0YHx48fjiy++QE5OTkyfm2jheN6nCyEhw2KxwGg0wmw2w2AwJHo5BEEkgPs/3IYPq+uRoVFi5xOzEr0cIob09PTgwIEDGDp0KHQ6XXQHsz5Czc3+kR8WKSosBJYvT9umivEm1P9fpJ/fFBEiCIIIg7RqjOd5mlROCBiNgsgJ1Fm6rEyIBKVxZ+lUgYQQQRBEGFhqzM0DDhcPjYqEEOHBaAwudGKcDiPiA1WNEQRBhIEJIYAqxwiiv0FCiCAIIgwsNQaQYZog+hskhAiCIMJgk0SEqIS+f0J1Q6lJLP7fSAgRBEGEQZoa66aIUL+CdVu22+0JXgnRG6xWKwB5N+poIbM0QRBEGGQeIRJC/QqVSoWMjAy0tLRArVaLfXOI5IbneVitVjQ3N8NkMgUdHxIJJIQIgiDCIPcIUWqsP8FxHAYMGIADBw7g0KFDiV4OESUmkwnFxcUndA4SQgRBEGGwSSrFKCLU/9BoNBgxYgSlx1IMtVp9QpEgBgkhgiCIMFBqrP+jUCii7yxN9AsoGUoQBBEGeR8hSo0RRH+ChBBBEEQYZELIThEhguhPkBAiCIIIg8wsTZ2lCaJfQUKIIAgiBG43D4fL27SNPEIE0b8gIUQQBBECaTQIoPJ5guhvkBAiCIIIgb8QoogQQfQnSAgRBEGEwO6kiBBB9GdICBEEQYTATwiRWZog+hUkhAiCIELgJ4SSvHze5nThvarDaO7oSfRSCCIlICFEEAQRAj+PUJJHhJ79ogYPfvQj/rZqX6KXQhApAQkhgiCIENgcqeMRsvQ48F5VHQCgob37hM/39vqDWLrh8AmfhyCSGZo1RhAEEQK7Sx4BSuaqsferDqPT5gQAtFkdJ3SuTpsTj366AwqOw+XjBkKrOvHhlgSRjFBEiCAIIgQ2v6qx5BRCDpcbb6w7KP7ebj2xSeqdPU7wPOBy8+ixJ28UjCBOFBJCBEEQIUiV8vn//XgER8w9UCk4AEC7T0TI4XLjpTX7sbPREtH5rHan+HOy+6II4kQgIUQQBBECfyGUfKKA53m8vLYWAHDNhDIAQHu3AzzvHQ2ypqYFiz/fjaeX747onN2S60zGayaIWJEyQqi1tRWVlZUwGAwwmUyYN28eOjs7Q+5/++234+STT4Zer8egQYNwxx13wGw29+GqCYJIdVjVmF4teGSSURSsrz2OHY0W6NQKLPzJCABCSqvD5o3qHDEL5umOnsi8Q912qRBKzigYQcSClBFClZWV2LFjB1asWIFly5Zh7dq1WLBgQdD9Gxsb0djYiGeffRbbt2/Hm2++ieXLl2PevHl9uGqCIFIdFhEy6tUAgB5n8omCtXuOAQB+dnoJio066NTCW3t7l1f0HO8SPEMOV2Trl0aEbJQaI/oxKVE1tmvXLixfvhwbN27E+PHjAQAvvPACZs+ejWeffRYlJSV+x5x66qn497//Lf4+bNgwPPXUU7j++uvhdDqhUqXEpRMEkWCYEDLoVWiyJGdEqNMmCJ4Skx4AkJOhwRFzD9q77RiEDABAq0cIOV184JP4YKWIEJEmpEREaP369TCZTKIIAoAZM2ZAoVBgw4YNEZ/HbDbDYDCEFEE2mw0Wi0V2IwgifWGpMYPOExFyuGTem2SgyyaIliyt8N7GolfSEnoWEfJtEBkMeWos+cQfQcSKlBBCTU1NKCwslG1TqVTIzc1FU1NTROc4duwYnnzyyZDpNABYvHgxjEajeCsrK+v1ugmCSH28ESFBXLh5wBFhVKWvYL2DMrSCjyknQwNAXkLf2hldRIjM0kS6kFAhtGjRInAcF/K2e3dkFQ6hsFgsuOiiizBq1Cg89thjIfd98MEHYTabxVtdXd0JPz5BEKkL6yNk0HkjyclWTt7lEUIsImTKEESbtITemxqLLCIkS40loS+KIGJFQo0y9957L+bOnRtyn/LychQXF6O5uVm23el0orW1FcXFxSGP7+jowKxZs5CdnY2PP/4YarU65P5arRZarTai9RME0f9hEaFMrQocB/C8MHiVpcri+bgaVWTfVbs8oiVTw4QQiwgFSo1FFhGSRoFsFBEi+jEJFUIFBQUoKCgIu9+kSZPQ3t6O6upqjBs3DgCwatUquN1uTJw4MehxFosFF1xwAbRaLT799FPodLqYrZ0giPSAeWq0KiX0aiWsdlfMzMM9DhfsLrefqHrwox/x6dYGLL/rXJTlZoQ9T5dPaoxFhNo8qTG3mxd/drojjQhJGypSRIjov6SER2jkyJGYNWsW5s+fj6qqKqxbtw4LFy7ENddcI1aMNTQ0oKKiAlVVVQAEETRz5kx0dXXhtddeg8ViQVNTE5qamuBy0bcbgiAigw1d1agU0LFeQp7UWJfNiblvVOG9qt4NJr3ule9x9tOr0Nbl9fK43TyWbWtEl92FHRF2gfZNjeV4hJC5W4gIWXoccLmFSJAjQlHTLRmrQREhoj+TMjXkS5YswcKFCzF9+nQoFApcfvnleP7558X7HQ4HampqYLVaAQCbN28WK8qGDx8uO9eBAwcwZMiQPls7QRCpCxu6qlEpoPOkqljaaMOB41hd04Ij7T24dsKgqM+9o9ECm9ON9bXHMfu0AQCA/S2dYiPELklDxFCw/TKZR0gvpMZYFOi4RGg53JGapSURIRJCRD8mZYRQbm4uli5dGvT+IUOGyEpap02blnQlrgRBpB7MI6SVRoQ8USLmwemyRyZYpLjcvGjE3niwVRRCWw63i/t0RiCEeJ4P4BGSl8+3SoSQaJY2m4GODqC01P+k9fXo7uoRf6U+QkR/JiVSYwRBEImCCSGNUgGtz5gNJoSkFVaRIi1Prz7UJv68pa5d/DkSIWRzusW0V6boERIiQmYWEeqUpN54wNXWDsyaBUydCvhWxtbVAVOnwrrmG8ljUESI6L+QECIIgggBM0sLHiHhLZOJmPZuJoSijwhZJSJnR6NFTG9tOewVRZGkxqT7sIhQToiIEAA4zBaguRmorQWmTfOKobo64ffaWnRLHpoiQkR/hoQQQRBECMSIkEoBnUoeEWIRlx6HNyoTKdIoksvNY2tdOzptTuw52iFujyQixLpKZ2iUUCg4AN6IEDNJt3bZZMc4B5QAq1cD5eVAbS12XnIdmld9K4oglJeje8xYcX/yCBH9GRJCBEEQIbBJUmN6jSCEWCUZiwgB8lRXJPim0zYebMUP9e2Q6qlIhJDYVVrjtXyyERs8D1i6HTKzNOCpHCsrA1avRtOoMfjpjPsx761NogjC6tWwQtpAkiJCRP+FhBBBEEQIZBEhT2qMlc9LGxZaI6zwEvf3SadtOtgmGqU5IbCDzp4IIkJ2VjqvFLdpVAqxlL692+GfGmO9hMrKcPSZP8OtUOJQjmDWxjvvAGVlsigQRYSI/gwJIYIgiBDIPEIqX7O0V2BEa5hm+zNxtflwGzYdbAUAnFpiBBBZNZpv6TzDO3jV7i+EWHfpujo4Hn8CANCp0YMHgDlzgLo6n+nzJISI/gsJIYIgiBBII0Ja3/J5SWos2hJ6FhEamatDtk4Fq92FNXtaAADnjMgHAHT6eHsCwTxCmRq5EMrJ9DRVtDpkVWOAp4TeY4y2HxXGF7kVSlhHVIgG6m6b99pslBoj+jEkhAiCIEIg7yPkUzUmSY11RxsRau8EAGRt24xxhXoAQmm7WslhYrbwmJ37Dgr9fkLgjQgpZdulTRX9IkKNR0RjtGNgmbi989P/igbqbqtXhFFnaaI/Q0KIIAgiBN5ZY9KGii643DwsPdKIUJRCqLMLAJBhbsWZ//U2ix2Vp0PeHbcK5+RUQtPDELBIlG9qTNpU0U8I6TKAwkKgvByOp58Rt3fkFgKrV8M5bDjsSolZmsrniX4MCSGCIIgQiLPGlEqJR8iNjh4HpM3rozZLZ2QDADJ0aoz/4Vtx+5h1nyPzwD4AQKcxN3DnZwliREgTWAjVt1lFMcf6Czn1mcDy5cCaNXDk5IrHdNqcQFkZur9cKTtXDzVUJPoxJIQIgiBCEKihos3hkqXFgN6bpfWzL8BonRNql3C+MbuqkFlcAADocrrDjgrqZB4hn4hQjqeXUG2LEHnSq5XI9ky5t7vcgNEIlJaK1wd4q9S684tk5yKzNNGfISFEEAQRAqlZmvUR6nG6ZEZpIPru0sxTlJlrhO6t13H1ti8x7Hgdph7YjOwX/wZA6AMUTmB5J8/LPUKsamx/i+BFys3UQKUU6vKdEvEjVpAB6PQYpH17IpFZmujPpMzQVYIgiEQQuLO0W1Y6D0QfEWLeHn13F3DHHPy2tla8j7/pBiiueh5uXkhX+UZ7Ap0nI0hEqKG9GwCQl6UR03xOSddGh0QUdXgiQr7XQhEhoj9DESGCIIgg8DzvTY0pFdCyhooOF8w+EaGozdIsIvTay96OzuvWAeXl4GprkWmzAgjfXTpYHyFWPs8ya7mZGqhVQkTILosISVJjnnOxiJBe0i4gXIqOIFIVEkIEQRBBkAoGjaRqrDuAR6g72tSYWUhZZRxtFMdaYPJkcQZYdo9wf+fhxpDnYX2E/FNjGtnvuZkaqBTCW75Tkg6zOwN4hDwiLTfTew5KjxH9FRJCBEEQQZCKBHn5vNtPCPlFhMxmoL4+8Inr68X99SaDIH7KPP18PDPAMnnh/i6VNuQaxfJ534aKngoxRl6mBholE0LBPELy1JhJcg4bldAT/RQSQgRBEEGQCiGNUgGdSlI11i14hDSebbKGimYzMGsWMHWq0MFZSl0dMHUqurfvBABkPvKQVwQxysqQddIwAEBnOCEUJDXGJtAzcjO1olk6WGqswyc1ZtCp4RloDxuV0BP9FBJCBEEQQWCCQaXgoFBwsoaKZk9EqMSoA+AVJACEJojNzeK4ClEMecZaoLYWXW7h7Vc/oDDgY2cZMgBE4hEKXD7PqsYYeZkaqJT+qTFHoPJ5ZsDWKGVRMILoj5AQIgiCCIK0YgyApHzeLZbPDzAK4zFkJeelpaLXB7W1cE/7Cfh160QRhPJydA8pBwBkaAJXhLFUV1cYIdQZpHxeqeBg0HnPnZupgcYTEZKKH3sgszQbCKtRQuu5dmqqSPRXSAgRBEEEwVcISafPs/L5EpMghPwEi8fr4yofhovOvRNX/OM78Kw6bPVqWHlBlGRo5AKGkeURMR1hhJBVjN74C6ocidk5N8trlnZIy+edEo8QK5/3iLoMtVIWBSOI/ggJIYIg0oKDx7rwwcbDcLkjLwO3SQauApANXWVm6RKTkBoL2EeorAxHXnoDu4rKUV06Cp0aPfDOO0BZGayelFZQIaQNHxGyOV2i2TlQryGTJD2WF6Shot3lXTcTXT3MyE2pMSINoIaKBEGkBQ//Zzu+2XsMlm4n5p9bHtEx0vEaAKD1iAKeB1o6hOnsLCIUUAjV1aHlwUeB6fcCACzaLGTPmQP+66/FqEuwZoleIRQ8EiO9LzOAoJIapnMlVWPS1JgsIuTpLG2VCCExNRYkIlTXasWaPS1gZxlg0GH6yEJwHBd03QSRTJAQIgii38PzPLY3mAEAL62txfVnDRb9PqHwDlyVR4QAb/RkgDFIRMhjjD6myBc3mYefjIFbvoV9+vlwXf5HAAi6DiaQWLfnQLBokValEI3QUlj5u0alQJZWJUaEHOHM0pKGiiwiFKyP0ML3tmBbXbts20e/nIyxg3KCrpsgkglKjREE0e853mVHmyeVdazThveqDst3qK8XSt598EaEBDGgUSrgG+jwRoQkgqW+XjRGtww+Sdxs/vvLQHk5rPVHxG0Z6mCpMWF7qNQY6yGUFSSqxMZs5GVqwHEc1AEiQr5maZ7nRbN0RgQRoYY2oQP2OSPyReHFomUEkQqQECIIot+zp7ZJ9vuLa/Z7P9g9fX0wa5afGPI1S3McJxqmASFCxMSG1e6Cm/mPsrOBwkKgvBwtv7xT3N+SnSMYpYcJ4kij5AJGcgCvWTpU+XywHkIMVkLPOkSrw5TPO1w8bE63JDWmCmuWtniiSIsvOw0nFWX7nZ8gkh0SQgRB9Hv21rcBAKbWbkKJtRXNHTZ8sLFO1tcHzc1C/x8JTAhpJWJFmsoy6TXIlJStiyXmRiOwfDmwZg2OKXTi/eZuh2CUXvo+AP9BqVJY+XxoIRTaZ8S6SzMhpPJ0R3S4A3eWZo8nT42x8nn/1FiPwyU+R9k6NdTMjO0mYzWROpAQIgii37PXLoiVUbY23PrNewCAf3y5E7bzZngHnq5eLfT/kcAqqlhECIDYXRoQPDjSCJHM2Gw0AqWlsjSRxdN7yJoj+IaCpcUAb0QoZGqMRYSC+Ix+UlGIUwcacMU44brUnrVLDdLSiBAgeJKkqTHRIxQgIiT1L2VpVWJ5vp3mkhEpBAkhgiD6PXuOCgNMT7r9F7iqcz+KO46hqYfHF+pirwjyHXMB/9QYAFEYAELqSaHgxBL47gCVY8c6AwghJjRCRISY70caEdp7tAPPLN8tRJYk9wWLCA3Oy8Sy28/BJWcMBACoFf4RG1/R0tnjExFSBTdLd/QI68jWqqBUcJKIEKXGiNSBhBBBEP0anuex96iQ8hoxcjC0b72Bsw9uBQA0GArEvj6BEIWQJDWmlQghZg5mQqgrwAT6FokQMotCyCk7LhCZAYTQn1fuxd9X78fHm4Vhrl220GZpX1SByud9I0I2h7g+oY9QcLM0iwhle6JX3un2FBEiUgcSQgRB9GtYxRjHAcNs7cCcOTD2CBGidl02MGeO/2BUD7aAESFJakwveG9YV+dAvYSOdQQSQqGbKQJClAUQxA7PCxGWOk+F1sHjwr9dEZxHirdqTJoa8/EI9TjF5ol6tVIUfoGEkIVFhHSCIAxUnk8QyQ4JIYIg+jV7PNGgQdka6M8/D6itFTsuWwoH+A9GleDbUBGAzBPkGxGy+kSEumxOUawAXiHk9eCEMEt7hJCb9/b1aWzvASA0MWTnl+4bDnWAztIsIqT0pM06bU5ZxEonls8HSo3JI0JiVRqZpYkUgoQQQRD9mr0ef9CIXdWiMdp463wAQPv5s8XBqJg2Tej/IyGwR8j7s9FPCMmjJlJ/EOAtNe+SpJ6CkaFRij2LOm1O2Jwu8XwsMhRtaixQRIiJPVZhJgghz9DVMBEh5hEyeISlWJVGESEihSAhRBBEv2Zvs8cf5LKIxmjTwEIAgBkq75T4wkKh/48Eu8+sMcC/fB7wRmR8I0K+Qsg3NRas2gsQehZlsRL6HieOmr3nqmvtBs/z3tSYNrLUmCrA9HmHKISEa7F0O8SUoKxqLKBZ2scjFKBPEUEkOySECILo14gVY7fdBKxZA5SViREM1tcHa9YIfX+MRtmxASNCAVJjenXgiBArnWf3+5ulQ0dyMiXzxhrN3eL2bocLx7vs0UeEmJk5wPR5NqleWu6foVGFNEuzKjhvaoz6CBGpR8oIodbWVlRWVsJgMMBkMmHevHno7OwMeczNN9+MYcOGQa/Xo6CgAJdccgl2797dRysmCCLRyCrGhhSKfYKYR4hNkEdpqZ8IAiTT54NVjXnOI0aEfAaktnTaAQDlBZkA/Mvnw807Y72EOmwONJl7ZPfVtVq95fNhBBVDrQoeEcr1RISkVW5alQJaj/AL1FDRIkaEWGrMP/VGEMlOygihyspK7NixAytWrMCyZcuwdu1aLFiwIOQx48aNwxtvvIFdu3bhiy++AM/zmDlzJlyu4NOcCYLoP8gqxgqyxO1s9AQTJsGI1COkD+IRYtEV9tg2pxs9Dpdolg6VGgOCR4QAoK6tW2KWjjA1JgoV/1ljLCLUbPFGsRQKLqLyeYNHCAUyYxNEspMS0+d37dqF5cuXY+PGjRg/fjwA4IUXXsDs2bPx7LPPoqSkJOBxUqE0ZMgQ/Pa3v8Xo0aNx8OBBDBs2rE/WThBE4hArxnIzZNEXJoQ6bE44Xe6g874CVo3J+gh5PEJBqsaYEBqSnwmOA3heEF9dklleoZAOXj3S7h8REr1GUVaNBZo+n5cpjwix50tsqBjCLO31CFFDRSL1SImI0Pr162EymUQRBAAzZsyAQqHAhg0bIjpHV1cX3njjDQwdOhRlQZqnEdHB8zz2NXd4B00SRJIhVowVyk3QTAgB3vROIAI1VJR5hPQsIhS4jxAzSxdma8WoiaXHge4IGioCXu9Ph82JI56IUH6WFgBQ32YN21naF+/QVf9ZY4EiQgBCmqUtvkIoQMSJIJKdlBBCTU1NKCwslG1TqVTIzc1FU1NTkKME/v73vyMrKwtZWVn4/PPPsWLFCmg0mqD722w2WCwW2Y0IzAcb6zDjj2vx+roDiV4KQQRErBgrypJtVykVoshot9qDHu9tqCifOA8I0RUmZDKDdJZmEaGCbK0ovszdjogaKgLS1JhT7CE0cWguAKFyrPedpQXx43LzcHm+yORmCusTx2uwiFAkqTG9b2qMvhwRqUNChdCiRYvAcVzI24mamysrK7FlyxasWbMGJ510Eq666ir09PQE3X/x4sUwGo3ijaJHwdnbLHzb3tcc2rROEIHY39KJ0x79An9csadXx6+uacby7aG/CLGI0Ek+QgiATJgEI1BqjAkEo14DztPoR+wjZAscEfIVQl0RNFQE5N2lmyzC+9YEJoTarL3oLC03S0sjN6x8nsHOKZqlQzRUNPiUzzuoaoxIIRLqEbr33nsxd+7ckPuUl5ejuLgYzc3Nsu1OpxOtra0oLi4OeTwTNCNGjMBZZ52FnJwcfPzxx7j22msD7v/ggw/innvuEX+3WCwkhoLA/BAdIaZjE0QwVu48ig6bEx9sPIy7Z4wQRUUkOF1u3PJuNZwuHlseOV+sWvKFRWRKjHq/+4x6NRrau9EeSgg5A02fF4QBK50HJCM2JFETnue9EaEsLQx6YR9Lt1NMjUVqlj7WaUdrlxC5YkKooa1b9OJE21CRHScVQrmZciGkU/tEhJyhPELyhooUESJSiYQKoYKCAhQUFITdb9KkSWhvb0d1dTXGjRsHAFi1ahXcbjcmTpwY8ePxPA+e52Gz2YLuo9VqodVqIz5nrHG43Pi+9jjGDsqJOO+fKDo93367SAgRvaCmSUhbHbXYUN/WjbLcjIiP7ZDMw2q3OoIKId/ybilMyEgrx9bvP46H/7MdT1xyCiYPyw/oEWJ/l7mSCIo3IuT9W+iwOcXUWn5W4NRYuPJ59lj7PCm+DI0SJxVlQ63kZIbncJElBhMq7Lqk5wgWEdIF6SzN87zk+aURG0TqkhIeoZEjR2LWrFmYP38+qqqqsG7dOixcuBDXXHONWDHW0NCAiooKVFVVAQBqa2uxePFiVFdX4/Dhw/juu+9w5ZVXQq/XY/bs2Ym8nJB8tLkec16rwl++2pvopYSFvel3hjCbEkQwajwVXQCw6VBrVMdKJ7J3hhDi3hEQ/kLB6NtLCMD/fjyCfc2d+GxbIwBvakzaWfqck/Jx2diB+OVPvJWnGVp/szQbtpqlVUGvUQbxCIVJjXkEBktDDzDqoFRwKDF5I1wapUIWsQqFr1BhESGVghPN3OI1sdSY6BFyi8NfAcFLxPxFBhq6SqQwKSGEAGDJkiWoqKjA9OnTMXv2bEyZMgUvv/yyeL/D4UBNTQ2sVmEGj06nwzfffIPZs2dj+PDhuPrqq5GdnY3vvvvOz3idTPzYYAYAHDjWleCVhId9AIX6ICKIQDhdbvHDHQA2HWyL6nhWrQQEf/3ZnC4xIhMqIiT1CB31+HDq24QKrUB9hAw6Nf541RmYdrL3fSTQ0FWpUZodxx7PGmHVGGuUyMQaE0BlOd7oWaQ9hABp1Rgvuz61UuF3Hp1P1RjgFYaA1x+kVHhN42LnaqoaI1KI5M69SMjNzcXSpUuD3j9kyBDZt5WSkhL873//64ulxZRDxwUh19YVvJIlWWAVMiSEiGg51GoVP4SB6IVQhyQKGSwiKd0nkIfGEMAsfdQjXhp8hJA2TMQl0NDVY56u0gWecnf2eG1Wu5jWi7RqjFFs0AEAynL1QfcJBYvY2H3M0molB5VSAb1aKVaNZfj0EQKEqBAzT7NoW5ZWJfq7qI8QkYqkTEQoXTjc6hFCIUp6kwVWIUNCiIgW5g9iH+g1Rztgtobu8ixFKnKCmfXZPllaFZQKfyM2G5gqTY01s4hQezfcbj5gRCgQmQH6CLV0COfKzxYeh6XGWJ8eIPLUGGOAJyJUKo0IRegPArxeJxYRYiksdn1ZksdjfYTUSg7Mxy5tqmjulvuDAGl5PkWEiNSBhFAS4XS5xW+ibVF8KCQKJoC6bE5ZNI4gwsGE0FlD81CeL8zhqj4cuU+oQ5oaCxoR8viDdIGFgm/5vNvtrfKyO9041mmT9BGKNCLk/VtgHZpZRIg9HhuVwXHycR2B8I32lBhZRKh3qTGVz1BUb0RIWEe25PFYk0iO48SokLSE3vv8etOOaqoaI1IQEkJJRGN7jxhSbrfak75jM6sWc7j4gF1nifRl1e6jOPOplfi6pjng/UwInVycjfFDcgAAG6NIj8nN0oG/NFi6g1eMAVKPkBB9bbXaZSmd+vbugFVjgWBmaTfvbcJ4rEM4b75PaowNT81QK8O2DPBN6Q0QPUK9S42pJQ0VeZ4XU2Rse6CIEBC4hL6jJ0REKMnfuwhCCgmhJOJQq9cg7eblhtBkw+3mZT1TKD1GSFm5qxktHTZ8/uORgPezGWCCEBL64mw6GE1EKBKPkHz8gy++ESFmlGbUt3XDFqChYiCkooGlx1o65WZp9nhixVgEAsZXCAWMCEWRGmNmZkDw8TicXo+Q7+NJ/UvimA2Hv1laKjRVNHSVSEFICCURzCjNSOb0WLfDBWk2jHoJEVKOe0RAoOrHHocLB48L208uysb4wUJEaFu9GbYATfsCIa8aC3xMoIiFFN/y+eYOeX+xOomhO5wQUkqmtLO/hWNBhBAjkm7QvmkvFhHKy9SI4qs3ZmlASIsxj5AYEZKlxvyFkDQiZAnQmsBbNUYRISJ1ICGURBw6Lv/QaE3iyjFf4dNBvYQICcc9FVOBhNC+5k64eSAnQ42CbC2G5mciL1MDu9ON7Z72EeGQRYSCpcbED+rAqTHfiFCzT0RI+veoVYYXLcz4zKqumN8oPyuwEJJGkYIhjfZk61SiUOE4TjSaZ/WifB4Q0mMOn4hXsNQYq5qTNlUM5BES+whRQ0UihSAhlET4RoRCDYMMhNvN4/b3tuCZ5Sc2ny0SunymbFNEiJBy3CPij3Xa/WZ5MX/QSUXZ4kzBaH1CciEU+LXn2/XYF+YRsjnd6HG4cNRTzcVEQW2LVwhF0rCQRXhY8YBvRMh3HZFEchQKThzD4TsmhPUSis4j5I0IOV1uP49QdpDUmFYdyCzt//zS0FUiFSEhlESw0nn2ZhJtRGhPcwc+29aIF9fsFzu+xgtf4UMeIUIKS40BwEGfqBDrKF1RnC1uOzNKn1CnJDUWLBrpOwfLF2lZvbnbIXqEThtoBADUHuudEOq2u2Dudohpp7wsoXxerVTIZotFOiiVRWmKPf4gxlhPSnF4of9A2WBwHCeO2ZBGhESPUDCzdICIEBtNIjNLU0NFIgUhIZQk8DwvCqFRAwwA5P1NIoF94Lh5+QdRPPAVPiSECIbd6RajMYB/ekyMCEmEUEWx8JpnfwPhiCQi5J2MHlgIcRwn8wkxj9A4j8BgX0SUCi5gHyJfWGqsy+7Cfk80KT9LKzYgBOTpsUhSY4A34lNikguhW6YOw9f3TcPPxwyM6DwMlWQCvW/5fJZWsr5AZmmnf0QocGqMIkJE6kBCKElo6bTBandBwQGner6RtkaZGjsoSa0dtcRXCElHCQAkhAgvvpHM2pZO2e9MCEkjQsxwG6nXLBZVY4DcJ8Q8QmeUmSCtag9XOs+Q9hJika2xg0yyfaR+pUhTWswXNMAnNaZUcBianxm2BN8XZmh2uNxwOD0NFQOVz2sClM87ApXPS/oIKSkiRKQeJISShMMeETPAqEeRp41+tB4haQrCtxQ41vhW6tDgVYJxzCcaKU0xma0ONHlemyOKJEJI5z8JPhQdEcwaswTofOyLNyJkF788DDTpxVEWQGRpMcAbEbLaXaLXacLQXNk+UiEUbvI8w+SZCl+aow+zZ2SoVWzwqn8fIZlHSO39OdAEeksAoamihopECpIys8b6O8woPTgvAzkeE2e0HqGDkioX31LgWOPrESKzNMHwfd1KU2N7moVo0ECTXpZSYR+mXXZhonm4VFREESGbf1WTL9LUGOv7U2TQYaBJjyOexofh5owxpGbp6kNCRIj1SPJ9PAAyv1Ao7pw+HOX5mbjglOKI9g+H1yMkSY2p/MvndRrvdbPnIFBqTG6WZg0VKSJEpA4UEUoSDrVKhFCm8A3Qr4+Q2QzU1wc+QX09DklSEPGOCPmVz5MQIjwc7xIExQCPuffAsS5x7AQrjz+pSG7wlaZXwkUX3W4enZLUbKfdGbALu+hh0Qf/vscqx2qPdcHl5sFxQH6WRhZ9iTQixHr+/NhgRpvVAZ1agVNKDLJ9ZB6hCBshjhuci8cuPiWq6rBQSLtLhzJLS+eghYoISaNcKqoaI1IQEkJJAutZMig3EzmeULhsAr3ZDMyaBUydCtTVyQ+uq0P3eTNwpMO7f3NHvIUQpcaIwLAeQmeUmaBUcLDaXWKE8tu9xwAAZ/qkjDQqhRh1CNdRvcvulDXz5HnIupwzvFVN4SNCrNN1XqYWKqVCNtQ02tTYN55rHFOWI+vbA8ijU5FWjcUataT7szh0NVBDRXVws7TbzYspyUARIaebp/mDRMpAQihJkKfGAkSEOjqA5magthaYNs0rhurqgGnTcLhNLnzibZbu8nwjZx9eXXYSQoQA6yFUZNCJM7FqW7pgd7qxvvY4AODcEQV+x7HIQjghxCI9aqW3FNxXiPM8H7azNACYfIRQkUHo+SOLCEVplmapwTM9vZGk9CY1FmtUkoiQ3Sn3CLEIWYZGKUtP+pbPS8WofOiqfIQHQaQCJISSBFY2PCg3AzmZXgOn+K2qtBRYvRooLwdfW4v3b3oQOz5fK4ii2locqBgjO19fpcaYsZs6SxMM1rohP0uDoZ7J8geOdWHToVZY7S7kZ2nFFhFSmGAJ91qSViuxVI5vd+keh1v8IA4VEWLiq75NmAjPXs8DJUIoco+QXHD5+oMAwKiXVmUlxqLpTY35l8+X5mTgrhkj8OjPRsmO0fqkxlh7BI1SIXt+VLKGjSSEiNSAhFAS0NHjEL9FSiNCTjcv996UlQGrV2PL+POwaPy1uOOjnUKEqLwch+77DQBvc7W+Mkuz6hoySxMMlhrLy9JiaL7weqxt6cSaPS0AgHNH5EMRwAzNBEt4ISSIniytd+SEbxUj20fBhY68sIoshjci1JvUmPdxFBwwxqd0HpD7aRKeGnNLzdLe/4+7ZpyEq88cJDvGO2JD2F/amkBavi+bZUaGaSJFICGUBLC0WF6mBtk6NXRqpZifb/OtHCsrQ/OihwEA+/PK0JSVB7zzDg66hDd01qH3WKctrr082AdPoeeDg/oIEYxjntdsXqYG5QXeiNDaPYJ3ZurJ/mkxADCIEaEwqTGJN0UUQj7iySLpKh2qz47v/K+CbEHYS5sX9kYIjRxgCBiJMiaBEGLpRLuT9/MIBcPXLB0s7ShLjVFEiEgRSAglAWJaLM/7LTQ3WOVYXR06/vaS+OuGslOBOXNwsEHwXowdJBhUeV6Y8xQvWENFlkogs3T/478/HMHTn+8OWJEVilZP1VhelgblntTYlrp27DpiAccBU4bnBzwu0l5C0g9hb0RIfky4OWMM5olhsIiQVqUUf47cI+R9rDMDpMUAXyGU2NSY0+0/aywY3unzvhEh+fOnUHBgwT5qqkikCiSEkgDRKJ3rFULMJySLCHmM0R0Wbwfp70+dDNTW4tBewTxdXpCFQs+Qx3j6hLweocRHhPa3dOKDjYfjPl8t3Xj00x14cc1+7Gi0RHWcmBrL1GKoJyLEUr+nDTQizzON3ZfIPULeD+GsIMcE6nocCN+IUFG2NxI00CT4hCKOCEmmwI8PYJT2fbzEpcZY92ceDmekQsjTR4h5hLqDtyYQzdj090ikCCSEkoBdR4QPmmEF3t4q3soxjxCqrxeN0R3FpeJ+34/5CXqGn4zGDOEb6BC7GYWeKE08hVCnj1m60zNxOxE89ukOPPDvH7HBU5FEnDidNqfYITqa15HV7oTVLnxY5mVpUJStk5VhB6oWY4hCKIyoDhwR8hVCrJlimIiQjxBiqV7A6xPSqCITLBmS6xw/OHBEKBk8QszHY5eZpUM3sNSpgkSEtP5CU63wlucTRCpAQigJ2FbfDgA4Q2KuZEJI7NKbnQ0UFgLl5eiovEHc74DZjo1vfSTs4uxBboFJjAjF0zDNPuyYEHLzXiNlX8M+qI9H2YmbCE6dZPip78iMULBokEalQJZWBYWCwxBPegwI7g8CpGZpeZqrvs0qGzfj/RBWieLJzyPUHVlEyOAbEZKM1mAl9JFWjZV4IkgnFWX5TYpnJFVqzCXxCIW5RrGPkE/VWKDUo7Q8nyBSARqxkWBau+xiauz0gSZxOxuzIU6gNxqB5cuBjg50fN8qO8f7BwUhMKQ0H5zJJKarmvsgIpSfpQXHCU3tOmyOiOcnxRLW3LEnQFM9oncc7qUQapUYpZlJuTw/E7uOWJCtVeGMMlPQY9mHKhMxgNBCYvpzazA4LwNf3j0VgFf0ZOvUsDmF//PeRoR0aiV0agV6HG4oOGHdjJ+eXoJv9h7DT08fEPa6AaAsNwMf/3KyTEwFeryfnFyAVqsDBdmBU4TxRi2ZPh+pR0jrM3Q1VOpRWpVGEKkACaEEw6JB5fmZMEqMm2zMhmwCvdEIGI3osB0FIHwj7rA58eWOJgDAkCKhNwvzOcSrqSLP86JHKFunQpZGWEdnjxOF2WEOjgOsmaN0DhJxYsgjQpFH2o5LjNKMYZ6WDpOH54X8wBXN0pKI0MHjVticbuw52okehws6tVKWGlM7hPP5ptMiaabIMOrV6HHYkJ+lFaMZADCqxIDPbp8S9ngpYwYF9gZJeeOmCeB5Puqp8bEiVB+hYIipMU/U1zteI0BESOGNOBFEKkCpsQSzra4dAPy+KbPUWKAJ9OxNnqUZWAh6iKfqjH0jPRqnMRs2pxvMB5mhUYqGVd+xG30FE2XJJIR+88mPuOmNKrFzb6ohjQi1RBEROiYxSjPmTh6CuZOH4NezR4Y8NpBZmlWgAUBju9D00BKooWKQ8nnf1FcgTHrhb03qD4o3iRJBgESouP1njQVDNEs7w0eEVJKIE0GkAiSEEsxWjxAa7SuEMn08QhLYB8F5FYWQ9qUbnCd4MQrE1Fh8IkLSNESGRiUOg+ywhS57jgc2p0sUgsmSGutxuPDu94fxdU2L+P+bakiF0PFeeISkEaHcTA0eu/gU8fUZjEAeIWk0qsEjhKTN/LKDmqWjiwgB8oqx/oyYGnO64XBG20fIv6Gi//m9QosgUgESQgmE53kxIuQnhHw9QhI6PW9CA4x6nDrQKG4fmu+JCHne0OM1eNXqifzo1cI8Ila5k4iIkPQxkyUixD6wAaD6UFsCV9J7epsaE3sIZWrC7OmP6BGSRYS8j90oCiGvyMkM0lAxWJ+bQLCUdGEIb09/Qi0pb4/aI+R0yea4GQJFhBQUESJSCxJCCaSutRttVgc0SgVGDpCba/yqxiRIPwjOKs8Tt7Nv3MwsfazTHpc3I/btm30IZQeZ99QXSEd72JIkIsTmVgGpKYTcbh51kmvoTdVYsF5BoWCRGWlESPr6b/CsSTr1PCtIyX2kDRUBr2gbEKTSq7+hkk2fZyM2wgghj0eI54Wye9b0MpAZXaUkjxCRWpAQSiBbPUbpkSUG8Y2GwVJj7VaHX38e6bexs8qFfiXZWpX4hp6ToRHD3y1xKKFn5uQsTwO5TE3gb+V9gXTqfbJEhOrbvNGUzYfbEtZfqbc0d9hk3qZ2qyNiQS0drxEtTLT0OLwf0FIR1tAuRDhlDRXFaKRv+Tz7oA4fEbpx8hBcPb4MV4wrDbtvfyCwWToyjxAAXPfKBhw83gWAqsaI/gEJoQSy9XA7AOCMUqPffbmeiJDd5UaX3RvpcLjc6PZEPrJ1KkwZXoArx5Xi/lkniwZMhYJDYXb8miqyDx3WB8U7ATwRqTHvB2CyeISkEaHWLjsOHreG2Dv5YP6g0hw9lJ40x/EI02MsNZbfi4gQEzWAV+zLIkLtVllaJlsn6SN0Ah6hkQMM+P0Vp4t9gPo73vL5yGeNaZQK8bmsPtQGh4uHKUONwfkZfvt6U2Op9QWASF+ofD6BBGqkyNBrlNCqFLA53WjrsgccLpmlU0GtVOAPV472O74gW4uG9u64NFVkvhy2pmDznvqCziT0CEmFECB8cAzND20UTiaYEBqSlwmb042WDhuOddqCNgmUEsgsHSkqpQIZGiWsdhcs3Q7kZmp8PEI96HG4RRNutk4NFmw7EY9QusGqxhwutxj5C+cR4jgOr94wHpsPt2Ngjh6lOXqMKMwKUjVGqTEitaCIUIJwuNzY3mAGAIwuNQXcxzt4VdpVV3jD16uVId+84tlUsUv0CAmpsUSapa29iAgd67ThTyv2yEzNsYSlxgZ72hlUH2oNtXvSwYRQWW6GGNmJxCfE87wohHJ7kRoD/EvopZGoI+ZumD0pL44DMiWtG+wut1ja7XbzYoQoXEPFdIR1kRY6S0cmhABgYnkebp02DBePLsHYQTlBRSalxohUg4RQgqhp6oDN6YZBp8KQIGXFpgCGaUuIslUpYi+hOJTQM19OhkcAieXzCfAISVMikUaEPthYh798tRfPfVkTlzWxiNAlo0sApJ5hmlWMDcrNQL4nsiOtHDt83IqPt9T7e9dsTrEKSdpHKBoMPiX0xyV9hBwuHrXHOgEI4pvjONGfBnijQl12p9jnKpI+QumGmLpyez1CGlXs+hp5I04UESJSAxJCCULaP0ihCPwmlJvpX0IfqfehKI6DV1lEKMvPI5TgqjFnZBEh1qRy7Z5jcMe410mPwyUa1C8+QxBCe452ipGMVOCwRAgVBIgI/eY/23H3B9uwfHuT7LhWj1jK1Ch7PWpFWkJvtTvFvjUmT4l7TVMHAK9gUio4ZHoei4li9jeiVnIRzwlLJ6SzwJhYiSQiFClqJQ1dJVILepdIEME6SksJFBGK1PvA5hgdjYNHiPlyxPL5RPYRkhjJfYe+Huu04d/V9X4pM2Y2P9Zpw64mS0zXw9JtmRolhhVkid2+txxOnaiQVAjle15HxySvo52NQkr3u/3HZcd5x2v0vkNztmTMhnSA6wjPmA4mhKRfBLJ80mnSrseJ7OCcrGgkQiXSPkLRIEaEqKEikSKkjBBqbW1FZWUlDAYDTCYT5s2bh87OzoiO5XkeF154ITiOwyeffBLfhUbIrFOLccOkwThnRPBp3LkBxmxIe6iEgkWE4uERstrlHiFvZ+kElM+HiAj9ZeVe3PvhNvxna4Nse7fdK5jW7jnW68d2u3nMeW0D7vnnVnEbS4uV5mSA4ziMHSzMntqcIumxbrs3oiVPjQnbzN0OMU22yeeajp2gPwiQe4SOe74A5GdqMNBT0bUrkBDy6S4dafo4XVH1YtZYdOeniBCRWqSMEKqsrMSOHTuwYsUKLFu2DGvXrsWCBQsiOvbPf/5z0n0znD6yCE9cciomDM0Nuk+gwauRp8Y8Zum4RITkDRWD9XLpC+Tl8/I3XvaB7ttLSRohWrunpdePXd/WjW/2HsNHmxvEFCQzSpfmCB/c4zxCqDpFIkJs/QadCsYMtej1YSKntsX75WN3k0U2IJVFcPJ7UTHGMEiaKrJS/NwsDQZ6ns89ohDyRkR9Kyq9k+fJHxQI5hHqcbjFqrtw5fPRoKaqMSLFSAkhtGvXLixfvhyvvvoqJk6ciClTpuCFF17A+++/j8bGxpDHbt26Fc899xxef/31Plpt7GBjNtq6pB4hz7ddbeg3edZHqLXLHvPBn11BhFAiGirKy+cDp8Csdvl2qRDadKhVjHBFi9T3wyI+3oiQXAhtPdyeEt+QpRVjALypMU9EqLalS9yX54Etnl5YgHS8xomkxiQRITHCpBV7/LD/U2nPoSyfXkLR9BBKR1jVmPR1r46pWdprxiaIVCAlhND69ethMpkwfvx4cduMGTOgUCiwYcOGoMdZrVZcd911+Nvf/obi4uKIHstms8FischuiSIvgFE10jd5k14tviEFGtNxIjBhwUyqvh9EfUmoiBD70OwO4hECBMPo97Vyr0uktHd7n9dqHyHEhMSIwmxkaVXosrtw4FiX/0nC0ONwwRxg3ly8kPqDAPhVjbGqLUb1QW9rgGMn0EOIwaI4lm6H+LqVpsYYgVJjHWJqjIRQKJiHR/oFIbapMYoIEalFSgihpqYmFBYWyrapVCrk5uaiqakpyFHA3XffjcmTJ+OSSy6J+LEWL14Mo9Eo3srKynq97hOl0PNtXJrasUiMoKFQKDjRqxHNrKhI8E2NMa9Ql90Z8yqscMhGbPgKHs8bfTCzNHt+e+sTklbzsdSXb2pMqeBQ6ElTHo9QkG6oPY6fvvANznjiS1Q8vByjn/gSn20LHfmMFb5CiFWNtXbZ4HLzopgbViC0fNh4ULhunuexdq+QZhxyAs0jA3mEcgMKIWlqTPiZRSSjGa+RjrCqLqkQUgWpXD2R86dCBJQggCiE0BVXXIHly5fHdG7SokWLwHFcyNvu3bt7de5PP/0Uq1atwp///OeojnvwwQdhNpvFW11dXa8ePxawD2ppCXxHFEbQQBGlWCCmxjSsakz4wOF5wNrHYy5kESFnkIiQPbBAOn9UEYDe+4SkqbHtDWb0OFwyszSDDRONtIT+g4112N5gkQmtDQd6F7WKljqf1FhupgYcB7h5obEnS41dNV74grC1rh0OlxsbDrSitqULmRolZp82oNePL/YRsnmrxnKzNH7jL6Svf/Zzl19qjIRQIFj0h6XGNEpFTD2UVDVGpBoRC6G2tjZcdNFFGDRoEB555BHU1tae8IPfe++92LVrV8hbeXk5iouL0dzcLDvW6XSitbU1aMpr1apV2L9/P0wmE1QqFVQq4c3y8ssvx7Rp04KuSavVwmAwyG6JotBT+dVldwV4kw8vhFhaI9I5UZHSJZbPC5EgnVohzqTqa8O0tGTf7nTLhDoTPL6pMRYhmj6yEEoFh9pjXaIAiAapsHG4eGw82CpG71hECIheCLGI290zTsKDF1YAiE9jzED4RoRUSgVyPNWLzRabGBG64JRiGHQqdDtc2HXEgqUbDgMALj5joMy/Ey3SiJDXc6RBplYl9hIC5B2jfavGovmykI6ofCJC4QauRgtFhIhUI2Ih9NVXX6G2thbz5s3Du+++ixEjRuC8887D0qVLYbP17k26oKAAFRUVIW8ajQaTJk1Ce3s7qqurxWNXrVoFt9uNiRMnBjz3okWL8MMPP2Dr1q3iDQD+9Kc/4Y033ujVevuaLK0KGR4fDqv+imaGEhuPIO3OGwu80+eFDxqhw6/Ss774CSGe5+Hy+Zbp60uSdpfuCWqWFvYpzNZhjKePE0vrRIO0rQEAMX2VpVWJ4geQ+14igQm3sly9OKMsHtV/gWjwMXsD3knyPza0w+Z0Q6NUoCw3A+OHCBWPX+44KjZXrJw46IQePzuAR4iZr0uM3jVlRdRHiIRQIFhEiL3O1DFuOqlS0tBVIrWI6i9g8ODBeOyxx1BbW4sVK1agpKQE8+fPx4ABA3DbbbfJhEosGTlyJGbNmoX58+ejqqoK69atw8KFC3HNNdegpETo3tvQ0ICKigpUVVUBAIqLi3HqqafKbgAwaNAgDB06NC7rjAcsPcb6AUXzJp+X6T8eIRaI0+e10vSEWnZfPFi4dAvO+f0qmfjxrfiySQzT7I0+mEdIp1Ziyoh8AMCmg9GXt7MID/Nife4RA6U5elmqIdqIEItkZWiUYlQwHv2gfHG43GKDSmkvICaoqw4Iz9HgvAwoFZxYEffy2lrYXW6cXmrEqQONJ7QGaUTomCQ1BkAsoQfkVZO+Q39ZST+N1wgMi9iw4GksjdKANzVGs8aIVKHXfwHnnXce3n33XTQ1NWHx4sV4//33g0ZnYsGSJUtQUVGB6dOnY/bs2ZgyZQpefvll8X6Hw4GamhpYrdGnOJIZVgbPIgKRNlQE4uMRsjvd4je9LMmcJ5Ymi2fl2OqaZjSae7DnaIe4zbebNSuh53k+bNWYTq0QU0C+vYYigXl4pp0sNMVkIlUaTQGiF0IsgqXXqMR+UC0dtrgb0aXRPGl6i5XQb/RUiLEo1XiPEGLdia+dcGLRIMA3NcYiQh4hJPEJBfII+ZbP08DVwDChwohlDyHAK7QcTooIEanBCb1THDhwAG+++SbefPNNmM1mzJgxI1br8iM3NxdLly4Nev+QIUPCGrljafTuKwp8GiNGYwSNh0dIGvHJ0HrnSWXFefCqNFrBZlrZnd4RAQyW9rI5vc3ipGZpl5sX+yrp1coTEotM2Jw9LB/LfjginldqlAa8Qija1JherUR+lhYcBzjdPFqtdjE6Ew9Y2jVToxRLoAHv64j5h8oLhHEXo8tMUCs5OFw8srQqXOwZMnsisCiO3eUGPP9t7P9ILoS8r39m2vdtqEhm6cD4RoBi7RESO1dTRIhIEaL+KtDT04N3330X5513HkaMGIG3334b8+bNw4EDB7B8+fJ4rDGtEVNjHT1wufmoIkLx8Aixx9eoFLI31Kw4p8akIoJFCqSPxZ4PFhGSpsOk/YWk2/UapRht6E2vJSaECg1anC5JCZ1oREiaGlMrFeIam+NsmLZ0BxbZvuKr3FM6r1MrxVTYJWeUiO0UToQsjQrSAiaNSiH6z0qCRIREj5DNibpWq2joZn87hBxf4RP71BgzS6feF08iPYn4L6Cqqgq33HILBgwYgPnz56O4uBjLly9HbW0tHnnkkYT22+nPsNRYi8UmSztFlhrzeIQ6YhcRYmkb38qgrDinxqQigo0cYaZtrUohRgWY6JGmw7plosj7s06lFJ+j1i571BFDlhoz6tWiXwbwF0KGqFNjwnWxCe4FntfA0Y7e+4RsThfmv70JT38evB2F11sj/78t8BFCrIcQANw14yTMGFmEhecN7/XapCgUnCzlmpepEf1WJSaduN0QZMTGs1/WwOHiMWV4PkYUZcdkTf0N/4hQrFNj5BEiUouIv8KdddZZGD16NJ588klUVlYiJycn/EHECeONCNnEkL9GpYBWpQx1GABvSuF4lw08z8ekV4i3maL88X1LmGNNe8CIkFeU6dTCmy+LCEnTYVJDNRNFWpVC1nTS6eZh6XbCmBF5OoUJG5NeIw5XBYKnxiKOCElSY4AwN27XEUEMR7Km29/bgtmnFuMaiWfn+9pWrNh5FCu5o5h/ztCAE+KDzejy7RQ9ND9L/HnqSQWYelLwwcG9IVunErtESx97UG4GOE74oJW+/tiXgmOdNvxnq1C5t8jTdoDwR+UbEaKqMSLNiVgIbdq0CWPHjo3nWogAFBq8qbFoTaAspeJw8bD0OGUl3b3Ft5kiIzPOQsgcQAhJO1wzYcjK57t9UmNuNw+FghMjQjqPyNCqlMjSqtBpc+JYly1iIWRzusTHMGaoMXZQDjgO4ACU+QghFmExd4d/boSJ4MIHCGudEKixZjA2HmjF2j0t2HXEgqvPLBPF7yaP0ZnnhVYBPx9T6nesNzUm/7+VpsZMGeoTmi4fCQa9Go1m4VpzJXPL8rK0+MMVo6FXyz1MTIQzL/klZ5SccPVaf8Y3AqSJdR8hVjVGfYSIFCHirwJSEfTNN9/g+uuvx6RJk9DQ0AAAeOedd/Dtt9/GfoVpjrRqLNqOuTq1Etla77flWMCiK75+kOw4D14N5RHK0CjFiFBPkJJ5USDZvUZphjQ9FilMmHGccO0F2Vr86aoz8OyVo/3ElNQsHS791u3jYQKAIoO8cjAULF3Y0mHDfsmk+KoD3plgq2sC90wKVnaeL/HalJ/A+IxIkQqxPB/RdcW4Ulx0urxztbSnkEapwH0zT47vAlOceKfGWETISZ2liRQh6r+Af//737jgggug1+uxZcsWsZmi2WzG7373u5gvMN1h0YB2qwPHPWImmkZxeTGuHOsUu0r7CCFddOmfaJGel82gskoaO/pGhHybKPqW0jORAXh75hyPQiyaJf4ghccceumYgbhsrH+kxSiphPIdDOsLS+kpFZxY1hxNREh63d/tF8Zy2JwubK1rF7ev3dPi15gSCD6sVCpGWMVYPJEKfV8hFAitSik+V3MmDRbHgxCB8UuNxVwIearGKCJEpAhR/wX89re/xYsvvohXXnkFarX3Devss8/G5s2bY7o4QkhFsDf5Wk81TDQjDMTKMcmH/GOf7sBVL633a0YYCd7UmNwjVGwUohZHzN1RnzMSpBPY28TUmFeUaX0iQn7zxXwiRTppRCgzuqGogNezFEm6MUurEkeQsKhLMMQeQmqlmNYqjCIiJBVC6/YJw2S3N5hhc7qRk6GGQadCm9WBbfXtfscGG1aqUytFcTS0jyNCuRFOsp91ajFOKsrCwp/ExrTdn1Er4myWpqoxIsWI+i+gpqYG5557rt92o9GI9vb2WKyJkMBxHAo8EQGW6uhNROiY50Pe4XLj3e8PoepAK77a1Rzq0IB0BUmNsUopNnQ01gTyCDFRFigi5NdE0bNurxHZ+9LPy4w+asaEmSkCIcRxnOjrChcx67b7R6x8u4uHwirxaH1f2wqXmxc7Qp85JBfnjBCMzYHSY6IHLcA1sdegtGIsXhiijAgBwPPXjsEXd52LnDj7l/oDvuXzGlW8+giRECJSg6iFUHFxMfbt2+e3/dtvv0V5eXlMFkXIYYbp/Z7J39E0ihMbBnqiCYeOW8Xc/cpdR6Nei1R8SGGVUk2WHrGxYDT8UN+Ov6zci/lvb8LZT6/CLe9Uy/w0UgHRaXPC5nSJZulIPELMGxQwItQLj5AYEcqI7IM30sqxbof3mhjMI9TSGb67tFVy3eZuB3YdsYhG6QlDczHV0wV7TY2/CLaEGFa64JxyzBhZiHNjXCEWCLlHKPJeQLGcoN6fYdFJRtw8QpQaI1KEqDugzZ8/H3feeSdef/11cByHxsZGrF+/Hvfddx8efvjheKwx7WERgdrm6CNC+Sza4WmqWCsx0H69uxkOlzuqN0JWsp7hkxrLz9JAq1LA5nTjiLkbg/Mijxwc77Th8n98Jyu3bWjvRpvVIfp3fAVEW5dDZtxm+sBrig7iEbLLS9MBr0coGkM5G7gaaSWeKISskafGGCy96XDxaLPaA5a+M3yv+9t9x7DpkDciNMCTwvyhwYxjnTZZRViw8nkAuGbCIFk5fjyRCv1IU2NE5HCc4D9jXdljnxpjVWMUESJSg6j/AhYtWoTrrrsO06dPR2dnJ84991z83//9H26++Wbcfvvt8Vhj2sMqxzps0VWNAd6KH5b2YVElQDDHbpRUE0WCOYg3huO4XqfHfqg3w+HikZ+lxcM/HRWw0s1XCB3vssn6CPl5hHxMyX4eIY2/0IgmImTpjjw1BkTeVDFQakyjknSXDuMTYuKQXdO73x+CuduBDI0Sp5QYUGjQ4ZQSg1BGv0eeHgtWPt/XhKoaI2KD1DAdr4gQjdggUoWo/wI4jsNDDz2E1tZWbN++Hd9//z1aWlrw5JNPxmN9BPxHBUQzTJKlFpioYD4jFh5fEWV6jBmKA3kxWHqsvi26wbc7Gs0AgMnD8jBvylAUeaIWoYRQa5dd1kdIF9YjJBdIgSJC0XiEWGrMFGHfoYiFkCNwxK0gwsoxFlGaXlEIwCtKxwwyid4NNiTW1yeULFPbZUIojrPV0hmVJD0W8z5CSjJLE6lFr78KaDQajBo1ChMmTEBWVvxLatMZ5hFinEj5PEuN/dTTi2XFzqNRjZZo85kILqW3EaGdRywAgFNKDLJzH5MIEyYgWLVaa5fdW8GmVYoRIZtD7gVi9PiWzwfwCEVTNRYsMhaMSD1CgVJjQOS9hNjxYwaZZI0PzxySK/78k5MFkfTN3hbZ/32yTG1nQkw6Z4yILRpJN+nYzxqjhopEahHbvwAiLrDUGCOq1FiW1//C87yYGrth0hBoVQrUt3Wj5mhHxOdrjSgiFJ0Q2tHIhJDQDZil8451+EeEhnqqllq77OI0+kyNNyLUE2DEBuAVCF6ztLRqTHi8Nqs9rBmZIZ0zFgliU8Uw5fPe1JhcjERaOcZSYxlaFSYNyxO3T5AIIdZ1uc3qENOtPM+H9Aj1JbkeA3phtpYM0HFCJSmhj9uIDaoaI1IEEkIpQEF27yNCzCti6XGiydIDc7cDHCdEX84ZkQ8AWLkz8vRYa0QRochTY5YeBw4dF/Yf5YkI+Rq8HS63KGSG5EmEkHTEhk9EyC81FoFZ2uXmI24IGU0fIel+EafGehkREifXq5WY7BFCKgWHMYO8s9B0aqVY9cfEZpfdJRrOE50aO22gETefW47fXDQyoevoz8TTIyQOXaWIEJEikBBKAXxTY9E0VDTo1KIfgI1ZGGjSQ6dWYsbIIgBCeiwSuu3e+VqBI0LRp8Z2HxGiUQOMOlGQ5Isl/4LokoqHQEIoS6uCzvOtVowIBUmNBTJLa1QKUVwy8RUO0SwdZfm8JWxqTD55nsFeA5F6hDK0Spw/sgj5WRr89PQBfufzRgrtsnWplRy0MY4QRItCweHB2SMx69QB4XcmeoVGIn5i7RFSUUNFIsWI+B3vkUceQXV1dTzXQgQhL1MLaeuPaFJj0gnrTAgN84xJOG9kITgO2FZvRpM5fLO+Vk/JuFrJiZVdUnrTS4gZpZk/CJBUunlECRNC2TqVGB2TmqUztEpoPREU0SPkE/nxmqUDe3C8Hbgj8wmx8vlIzdJRe4R8hVB2dB6hDI0KhQYdNv3mfPz5mjF++4li02NIt0jSYpSO6v/0RUSIqsaIVCHiv4D6+npceOGFKC0txa233orPP/8cdnts5lcRoVEqOFm/l2jNrOxYJoTKPT6bwmwdxg8WUibvVR0Oe55Wj0jIydAE/LBkvYR4PvJRG8wfNKrEOy2cpd1aOuURIaPeO/m8tcsufuhnaVWi58fmiQix+9j+vuXzvkJIrByLwDDtlqTQIk2NGSKcxdYTJDXGIkLNlsjK532rznzxFUIdQeaMEf0TqfiJX0NFiggRqUHEfwGvv/46mpqa8N577yE7Oxt33XUX8vPzcfnll+Ptt99Ga2t0/WiICDGbgfp6WXpMjAjV1wv3h4FVRe31NGQcJhmceePkIQCEfjO+lVa+sIhQbpDeLr3pJbSTCaEBASJCnfKIkK8QkpbPiyM2fDxCvkKoO0BnaUAyZiMCIdRpd4p+mrhVjWkCe4RaOmwhq/yCVZ35kp/tSY15IkzinLEE+4OIvkGljKNZmlWNufmoKlIJIlFE9RegUChwzjnn4JlnnkFNTQ02bNiAiRMn4qWXXkJJSQnOPfdcPPvss2hoaIjXetMLsxmYNQuYOhWFKuENRaXghOhHXR0wdapwfxgxlO/Ti0UqhGadUowSow7Hu+z4dFtjyPO0elJVwYQQEF0vIbvTjb3NgkdIlhqT9D7ieV426Z099lFJ+i1LoxJ9Lcwj1OMrhOxys7SfEGJjNiJIjbH16NQKv/MEI5AQ2ny4DX/8skaMYgHBhVCB5//Q7nKLFWu+uNy82EfJdxacL+w1waJuFBFKL9R90EcIgDjOhyCSmRP6KjBy5Ej86le/wrp161BXV4cbb7wR33zzDd57771YrS+96egAmpuB2loUfv0FAOGDiquvB6ZNA2prhfs7Qpe/+1Z4SQdnqpQKMSr0+rcHQn6Da+0SPoBDC6HII0J7mzvgcPEw6FTicYA3WtHjcKPL7pJFhNi1WHq8w0UztEpRkASNCInl856GihrfiJDclxSKaNNi0n17HG5R+Dzx2U48v2of1u45Ju7XE6Shokal8IrAjsB+LqlBPNLUWEuHv0eI6P/ENzXmPR+lx4hUIGZ/AQUFBZg3bx7+85//4L777ovVadOb0lJg9WqgvByFRw4BALLh8oqg8nLh/tLSkKfJl5TfZ2tVfuX415w5CHq1ErubOrB+//Gg52HNFCOLCIUXQl5/kEHmOcrQqMTUzvFOm0x4+FZpaVQKqJUKMSJk8+kjlJMRe49Quzh5PvLxD9k6FdglWrqdcLt57PH0b5J20PamtvwjM95eQoHFGps8z3EIW/kVzCNEQig9iOuIDUm0iQzTRCpA5fPJTlkZsHo1CnTCB3d27R65CCorC3sKaUSovDDLz+hszFDjyvGCmHrt2wNBz3M8IiEUeS+hnT6NFKWIHhYfISQtdQe8rQRYRKjHLyKklv0erGrM24E7fESovTu6gauAUL3HKu3M3Q40mrtF0SMtqQ+WGgOAQo9PKFgJvVXSQyhc5VeB5PmVroFSY+lBPCNCaooIESkGCaFUoKwMI++YBwAY0ubx8bzzTkQiCJB7hIblB54KP9eTHvtqdzMOHe8KuE9kEaHIU2NeIWTwu887I80uCiFm5JU+fqZWEAy+ESGvR0gr+707QGdp6eNFMnhVFGYRls4z2P7mbodoXJeeT7rOQKktMSIUpITeGqQrdSCkESGe55NmzhjRN0h9PBpVbD1CSgUnRj+pqSKRCtDXv1Sgrg7j77oJn1oVGNrqMaLPmRN5RCjLKxyGFQaeC1dekIUzh+Rg48E2bDncjsF5/oKpNYrUGOslpAmSonG7ecmMsQARIckHta8nJzdTI3ajztT4R4QcLjccnm+iLCJkDWOWjmbwqjc1Fp1oENJO3bB0O8Tht4BcCIkNFQOYsIs9ESHWe8mXbod39lo42PPLfFgWMkunFao4RoQAQK1QwO5y05gNIiWI+i+gqytwtICIE3V1oifo9Aw3sr9eKaTFamuF7XV1YU8hiwgVBI4IARDFT7C0llg+H6KbcqS9hA61WtFpc0KjUoh9jaSw1M1xSUSINS/Mk0WEhA9uaURIahoWPUJ2F9ySqqpgnZbbrHa4wrx5W3phlpbub+52YO9RrxCSGr+9DRH9xcwFpxQDAP73YxO21bX73d9li6x0HhCeN7bfsQ6bt3yePEJpgSbOQsjbS4giQkTyE/VfQFFREX7xi1/g22+/jcd6CCnS6jDmCZo8WTRQi2Kovj7kaaQRnPKCwBEhwJvWamgPLGDEiFBWcCEUaS+h7/YLlVJnlJoCvhHnSUrofYVHTkYgISR8qLt5r/GX47zpqB6HSxRBgL9YYCND3Ly3a3QwxIhQtKkxqRBq9lb6SSNC3SE8QqeVGnHZ2IEAgCeW7fSr8AslogIh9WGJZmlKjaUFUkNzXISQ5/wO8ggRKUDUfwHvvvsuWltbcd555+Gkk07C008/jcbG0P1niF6SnQ0UFvoboz0GapSXC/dnZ4c8jU6txDVnlmHGyEJZDyFfQlV8udy8KBBCRYTk5wlumP52ryCEpngGv/rinYUVIDUmEWJZzCMk8fywderVSmR4qq+6HfJIkW9qTK1UiOcP5xMSzdIRzhljyIWQJCLkuT6Hyy32XckIUDUGAL+6oAJ6tRLVh9qw7IcjsvtYaiwjAo8Q4O1NdKzTJnqEKDWWHqhks8bikBpjg1epaoxIAaL+C7j00kvxySefoKGhAbfccguWLl2KwYMH46c//Sk++ugjOJ3O8CchIsNoBJYvB9as8fcClZUJ25cvF/YLw9OXn45XbzwTSkVwY+RAU/BIjrnbIXZTDjRwVUq4iJDLzeM7T5n+2cMDC6G8LK9Zut0qF0LS1Bj70JeWi7OGh3q1UoysdDtcov9Go1QEfB7YeY+F8Qn1po+QdP+9zZ1iBAbwCiEW0QECR4QAoNiowy1ThwEAnv58t6wbeNQRIUlTRUs3lc+nE9ImiuoYm6UBGrNBpBa9/ipQUFCAe+65Bz/88AP++Mc/YuXKlbjiiitQUlKCRx55BFZr+PJpIgKMxuB9gkpLIxJBkSJNjbl9fDIsSpKtU4UNpbOIUF1r4NfA9gYzzN0OZOtUGF0aeP3sQ/qIuVuM5ARKjbHyeY7zTk1vEzs/e4UQz3sFjG/FGEPsLh0uItRbs7Rn/+qDwjgaJsbYulhaTKngZFU9viw4txwDjDo0tHfjre8Oitu7o06NecRmhw0dFBFKK+JtlmZjNhzkESJSgF7/BRw9ehTPPPMMRo0ahUWLFuGKK67AV199heeeew4fffQRLr300hguk+gLio06KDhh9MUxn346TBz4dqkORIlJqG5qCtLv5tt9QlpsUnme7A1ZCkuNSaNKbMaatApOWiHlFUKe1JhGCZ0kUtTm6YwdLNribaoYupfQiZqlG83C88Lmq1l6HOB5XhR84foA6TVKzJsyFACw8WCbuF00S0eYGmNis7G9W/RPkUcoPZA2VIxPaswTEaKqMSIFiPrr30cffYQ33ngDX3zxBUaNGoVf/vKXuP7662EymcR9Jk+ejJEjR8ZynUQfoFYqMMCoR0N7N+rausUGfoBXCIVLiwHeAaHBOiB/s7cFAHBOEH8Q4P2QZn7gbJ0Kyg4L0NGB3Eyvz0mcqVVfD51KAQu8HqEMjRIqpQIapVDK2yrxDgWCpePCldC3d/fOLO0rMsYNzsGPDWY4XLwsdRdMqEkZYBSid+Zu71qtokcosohQgUdQHjjmrQTNCjOjjOgfxL9qjCJCROoQ9V/ATTfdhJKSEqxbtw5bt27FwoULZSIIAEpKSvDQQw/Fao1EHzIwSOVYNBEh1vgvUAdkq92JzYfaAQT3BwFC9ERa2WLUKsUBtLlm72yuTI1KHECrbTkKwJu6YoZolgpjDSGDDUrNiyAiZHe6RS9ONCM22DVJGV1mlKXHQlWM+ZLjEWHSAazs+MwoPUK1HiGUrVWF9JAR/QeWugIQtNfXiZ2fPEJE6hD1178jR44gIyMj5D56vR6PPvporxdFJI5Skx5V8K/4YummnAgqpVgkqcvuQqfNKYsyVB1ohd3lxkCTHkODdLkGhJEUuZkasYuyUaMQB9DmXn4x8PM/AAAyu8zAtMuA2lro7D2A3usRYpEfvUYJS49TFHPhhNCXO45Cq1LizCE5mHZyoWx/5ufhuOj9NL5CaERhNox6NVq7BLNysPEfAc/FhFDA8RwRpsay5d20KS2WPkgN0qH8aL0+P1WNESlE1F8FnE4nLBaL362jowN2e/iuvL2ltbUVlZWVMBgMMJlMmDdvHjo7O0MeM23aNHAcJ7vdcsstcVtjf0A0TPtUfLF0UageQowsrUoUP80+USGxbH54fth5WNJGkCZjhtgyIHPPLmhcggDIevIxsc+Sdng5AG+6iAkKVlnWHiY1NrrMBJWCQ3OHDa99ewC3vLsZd76/RbaPKBp0aiiijJ5IhRDHAcMKsmDQeeePRVP1xYbPmq0OsZ9Q1GZpyfMLkFE6nVAr4p0aoz5CROoQ9V+AyWRCTk6O381kMkGv12Pw4MF49NFH4Y7xN4HKykrs2LEDK1aswLJly7B27VosWLAg7HHz58/HkSNHxNszzzwT03X1NwYGKX1vi7CHEMObHpOnmZhR+uwQ/iCG1BRt1KvF/klceTlyrcKYicy6g2KfJW2GzrNWuSmaRXTY0Nhgqacxg3Lw7QPn4S/XnCE2Lvy+tlXWuJBNjA/UDTscUiFUmqOHXqMUt1miTI2xijW7y5uq64rCYwR4DekMKp1PH+I5fR7wCi1KjRGpQNRfAd9880089NBDmDt3LiZMmAAAqKqqwltvvYXf/OY3aGlpwbPPPgutVotf//rXMVnkrl27sHz5cmzcuBHjx48HALzwwguYPXs2nn32WZSUlAQ9NiMjA8XFxTFZRzoQrBliJJPnpRQatKg91oXmDm9EqLmjB7ubBCFx9rC8sOcokEQsRBFRVga88w7O+e0/8eWIs1DRfBBY8V+grAw6tTCHjUV+mADSq32qyUKknoqNOlxyxkDMOrUYn25t9EyK7xF7LLH5aCMH+A+KDYdBEnEZUSg0wTRImiyK4z+CNFOUkqFRiibw9m4HMrUqURBlRpgay9KqoFUpxMeliFD6wMSPUsHFxRcm9hGi1BiRAkT9VeCtt97Cc889hyeffBI/+9nP8LOf/QxPPvkknn32WXzwwQd46KGH8Pzzz+Ptt9+O2SLXr18Pk8kkiiAAmDFjBhQKBTZs2BDy2CVLliA/Px+nnnoqHnzwQepvFAZpLyFpJCSSyfNSAlWObW8QojgnFWWJFVqhkEaERP9KXR0wZw6e+fwv2PTX61FgbRcG0NbViWM2mI9H6hECgNYuuYk6FFqVEiOKBLGyo8E75HRnoyCERvVCCKmUCjFlOMIz/FYqhLpDTJ73heM4r0/II/CiTY1xHCdLj5FHKH1gvqB4+IMAadUYRYSI5CdqIfTdd99hzJgxftvHjBmD9evXAwCmTJmCw4cPn/jqPDQ1NaGwsFC2TaVSITc3F01NTUGPu+666/Duu+/i66+/xoMPPoh33nkH119/fcjHstlsfv6ndGKAUQ+OE6aSH5c0Foxk8ryUQJVjda1Cui2USVpKvm9ESDKAlisvh/qbtbKZazqHILraxdSY8PJmgshbNRbZy56JHRYFkv48qiR6IQR4o0LDPUJITI31ONBtj678naXHWCftaMrvGcwwDVBEKJ1gVWPxSIsBgFqsGqOIEJH8RP1XUFZWhtdee81v+2uvvYYyzxiI48ePIycnJ+y5Fi1a5Gdm9r3t3r072iWKLFiwABdccAFOO+00VFZW4u2338bHH3+M/fv3Bz1m8eLFMBqN4q3Md7RFP0ejUqAoW4jmSH1C0QohFhE62uGNCB32dJouywlddciQRo2MPV1hB9BqV60E4G3i5o0ICR/w4foI+cLEDosCtXTY0NJhA8cBFcWh57uFOqdSweHMIbnCdUkiQiy1FUnECvD2MWr3GdERqZACvL2EAPIIpRNqT8l8PJopAhKzNDVUJFKAqL8CPvvss7jyyivx+eef48wzzwQAbNq0Cbt378a//vUvAMDGjRtx9dVXhz3Xvffei7lz54bcp7y8HMXFxWhubpZtdzqdaG1tjcr/M3HiRADAvn37MGzYsID7PPjgg7jnnnvE3y0WS9qJoYE5ejRZetDQ1o0zykzotnsHlkbuEWKpMWlESBBCg/IiE0JSM6/RlCkMmAUCD6CdNs1PQPh6hOzMgxOhUPCNCO3y/Ds0PzPiwaa+/K1yLNq6HCg2Cs8PEx9s1hcQuZAxevoYMe9Tb4SQPDVGEaF0gUVs4hURYqkxiggRqUDU73wXX3wxampq8NJLL6GmpgYAcOGFF+KTTz7BkCFDAAC33nprROcqKChAQUFB2P0mTZqE9vZ2VFdXY9y4cQCAVatWwe12i+ImErZu3QoAGDBgQNB9tFottNrw/pX+TGmOHtWH2kTDNIukqJVcxJ2HWWqs+QQiQrLUWJ5nAG1Hh//sNc8AWu36ZqDaO5GdCR7fCFCkERcmhOrbumHudpyQUZqhVSlRbPQ+vjQixPwakQoZ36aKXo9Q5H/W0uc4myJCaQMTQPEYuApIU2MUESKSn6iEkMPhwKxZs/Diiy9i8eLF8VqTHyNHjsSsWbMwf/58vPjii3A4HFi4cCGuueYasWKsoaEB06dPx9tvv40JEyZg//79WLp0KWbPno28vDz88MMPuPvuu3Huuefi9NNP77O1pyK+0+NbO71psXC9fxhiaswTEeJ5XjxfWW4vhJBeLQyYDTZktrQU2qwO2SYmgHQ+wiLS1JgxQ43SHD3q27qx64jlhIzSQR9DUj6f4VPuHw6WGjN3O+B0uWH3fPuOKjUm8QhRaix9UCn7JiLkoKoxIgWI6q9ArVbjhx9+iNdaQrJkyRJUVFRg+vTpmD17NqZMmYKXX35ZvN/hcKCmpkasCtNoNFi5ciVmzpyJiooK3Hvvvbj88svx2WefJWT9qcRAkyBU2JiN1ii6SjNYRMjq6S7dZnWg0yakf5jQCodfH6EwsKoxRsYJRoQAr+jZ0WgRU2O9NUoHgqWjLD3SqrHIvp+wportVjusnmOBKM3SWWSWTkdYijuav+loEIeuUkSISAGifue7/vrr8dprr+Hpp5+Ox3qCkpubi6VLlwa9f8iQIbJy77KyMqxZs6Yvltbv8EaEPKkxz+ytvAi6SjMyPd2lO21OHLX0oLNHEEFFBm3EQkStVKBy4iA0mXsiSqdpfWYm6cTO0j4RIU3k+n9UiQFf7jyKzYfbsL9F6GR+ShwiQuZuB/Kj9PiwY9usDlg9k+eVCi4qA2x+oBYFRL/ntIFG/Onq0Ti1JEiE9QRRKcgjRKQOUQshp9OJ119/HStXrsS4ceOQmSkvhf7jH/8Ys8URiUHaXZrnebH/TrTfHgsNWnS2CEKIjeiI1B/EeOrnp0W8r6/AEqvGgmyPBBYRWrnzKNy8MI9Mmk46UbxmaYdY/h6pUMyRjNmwSkrvI01fAvLyeQNFhNIGjuPw8zGl4XfsJVQ1RqQSUb/zbd++HWPHjgUA7NmzR3ZfNG/ARPLCuihb7S60Wx3eiFCEFWOMomwdalu60GyxodEspNkGRegP6g2+ESHfERuMqFJjnjQY6748qsQQ09c5i+p02V3o6Imyj5BYPm/vVcUYQGZpIj6oqWqMSCGiFkJff/11PNZBJBE6tRIF2Vq0dNjw4tr9WFPTAgDIiVIIFRpY5ViPWDpfGkchFDQi1EuzNCCIQqNeLXarjqVRGpD7cpo8xvJoU2Pt1uj9RQyDToWfjS5Bj8PlN3uMIHqLSkFDV4nUodclA/v27cMXX3yB7m7hm77Un0OkPiwq9NKaWnE+GOuGHCneyjGb2FW6LyNCuiCpsWgiQhzHycRPLI3SgHzsBosIRWp2ljZU7PIY0aMReYBwfS9cOwav3DCeIrpEzBD7CHmqxj7d1oifPLtaLDggiGQi6ojQ8ePHcdVVV+Hrr78Gx3HYu3cvysvLMW/ePOTk5OC5556LxzqJPuaq8WVotvRgWGEWxgzKwVlDczEpgkGpUqRjNuraWA+hyCrGeoNfRChI1Vg0VVWAIH7W1x4Xfo5xRAgQIjusog6IXMywqjG70y12/s7URndtBBEPfPsIfbatEQeOdWF1TcsJ9eEiiHgQtRC6++67oVarcfjwYYwcOVLcfvXVV+Oee+4hIdRPuG7iIFw3cdAJnYN1l24yC12qgci7SvcGP49QDFJjgFf8aFSKiOekRYNBrxZbFQCRp7cyNUqolRwcLh6NnuP1vex4TRCxxHfoKpvzxwYEE0QyEfW75pdffokvvvgCpT7dfUeMGIFDhw7FbGFE6lPkiQhtbzTD6eahUXrnmMWDoCM2NL1PjQHA2cPzka1TYepJBeIbfCzxrdaKNGLFcRyMeg2OddrQaPb4i6K8NoKIB2IfIU9qjPUia+0iIUQkH1ELoa6uLmRk+H+rb21tTfvRFIQc5hHqcQhvhqU5eigU8fOhSCNCGpUCSs9jnWhqrNiow6bfzBB7o8Qa32aR0USsTBlqHOu04YgnIhRt1RhBxAOVT2qMRYTaPONgCCKZiPqd/ZxzzsHbb78t/s5xHNxuN5555hn85Cc/ieniiNSGVY0x4lkxBgBatfflLBUTfmZpVfSCRqtSisIq1kgbGaoUHDRRrM/kObax3RMRIo8QkQR4U2NuuNw82j1Vl5QaI5KRqCNCzzzzDKZPn45NmzbBbrfjV7/6FXbs2IHW1lasW7cuHmskUpQMjQrZWhU6PEbgQbnxM0oDgE4VWPxIZ42plVxc0lsngjQiFG20ihmmG8WIEHmEiMTjTY3xMHc7wIqK20gIEUlI1J8Ip556Kvbs2YMpU6bgkksuQVdXFy677DJs2bIFw4YNi8caiRRGGhWKtqt0tEgjQtIUkUwUJaGHRiaEolwfK6Hv6GX5PEHEA5ZGdrjcMl9QO6XGiCSkV18fjUYjHnrooVivhehPmM1ARwcKs3XY39IFQNJDqL4eyM4OPkm+l0gjQlLBo1YqxOqqZBQKUrN0tB4fk4+/iDxCRDKgkgxdlUaB2rsdcLv5uHoFCSJaeiWE2tvbUVVVhebmZrjd8hbqN9xwQ0wWRqQwZjMwaxbQ3Iyih7x+srLcDKCuDpg2DSgsBJYvj6kYknmEAlSKOVzO5IwIZUhTY9H9SZoySAgRyYda0lBRGhFyuXl09Dhlr3mCSDRRC6HPPvsMlZWV6OzshMEgn7vEcRwJIQLo6ACam4HaWhR9+i+gYgYAoKy7DbhgOlBb690vlkIoiEeI/d7R40zKiJA0NRatkDH6DMIljxCRDEhHbLT5lMy3We0khIikImqP0L333otf/OIX6OzsRHt7O9ra2sRba2trPNZIpBqlpcDq1UB5OQoaDgAADGoORiaCysuF+0tjO/1aqeBEk2awLtO6JIyYGHS99wjlUESISEJkESGrvxAiiGQiaiHU0NCAO+64I2AvIYIQKSsDVq/GgAzhg3nw4T1yEVRWFpeHZVGhYN2k9erkqhgDTrBqTC+PCEV7PEHEA5lHyCciRIZpItmI+lPhggsuwKZNm+KxFqK/UVaGnzx5D67Z9gXu/eYdYds778RNBAGAziN0fAVPsLljyYDhBFJj/h4hSo0RiYdVjdldbrR2yYUPRYSIZCPqd82LLroI999/P3bu3InTTjsNarX8jfjiiy+O2eKIFKeuDhk33YCnmScIAObM6ZuIkFopVq6htFQUQGLKLE6Va73hRMrnfbtSU2qMSAbUQarGAOouTSQfUQuh+fPnAwCeeOIJv/s4joPL5TrxVRGpD6sOY+mwd94RRFBtrbA9TmKIVY7peKdYuYbVqyWpMWVcK9d6g06thEalgN3pjjq1lZPpa5YmIUQkHtEjJOkjVGLUodHc45cqI4hEE3VqzO12B72RCCIACNEWqQhavRqYPFk0UItiqL4+5g8tRoTcTrFyDdOmQee0AQB09m7v2pqbhYhREsAM09EKmUyNUqzQEY6n1BiReJhHyOH2RoTKC7IAUGqMSD6SzzlKpD7Z2UK0xdcY7TFQo7xcuD87O+YPLXqE8nJkwku/4gth+8f/jmvlWm8x6gUBE21qjOM4mU+IzNJEMhAoIlRekAmAzNJE8hGxEJo9ezbMZrP4+9NPP4329nbx9+PHj2PUqFExXRyRohiNQsppzRr/9FdZmbA9TikpNoFer1HKhJfhWBMAILu5Me6Va72BeX2ibagoPRag1BiRHLAoZbfDhY4eYfxLeb4ghCgiRCQbEQuhL774AjabTfz9d7/7naxvkNPpRE1NTWxXR6QuRmPwaEtpadx8OaycnA0jRVkZ8M47uH7L/3BD9TJc+cPKuFeu9YZcj9cnWxe9EGLXqlEqxG/iBJFI2OuwxyFMHlBwwOA8JoQoIkQkFxG/6/JsfHCQ3wkiGbhn5kk4daAB548sEjbU1QFz5qC8rRFPrHxR2BbnyrXecMvUYcjL1HrXHQWsqSKlxYhkgXmEGDkZGuRlCYK9nSJCRJJBzkqiX3FSUTZOKvJ4jxJUudYbxg/Jxfghub061uiJglFajEgWWB8hRk6mBjmeyGUrVY0RSUbEcXSO42Rzxdg2gkhKEli51teYKCJEJBlqn4hQboZGfJ3anG5026nCmEgeokqNzZ07F1qtFgDQ09ODW265BZmZQt5X6h8iiITDKteAwJVrrI9QHCrX+hqTxyydSaXzRJKgUvpGhNTI0qqgUnBwekrq9Rp9glZHEHIifue88cYbZb9ff/31fvvQ5HkiaWCVa57O0jJY5VqSdJY+UUweozVFhIhkQdrbChCKAYRWDxoc67ShzWpHiYmEEJEcRCyE3njjjXiugyBij9EYXOgkSf+gWDBqgBDVOqkoK8ErIQgB3+pFVtmYk6HGsU4b9RIikgqKpRNEijNucC7WLToPxQZdopdCEAAApYIDxwGsuDiXCSFP9JJ6CRHJBDUdIYh+wECTHkoFFS8QyYNaUjnGBBBr9UDzxohkgoQQQRAEEXOkvYRyMwUBxEroqakikUyQECIIgiBijtQwzQSQKYNSY0TyQUKIIAiCiDlSw3SuT2qMzNJEMpEyQqi1tRWVlZUwGAwwmUyYN28eOjs7wx63fv16nHfeecjMzITBYMC5556L7u7uPlgxQRBE+iJNjXk9QhQRIpKPlBFClZWV2LFjB1asWIFly5Zh7dq1WLBgQchj1q9fj1mzZmHmzJmoqqrCxo0bsXDhQigUKXPZBEEQKQkbs6FScMjWCgXK3qoxiggRyUNKlM/v2rULy5cvx8aNGzF+/HgAwAsvvIDZs2fj2WefRUlJScDj7r77btxxxx1YtGiRuO3kk0/ukzUTBEGkM2zMRo6nmSJAVWNEcpISoZH169fDZDKJIggAZsyYAYVCgQ0bNgQ8prm5GRs2bEBhYSEmT56MoqIiTJ06Fd9++21fLZsgCCJtYWM2WA8hgMzSRHKSEkKoqakJhWxulAeVSoXc3Fw0NTUFPKa2thYA8Nhjj2H+/PlYvnw5xo4di+nTp2Pv3r1BH8tms8FischuBEEQRHSwqrEcT+k84I0IdfQ44XS5E7IugvAloUJo0aJF4lT7YLfdu3f36txut/BHdvPNN+Omm27CmDFj8Kc//Qknn3wyXn/99aDHLV68GEajUbyVsWGdBEEQRMSwqjFWMQYARr1XFLV3k0+ISA4S6hG69957MXfu3JD7lJeXo7i4GM3NzbLtTqcTra2tKC4uDnjcgAEDAACjRo2SbR85ciQOHz4c9PEefPBB3HPPPeLvFouFxBBBEESUsKqxHElqTKVUwKhXw9ztQLvVjvwsbaKWRxAiCRVCBQUFKCgoCLvfpEmT0N7ejurqaowbNw4AsGrVKrjdbkycODHgMUOGDEFJSQlqampk2/fs2YMLL7ww6GNptVpotfTHSRAEcSKwERvSiBAgpMfM3Q6qHCOShpTwCI0cORKzZs3C/PnzUVVVhXXr1mHhwoW45pprxIqxhoYGVFRUoKqqCgDAcRzuv/9+PP/88/jXv/6Fffv24eGHH8bu3bsxb968RF4OQRBEvydQRAjwGqZbqXKMSBJSonweAJYsWYKFCxdi+vTpUCgUuPzyy/H888+L9zscDtTU1MBqtYrb7rrrLvT09ODuu+9Ga2srRo8ejRUrVmDYsGGJuASCIIi0odigAwAMLciUbfd2lyYhRCQHHM/zfKIXkcxYLBYYjUaYzWYYDIZEL4cgCCIlMFsd2NFoxlnleVBI5o7d88FWfLSlAYsurMAtU+lLKRE/Iv38TpmIEEEQBJE6GDPUmDw83287S43RvDEiWUgJjxBBEATRPzB5UmPmbkqNEckBCSGCIAiizzDRBHoiySAhRBAEQfQZrKkiCSEiWSAhRBAEQfQZzCNkps7SRJJAQoggCILoM1hEiIQQkSyQECIIgiD6DJOe+ggRyQUJIYIgCKLPYGbpLrsLdidNoCcSDwkhgiAIos/I1qnBeforUnqMSAZICBEEQRB9hlLBwaAjnxCRPJAQIgiCIPoUr2GafEJE4iEhRBAEQfQp1FSRSCZICBEEQRB9CjVVJJIJEkIEQRBEnyIOXiWPEJEEkBAiCIIg+hTWS8hMvYSIJICEEEEQBNGnUHdpIpkgIUQQBEH0KaJZmoQQkQSQECIIgiD6FDJLE8kECSGCIAiiTyGzNJFMkBAiCIIg+hSWGiOzNJEMkBAiCIIg+hQTmaWJJIKEEEEQBNGnSKvG3G4+wash0h0SQgRBEESfYvAIITcPdNicCV4Nke6QECIIgiD6FJ1aCb1aCQAwU+UYkWBICBEEQRB9jreXEBmmicRCQoggCILoc6iXEJEskBAiCIIg+hwas0EkCySECIIgiD6HxmwQyQIJIYIgCKLPMemF7tLUVJFINCSECIIgiD5HjAiRR4hIMCSECIIgiD7HSKkxIkkgIUQQBEH0OWJqjIQQkWBICBEEQRB9jlg1RqkxIsGQECIIgiD6HGqoSCQLJIQIgiCIPocaKhLJQsoIodbWVlRWVsJgMMBkMmHevHno7OwMuv/BgwfBcVzA24cfftiHKycIgiB8kfYR4nmaQE8kjpQRQpWVldixYwdWrFiBZcuWYe3atViwYEHQ/cvKynDkyBHZ7fHHH0dWVhYuvPDCPlw5QRAE4YspQzBL251u9DjcCV4Nkc6oEr2ASNi1axeWL1+OjRs3Yvz48QCAF154AbNnz8azzz6LkpISv2OUSiWKi4tl2z7++GNcddVVyMrK6pN1EwRBEIHJ1CihVHBwuXmYux3Qa5SJXhKRpqRERGj9+vUwmUyiCAKAGTNmQKFQYMOGDRGdo7q6Glu3bsW8efNC7mez2WCxWGQ3giAIIrZwHAeTngzTROJJCSHU1NSEwsJC2TaVSoXc3Fw0NTVFdI7XXnsNI0eOxOTJk0Put3jxYhiNRvFWVlbW63UTBEEQwTFSd2kiCUioEFq0aFFQQzO77d69+4Qfp7u7G0uXLg0bDQKABx98EGazWbzV1dWd8OMTBEEQ/piocoxIAhLqEbr33nsxd+7ckPuUl5ejuLgYzc3Nsu1OpxOtra1+PqBA/Otf/4LVasUNN9wQdl+tVgutVht2P4IgCOLEYIZpM6XGiASSUCFUUFCAgoKCsPtNmjQJ7e3tqK6uxrhx4wAAq1atgtvtxsSJE8Me/9prr+Hiiy+O6LEIgiCIvoFFhGjMBpFIUsIjNHLkSMyaNQvz589HVVUV1q1bh4ULF+Kaa64RK8YaGhpQUVGBqqoq2bH79u3D2rVr8X//93+JWDpBEAQRBINHCLVRaoxIICkhhABgyZIlqKiowPTp0zF79mxMmTIFL7/8sni/w+FATU0NrFar7LjXX38dpaWlmDlzZl8vmSAIgghBaY4eALC9wZzglRDpDMdTS8+QWCwWGI1GmM1mGAyGRC+HIAii37C/pRPTn1sDtZJD9cPnw6BTJ3pJRD8i0s/vlIkIEQRBEP2LYQVZKM/PhMPFY+2elkQvh0hTSAgRBEEQCeP8UUUAgBU7jyZ4JUS6QkKIIAiCSBhMCH29uxkOF80cI/oeEkIEQRBEwhgzKAd5mRpYepzYeKA10csh0hASQgRBEETCUCo4nFchjFD6ktJjRAIgIUQQBEEklBme9NjKXUdBhcxEX0NCiCAIgkgo54zIh1alQH1bN3Y3dSR6OUSaQUKIIAiCSCgZGhXOGZEPAPjNJ9vxftVhHLX0JHhVRLqQ0FljBEEQBAEAl44ZiJW7mlF9qA3Vh9oAABePLsETl5wiDmcliHhAQoggCIJIOD89vQRD8zPx1a5mrNrdjG317fh0WyO+rz2OZ644HdNOLkz0Eol+Co3YCAON2CAIguh7ttW14+5/bkVtSxcA4MZJg/Hri0ZCq1ImeGVEqkAjNgiCIIiUZXSZCf+9/RzcdPYQAMBb6w/h8n98h0PHuxK7MKLfQUKIIAiCSEr0GiUe/dkpeOOmM5GTocb2Bgt++vy3+M/WBiqzJ2IGCSGCIAgiqfnJyYX4353nYPzgHHTYnLjz/a2Y99YmNLR3J3ppRD+AhBBBEASR9Aww6vH+grNw94yToFEqsGp3M87/4xq8ue4A3G6KDhG9h4QQQRAEkRKolArcOWME/nfnFEwYkgur3YXHPtuJOa9vQCNFh4heQkKIIAiCSCmGF2bj/QVn4clLT4VercS6fcdxwZ/X4uMt9eQdIqKGhBBBEASRcigUHOacNRj/u/McnFFmQkePE3d/sA23Ld2Mti57opdHpBAkhAiCIIiUZWh+Jv51yyTce/5JUCk4/O/HJsz881os334ELvIOERFADRXDQA0VCYIgUoMf682464Mt2O9pwliao8e1Ewbh6jPLkJ+lTfDqiL4m0s9vEkJhICFEEASROvQ4XHj+q7149/tDsPQ4AQDZWhX+WjkWU08qSPDqiL6EhFCMICFEEASRevQ4XFj2wxG8/u0B7DxigVLB4fGLT8H1Zw1O9NKIPoJGbBAEQRBpi06txBXjSvHJbWfj8rGlcLl5/OaT7fjtsp3kHSJkkBAiCIIg+i0alQLPXnk67pt5EgDg1W8P4JZ3q2G1OxO8MiJZICFEEARB9Gs4jsPC80bg+WvHQKNSYMXOo7j6pe9x1NKT6KURSQAJIYIgCCItuHh0Cd6bPxG5mRr82GDGpX9bh+pDrYleFpFgSAgRBEEQacO4wbn45JdnY3hhFo6Ye3DVS9/jH6v307yyNIaEEEEQBJFWDMrLwCe3nY2LR5fA5ebx++W7MffNjeiykW8oHSEhRBAEQaQdWVoV/nLNGfj95adBp1Zg7Z4W/O5/uxK9LCIBkBAiCIIg0hKO43D1mYPw2o1nAgCWbDiMb/a2JHhVRF9DQoggCIJIa84eno8bJwmNFn/1rx9g6XEkeEVEX0JCiCAIgkh7HriwAkPyMnDE3IMnPtuZ6OUQfQgJIYIgCCLtydCo8OyVo8FxwL+q67F8+5FEL4noI0gIEQRBEASA8UNyseDccgDAfR/+gNqWzgSviOgLUkYItba2orKyEgaDASaTCfPmzUNnZ+gXaVNTE+bMmYPi4mJkZmZi7Nix+Pe//91HKyYIgiBSjftmnowJQ3LRaXPi1nc30yiONCBlhFBlZSV27NiBFStWYNmyZVi7di0WLFgQ8pgbbrgBNTU1+PTTT/Hjjz/isssuw1VXXYUtW7b00aoJgiCIVEKtVOCv141BQbYWNUc78OuPfgTPU7PF/kxKCKFdu3Zh+fLlePXVVzFx4kRMmTIFL7zwAt5//300NjYGPe67777D7bffjgkTJqC8vBy/+c1vYDKZUF1d3YerJwiCIFKJQoMOf712DJQKDp9sbcRr3x5I9JKIOJISQmj9+vUwmUwYP368uG3GjBlQKBTYsGFD0OMmT56MDz74AK2trXC73Xj//ffR09ODadOm9cGqCYIgiFRlYnkeHrywAgDw1P924csdTQleEREvUkIINTU1obCwULZNpVIhNzcXTU3BX5z//Oc/4XA4kJeXB61Wi5tvvhkff/wxhg8fHvQYm80Gi8UiuxEEQRDpx7wpQ3HdxEHgeeDO97fix3pzopdExIGECqFFixaB47iQt927d/f6/A8//DDa29uxcuVKbNq0Cffccw+uuuoq/Pjjj0GPWbx4MYxGo3grKyvr9eMTBEEQqQvHcXj84lNwzoh8dDtcmPfWRjS0dyd6WUSM4fgEusBaWlpw/PjxkPuUl5fj3Xffxb333ou2tjZxu9PphE6nw4cffoif//znfsft378fw4cPx/bt23HKKaeI22fMmIHhw4fjxRdfDPh4NpsNNptN/N1isaCsrAxmsxkGgyHaSyQIgiBSHEuPA1f+Yz1qjnZgcF4GPlgwCcVGXaKXRYTBYrHAaDSG/fxW9eGa/CgoKEBBQUHY/SZNmoT29nZUV1dj3LhxAIBVq1bB7XZj4sSJAY+xWq0AAIVCHvRSKpVwu91BH0ur1UKr1UZ6CQRBEEQ/x6BT442bzsTVL6/HoeNWXPvK9/hgwVkoNJAY6g+khEdo5MiRmDVrFubPn4+qqiqsW7cOCxcuxDXXXIOSkhIAQENDAyoqKlBVVQUAqKiowPDhw3HzzTejqqoK+/fvx3PPPYcVK1bg0ksvTeDVEARBEKlGiUmP9+afhYEmPQ4c68K1r3yP5o6eRC+LiAEpIYQAYMmSJaioqMD06dMxe/ZsTJkyBS+//LJ4v8PhQE1NjRgJUqvV+N///oeCggL87Gc/w+mnn463334bb731FmbPnp2oyyAIgiBSlNKcDLy/4CyUGHXY39KFylc24FinLfyBRFKTUI9QKhBpjpEgCIJIDw4d78LVL32PJksPTi7KxnsLzkJupibRyyJ8iPTzO2UiQgRBEASRDAzOy8R7C85Coaf79HWvfI+2Lnuil0X0EhJCBEEQBBElQ/MFMZSfpcXupg78cslmuNyUYElFSAgRBEEQRC8YVpCFpfMnIkOjxPra4/jrqn2JXhLRC0gIEQRBEEQvOakoG0/9/FQAwF++2oPva0P3xiOSDxJCBEEQBHEC/HxMKa4YVwo3D9z5/hYcp0qylIKEEEEQBEGcIE9ccgqGFWTiqMWGW96tRpfNmeglERFCQoggCIIgTpAMjQp/rxyHbJ0KGw+24RdvboTVTmIoFSAhRBAEQRAx4OTibLz9iwnI1qqw4UAr5r25Cd12V6KXRYSBhBBBEARBxIgxg3Lw1rwJyNKqsL72OK579Xs00sT6pIaEEEEQBEHEkLGDcvDWL85Etk6FLYfbcdHz32DNnpbAO5vNQH194Pvq64X7ibhCQoggCIIgYsy4wbn47+3n4JQSA9qsDsx9owrPLN8Nm1OSKjObgVmzgKlTgbo6+Qnq6oTts2aRGIozJIQIgiAIIg4MysvAv2+djMqJg8DzwN9X78clf12H7Q0eYdPRATQ3A7W1wLRpXjFUVyf8Xlsr3N/RkahLSAto6GoYaOgqQRAEcaJ8/uMRPPTJdrR22aFScLjglGKU5uhR7O5B8TNPonjfDhTnZqHwpeehvOEGQQSVlwOrVwNlZYlefkoS6ec3CaEwkBAiCIIgYsGxThse+c92/O/HpqD7aB02jDheh5N7jmP4tZegbOgAlOZkIFungqXbAUuPEwoOGDXAgLwsbR+uPvUgIRQjSAgRBEEQseS7fcewo9GCI+YeHLX04Ii5G0dbLDjaaYdTqYr4PANNepxcnA2DToVMreemUSFTq4RRr8bIAQacXJwNtTI9XTCRfn5H/owTBEEQBHHCTB6ej8nD870bPJ4g14GDqDMWYXfBENScNAYHL7sO9XYO9W3d6LQ5YdCpYdCr0eNw4cCxLjS0d6MhTGm+VqVAxQADig1a5GZqkZOhhsvNo9vhgsPF45QSA6aeVICy3Iw4X3XyQhGhMFBEiCAIgogbUmN0eTnwzjvAnDlhPUIdPQ7saLTgwLEudNmc6LQ5YbW70GlzosvmREuHDdsbzLD0RNbdurwgEwNNemhVCmhVSgzNz8S4ITkYOygHBp0KXXYXOnucyPZEn1IBSo3FCBJCBEEQRFyorxdK5H1Fj684WrMGKC2N+vRuN4+Dx7uwu6kDxzttON5lR7vVAbWSg06thJvnUXWgFZsPt8PlDi4FFBwgvbsgW4sheRk4pcSIqScXYFJ5HnRqZfTXH2coNUYQBEEQyUx2NlBYKPwsjfyUlQm/T5sm3J+d3avTKxQcyguyUF6QFXI/c7cDGw+0wtLjgN3phtXuwo5GC6oPteLgcasogpggaumwoaXDho0H2/DmdwehVSkwND8TTjcPl5uHQafCmEE5GDs4BycVZUGjVEClUMDqcOLgsS4cOGZFk7kbPQ43bE4XbE43rj9rMM6Wpgv7EIoIhYEiQgRBEETcMJuFPkGBIj719YIIMhr7fl0eWrvscLrcyNapoVMrYOlx4tDxLhw41oXva1uxpqYZjeaeE36cp35+KionDo7Bir1QaixGkBAiCIIgiMDwPI+9zZ04aumBSqGASsnhiLkHmw+1ofpQG+rbrHC5eTjdPNRKBYbkZWBIfiZKc/TI0Kg8niQFJpbn4aSi3kW+gkGpMYIgCIIg4grHcTipKNtPxFw8uiRBK4qe9GwuQBAEQRAEARJCBEEQBEGkMSSECIIgCIJIW0gIEQRBEASRtpAQIgiCIAgibSEhRBAEQRBE2kJCiCAIgiCItIWEEEEQBEEQaQsJIYIgCIIg0hYSQgRBEARBpC0khAiCIAiCSFtICBEEQRAEkbaQECIIgiAIIm0hIUQQBEEQRNqiSvQCkh2e5wEAFoslwSshCIIgCCJS2Oc2+xwPBgmhMHR0dAAAysrKErwSgiAIgiCipaOjA0ajMej9HB9OKqU5brcbjY2NyM7OBsdxMTuvxWJBWVkZ6urqYDAYYnbeZCcdr5uuOT2uGUjP607HawbS87pT7Zp5nkdHRwdKSkqgUAR3AlFEKAwKhQKlpaVxO7/BYEiJF1SsScfrpmtOH9LxutPxmoH0vO5UuuZQkSAGmaUJgiAIgkhbSAgRBEEQBJG2kBBKEFqtFo8++ii0Wm2il9KnpON10zWnD+l43el4zUB6Xnd/vWYySxMEQRAEkbZQRIggCIIgiLSFhBBBEARBEGkLCSGCIAiCINIWEkIJ4m9/+xuGDBkCnU6HiRMnoqqqKtFLihmLFy/GmWeeiezsbBQWFuLSSy9FTU2NbJ+enh7cdtttyMvLQ1ZWFi6//HIcPXo0QSuOPU8//TQ4jsNdd90lbuuv19zQ0IDrr78eeXl50Ov1OO2007Bp0ybxfp7n8cgjj2DAgAHQ6/WYMWMG9u7dm8AVnxgulwsPP/wwhg4dCr1ej2HDhuHJJ5+UtfHvD9e8du1a/OxnP0NJSQk4jsMnn3wiuz+Sa2xtbUVlZSUMBgNMJhPmzZuHzs7OPryK6Ah1zQ6HAw888ABOO+00ZGZmoqSkBDfccAMaGxtl5+hP1+zLLbfcAo7j8Oc//1m2PdWu2RcSQgnggw8+wD333INHH30UmzdvxujRo3HBBRegubk50UuLCWvWrMFtt92G77//HitWrIDD4cDMmTPR1dUl7nP33Xfjs88+w4cffog1a9agsbERl112WQJXHTs2btyIl156Caeffrpse3+85ra2Npx99tlQq9X4/PPPsXPnTjz33HPIyckR93nmmWfw/PPP48UXX8SGDRuQmZmJCy64AD09PQlcee/5/e9/j3/84x/461//il27duH3v/89nnnmGbzwwgviPv3hmru6ujB69Gj87W9/C3h/JNdYWVmJHTt2YMWKFVi2bBnWrl2LBQsW9NUlRE2oa7Zardi8eTMefvhhbN68GR999BFqampw8cUXy/brT9cs5eOPP8b333+PkpISv/tS7Zr94Ik+Z8KECfxtt90m/u5yufiSkhJ+8eLFCVxV/GhubuYB8GvWrOF5nufb29t5tVrNf/jhh+I+u3bt4gHw69evT9QyY0JHRwc/YsQIfsWKFfzUqVP5O++8k+f5/nvNDzzwAD9lypSg97vdbr64uJj/wx/+IG5rb2/ntVot/9577/XFEmPORRddxP/iF7+Qbbvsssv4yspKnuf75zUD4D/++GPx90iucefOnTwAfuPGjeI+n3/+Oc9xHN/Q0NBna+8tvtcciKqqKh4Af+jQIZ7n++8119fX8wMHDuS3b9/ODx48mP/Tn/4k3pfq18zzPE8RoT7GbrejuroaM2bMELcpFArMmDED69evT+DK4ofZbAYA5ObmAgCqq6vhcDhkz0FFRQUGDRqU8s/Bbbfdhosuukh2bUD/veZPP/0U48ePx5VXXonCwkKMGTMGr7zyinj/gQMH0NTUJLtuo9GIiRMnpux1T548GV999RX27NkDANi2bRu+/fZbXHjhhQD65zX7Esk1rl+/HiaTCePHjxf3mTFjBhQKBTZs2NDna44HZrMZHMfBZDIB6J/X7Ha7MWfOHNx///045ZRT/O7vD9dMs8b6mGPHjsHlcqGoqEi2vaioCLt3707QquKH2+3GXXfdhbPPPhunnnoqAKCpqQkajUZ882AUFRWhqakpAauMDe+//z42b96MjRs3+t3XX6+5trYW//jHP3DPPffg17/+NTZu3Ig77rgDGo0GN954o3htgV7vqXrdixYtgsViQUVFBZRKJVwuF5566ilUVlYCQL+8Zl8iucampiYUFhbK7lepVMjNze0Xz0NPTw8eeOABXHvtteLcrf54zb///e+hUqlwxx13BLy/P1wzCSEirtx2223Yvn07vv3220QvJa7U1dXhzjvvxIoVK6DT6RK9nD7D7XZj/Pjx+N3vfgcAGDNmDLZv344XX3wRN954Y4JXFx/++c9/YsmSJVi6dClOOeUUbN26FXfddRdKSkr67TUTchwOB6666irwPI9//OMfiV5O3KiursZf/vIXbN68GRzHJXo5cYNSY31Mfn4+lEqlX7XQ0aNHUVxcnKBVxYeFCxdi2bJl+Prrr1FaWipuLy4uht1uR3t7u2z/VH4Oqqur0dzcjLFjx0KlUkGlUmHNmjV4/vnnoVKpUFRU1O+uGQAGDBiAUaNGybaNHDkShw8fBgDx2vrT6/3+++/HokWLcM011+C0007DnDlzcPfdd2Px4sUA+uc1+xLJNRYXF/sVgDidTrS2tqb088BE0KFDh7BixQrZFPb+ds3ffPMNmpubMWjQIPF97dChQ7j33nsxZMgQAP3jmkkI9TEajQbjxo3DV199JW5zu9346quvMGnSpASuLHbwPI+FCxfi448/xqpVqzB06FDZ/ePGjYNarZY9BzU1NTh8+HDKPgfTp0/Hjz/+iK1bt4q38ePHo7KyUvy5v10zAJx99tl+rRH27NmDwYMHAwCGDh2K4uJi2XVbLBZs2LAhZa/barVCoZC/dSqVSrjdbgD985p9ieQaJ02ahPb2dlRXV4v7rFq1Cm63GxMnTuzzNccCJoL27t2LlStXIi8vT3Z/f7vmOXPm4IcffpC9r5WUlOD+++/HF198AaCfXHOi3drpyPvvv89rtVr+zTff5Hfu3MkvWLCAN5lMfFNTU6KXFhNuvfVW3mg08qtXr+aPHDki3qxWq7jPLbfcwg8aNIhftWoVv2nTJn7SpEn8pEmTErjq2COtGuP5/nnNVVVVvEql4p966il+7969/JIlS/iMjAz+3XffFfd5+umneZPJxP/nP//hf/jhB/6SSy7hhw4dynd3dydw5b3nxhtv5AcOHMgvW7aMP3DgAP/RRx/x+fn5/K9+9Stxn/5wzR0dHfyWLVv4LVu28AD4P/7xj/yWLVvECqlIrnHWrFn8mDFj+A0bNvDffvstP2LECP7aa69N1CWFJdQ12+12/uKLL+ZLS0v5rVu3yt7bbDabeI7+dM2B8K0a4/nUu2ZfSAgliBdeeIEfNGgQr9Fo+AkTJvDff/99opcUMwAEvL3xxhviPt3d3fwvf/lLPicnh8/IyOB//vOf80eOHEncouOArxDqr9f82Wef8aeeeiqv1Wr5iooK/uWXX5bd73a7+YcffpgvKiritVotP336dL6mpiZBqz1xLBYLf+edd/KDBg3idTodX15ezj/00EOyD8P+cM1ff/11wL/jG2+8kef5yK7x+PHj/LXXXstnZWXxBoOBv+mmm/iOjo4EXE1khLrmAwcOBH1v+/rrr8Vz9KdrDkQgIZRq1+wLTZ8nCIIgCCJtIY8QQRAEQRBpCwkhgiAIgiDSFhJCBEEQBEGkLSSECIIgCIJIW0gIEQRBEASRtpAQIgiCIAgibSEhRBAEQRBE2kJCiCAIgiCItIWEEEEQBEEQaQsJIYIgUoq5c+fi0ksvTfQyCILoJ5AQIgiCIAgibSEhRBBEyjJt2jTcfvvtuOuuu5CTk4OioiK88sor6Orqwk033YTs7GwMHz4cn3/+uXiMy+XCvHnzMHToUOj1epx88sn4y1/+Ijuv0+nEHXfcAZPJhLy8PDzwwAO48cYbZZEot9uNxYsXi+cZPXo0/vWvf/XVpRMEESNICBEEkdK89dZbyM/PR1VVFW6//XbceuutuPLKKzF58mRs3rwZM2fOxJw5c2C1WgEIAqa0tBQffvghdu7ciUceeQS//vWv8c9//lM85+9//3ssWbIEb7zxBtatWweLxYJPPvlE9riLFy/G22+/jRdffBE7duzA3Xffjeuvvx5r1qzpy8snCOIEoenzBEGkFHPnzkV7ezs++eQTTJs2DS6XC9988w0AIdpjNBpx2WWX4e233wYANDU1YcCAAVi/fj3OOuusgOdcuHAhmpqaxIhOcXEx7rvvPtx3333iecvLyzFmzBh88sknsNlsyM3NxcqVKzFp0iTxPP/3f/8Hq9WKpUuXxvMpIAgihqgSvQCCIIgT4fTTTxd/ViqVyMvLw2mnnSZuKyoqAgA0NzeL2/72t7/h9ddfx+HDh9Hd3Q273Y4zzjgDAGA2m3H06FFMmDBBdt5x48bB7XYDAPbt2wer1Yrzzz9ftha73Y4xY8bE/BoJgogfJIQIgkhp1Gq17HeO42TbOI4DAFHEvP/++7jvvvvw3HPPYdKkScjOzsYf/vAHbNiwIeLH7OzsBAD897//xcCBA2X3abXaXl0HQRCJgYQQQRBpxbp16zB58mT88pe/FLft379f/NloNKKoqAgbN27EueeeC0BIjW3evFmMGo0aNQparRaHDx/G1KlT+3T9BEHEFhJCBEGkFSNGjMDbb7+NL774AkOHDsU777yDjRs3YujQoeI+t99+OxYvXozhw4ejoqICL7zwAtra2sToUnZ2Nu677z7cfffdcLvdmDJlCsxmM9atWweDwYAbb7wxUZdHEESUkBAiCCKtuPnmm7FlyxZcffXV4DgO1157LX75y1/KSuwfeOABNDU14YYbboBSqcSCBQtwwQUXQKlUivs8+eSTKCgowOLFi1FbWwuTyYSxY8fi17/+dSIuiyCIXkJVYwRBEGFwu90YOXIkrrrqKjz55JOJXg5BEDGEIkIEQRA+HDp0CF9++SWmTp0Km82Gv/71rzhw4ACuu+66RC+NIIgYQw0VCYIgfFAoFHjzzTdx5pln4uyzz8aPP/6IlStXYuTIkYleGkEQMYZSYwRBEARBpC0UESIIgiAIIm0hIUQQBEEQRNpCQoggCIIgiLSFhBBBEARBEGkLCSGCIAiCINIWEkIEQRAEQaQtJIQIgiAIgkhbSAgRBEEQBJG2kBAiCIIgCCJt+X9uCTGID/02VwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -492,6 +452,15 @@ "ax.legend()" ] }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "!rm -rf project config_full.yaml" + ] + }, { "cell_type": "code", "execution_count": null, From 4cea8c0509acef5a5634860605310634560c99ae Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Thu, 21 Nov 2024 18:46:36 +0000 Subject: [PATCH 10/17] fix regression test --- tests/regression_tests/apax_config.yaml | 36 +++++++++++--------- tests/regression_tests/test_apax_training.py | 15 ++++---- 2 files changed, 28 insertions(+), 23 deletions(-) diff --git a/tests/regression_tests/apax_config.yaml b/tests/regression_tests/apax_config.yaml index 9021702c..04f53c6c 100644 --- a/tests/regression_tests/apax_config.yaml +++ b/tests/regression_tests/apax_config.yaml @@ -10,7 +10,7 @@ data: n_train: 1000 n_valid: 100 - batch_size: 32 + batch_size: 4 valid_batch_size: 100 shift_method: "per_element_regression_shift" @@ -22,22 +22,22 @@ data: model: name: gmnn basis: - name: gaussian - n_basis: 7 + name: bessel + n_basis: 16 r_max: 6.5 - r_min: 0.5 + n_radial: 5 - nn: [512, 512] + nn: [256, 256] calc_stress: false empirical_corrections: - name: exponential r_max: 2.0 - b_init: normal + b_init: zeros descriptor_dtype: fp32 readout_dtype: fp32 - scale_shift_dtype: fp32 + scale_shift_dtype: fp64 metrics: - name: energy @@ -54,15 +54,15 @@ metrics: loss: - name: energy - atoms_exponent: 2 + atoms_exponent: 1 weight: 1.0 - name: forces atoms_exponent: 1 - weight: 8.0 - - loss_type: cosine_sim - atoms_exponent: 1 - name: forces - weight: 0.1 + weight: 4.0 + # - loss_type: cosine_sim + # atoms_exponent: 1 + # name: forces + # weight: 0.1 # - loss_type: structures # name: stress # weight: 1.0 @@ -70,12 +70,14 @@ loss: optimizer: name: adam kwargs: {} - emb_lr: 0.02 - nn_lr: 0.03 + emb_lr: 0.01 + nn_lr: 0.01 scale_lr: 0.001 - shift_lr: 0.05 + shift_lr: 0.03 zbl_lr: 0.001 - + schedule: + name: linear + callbacks: - name: csv diff --git a/tests/regression_tests/test_apax_training.py b/tests/regression_tests/test_apax_training.py index 2615f78d..52365e43 100644 --- a/tests/regression_tests/test_apax_training.py +++ b/tests/regression_tests/test_apax_training.py @@ -39,13 +39,16 @@ def test_regression_model_training(get_md22_stachyose, get_tmp_path): current_metrics = load_csv(working_dir / "test/log.csv") comparison_metrics = { - "val_energy_mae": 0.24696787788040334, - "val_forces_mae": 0.09672525137916232, - "val_forces_mse": 0.017160819058234304, - "val_loss": 0.45499257304743396, + "val_energy_mae": 0.07457, + "val_forces_mae": 0.04777, + "val_forces_mse": 0.00423, + "val_loss": 0.05094, } - + + for key in comparison_metrics.keys(): + print((np.array(current_metrics[key])[-1])) + for key in comparison_metrics.keys(): assert ( - abs((np.array(current_metrics[key])[-1] / comparison_metrics[key]) - 1) < 1e-3 + abs(np.array(current_metrics[key])[-1] - comparison_metrics[key]) < 0.015 ) From 7b4caa9ee068b6df7332fc5e2660e74b9379c300 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Thu, 21 Nov 2024 18:49:45 +0000 Subject: [PATCH 11/17] remove comment --- apax/md/simulate.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/apax/md/simulate.py b/apax/md/simulate.py index d9a23d3d..4f299187 100644 --- a/apax/md/simulate.py +++ b/apax/md/simulate.py @@ -255,8 +255,6 @@ def run_sim( dynamics_checks, ) - # constraints = [FixAtoms(indices=[6, 8])] - apply_constraints = create_constraint_function( constraints, state, From 1d34610ca8daccb09159b2f128fa7b3d186e300b Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Thu, 21 Nov 2024 18:49:56 +0000 Subject: [PATCH 12/17] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- apax/config/model_config.py | 4 ++-- tests/regression_tests/apax_config.yaml | 2 +- tests/regression_tests/test_apax_training.py | 4 ++-- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/apax/config/model_config.py b/apax/config/model_config.py index b7a9ad91..1877a871 100644 --- a/apax/config/model_config.py +++ b/apax/config/model_config.py @@ -84,11 +84,11 @@ class ShallowEnsembleConfig(BaseModel, extra="forbid"): If set to an integer, the jacobian of ensemble energies wrt. to positions will be computed in chunks of that size. This sacrifices some performance for the possibility to use relatively large ensemble sizes. - + Hint ---------- Loss type hase to be changed to a probabalistic loss like 'nll' or 'crps' - + """ kind: Literal["shallow"] = "shallow" diff --git a/tests/regression_tests/apax_config.yaml b/tests/regression_tests/apax_config.yaml index 04f53c6c..71971c1a 100644 --- a/tests/regression_tests/apax_config.yaml +++ b/tests/regression_tests/apax_config.yaml @@ -77,7 +77,7 @@ optimizer: zbl_lr: 0.001 schedule: name: linear - + callbacks: - name: csv diff --git a/tests/regression_tests/test_apax_training.py b/tests/regression_tests/test_apax_training.py index 52365e43..f6c06159 100644 --- a/tests/regression_tests/test_apax_training.py +++ b/tests/regression_tests/test_apax_training.py @@ -44,10 +44,10 @@ def test_regression_model_training(get_md22_stachyose, get_tmp_path): "val_forces_mse": 0.00423, "val_loss": 0.05094, } - + for key in comparison_metrics.keys(): print((np.array(current_metrics[key])[-1])) - + for key in comparison_metrics.keys(): assert ( abs(np.array(current_metrics[key])[-1] - comparison_metrics[key]) < 0.015 From f4f3297ba8789de282ec26e32b8610dfece97175 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Thu, 21 Nov 2024 19:10:34 +0000 Subject: [PATCH 13/17] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- apax/train/callbacks.py | 1 + examples/02_Molecular_Dynamics.ipynb | 4 ++-- tests/regression_tests/test_apax_training.py | 4 +--- 3 files changed, 4 insertions(+), 5 deletions(-) diff --git a/apax/train/callbacks.py b/apax/train/callbacks.py index 3acaea5e..a89baa66 100644 --- a/apax/train/callbacks.py +++ b/apax/train/callbacks.py @@ -49,6 +49,7 @@ def on_test_batch_end(self, batch, logs=None): for cb in self.callbacks: cb.on_test_batch_end(batch, logs) + def format_str(k): return f"{k:.5f}" diff --git a/examples/02_Molecular_Dynamics.ipynb b/examples/02_Molecular_Dynamics.ipynb index 5c0ea519..75efc7f3 100644 --- a/examples/02_Molecular_Dynamics.ipynb +++ b/examples/02_Molecular_Dynamics.ipynb @@ -279,8 +279,8 @@ " \"ensemble\": {\n", " \"temperature_schedule\": {\n", " \"T0\": 300,\n", - " 'name': \"constant\",\n", - " },\n", + " \"name\": \"constant\",\n", + " },\n", " },\n", "}\n", "config_dict = mod_config(md_config_path, config_updates)\n", diff --git a/tests/regression_tests/test_apax_training.py b/tests/regression_tests/test_apax_training.py index f6c06159..8250eecf 100644 --- a/tests/regression_tests/test_apax_training.py +++ b/tests/regression_tests/test_apax_training.py @@ -49,6 +49,4 @@ def test_regression_model_training(get_md22_stachyose, get_tmp_path): print((np.array(current_metrics[key])[-1])) for key in comparison_metrics.keys(): - assert ( - abs(np.array(current_metrics[key])[-1] - comparison_metrics[key]) < 0.015 - ) + assert abs(np.array(current_metrics[key])[-1] - comparison_metrics[key]) < 0.015 From c7e0786f59d33c43487dc98b79b8f7736b363525 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Fri, 22 Nov 2024 13:26:43 +0000 Subject: [PATCH 14/17] update config --- apax/cli/templates/md_config_minimal.yaml | 2 +- apax/cli/templates/train_config_full.yaml | 12 ++++++------ apax/config/md_config.py | 4 ++-- apax/config/model_config.py | 4 ++-- apax/config/train_config.py | 20 ++++++++++---------- 5 files changed, 21 insertions(+), 21 deletions(-) diff --git a/apax/cli/templates/md_config_minimal.yaml b/apax/cli/templates/md_config_minimal.yaml index d0afd0b7..4f5bcf6b 100644 --- a/apax/cli/templates/md_config_minimal.yaml +++ b/apax/cli/templates/md_config_minimal.yaml @@ -11,7 +11,7 @@ ensemble: tau: 100 duration: # fs -n_inner: 100 # compiled innner steps +n_inner: 500 # compiled innner steps sampling_rate: 10 # dump interval buffer_size: 2500 dr_threshold: 0.5 # Neighborlist skin diff --git a/apax/cli/templates/train_config_full.yaml b/apax/cli/templates/train_config_full.yaml index 6de499ad..4aef6020 100644 --- a/apax/cli/templates/train_config_full.yaml +++ b/apax/cli/templates/train_config_full.yaml @@ -40,7 +40,7 @@ model: basis: name: bessel n_basis: 16 - r_max: 6.5 + r_max: 5.0 ensemble: null # if you would like to use emirical repulsion corrections @@ -92,11 +92,11 @@ metrics: optimizer: name: adam kwargs: {} - emb_lr: 0.01 - nn_lr: 0.01 - scale_lr: 0.001 - shift_lr: 0.03 - zbl_lr: 0.001 + emb_lr: 0.001 + nn_lr: 0.001 + scale_lr: 0.0001 + shift_lr: 0.003 + zbl_lr: 0.0001 schedule: name: cyclic_cosine period: 40 diff --git a/apax/config/md_config.py b/apax/config/md_config.py index 606809b5..f61bca79 100644 --- a/apax/config/md_config.py +++ b/apax/config/md_config.py @@ -229,7 +229,7 @@ class MDConfig(BaseModel, frozen=True, extra="forbid"): | Time step in fs. duration : float, required | Total simulation time in fs. - n_inner : int, default = 100 + n_inner : int, default = 500 | Number of compiled simulation steps (i.e. number of iterations of the | `jax.lax.fori_loop` loop). Also determines atoms buffer size. sampling_rate : int, default = 10 @@ -273,7 +273,7 @@ class MDConfig(BaseModel, frozen=True, extra="forbid"): ) duration: PositiveFloat - n_inner: PositiveInt = 100 + n_inner: PositiveInt = 500 sampling_rate: PositiveInt = 10 buffer_size: PositiveInt = 2500 dr_threshold: PositiveFloat = 0.5 diff --git a/apax/config/model_config.py b/apax/config/model_config.py index b7a9ad91..dbfb85b2 100644 --- a/apax/config/model_config.py +++ b/apax/config/model_config.py @@ -37,13 +37,13 @@ class BesselBasisConfig(BaseModel, extra="forbid"): ---------- n_basis : PositiveInt, default = 16 Number of uncontracted basis functions. - r_max : PositiveFloat, default = 6.5 + r_max : PositiveFloat, default = 5.0 Cutoff radius of the descriptor. """ name: Literal["bessel"] = "bessel" n_basis: PositiveInt = 16 - r_max: PositiveFloat = 6.5 + r_max: PositiveFloat = 5.0 BasisConfig = Union[GaussianBasisConfig, BesselBasisConfig] diff --git a/apax/config/train_config.py b/apax/config/train_config.py index 6450b343..df6e9f6e 100644 --- a/apax/config/train_config.py +++ b/apax/config/train_config.py @@ -213,15 +213,15 @@ class OptimizerConfig(BaseModel, frozen=True, extra="forbid"): ---------- name : str, default = "adam" Name of the optimizer. Can be any `optax` optimizer. - emb_lr : NonNegativeFloat, default = 0.01 + emb_lr : NonNegativeFloat, default = 0.001 Learning rate of the elemental embedding contraction coefficients. - nn_lr : NonNegativeFloat, default = 0.01 + nn_lr : NonNegativeFloat, default = 0.001 Learning rate of the neural network parameters. - scale_lr : NonNegativeFloat, default = 0.001 + scale_lr : NonNegativeFloat, default = 0.0001 Learning rate of the elemental output scaling factors. - shift_lr : NonNegativeFloat, default = 0.03 + shift_lr : NonNegativeFloat, default = 0.003 Learning rate of the elemental output shifts. - zbl_lr : NonNegativeFloat, default = 0.001 + zbl_lr : NonNegativeFloat, default = 0.0001 Learning rate of the ZBL correction parameters. rep_scale_lr : NonNegativeFloat, default = 0.001 LR for the length scale of thes exponential repulsion potential. @@ -237,11 +237,11 @@ class OptimizerConfig(BaseModel, frozen=True, extra="forbid"): """ name: str = "adam" - emb_lr: NonNegativeFloat = 0.01 - nn_lr: NonNegativeFloat = 0.01 - scale_lr: NonNegativeFloat = 0.001 - shift_lr: NonNegativeFloat = 0.03 - zbl_lr: NonNegativeFloat = 0.001 + emb_lr: NonNegativeFloat = 0.001 + nn_lr: NonNegativeFloat = 0.001 + scale_lr: NonNegativeFloat = 0.0001 + shift_lr: NonNegativeFloat = 0.003 + zbl_lr: NonNegativeFloat = 0.0001 rep_scale_lr: NonNegativeFloat = 0.001 rep_prefactor_lr: NonNegativeFloat = 0.0001 From fb2fa78408dc371cdb47f4ee7d8097423ec3b483 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Fri, 22 Nov 2024 13:27:16 +0000 Subject: [PATCH 15/17] update tutorial --- examples/01_Model_Training.ipynb | 57 +++---- examples/02_Molecular_Dynamics.ipynb | 103 +++--------- examples/03_Transfer_Learning.ipynb | 122 +++++++------- examples/04_Batch_Data_Selection.ipynb | 213 ++++++++++--------------- 4 files changed, 194 insertions(+), 301 deletions(-) diff --git a/examples/01_Model_Training.ipynb b/examples/01_Model_Training.ipynb index 8348e2ea..5b4bc7e1 100644 --- a/examples/01_Model_Training.ipynb +++ b/examples/01_Model_Training.ipynb @@ -155,13 +155,14 @@ "\n", "```yaml\n", "data:\n", - " batch_size: 32\n", + " batch_size: 4\n", " data_path: project/ethanol_ccsd_t-train_mod.xyz\n", " directory: project/models\n", " energy_unit: kcal/mol\n", " experiment: ethanol_ccsd_t_cli\n", " n_train: 990\n", " n_valid: 10\n", + " energy_unit: kcal/mol\n", " pos_unit: Ang\n", " valid_batch_size: 100\n", "loss:\n", @@ -255,23 +256,23 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732191524.593684 470642 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732191524.597022 470642 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "INFO | 12:18:48 | Running on [CudaDevice(id=0)]\n", - "INFO | 12:18:48 | Initializing Callbacks\n", - "INFO | 12:18:48 | Initializing Loss Function\n", - "INFO | 12:18:48 | Initializing Metrics\n", - "INFO | 12:18:48 | Running Input Pipeline\n", - "INFO | 12:18:48 | Reading data file project/ethanol_ccsd_t-train_mod.xyz\n", - "INFO | 12:18:48 | Found n_train: 990, n_val: 10\n", - "INFO | 12:18:48 | Computing per element energy regression.\n", - "INFO | 12:18:49 | Building Standard model\n", - "INFO | 12:18:49 | initializing 1 model(s)\n", - "INFO | 12:18:55 | Initializing Optimizer\n", - "INFO | 12:18:55 | Beginning Training\n", - "Epochs: 0%| | 0/100 [00:00" ] @@ -399,7 +400,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 242.67it/s, test_loss=0.0139]\n" + "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 228.47it/s, test_loss=0.0253]\n" ] } ], @@ -419,9 +420,9 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732191672.090079 472347 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732191672.093383 472347 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 248.50it/s, test_loss=0.0138]\n" + "E0000 00:00:1732268339.519757 522195 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732268339.522952 522195 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "Structure: 100%|███████████████████████████████| 999/999 [00:04<00:00, 229.06it/s, test_loss=0.0253]\n" ] } ], @@ -436,7 +437,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmsElEQVR4nOzdeVgT1/oH8G8AE/aIIJtbEFRcUBQLglK0UqEFlYtbsRbkUvVWbW2x1mLdbcWqqK27rVpbizsXW9yKCLcoaBWk7hYUXFBQtAZlJzm/P/xlykhAgkBIeD/PM4/mzDuTM5lh8mbmzDkCxhgDIYQQQgghSuiouwKEEEIIIaT5omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaJkkRBCCCGE1IiSRUIIIYQQUiNKFgkhhBBCSI0oWSSEEEIIITWiZJEQojYSiQQCgQACgQAzZsyoNXbFihVcrJ6eXhPV8OVycnIgEAggkUjUXRVCCGkUlCwSQpqFn3/+GeXl5TXO37ZtW4O+HyV5hBBSN5QsEkLUrn///nj06BEOHjyodH5KSgquXbuG1157rYlr9nLt2rXD1atXkZCQoO6qEEJIo6BkkRCidv/+978B1Hz1cOvWrby45qRVq1ZwdHSEvb29uqtCCCGNgpJFQojaOTk5oX///vjtt9+Qm5vLm/fs2TPs3bsX7du3x7Bhw2pcR2VlJb7//nsMHjwYbdq0gUgkgp2dHT744APcuXOHFztx4kTY2dkBAG7dusW1hVRMCgsXLoRAIMDChQtx+/ZthIWFoUOHDmjVqhUmTpwI4OW3s4uLi7FmzRoMGjQIZmZmEIlE6NSpE4YPH47o6GherFQqxdy5c+Hk5AQjIyOIRCLY2tpi4MCBmD9/PioqKur6kRJCSINpPq3ECSEt2r///W+cO3cOP/zwA7744guufO/evXj27BlmzJgBHR3lv2+fPn2KESNGICkpCcbGxnBxcUHbtm1x8eJFbNq0Cfv27UN8fDz69u0LABg0aBCePXuGAwcOwMjICKNHj661bpmZmejbty+EQiEGDhwIxhgsLCxeuk137tyBr68vrly5AkNDQwwcOBDm5ubIzc1FcnIyLl68iPHjxwN4nlQOGjQIly5dQtu2bTF06FAYGRkhLy8P165dQ0pKCsLDw9G6des6fqKEENJAGCGEqEmnTp0YAJacnMyePHnCDAwMmIODAy9m4MCBTCAQsBs3brDs7GwGgOnq6vJixo8fzwAwf39/lp+fz5u3evVqBoB16dKFVVZWcuWKdXXq1KnG+i1YsIABYADYhAkTWGlpabWYmtYjk8lY//79GQA2bNgw9uDBA978kpISdujQIe71jh07GAD21ltvsfLy8mrrSkpKYmVlZTXWlRBCGgvdhiaENAtisRiBgYHIysrC//73PwDA9evXcerUKXh5eaFz585Kl7t69Sp27doFW1tbREdHw9LSkjf/448/xttvv43MzEwcOXKkXnVr06YN1q1bB5FIVOdlfv31V5w7dw42NjY4cOAA2rZty5uvr6+Pt99+m3udn58PAHjzzTfRqlUrXqyOjg68vLwgFArrVX9CCHkVlCwSQpqNFx90Ufxb24Mthw8fBmMMb731FkxMTJTGDB48GMDzp6rrw9vbG2KxWKVljh49CgAYP348jI2NXxqveNJ7+fLl+PHHH/H48WPVK0oIIY2AkkVCSLMxZMgQ2NnZYf/+/fj777/x448/wtTUtNY2hTdv3gTw/InpFx9UUUyfffYZAODhw4f1qld9+mK8desWAMDR0bFO8YMHD8bs2bPx4MEDhISEwMLCAt26dcO///1vHDx4EHK5XOU6EEJIQ6AHXAghzYZAIMDEiROxYMEChISEIC8vD5MnT4aBgUGNyyiSKGdnZ/Tp06fW9bu5udWrXrW9f0NatmwZ/vOf/+DXX3/FyZMncerUKWzfvh3bt2/Ha6+9hsTERBgZGTVJXQghRIGSRUJIszJx4kQsWrQIv/76K4CX963YoUMHAMDAgQOxbt26Rq9fXXXs2BEAcO3aNZWWk0gk+PDDD/Hhhx8CAM6ePYsJEybg7NmzWL58ORYtWtTgdSWEkNrQbWhCSLPSsWNHjBw5Eubm5hgwYMBLrwa+9dZbAIBffvkFpaWldX4fxcMilZWV9a9sLXx9fQEAu3btQlFRUb3X89prr2Hq1KkAgIyMjIaoGiGEqISSRUJIsxMTE4OCggKkpqa+NLZv374YNWoU7ty5g8DAQOTk5FSLKSoqws8//8w9cQwAbdu2hVAoRF5eXqM8TDJixAj07dsX9+7dw5gxY/Do0SPe/NLSUt7T2f/973/x+++/V2ubWFFRwT0s06lTpwavJyGEvAzdhiaEaLzt27fjyZMnOHLkCLp164Y+ffrAzs4OjDHk5OTgzz//RHl5Oa5evQorKysAz4fpGzFiBPbv3w9nZ2cMGjQIhoaGAIDvv//+leuko6OD//73v/Dx8cGRI0fQsWNHDBo0iOuU+88//0Tr1q255PZ///sfvvnmG1hYWKBv376wtLTE06dPcfr0aTx48ADt2rXjHtQhhJCmRMkiIUTjmZiY4LfffsOePXuwc+dOpKWlISMjA6amprCxscG7776LESNGVBu/efPmzTA3N8eRI0ewf/9+bji9hkgWgedXAs+dO4cNGzZg//79SE1NRXl5OaytreHl5cWN3gI8b6tpYGCAkydP4sqVK/jf//4HsViMjh074uOPP8bkyZNhbm7eIPUihBBVCBhjTN2VIIQQQgghzRO1WSSEEEIIITWiZJEQQgghhNSIkkVCCCGEEFIjShYJIYQQQkiNKFkkhBBCCCE1omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaJkkRBCCCGE1IiSRUIIIYQQUiNKFgkhhBDSIv3www8QCATIyclRd1WaNUoWCdFgZ8+ehYeHB4yMjCAQCJCRkaHuKhEtR8ccIS2PnrorQAipn4qKCowZMwb6+vpYvXo1DA0N0alTJ3VXi2gxOuYIaZkoWSREQ924cQO3bt3Cd999h/fff1/d1SEtAB1zhLRMdBu6GSsqKlJ3FUgz9uDBAwBA69atG2R9dLyRl6FjjrQEGzZsQM+ePSESiWBra4tp06bhyZMnvJjMzEyMGjUK1tbW0NfXR/v27fHOO+9AKpVyMfHx8Rg0aBBat24NY2NjdOvWDXPmzGnirWkYlCwqkZubi3//+9+wsrKCSCRCz549sW3bNm5+UlISBAIB9u7di6+++grt27eHvr4+hg4diqysrGrrO3PmDHx9fSEWi2FoaAgvLy+cOnWKF7Nw4UIIBAJcuXIF48ePh5mZGQYNGgQAkMvlWLhwIWxtbWFoaIghQ4bgypUrkEgkmDhxIgDg5s2bEAgEWL16dbX3T0lJgUAgwK5du+q0/Tk5ORAIBFi5ciXWr1+Pzp07w9DQEMOGDcOdO3fAGMOSJUvQvn17GBgYYOTIkXj8+DFvHQcPHoSfnx9sbW0hEolgb2+PJUuWQCaT1evzIXwTJ06El5cXAGDMmDEQCAQYPHgwAODEiRPw9PSEkZERWrdujZEjR+Lq1au85Ws73gBg586dcHV1haGhIczMzPD666/jt99+463jyJEj3PuYmJjAz88Ply9f5sXk5eUhNDQU7du3h0gkgo2NDUaOHKlSY3JFXf/66y9MmDABYrEYbdu2xbx588AYw507dzBy5EiYmprC2toaUVFR1daxdu1a9OzZk9ue/v37Izo6mhfzsr/7lo6Oubofc+Xl5Zg/fz5cXFwgFothZGQET09PJCYmVnsvuVyONWvWoGfPntDX14eVlRWmTJmCv//+u871JQ1n4cKFmDZtGmxtbREVFYVRo0Zh8+bNGDZsGCoqKgA8378+Pj44ffo0PvzwQ6xfvx6TJ0/GzZs3uaTy8uXL8Pf3R1lZGRYvXoyoqCiMGDFCc7/bGOHJy8tj7du3Zx06dGCLFy9mGzduZCNGjGAA2OrVqxljjCUmJjIArG/fvszFxYWtXr2aLVy4kBkaGjJXV1fe+hISEphQKGTu7u4sKiqKrV69mvXu3ZsJhUJ25swZLm7BggUMAOvRowcbOXIk27BhA1u/fj1jjLHPPvuMAWDDhw9n69atY5MmTWLt27dnFhYWLCQkhFvHwIEDmYuLS7Vtmjp1KjMxMWFFRUV1+gyys7MZAObs7Mx69OjBVq1axebOncuEQiEbMGAAmzNnDvPw8GDffvst++ijj5hAIGChoaG8dQQEBLCxY8eyFStWsI0bN7IxY8YwAOzTTz+t1+dD+FJSUticOXMYAPbRRx+xn376if32228sPj6e6enpsa5du7Lly5ezRYsWMQsLC2ZmZsays7O55Ws73hYuXMgAMA8PD7ZixQr2zTffsPHjx7PZs2dzy//4449MIBAwX19ftnbtWvb1118ziUTCWrduzXsfDw8PJhaL2dy5c9n333/Pli5dyoYMGcL+97//1XlbFXV1dnZmQUFBbMOGDczPz48BYKtWrWLdunVjH3zwAduwYQMbOHAgA8Bb/5YtWxgANnr0aLZ582b2zTffsLCwMPbRRx9xMXX5u2/p6Jir+zH38OFDZmNjw8LDw9nGjRvZ8uXLWbdu3VirVq3Y+fPnee/1/vvvMz09PTZp0iS2adMmNnv2bGZkZMRee+01Vl5ertpOIirbvn07A8Cys7PZgwcPmFAoZMOGDWMymYyLWbduHQPAtm3bxhhj7Pz58wwA27dvX43rXb16NQPAHj582Ojb0BQoWXxBWFgYs7GxYQUFBbzyd955h4nFYlZcXMwli927d2dlZWVczDfffMMAsIsXLzLGGJPL5axLly7Mx8eHyeVyLq64uJjZ2dmxN998kytTnJyCgoJ475uXl8f09PRYQEAAr1xxcq2aLG7evJkBYFevXuXKysvLqyWVL6NIFtu2bcuePHnClUdERDAArE+fPqyiooIrDwoKYkKhkJWWlvK28UVTpkxhhoaGXJwqnw+pTnEcVj1hOTs7M0tLS/bo0SOu7M8//2Q6OjosODiYK6vpeMvMzGQ6OjrsX//6F+9kyRjj9tHTp09Z69at2aRJk3jz8/LymFgs5sr//vtvBoCtWLHilbZTUdfJkydzZZWVlax9+/ZMIBCwZcuWceV///03MzAw4B3vI0eOZD179qz1Peryd0/omKvrMVdZWcn7blDEWVlZsX//+99cWXJyMgPAfv75Z17s0aNHlZaThlc1WYyOjmYA2OHDh3kxZWVlzNTUlI0aNYoxxtjNmzcZAPb+++/XeBFGsd7vv/++2nGtieg2dBWMMRw4cADDhw8HYwwFBQXc5OPjA6lUivT0dC4+NDQUQqGQe+3p6Qng+S1hAMjIyEBmZibGjx+PR48ecesqKirC0KFD8fvvv0Mul/Pq8J///If3OiEhAZWVlZg6dSqv/MMPP6xW/7Fjx0JfXx8///wzV3bs2DEUFBRgwoQJKn8eY8aMgVgs5l67ubkBACZMmAA9PT1eeXl5OXJzc7kyAwMD7v9Pnz5FQUEBPD09UVxcjGvXrgGo3+dDanb//n1kZGRg4sSJaNOmDVfeu3dvvPnmmzh8+HC1ZV483mJjYyGXyzF//nzo6PBPDwKBAMDzdjhPnjxBUFAQ729EV1cXbm5u3K02AwMDCIVCJCUlNcgttaoPVOjq6qJ///5gjCEsLIwrb926Nbp168b9DSrK7t69i7Nnzypdr6p/9+QfdMwpP+Z0dXW57wa5XI7Hjx+jsrIS/fv35x1L+/btg1gsxptvvsnbLhcXFxgbGyu9bU0az61btwAA3bp145ULhUJ07tyZm29nZ4fw8HB8//33sLCwgI+PD9avX89rrzhu3DgMHDgQ77//PqysrPDOO+9g7969GvudRk9DV/Hw4UM8efIEW7ZswZYtW5TGPHjwAGZmZgCAjh078uYpyhUnqczMTABASEhIje8plUq55YDnB2FVioPTwcGBV96mTRvecsDzk9bw4cMRHR2NJUuWAAB+/vlntGvXDm+88UaNdajJi9unSBw7dOigtLzqyfny5cuYO3cuTpw4gcLCQl684g+qPp8PqVlNJzoA6N69O44dO4aioiIYGRlx5S8ebzdu3ICOjg569OhR4/so9ltNx5SpqSkAQCQS4euvv8bMmTNhZWWFAQMGwN/fH8HBwbC2tlZt46D8eNTX14eFhUW18kePHnGvZ8+ejePHj8PV1RUODg4YNmwYxo8fj4EDBwKo+989qY6OuX/Kqx5zALBjxw5ERUXh2rVrXFs3gL/9mZmZkEqlsLS0VPr+dNw1X1FRUZg4cSIOHjyI3377DR999BEiIyNx+vRprj3/77//jsTERBw6dAhHjx7Fnj178MYbb+C3336Drq6uujdBJZQsVqHI+CdMmFBjAtO7d29cuXIFAGrc2Ywx3vpWrFgBZ2dnpbHGxsa811WvyNVHcHAw9u3bh5SUFDg5OeGXX37B1KlTq/1ir4uatu9l2/3kyRN4eXnB1NQUixcvhr29PfT19ZGeno7Zs2dzn0t9Ph/SsOpzvCn2208//aT0C7jqVeePP/4Yw4cPR2xsLI4dO4Z58+YhMjISJ06cQN++fVV6X2XH3cuOReB50nL9+nXExcXh6NGjOHDgADZs2ID58+dj0aJFdf67Jw2jJRxzO3fuxMSJExEQEIBZs2bB0tISurq6iIyMxI0bN3jbZWlpybsbVFXbtm1Vqi95NYo+Q69fv47OnTtz5eXl5cjOzoa3tzcv3snJCU5OTpg7dy5SUlIwcOBAbNq0CV9++SUAQEdHB0OHDsXQoUOxatUqLF26FF988QUSExOrrau5o2SxirZt28LExAQymazWHalIFl/G3t4ewPNfvfU9MBQHb1ZWFu8X6aNHj5TeZvH19UXbtm3x888/w83NDcXFxXjvvffq9d71lZSUhEePHiEmJgavv/46V56dnc2La4jPh/yj6onuRdeuXYOFhQXvCo8y9vb2kMvluHLlSo0JvGK/WVpa1mm/2dvbY+bMmZg5cyYyMzPh7OyMqKgo7Ny586XLNhQjIyOMGzcO48aNQ3l5OQIDA/HVV18hIiKizn/3pDo65pTbv38/OnfujJiYGO5WOgAsWLCgWj2PHz+OgQMHvvKFAvLqvL29IRQK8e2338LX15fbd1u3boVUKoWfnx8AoLCwEIaGhrwfKU5OTtDR0UFZWRkA4PHjx7ymGQC441sRo0mozWIVurq6GDVqFA4cOIBLly5Vm//w4UOV1ufi4gJ7e3usXLkSz549q9f6hg4dCj09PWzcuJFXvm7dOqXxenp6CAoKwt69e/HDDz/Aycmpya+KKH55V/2lXV5ejg0bNvDiGuLzIf+wsbGBs7MzduzYwesT7NKlS/jtt9/w9ttvv3QdAQEB0NHRweLFi6u1rVHsTx8fH5iammLp0qW822sKiv1WXFyM0tJS3jx7e3uYmJg06cnyxduDQqEQPXr0AGMMFRUVDf5335LQMaecsnPgmTNnkJqayosbO3YsZDIZ12yoqsrKymp9+5HG1bZtW0RERODo0aPw9fXF+vXr8dFHH+HDDz/Ea6+9xrX9P3HiBCQSCT755BNs3LgRa9euxdChQ7lzCQAsXrwY/fr1w7x58/D9999j6dKlmDx5Mtq3b8/rMkpT0JXFFyxbtgyJiYlwc3PDpEmT0KNHDzx+/Bjp6ek4fvx4tf4Ea6Ojo4Pvv/8eb731Fnr27InQ0FC0a9cOubm5SExMhKmpKX799dda12FlZYUZM2ZwfTT5+vrizz//xJEjR2BhYcH71aoQHByMb7/9FomJifj6669V/gxelYeHB8zMzBASEoKPPvoIAoEAP/30E+/ECTTM50P4VqxYgbfeegvu7u4ICwtDSUkJ1q5dC7FYjIULF750eQcHB3zxxRdYsmQJPD09ERgYCJFIhLNnz8LW1haRkZEwNTXFxo0b8d5776Ffv35455130LZtW9y+fRuHDh3CwIEDsW7dOvz1118YOnQoxo4dix49ekBPTw///e9/kZ+fj3feeafxP4z/N2zYMFhbW2PgwIGwsrLC1atXsW7dOvj5+cHExARAw/7dtzR0zFXn7++PmJgY/Otf/4Kfnx+ys7OxadMm9OjRg/fD2MvLC1OmTEFkZCQyMjIwbNgwtGrVCpmZmdi3bx+++eYbjB49usnqTZ73s9i2bVusW7cOn3zyCdq0aYPJkydj6dKlaNWqFQCgT58+8PHxwa+//orc3FwYGhqiT58+OHLkCAYMGAAAGDFiBHJycrBt2zYUFBTAwsICXl5eWLRoEe/BUY3R9A9gN3/5+fls2rRprEOHDqxVq1bM2tqaDR06lG3ZsoUxprz7CMb+6XJm+/btvPLz58+zwMBAZm5uzkQiEevUqRMbO3YsS0hI4GIUXTUo65OpsrKSzZs3j1lbWzMDAwP2xhtvsKtXrzJzc3P2n//8R+k29OzZk+no6LC7d++qvP2K7Xix+4matlvRRcDZs2e5slOnTrEBAwYwAwMDZmtryz777DN27NgxBoAlJibylq/L50Oqq2l/HD9+nA0cOJAZGBgwU1NTNnz4cHblyhVeTG3HG2OMbdu2jfXt25eJRCJmZmbGvLy8WHx8fLX39/HxYWKxmOnr6zN7e3s2ceJEdu7cOcYYYwUFBWzatGnM0dGRGRkZMbFYzNzc3NjevXtV2s6a6hoSEsKMjIyqxXt5efG6ytm8eTN7/fXXuePL3t6ezZo1i0mlUt5yL/u7J3TM1fWYk8vlbOnSpaxTp05MJBKxvn37sri4OBYSEsI6depUbfktW7YwFxcXZmBgwExMTJiTkxP77LPP2L1791SqNyGNRcDYC5d7iEZ48uQJzMzM8OWXX+KLL76oNr9v375o06YNEhIS1FA7QgghhGgLarOoAUpKSqqVrVmzBgC44baqOnfuHDIyMhAcHNzINSOEEEKItqMrixrghx9+wA8//IC3334bxsbGOHnyJHbt2oVhw4bh2LFjXNylS5eQlpaGqKgoFBQU4ObNm9DX1+fmy2SylzbWNzY2pu5qSJN49uyZ0gebqmrbtq3G9UdGmi865gipH3rARQP07t0benp6WL58OQoLC7mHXhR9OSns378fixcvRrdu3bBr1y5eoggAd+7cqdYh7osWLFhQp0bphLyqlStXYtGiRbXGZGdnQyKRNE2FiNajY46Q+qEriy1IaWkpTp48WWtM586deZ2REtJYbt68yRsiTZlBgwZV+9FDSH3RMUdI/VCySAghhBBCakS3oauQy+W4d+8eTExMlPZfSJoWYwxPnz6Fra1tvYYr1CZ0bDYvLeHYpGOu+dH0446OqeanrscUJYtV3Lt3Dx06dFB3NcgL7ty5g/bt26u7GmpFx2bzpM3HJh1zzZemHnd0TDVfLzumKFmsQjGaw507d2Bqaqrm2pDCwkJ06NCB2y8tGR2bzUtLODbpmGt+NP24o2Oq+anrMUXJYhWKy+KmpqZ0IDcjdLuCjs3mSpuPTTrmmi9NPe7omGq+XnZMaV6jB0IIIYQQ0mQoWSSEEEIIITWiZJEQQgghhNSIkkVCCCGEEFIjShYJIYQQQkiNKFkkhBBCCCE1omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaLh/rSMTCZDcnIy7t+/DxsbG3h6ekJXV1fd1SKEjk2iFnTckYbWEo8purKoRWJiYuDg4IAhQ4Zg/PjxGDJkCBwcHBATE6PuqpEWjo5Nog503JGG1lKPKUoWtURMTAxGjx4NJycnpKam4unTp0hNTYWTkxNGjx6t9Qcyab7o2CTqQMcdaWgt+ZgSMMaYuivRXBQWFkIsFkMqlcLU1FTd1akzmUwGBwcHODk5ITY2Fjo6//wGkMvlCAgIwKVLl5CZmalRl8o1dX80Bk39LOjY1FyavI103DVPmlz/ln5M0ZVFLZCcnIycnBzMmTOHdwADgI6ODiIiIpCdnY3k5GQ11ZC0VHRsEnWg4440tJZ+TFGyqAXu378PAOjVq5fS+YpyRRwhTYWOTaIOdNyRhtbSjylKFrWAjY0NAODSpUtK5yvKFXGENBU6Nok60HFHGlpLP6YoWdQCnp6ekEgkWLp0KeRyOW+eXC5HZGQk7Ozs4OnpqaYakpaKjk2iDnTckYbW0o8pSha1gK6uLqKiohAXF4eAgADeU1oBAQGIi4vDypUrNarRLdEOdGwSdaDjjjS0Fn9MMcKRSqUMAJNKpequSr0cOHCASSQSBoCb7Ozs2IEDB9RdtXrR9P3RkDT9s6BjU/NowzbScde8aHr9GWu5xxR1nVOFJj/Wr6BNPctrw/5oKNrwWdCxqVm0ZRvpuGs+NL3+Ci3xmKLh/rSMrq4uBg8erO5qEFINHZtEHei4Iw2tJR5T1GaREEIa2fr16yGRSKCvrw83Nzf88ccftcbv27cPjo6O0NfXh5OTEw4fPsybv3DhQjg6OsLIyAhmZmbw9vbGmTNnlK6rrKwMzs7OEAgEyMjIaKhNIoS0IPVKFhvyxFdRUYHZs2fDyckJRkZGsLW1RXBwMO7du8fFJCUlQSAQKJ3Onj0LAMjJyVE6//Tp0/XZREIIaRB79uxBeHg4FixYgPT0dPTp0wc+Pj548OCB0viUlBQEBQUhLCwM58+fR0BAADc6hELXrl2xbt06XLx4ESdPnoREIsGwYcPw8OHDauv77LPPYGtr22jbRwhpAVRtDLl7924mFArZtm3b2OXLl9mkSZNY69atWX5+vtL4U6dOMV1dXbZ8+XJ25coVNnfuXNaqVSt28eJFxhhjT548Yd7e3mzPnj3s2rVrLDU1lbm6ujIXFxduHWVlZez+/fu86f3332d2dnZMLpczxhjLzs5mANjx48d5ceXl5XXeNm1ofKtNaH/8gz6L5kWV/eHq6sqmTZvGvZbJZMzW1pZFRkYqjR87dizz8/Pjlbm5ubEpU6a8tD7Hjx/nlR8+fJg5Ojqyy5cvMwDs/PnzL63vi+ukY6750PR9oun110Z13ScqX1lctWoVJk2ahNDQUPTo0QObNm2CoaEhtm3bpjT+m2++ga+vL2bNmoXu3btjyZIl6NevH9atWwcAEIvFiI+Px9ixY9GtWzcMGDAA69atQ1paGm7fvg0AEAqFsLa25iZzc3McPHgQoaGhEAgEvPczNzfnxbZq1UrVTSSEkAZRXl6OtLQ0eHt7c2U6Ojrw9vZGamqq0mVSU1N58QDg4+NTY3x5eTm2bNkCsViMPn36cOX5+fmYNGkSfvrpJxgaGr60rmVlZSgsLORN2kAmkyEpKQm7du1CUlISZDKZuqtEiMZRKVlsihMfAEilUggEArRu3Vrp/F9++QWPHj1CaGhotXkjRoyApaUlBg0ahF9++aXW7dHWkyMhpHkoKCiATCaDlZUVr9zKygp5eXlKl8nLy6tTfFxcHIyNjaGvr4/Vq1cjPj4eFhYWAADGGCZOnIj//Oc/6N+/f53qGhkZCbFYzE0dOnSo62Y2WzExMXBwcMCQIUMwfvx4DBkyBA4ODoiJiVF31QjRKColi4154lMoLS3F7NmzERQUVONj3Fu3boWPjw/at2/PlRkbGyMqKgr79u3DoUOHMGjQIAQEBNSaMGrjyZEQ0jIMGTIEGRkZSElJga+vL8aOHcu1g1y7di2ePn2KiIiIOq8vIiICUqmUm+7cudNYVW8SMTExGD16NJycnHgdKDs5OWH06NGUMBKigmb1NHRFRQXGjh0Lxhg2btyoNObu3bs4duwYwsLCeOUWFhYIDw+Hm5sbXnvtNSxbtgwTJkzAihUranw/bTs5EkKaFwsLC+jq6iI/P59Xnp+fD2tra6XLWFtb1yneyMgIDg4OGDBgALZu3Qo9PT1s3boVAHDixAmkpqZCJBJBT08PDg4OAID+/fsjJCRE6fuKRCKYmpryJk0lk8kwc+ZM+Pv7IzY2FgMGDICxsTEGDBiA2NhY+Pv749NPP6Vb0oTUkUrJYmOe+BSJ4q1btxAfH1/jiWr79u0wNzfHiBEjXlpfNzc3ZGVl1Thfm06OhJDmRygUwsXFBQkJCVyZXC5HQkIC3N3dlS7j7u7OiweA+Pj4GuOrrresrAwA8O233+LPP/9ERkYGMjIyuB4o9uzZg6+++upVNkkjJCcnIycnB3PmzIGODv9rTkdHBxEREcjOzkZycrKaakiIZlGpU+6qJ76AgAAA/5z4pk+frnQZxYnv448/5spePPEpEsXMzEwkJibC3Nxc6boYY9i+fTuCg4Pr9OBKRkYGbGxs6r6BhBDSwMLDwxESEoL+/fvD1dUVa9asQVFREdfmOjg4GO3atUNkZCQAYMaMGfDy8kJUVBT8/Pywe/dunDt3Dlu2bAEAFBUV4auvvsKIESNgY2ODgoICrF+/Hrm5uRgzZgwAoGPHjrw6GBsbAwDs7e15zXe0VU5ODgCgsrIS6enpKCkpQU5ODiQSCQwMDFBZWQkAuH//vhprSYjmUHkEl4Y+8VVUVGD06NFIT09HXFwcZDIZ156xTZs2EAqF3HufOHEC2dnZeP/996vVa8eOHRAKhejbty+A5+1Vtm3bhu+//17VTSSEkAYzbtw4PHz4EPPnz0deXh6cnZ1x9OhRri337du3eVe/PDw8EB0djblz52LOnDno0qULYmNj0atXLwDPR4+4du0aduzYgYKCApibm+O1115DcnIyevbsqZZtbG7Ky8sBAJ6enrXG0cUEQuqoPv3yrF27lnXs2JEJhULm6urKTp8+zc3z8vJiISEhvPi9e/eyrl27MqFQyHr27MkOHTrEzVP0j6hsSkxM5K0nKCiIeXh4KK3TDz/8wLp3784MDQ2Zqakpc3V1Zfv27VNpu6gPqOaF9sc/6LNoXlrC/tDkbSwsLGS2trbs9ddfZ2fPnmU7d+5kANjOnTvZ2bNn2euvv84kEgmrrKxUd1VVosn7hDHNr782qus+ETDGmBpy1GZJWwY51xa0P/5Bn0Xz0hL2h6Zvo+JpaH9/fwQGBiI0NBTbt29HTEwM4uLisH//fgQGBqq7mirR9H2i6fXXRnXdJ83qaWhCXlVDj8HLGMP8+fNhY2MDAwMDeHt7IzMzk5ufk5ODsLAw2NnZwcDAAPb29liwYAF3G+xFWVlZMDExqbEPUUJIwwgMDMT+/ftx8eJFrplUaGgoLl26pJGJIiHqRMki0RqNMQbv8uXL8e2332LTpk04c+YMjIyM4OPjg9LSUgDAtWvXIJfLsXnzZly+fBmrV6/Gpk2bMGfOnGrvV1FRgaCgoJe2oyKENIzAwEBkZWVh8+bNAIDNmzcjMzOTEkVCVNUU98Q1BbWnaF5U3R8NPQavXC5n1tbWbMWKFdz8J0+eMJFIxHbt2lVjPZYvX87s7OyqlX/22WdswoQJbPv27UwsFtdpmxTo2GxeWsL+0KZtTEtLYwBYWlqauqvySlTdJ+vWrWOdOnViIpGIubq6sjNnztQYe+DAAebi4sLEYjEzNDRkffr0YT/++CMvRi6Xs3nz5jFra2umr6/Phg4dyv76669Gqz9pfI02NjQhzVFjDEWZnZ2NvLw8XoxYLIabm9tLh6ts06YNr+zEiRPYt28f1q9fX6ftoaEoCSGvQtU7LW3atMEXX3yB1NRUXLhwAaGhoQgNDcWxY8e4mJfdaSHai5JFohUaYyhKxb+qrDMrKwtr167FlClTuLJHjx5h4sSJ+OGHH+rcqJuGoiSEvIpVq1Zh0qRJCA0NRY8ePbBp0yYYGhpi27ZtSuMHDx6Mf/3rX+jevTvs7e0xY8YM9O7dGydPngTwvP32mjVrMHfuXIwcORK9e/fGjz/+iHv37iE2NlbpOulHr/agZJGQBpKbmwtfX1+MGTMGkyZN4sonTZqE8ePH4/XXX6/zumgoSkJIfdXnTktVjDEkJCTg+vXr3HmrPnda6Eev9qBkkWiFxhiKUvFvXdZ57949DBkyBB4eHlyH8wonTpzAypUroaenBz09PYSFhUEqlUJPT6/GX/k0FCUhpL7qc6cFeN6ExtjYGEKhEH5+fli7di3efPNNAPW700I/erUHJYtEKzTGGLx2dnawtrbmxRQWFuLMmTO8debm5mLw4MFwcXHB9u3bq41Fm5qayo3Rm5GRgcWLF8PExAQZGRn417/+9crbTgghDUFxXjp79iy++uorhIeHIykpqd7rox+92kPl4f4Iaa4aeihKgUCAjz/+GF9++SW6dOkCOzs7zJs3D7a2ttzY6IpEsVOnTli5ciUePnzI1Udx9bF79+68ep47dw46Ojrc8G2EENKQ6nOnBXh+q9rBwQEA4OzsjKtXryIyMhKDBw/m3WmpOkxifn4+nJ2dG34jSLNCySLRGg09Bi8AfPbZZygqKsLkyZPx5MkTDBo0CEePHoW+vj6A51cis7KykJWVhfbt2/Pqw2hwJEKIGlS906L4Yau40zJ9+vQ6r0cul6OsrAwA/06LIjlU3Gn54IMPGnoTSHPTFP34aArqA6p5of3xD/osmpeWsD+0aRtbYj+Lu3fvZiKRiP3www/sypUrbPLkyax169YsLy+PMcbYe++9xz7//HMufunSpey3335jN27cYFeuXGErV65kenp67LvvvuNili1bxlq3bs0OHjzILly4wEaOHMns7OxYSUlJg9efNI267hO6skgIIYRoGVXvtBQVFWHq1Km4e/cuDAwM4OjoiJ07d2LcuHFczMvutBDtJWCM7pUp0CDnzQvtj3/QZ9G8tIT9oU3bmJ6eDhcXF6SlpaFfv37qrk69afo+0fT6a6O67hN6GpoQQgghhNSIkkVCCCGEEFIjShYJIYQQQkiNKFkkhBBCCCE1omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaJkkRBCCCGE1IiSRUIIIYQQUiNKFgkhhBBCSI0oWSSEEEIIITXSU3cFCCEtg0wmQ3JyMu7fvw8bGxt4enpCV1dX3dUihBDyEnRlkRDS6GJiYuDg4IAhQ4Zg/PjxGDJkCBwcHBATE6PuqhFCCHkJShYJIY0qJiYGo0ePhpOTE1JTU/H06VOkpqbCyckJo0ePpoSREEKaOUoWCSGNRiaTYebMmfD398eBAwdQWlqKX3/9FaWlpThw4AD8/f3x6aefQiaTqbuqhBBCakDJIiGk0SQnJyMnJwceHh7o2rUr7zZ0165d4e7ujuzsbCQnJ6u7qoQQQmpAySIhpNHcv38fADBnzhylt6G/+OILXhwhhJDmh5JFQkijsbS0BAAMHDgQe/fuxenTpxEREYHTp09j7969GDhwIC+OEEJI80Nd5xBCGl12djZMTExQWVnJlc2aNQtWVlZqrBUhhJC6oCuLhJBG8+DBAwBAbm4udHR08PnnnyMzMxOff/45dHR0kJuby4sjhBDS/NCVRUJIozE3NwcAGBsbo3Xr1li2bBmWLVsGAOjQoQP+/vtvPHv2jIsjhBDS/FCySAhpNBcvXgQAGBgYIC8vjzfv/v37MDMzw7Nnz3Dx4kUMGzZMHVUkWiIzMxNPnz5VOu/q1au8f19kYmKCLl26NFrdCNF0lCwSQhpNTk4OAODhw4cQCoX4/PPPERYWhq1bt2LVqlV4+PAhL46Q+sjMzETXrl1fGjdhwoQa5/3111+UMBJSA0oWCSGNpmPHjgCeX1m0sLDg3Ybu2LEjHj58iJKSEi6OkPpQXFHcuXMnunfvXm1+SUkJcnJyIJFIYGBgwJt39epVTJgwocarkoQQShYJIU1AJpNxD7Mo3L17F3p6dAoiDad79+7o16+f0nmKbpoIIaqjp6EJIY3m9u3bAIDy8nIwxvDee+/h/PnzeO+998AYQ3l5OS+OEEJI80M/6wkhjUZxe1koFKK8vBw//fQTfvrpJwCAQCDgyuk2NCGENF/1urK4fv16SCQS6Ovrw83NDX/88Uet8fv27YOjoyP09fXh5OSEw4cPc/MqKiowe/ZsODk5wcjICLa2tggODsa9e/d465BIJBAIBLxJ0fZJ4cKFC/D09IS+vj46dOiA5cuX12fzCCENTCaTVStjjCktJ4QQ0ryonCzu2bMH4eHhWLBgAdLT09GnTx/4+PjU2KluSkoKgoKCEBYWhvPnzyMgIAABAQG4dOkSAKC4uBjp6emYN28e0tPTERMTg+vXr2PEiBHV1rV48WLcv3+fmz788ENuXmFhIYYNG4ZOnTohLS0NK1aswMKFC7FlyxZVN5EQ0kAUt5cVSaGPjw9OnToFHx8fXjndhiaEkOZL5dvQq1atwqRJkxAaGgoA2LRpEw4dOoRt27bh888/rxb/zTffwNfXF7NmzQIALFmyBPHx8Vi3bh02bdoEsViM+Ph43jLr1q2Dq6srbt++zbs9ZWJiAmtra6X1+vnnn1FeXo5t27ZBKBSiZ8+eyMjIwKpVqzB58mRVN5MQ0gA6dOgA4PktZ8YYjh07hmPHjnHzFeWKOEIIIc2PSlcWy8vLkZaWBm9v739WoKMDb29vpKamKl0mNTWVFw88v7pQUzwASKVSCAQCtG7dmle+bNkymJubo2/fvlixYgVvnNnU1FS8/vrrEAqFvPe5fv06/v77b6XvU1ZWhsLCQt5ECGk42dnZAJ7fclZGUa6II4QQ0vyolCwWFBRAJpPBysqKV25lZVVtdAaFvLw8leJLS0sxe/ZsBAUFwdTUlCv/6KOPsHv3biQmJmLKlClYunQpPvvss5e+j2KeMpGRkRCLxdxEVzcIaVg3b97kve7Rowd++eUX9OjRo9Y4QgghzUezehq6oqICY8eOBWMMGzdu5M0LDw/n/t+7d28IhUJMmTIFkZGREIlE9Xq/iIgI3noLCwspYSSkAb3493TlyhWl7ZHp744QQpovlZJFCwsL6OrqIj8/n1een59fY1tCa2vrOsUrEsVbt27hxIkTvKuKyri5uaGyshI5OTno1q1bje+jqIMyIpGo3okmIeTlLl++DOB528TCwkJ8//33uHHjBuzt7fH+++/D1NQUjDEujhBCSPOj0m1ooVAIFxcXJCQkcGVyuRwJCQlwd3dXuoy7uzsvHgDi4+N58YpEMTMzE8ePH4e5uflL65KRkQEdHR1YWlpy7/P777+joqKC9z7dunWDmZmZKptJCGkgilFbGGMwNzfnejG4f/8+zM3NuTaLL47uQgghpPlQ+TZ0eHg4QkJC0L9/f7i6umLNmjUoKirino4ODg5Gu3btEBkZCQCYMWMGvLy8EBUVBT8/P+zevRvnzp3jurSpqKjA6NGjkZ6ejri4OMhkMq6NYZs2bSAUCpGamoozZ85gyJAhMDExQWpqKj755BNMmDCBSwTHjx+PRYsWISwsDLNnz8alS5fwzTffYPXq1Q3yQRFCVNeuXTvcuXMHZmZm+Pvvv7F8+XJe/6eKcuqUm7wqa2MBDJ78BdxTrUc4gyd/wdpY0Ei1IkQ7qJwsjhs3Dg8fPsT8+fORl5cHZ2dnHD16lHuY5Pbt29DR+eeP1cPDA9HR0Zg7dy7mzJmDLl26IDY2Fr169QLw/IrCL7/8AgBwdnbmvVdiYiIGDx4MkUiE3bt3Y+HChSgrK4OdnR0++eQTXntDsViM3377DdOmTYOLiwssLCwwf/586jaHEDVaunQp3njjjRp7JFCUHzp0qCmrRbTQFBchuv8+BfhdteW6//+yhJCaCVhNfVq0QIWFhRCLxZBKpS9tM0kaH+2Pf2jqZ1FcXIxu3brh7t27AAAnJydcvHiR+xcAOnfujBs3bqizmirT1P2hCk3axvT0dPh59ceJg9Ho7uio0rJXr13DGyPH49D/zqFfv36NVMOGoUn7RBlNr782qus+aVZPQxNCtIuhoSHu3LkDBwcH3Lhxg0sQFf/a29sjKytLnVUkWiLvGUNJ666ArbNKy5XkyZH3jK6ZEFKbeo0NTQghqsjKysKTJ0/Qp08fAECfPn3w5MkTShQJIUQDULJICGkSYrEY27ZtAwBs27YNYrFYzTUihBBSF5QsEkIIIYSQGlGySAghhBBCakTJIiGEEEIIqREli0SrrF+/HhKJBPr6+nBzc8Mff/xRa/y+ffvg6OgIfX19ODk54fDhw7z5jDHMnz8fNjY2MDAwgLe3NzIzM7n5OTk5CAsLg52dHQwMDGBvb48FCxagvLyci0lKSsLIkSNhY2MDIyMjODs74+eff27YDSeEkBeocj787rvv4OnpCTMzM5iZmcHb27ta/MSJEyEQCHiTr69vY28GaQYoWSRaY8+ePQgPD8eCBQuQnp6OPn36wMfHBw8ePFAan5KSgqCgIISFheH8+fMICAhAQEAALl26xMUsX74c3377LTZt2oQzZ87AyMgIPj4+KC0tBQBcu3YNcrkcmzdvxuXLl7F69Wps2rQJc+bM4b1P7969ceDAAVy4cAGhoaEIDg5GXFxc434ghJAWS9XzYVJSEoKCgpCYmIjU1FR06NABw4YNqzYUp6+vL+7fv89Nu3btaorNIerGCEcqlTIATCqVqrsqhKm+P1xdXdm0adO41zKZjNna2rLIyEil8WPHjmV+fn68Mjc3NzZlyhTGGGNyuZxZW1uzFStWcPOfPHnCRCIR27VrV431WL58ObOzs6u1rm+//TYLDQ196TYpaMuxmZaWxgCwtLQ0dVfllWjL/qiNJm3jqxxXmnRMqrJPVD0fvqiyspKZmJiwHTt2cGUhISFs5MiRKtdbQZOOqZairvuEriwSrVBeXo60tDR4e3tzZTo6OvD29kZqaqrSZVJTU3nxAODj48PFZ2dnIy8vjxcjFovh5uZW4zoBQCqVok2bNrXW92UxZWVlKCws5E2EEFIX9Tkfvqi4uBgVFRXVzlNJSUmwtLREt27d8MEHH+DRo0c1roPOY9qDRnAhWqGgoAAymYwbo1zBysoK165dU7pMXl6e0vi8vDxuvqKsppgXZWVlYe3atVi5cmWNdd27dy/Onj2LzZs31xgTGRmJRYsW1TifEPKP4uJiAM+H/VOmpKQEOTk5kEgkMDAw4M27evVqo9evqdXnfPii2bNnw9bWlpdw+vr6IjAwEHZ2drhx4wbmzJmDt956C6mpqdDV1a22DjqPaQ9KFglpILm5ufD19cWYMWMwadIkpTGJiYkIDQ3Fd999h549e9a4roiICISHh3OvCwsL0aFDhwavMyHaQJEA1fR3VxcmJiYNVR2Nt2zZMuzevRtJSUnQ19fnyt955x3u/05OTujduzfs7e2RlJSEoUOHVlsPnce0ByWLRCtYWFhAV1cX+fn5vPL8/HxYW1srXcba2rrWeMW/+fn5sLGx4cU4Ozvzlrt37x6GDBkCDw8PbNmyRen7/e9//8Pw4cOxevVqBAcH17o9IpEIIpGo1hhCyHMBAQEAAEdHRxgaGlabf/XqVUyYMAE7d+5E9+7dq803MTFBly5dGruaTaY+50OFlStXYtmyZTh+/Dh69+5da2znzp1hYWGBrKwspckince0ByWLRCsIhUK4uLggISGB++KQy+VISEjA9OnTlS7j7u6OhIQEfPzxx1xZfHw83N3dAQB2dnawtrZGQkIClxwWFhbizJkz+OCDD7hlcnNzMWTIELi4uGD79u3Q0aneFDgpKQn+/v74+uuvMXny5IbZaEIIgOfJ0fvvv//SuO7du6Nfv35NUCP1qs/5EHje+8NXX32FY8eOoX///i99n7t37+LRo0e8H9NEO1GySLRGeHg4QkJC0L9/f7i6umLNmjUoKipCaGgoACA4OBjt2rVDZGQkAGDGjBnw8vJCVFQU/Pz8sHv3bpw7d467MigQCPDxxx/jyy+/RJcuXWBnZ4d58+bB1taWOwHn5uZi8ODB6NSpE1auXImHDx9y9VH8gk9MTIS/vz9mzJiBUaNGce0dhULhSx+EIYSQ+lD1fPj1119j/vz5iI6OhkQi4c5TxsbGMDY2xrNnz7Bo0SKMGjUK1tbWuHHjBj777DM4ODjAx8dHbdtJmkgTPZ2tEeix/ualPvtj7dq1rGPHjkwoFDJXV1d2+vRpbp6XlxcLCQnhxe/du5d17dqVCYVC1rNnT3bo0CHefLlczubNm8esrKyYSCRiQ4cOZdevX+fmb9++nQFQOimEhIQone/l5dWon0VzpEndlNRGW/ZHbbRpG1vqcafK+bBTp05Kz1MLFixgjDFWXFzMhg0bxtq2bctatWrFOnXqxCZNmsTy8vIarf6k8dV1nwgYY6ypEtPmrrCwEGKxGFKpFKampuquTotH++Mf2vJZpKenw8XFBWlpaRp9O1Bb9kdttGkb6bhrHjS9/tqorvuE+lkkhJBG1tDDUC5cuBCOjo4wMjLihmY7c+YMN78uw1ASQkhdUbJICCGNqDGGoezatSvWrVuHixcv4uTJk5BIJBg2bBjXZrYuw1ASQkhd0W3oKugSefNC++Mf2vJZtMTbgW5ubnjttdewbt06AM+fSu3QoQM+/PBDfP7559Xix40bh6KiIt7Y4QMGDICzszM2bdpUa32OHz+utAsTAFixYgU2btyImzdvKp1fVlaGsrIy3jo7dOig8ccc0DKPu+ZI0+uvjeg2NCGEqFljDEOp7D22bNkCsViMPn361FiXlw0xGRkZCbFYzE3UeTIhRIGSRUIIaSS1DbtW05CRLxuGUiEuLg7GxsbQ19fH6tWrER8fDwsLC6XrVAxDOWXKlBrrGhERAalUyk137typyyYSQloA6meREEI00JAhQ5CRkYGCggJ89913GDt2LM6cOQNLS0teXF2GoQRotA1CSM3oyiIhhDSSxhiGUsHIyAgODg4YMGAAtm7dCj09PWzdupUXU5dhKAkh5GUoWSSEkEZSddg1BcWwa4phJV+kGIayqqrDUNZELpfzHlBRjC5U2zCUhBBSF3QbmhBCGlFDD0NZVFSEr776CiNGjICNjQ0KCgqwfv165ObmYsyYMQDqNgwlIYTUFSWLhBDSiMaNG4eHDx9i/vz5yMvLg7OzM44ePco9xHL79m3eVT8PDw9ER0dj7ty5mDNnDrp06YLY2Fj06tULAKCrq4tr165hx44dKCgogLm5OV577TUkJyejZ8+eAJ5ficzKykJWVhbat2/Pqw/1lkYIURUli4QQ0simT5+O6dOnK52XlJRUrWzMmDHcVcIX6evrIyYmptb3mzhxIiZOnKhqNQkhRClqxEIIIYQQQmpEVxYJIQ0qMzMTT58+VTrv6tWrvH9fZGJigi5dujRa3QghhKiOkkVCSIPJzMxE165dXxo3YcKEGuf99ddflDASQkgzQskiIaTBKK4o7ty5E927d682v6SkBDk5OZBIJDAwMODNu3r1KiZMmFDjVUlCCCHqQckiIaTBde/eHf369VM6b+DAgU1cG0IIIa+CHnAhhBBCCCE1omSREEIIIYTUiJJFQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaKnoQkhDcraWACDJ38B91T7LWrw5C9YGwsaqVaEEELqi5JFQkiDmuIiRPffpwC/q7Zc9/9flhBCSPNCySIhpEFtTivHuPk/oLujo0rLXb12DZujxmNEI9WLEEJI/dSrzeL69eshkUigr68PNzc3/PHHH7XG79u3D46OjtDX14eTkxMOHz7MzauoqMDs2bPh5OQEIyMj2NraIjg4GPfu3eNicnJyEBYWBjs7OxgYGMDe3h4LFixAeXk5L0YgEFSbTp8+XZ9NJITUU94zhpLWXQFbZ5WmktZdkfeMqanWhBBCaqJysrhnzx6Eh4djwYIFSE9PR58+feDj44MHDx4ojU9JSUFQUBDCwsJw/vx5BAQEICAgAJcuXQIAFBcXIz09HfPmzUN6ejpiYmJw/fp1jBjxz/WFa9euQS6XY/Pmzbh8+TJWr16NTZs2Yc6cOdXe7/jx47h//z43ubi4qLqJhBBCCCHk/6l8G3rVqlWYNGkSQkNDAQCbNm3CoUOHsG3bNnz++efV4r/55hv4+vpi1qxZAIAlS5YgPj4e69atw6ZNmyAWixEfH89bZt26dXB1dcXt27fRsWNH+Pr6wtfXl5vfuXNnXL9+HRs3bsTKlSt5y5qbm8Pa2lrVzSKEEEIIIUqolCyWl5cjLS0NERERXJmOjg68vb2RmpqqdJnU1FSEh4fzynx8fBAbG1vj+0ilUggEArRu3brWmDZt2lQrHzFiBEpLS9G1a1d89tlnvCuULyorK0NZWRn3urCwsMZYQgghmqG4uBjXrl3jXl+9epX3LwA4OjrC0NCwyetGiCZSKVksKCiATCaDlZUVr9zKyor3h1lVXl6e0vi8vDyl8aWlpZg9ezaCgoJgamqqNCYrKwtr167lXVU0NjZGVFQUBg4cCB0dHRw4cAABAQGIjY2tMWGMjIzEokWLatxeQgghmufatWtKmyBNmDCB+39aWhr69evXlNUiRGM1q6ehKyoqMHbsWDDGsHHjRqUxubm58PX1xZgxYzBp0iSu3MLCgncF87XXXsO9e/ewYsWKGpPFiIgI3jKFhYXo0KFDA20NIYQQdXB0dERaWhr3uqSkBDk5OZBIJDAwMOBiCCF1o1KyaGFhAV1dXeTn5/PK8/Pza2wnaG1tXad4RaJ469YtnDhxQulVxXv37mHIkCHw8PDAli1bXlpfNze3au0hqxKJRBCJRC9dDyGEEM1haGhY7arhwIED1VQbQjSfSk9DC4VCuLi4ICEhgSuTy+VISEiAu7u70mXc3d158QAQHx/Pi1ckipmZmTh+/DjMzc2rrSc3NxeDBw+Gi4sLtm/fDh2dl1c9IyMDNjY2dd08QgghWkYmkyEpKQm7du1CUlISZDKZuqtEiMZR+TZ0eHg4QkJC0L9/f7i6umLNmjUoKirino4ODg5Gu3btEBkZCQCYMWMGvLy8EBUVBT8/P+zevRvnzp3jrgxWVFRg9OjRSE9PR1xcHGQyGdeesU2bNhAKhVyi2KlTJ6xcuRIPHz7k6qO4Qrljxw4IhUL07dsXABATE4Nt27bh+++/f4WPhxBCiKaKiYnBzJkzkZOTw5VJJBJERUUhMDBQfRUjRMOonCyOGzcODx8+xPz585GXlwdnZ2ccPXqUe4jl9u3bvKt+Hh4eiI6Oxty5czFnzhx06dIFsbGx6NWrF4DnVwx/+eUXAICzszPvvRITEzF48GDEx8cjKysLWVlZaN++PS+GsX868V2yZAlu3boFPT09ODo6Ys+ePRg9erSqm0gIIUTDxcTEYPTo0fD398euXbvQq1cvXLp0CUuXLsXo0aOxf/9+ShgJqSMBq5pttXCFhYUQi8WQSqU1PolNmg7tj39oymeRnp4OFxeXej1p+irLNjVN2R+vQpO3USaTwcHBAU5OToiNjeVdwJDL5dzAEJmZmdDV1VVjTVWjyfsE0Pz6a6O67pNm9TQ0IUSzFRcXA3ie+Cmj7KlUhap94BHyKpKTk5GTk4Ndu3aBMYakpCTcv38fNjY28PT0REREBDw8PJCcnIzBgweru7qENHuULBJCGoyiv9Wq3VqpysTEpKGqQ1qo+/fvAwBu3LiBoKCgam0Wv/zyS14cIaR2lCwSQhpMQEAAgJpHx7h69SomTJiAnTt3onv37tXmm5iYoEuXLo1dTaLlFL1gTJgwAcOHD6/WZlHROTf1lkFI3VCySAhpMBYWFnj//fdfGte9e/dm3y6RaC4PDw/o6enB3NwcMTEx0NN7/lU3YMAAxMTEoH379nj06BE8PDzUXFOiiWQyGZKTk3lNGzSp7Wt9qNTPIiGEENLcpaSkoLKyEg8ePEBgYCBSU1Px9OlTpKamIjAwEA8ePEBlZSVSUlLUXVWiYWJiYuDg4IAhQ4Zg/PjxGDJkCBwcHBATE6PuqjUqShYJIYRoFUVbxJ9++gkXL16Eh4cHTE1N4eHhgUuXLuGnn37ixRFSF4rumJycnHg/QJycnDB69GitThjpNjQhhBCtomiLaG9vj6ysrGq3DP/44w9eHCEvI5PJMHPmTPj7+/O6YxowYABiY2MREBCATz/9FCNHjtTKW9KULBJCCNEqnp6ekEgkWLp0KWJjY3nd48jlckRGRsLOzg6enp7qqyTRKFW7Y3pxuGEdHR2t746JbkMTQgjRKrq6uoiKikJcXBwCAgJ4twwDAgIQFxeHlStXauUVINI4FE0WFKPPvUhRrq1NGyhZJIQQonUCAwOxf/9+pW0Waag/oipFk4VLly4pna8o19amDXQbmhBCiFYKDAzEyJEjW1w3J6Thvdi04cUhJLW9aQNdWSSEEKK1dHV1MXjwYAQFBWHw4MEtKlFcv349JBIJ9PX14ebmxj3Yo8x3330HT09PmJmZwczMDN7e3tXiGWOYP38+bGxsYGBgAG9vb2RmZjb2ZjQLLb1pAyWLRKuocnIEgH379sHR0RH6+vpwcnLC4cOHefNfdnLMyclBWFgY7OzsYGBgAHt7eyxYsADl5eW89Vy4cAGenp7Q19dHhw4dsHz58obbaEIIecGePXsQHh6OBQsWID09HX369IGPjw8ePHigND4pKQlBQUFITExEamoqOnTogGHDhiE3N5eLWb58Ob799lts2rQJZ86cgZGREXx8fFBaWtpUm6VWLbppAyMcqVTKADCpVKruqhCm+v7YvXs3EwqFbNu2bezy5cts0qRJrHXr1iw/P19p/KlTp5iuri5bvnw5u3LlCps7dy5r1aoVu3jxIhezbNkyJhaLWWxsLPvzzz/ZiBEjmJ2dHSspKWGMMXbkyBE2ceJEduzYMXbjxg128OBBZmlpyWbOnMnbDisrK/buu++yS5cusV27djEDAwO2efPmRvssmqu0tDQGgKWlpam7Kq9EW/ZHbVrCNmoaVfaJq6srmzZtGvdaJpMxW1tbFhkZWaf3qqysZCYmJmzHjh2MMcbkcjmztrZmK1as4GKePHnCRCIR27VrV4PXvzmrrKxkiYmJLDo6miUmJrLKykp1V6ne6rpPKFmsQlsOZG2h6v5Q9eQ4duxY5ufnxytzc3NjU6ZMYYzV/+S4fPlyZmdnx73esGEDMzMzY2VlZVzZ7NmzWbdu3eq0XYxpz7FJyaLm0JZtbIlf7GVlZUxXV5f997//5ZUHBwezESNG1Om9CgsLmb6+Pvv1118ZY4zduHGDAWDnz5/nxb3++uvso48+UrqO0tJSJpVKuenOnTtacUxpk7oeU3QbmmiF8vJypKWlwdvbmyvT0dGBt7c3UlNTlS6TmprKiwcAHx8fLj47Oxt5eXm8GLFYDDc3txrXCQBSqRRt2rThvc/rr78OoVDIe5/r16/j77//VrqOsrIyFBYW8iZCiGpa6tBsBQUFkMlksLKy4pVbWVkhLy+vTuuYPXs2bG1tufOfYjlV1hkZGQmxWMxNHTp0UHVTSDNBySLRCvU5Oebl5dUaX5+TY1ZWFtauXYspU6a89H2qvseL6CRLyKtpyUOzvaply5Zh9+7d+O9//wt9ff16ryciIgJSqZSb7ty504C1JE2JkkVCGkhubi58fX0xZswYTJo06ZXWRSdZQurvxaHZBgwYAGNjY25oNn9/f3z66aeQyWTqrmqjsLCwgK6uLvLz83nl+fn5sLa2rnXZlStXYtmyZfjtt9/Qu3dvrlyxnCrrFIlEMDU15U1EM1GySLRCfU6O1tbWtcarcnK8d+8ehgwZAg8PD2zZsqVO71P1PV6kLSfZ4uJipKenc9PVq1cBAFevXuXKiouL1VxLom0UQ7PNmTOnxqHZsrOzkZycrKYaNi6hUAgXFxckJCRwZXK5HAkJCXB3d69xueXLl2PJkiU4evQo+vfvz5tnZ2cHa2tr3joLCwtx5syZWtdJtAMli0Qr1Ofk6O7uzosHgPj4eC6+rifH3NxcDB48GC4uLti+fXu1Lyd3d3f8/vvvqKio4L1Pt27dYGZmVv+N1gDXrl2Di4sLN02YMAEAMGHCBK7s2rVraq4l0TYtfWg2AAgPD8d3332HHTt24OrVq/jggw9QVFSE0NBQAEBwcDAiIiK4+K+//hrz5s3Dtm3bIJFIkJeXh7y8PDx79gwAIBAI8PHHH+PLL7/EL7/8gosXLyI4OBi2trYICAhQxyaSptRED9xoBG15+k9b1KfrHJFIxH744Qd25coVNnnyZNa6dWuWl5fHGGPsvffeY59//jkXf+rUKaanp8dWrlzJrl69yhYsWKC065zWrVuzgwcPsgsXLrCRI0fyus65e/cuc3BwYEOHDmV3795l9+/f5yaFJ0+eMCsrK/bee++xS5cusd27dzNDQ8MW0XVOUVERS0tL46aTJ0+ynTt3spMnT3JlRUVF6q6myjR1f6hCk7cxMTGRAWCpqalK56ekpDAALDExsWkr9opU3Sdr165lHTt2ZEKhkLm6urLTp09z87y8vFhISAj3ulOnTgxAtWnBggVcjFwuZ/PmzWNWVlZMJBKxoUOHsuvXrzda/Unjo65z6oEO5OalPvtDlZMjY4zt3buXde3alQmFQtazZ0926NAh3vyXnRy3b9+u9AT74u+wP//8kw0aNIiJRCLWrl07tmzZMhU+CTo2m5uWsD80eRsrKyuZRCJhw4cPZzKZjDdPJpOx4cOHMzs7O43rRkeT9wljml9/bVTXfSJgjLEmuYSpAQoLCyEWiyGVSjW2jZg2of3xD/osmpeWsD80fRsVT0P7+/sjIiICvXr1wqVLlxAZGYm4uDiNHHFD0/eJptdfG9V1n+g1YZ0IIYSQJqEYmm3mzJnw8PDgyu3s7DQyUSREnShZJIQQopUCAwMxcuRIJCcn4/79+7CxsYGnpyd0dXXVXTVCNAoli4QQQrSWrq4uBg8erO5qEKLRqOscQgghhBBSI0oWCSGEEEJIjShZJIQQQgghNaI2i4QQQrSWTCajB1wIeUV0ZZEQQohWiomJgYODA4YMGYLx48djyJAhcHBwQExMjLqrRohGoSuLhBBCtI6iU24/Pz/MmjULBgYGKCkpwZEjRzB69Gjqa5EQFVCySAghRKvIZDLMnDkTLi4uuHTpEuLi4rh5EokELi4u+PTTTzFy5Ei6JU1IHdBtaEIIIVolOTkZOTk5SEtLg5OTE1JTU/H06VOkpqbCyckJaWlpyM7ORnJysrqrSohGoCuLhJAmQQ8akKaSm5sLAPD19UVsbCx0dJ5fFxkwYABiY2Ph7++PI0eOcHGEkNrRlUVCSKOjBw1IU3r48CGA58P9KRJFBR0dHQQEBPDiCCG1o2SRENKoFA8aKLsdOHr0aEoYSYNr27YtgOfHnlwu582Ty+WIjY3lxRFCakfJIiGk0SgeNPD390dsbCwGDBgAY2Nj3u3ATz/9FDKZTN1VJVqkXbt2AIAjR44gICCA9yMlICAAR44c4cURQmpHbRYJIY1G8aDBrl27lN4OjIiIgIeHB5KTkzF48GD1VJJoHU9PT0gkElhYWODChQvw8PDg5kkkEvTv3x+PHj2Cp6enGmtJiOagZJEQ0mju378PAOjVq5fS+YpyRRwhDUFXVxdRUVFK+1k8evQoDh06hP3799MDVoTUESWLhJBGY2NjAwC4dOkSBgwYUG3+pUuXeHGENJTAwEDs378fM2fO5PWzaGdnRx1yE6IiShYJIY1GcTtw6dKlvC5MgOcPGkRGRsLOzo5uB5JGERgYiJEjR1KXTYS8ono94LJ+/XpIJBLo6+vDzc0Nf/zxR63x+/btg6OjI/T19eHk5ITDhw9z8yoqKjB79mw4OTnByMgItra2CA4Oxr1793jrePz4Md59912YmpqidevWCAsLw7Nnz3gxFy5cgKenJ/T19dGhQwcsX768PptHCGkgituBcXFxSh80iIuLw8qVK+nLmzQaXV1dDB48GEFBQRg8eDAda4TUg8rJ4p49exAeHo4FCxYgPT0dffr0gY+PDx48eKA0PiUlBUFBQQgLC8P58+cREBCAgIAA7vZTcXEx0tPTMW/ePKSnpyMmJgbXr1/HiBEjeOt59913cfnyZcTHxyMuLg6///47Jk+ezM0vLCzEsGHD0KlTJ6SlpWHFihVYuHAhtmzZouomEkIakOJ2oOJBA1NTU3h4eODixYt0O5AQQjQBU5GrqyubNm0a91omkzFbW1sWGRmpNH7s2LHMz8+PV+bm5samTJlS43v88ccfDAC7desWY4yxK1euMADs7NmzXMyRI0eYQCBgubm5jDHGNmzYwMzMzFhZWRkXM3v2bNatW7ca36e0tJRJpVJuunPnDgPApFJpLZ8AaSpSqZT2x//T9M/iwIEDTCKRMADcJJFI2IEDB9RdtXrR9P1RFy1hGzWNpu8TTa+/NqrrPlHpymJ5eTnS0tLg7e3Nleno6MDb2xupqalKl0lNTeXFA4CPj0+N8QAglUohEAjQunVrbh2tW7dG//79uRhvb2/o6OjgzJkzXMzrr78OoVDIe5/r16/j77//Vvo+kZGREIvF3NShQ4faPwBCiMqoU+6GbboDAAsXLoSjoyOMjIxgZmYGb29v7lyoUJemO4QQUhcqJYsFBQWQyWSwsrLilVtZWSEvL0/pMnl5eSrFl5aWYvbs2QgKCoKpqSm3DktLS16cnp4e2rRpw62npvdRzFMmIiICUqmUm+7cuaM0jhBSP9Qpd8M33QGArl27Yt26dbh48SJOnjwJiUSCYcOG8Yave1nTHUIIqatmNYJLRUUFxo4dC8YYNm7c2OjvJxKJYGpqypsIIQ1H0Sn3nDlzauyUOzs7G8nJyWqqYeNbtWoVJk2ahNDQUPTo0QObNm2CoaEhtm3bpjT+m2++ga+vL2bNmoXu3btjyZIl6NevH9atW8fFjB8/Ht7e3ujcuTN69uyJVatWobCwEBcuXAAAXL16FUePHsX3338PNzc3DBo0CGvXrsXu3burPTyoUFZWhsLCQt5ECCGAismihYUFdHV1kZ+fzyvPz8+HtbW10mWsra3rFK9IFG/duoX4+Hhe4mZtbV3tV3hlZSUeP37Mraem91HMI4Q0vZbeKXdTNN0pLy/Hli1bIBaL0adPH24dL2u68yJqlkMIqYlKyaJQKISLiwsSEhK4MrlcjoSEBLi7uytdxt3dnRcPAPHx8bx4RaKYmZmJ48ePw9zcvNo6njx5grS0NK7sxIkTkMvlcHNz42J+//13VFRU8N6nW7duMDMzU2UzCSENpGqn3Mpoe6fcjdl0Jy4uDsbGxtDX18fq1asRHx8PCwsLbh0va7rzImqWQwipicq3ocPDw/Hdd99hx44duHr1Kj744AMUFRUhNDQUABAcHIyIiAgufsaMGTh69CiioqJw7do1LFy4EOfOncP06dMBPE8UR48ejXPnzuHnn3+GTCZDXl4e8vLyUF5eDgDo3r07fH19MWnSJPzxxx84deoUpk+fjnfeeQe2trYAnt+WEQqFCAsLw+XLl7Fnzx588803CA8Pf+UPiRBSP1U75ZbL5bx51Cn3qxkyZAgyMjKQkpICX19fjB07tsZ2kHVBzXIIITVROVkcN24cVq5cifnz58PZ2RkZGRk4evQo90v49u3bvFtKHh4eiI6OxpYtW9CnTx/s378fsbGx3O2n3Nxc/PLLL7h79y6cnZ1hY2PDTSkpKdx6fv75Zzg6OmLo0KF4++23MWjQIF4fimKxGL/99huys7Ph4uKCmTNnYv78+dSgmxA1aumdcjdm0x0jIyM4ODhgwIAB2Lp1K/T09LB161ZuHS9rukMIIXXWND35aAbqA6p5of3xD03/LJT1s2hnZ9ci+ll0dXVl06dP517LZDLWrl27Wvum9ff355W5u7vX2jctY4x17tyZLViwgDH2T9+0586d4+YfO3aM1zfty2j6MaeNNH2faHr9tVFd9wmNDU0IaXQteYze8PBwhISEoH///nB1dcWaNWuqNd1p164dIiMjATxvuuPl5YWoqCj4+flh9+7dOHfuHHcnpaioCF999RVGjBgBGxsbFBQUYP369cjNzcWYMWMA8JvubNq0CRUVFdWa7rQUMpmsRR53hDQkShYJIU1CMUZvSzNu3Dg8fPgQ8+fPR15eHpydnas13anarZCi6c7cuXMxZ84cdOnShdd0R1dXF9euXcOOHTtQUFAAc3NzvPbaa0hOTkbPnj259fz888+YPn06hg4dCh0dHYwaNQrffvtt0268msXExGDmzJnIycnhyiQSCaKiomiYSUJUIGCMMXVXorkoLCyEWCyGVCqlxt3NAO2Pf9Bn0by0hP2h6duoGDnI398fc+bMQa9evXDp0iUsXboUcXFxGjkuuabvE02vvzaq6z5pVp1yE0IIIa+KRg4ipGFRskgIaRIymQxJSUnYtWsXkpKS6IuaNBoaOYiQhkVtFgkhjY7ajpGm1NJHDiKNqyU+NEVXFgkhjUrRdszJyYnXz6KTkxNGjx6NmJgYdVeRaJmWPnIQaTwxMTFwcHDAkCFDMH78eAwZMgQODg5afx6jZJEQ0mio7RhRh6ojB1VUVPCaP1RUVNDIQaReWvIPX7oNTQhpNIq2Y7t27aqx7ZiHhweSk5NbZLc6pHEoRg4aPXo0xGIxSkpKuHkGBgYoLS3F/v37tf7WIWk4L/7wVZzPFD98AwIC8Omnn2LkyJFaeVzRlUVCSKOhtmNEnZT1DCcQCJSWE1Kblv7QFCWLhJBGU7XtmLKnoantGGkMiqtAw4cPh1QqRWJiIqKjo5GYmIgnT55g+PDh1PyBqKSl//Cl29CEkEajaDv24YcfoqCgoNrT0BYWFtR2jDS4qs0fWrVqVa2JAzV/IKqq+sN3wIAB1eZr+w9furJICGk0urq6GDNmDM6dO4eSkhJs2bIF9+7dw5YtW1BSUoJz585h9OjRWtnGh6hPS78KRBpe1Yem5HI5b55cLtf6h6YoWSSENBqZTIZ9+/ahf//+EIlEmDx5MmxtbTF58mTo6+ujf//+2L9/P90OJA2Kus4hDU3x0FRcXBwCAgJ4T0MHBAQgLi4OK1eu1NofvpQsEkIajeJ24KhRo6o1ChcIBAgMDNTqRuFEPVr6VSDSOAIDA7F//35cvHgRHh4eMDU1hYeHBy5duqSRY42rgpJFQkijUdzmi4iIUNo32Zw5c3hxhDSEln4VSGH9+vWQSCTQ19eHm5sb/vjjjxpjL1++jFGjRkEikUAgEGDNmjXVYhYuXAiBQMCbHB0dG3ELmp/AwEBkZWXxHprKzMzU6kQRoGSRENKILC0tAQCDBg3CgQMHUFpail9//RWlpaU4cOAABg4cyIsjpKG05KtAALBnzx6Eh4djwYIFSE9PR58+feDj44MHDx4ojS8uLkbnzp2xbNkyWFtb17jenj174v79+9x08uTJxtqEZktXVxeDBw9GUFAQBg8erPU/OgBKFokWUeVXNADs27cPjo6O0NfXh5OTEw4fPsybzxjD/PnzYWNjAwMDA3h7eyMzM5MX89VXX8HDwwOGhoZo3bq10vc5e/Yshg4ditatW8PMzAw+Pj74888/X2lbNc2jR4/QpUsX3hBZXbp0waNHj9RdNaLFWupVIABYtWoVJk2ahNDQUPTo0QObNm2CoaEhtm3bpjT+tddew4oVK/DOO+9AJBLVuF49PT1YW1tzk4WFRY2xZWVlKCws5E1EM1GySLSCqr+iU1JSEBQUhLCwMJw/fx4BAQEICAjgNYhfvnw5vv32W2zatAlnzpyBkZERfHx8UFpaysWUl5djzJgx+OCDD5S+z7Nnz+Dr64uOHTvizJkzOHnyJExMTODj44OKioqG/RCaIcXnf/XqVZSWlvKehi4tLcW1a9d4cYQ0tJZ4Fai8vBxpaWnw9vbmynR0dODt7Y3U1NRXWndmZiZsbW3RuXNnvPvuu7h9+3aNsZGRkRCLxdzUoUOHV3pvokaMcKRSKQPApFKpuqtSb5WVlSwxMZFFR0ezxMREVllZqe4q1Zsq+8PV1ZVNmzaNey2TyZitrS2LjIxUGj927Fjm5+fHK3Nzc2NTpkxhjDEml8uZtbU1W7FiBTf/yZMnTCQSsV27dlVb3/bt25lYLK5WfvbsWQaA3b59myu7cOECA8AyMzNful0KmnpsHj9+nAFgjo6OTCKRMADcZGdnxxwdHRkAdvz4cXVXVSWauj9U0RK2UdPUdZ/k5uYyACwlJYVXPmvWLObq6vrS9+nUqRNbvXp1tfLDhw+zvXv3sj///JMdPXqUubu7s44dO7LCwkKl6yktLWVSqZSb7ty5oxXHVEv8nqUri1okJiYGDg4OvFt9Dg4OWj24OVC/X9Gpqam8eADw8fHh4rOzs5GXl8eLEYvFcHNzU+mXebdu3WBubo6tW7eivLwcJSUl2Lp1K7p37w6JRFLjctp2+8bCwgJ//fUX73bg9evXYW5uru6qEULq6K233sKYMWPQu3dv+Pj44PDhw3jy5An27t2rNF4kEsHU1JQ3abqYmBjY29vzvmft7e21/nuWkkUtERMTg9GjRyt94nT06NFafSAXFBRAJpPBysqKV25lZYW8vDyly+Tl5dUar/hXlXUqY2JigqSkJOzcuRMGBgYwNjbG0aNHceTIEejp1TyAkrbcvlHcXj558iRGjRoFkUgEf39/iEQijBo1CqdOneLFEUJenYWFBXR1dZGfn88rz8/Pr/XhFVW1bt0aXbt2RVZWVoOtszmLiYnBqFGjqp2vHjx4gFGjRmn19ywli1pAMQ6qv78/YmNjMWDAABgbG2PAgAGIjY2Fv78/jYOqJiUlJQgLC8PAgQNx+vRpnDp1Cr169YKfnx9KSkpqXC4iIgJSqZSb7ty504S1bjiKTo8jIyOVPpW6dOlSXhwh5NUJhUK4uLggISGBK5PL5UhISIC7u3uDvc+zZ89w48aNFvH3K5PJ8J///AcAMHToUN5FmaFDhwIAPvjgA639nqWxobVA1XFQX+z4WEdHR+vHQa3Pr2hra+ta4xX/5ufn806E+fn5cHZ2rnPdoqOjkZOTg9TUVG7fREdHw8zMDAcPHsQ777yjdDmRSFTrE4maQtE5ckpKCv766y+cOnUK9+/fh42NDQYOHIhRo0ZR58iENILw8HCEhISgf//+cHV1xZo1a1BUVITQ0FAAQHBwMNq1a4fIyEgAz5vzXLlyhft/bm4uMjIyYGxsDAcHBwDAp59+iuHDh6NTp064d+8eFixYAF1dXQQFBalnI5tQUlISHj58iEGDBuHgwYPc+XzAgAE4ePAgvLy8cPLkSSQlJXHJozahK4taoKWPg1qfX9Hu7u68eACIj4/n4u3s7GBtbc2LKSwsxJkzZ1T6ZV5cXAwdHR0IBAKuTPH6xZEltFHVzpGV3YZuKZ0jE9LUxo0bh5UrV2L+/PlwdnZGRkYGjh49yjWtuX37Nu874d69e+jbty/69u2L+/fvY+XKlejbty/ef/99Lubu3bsICgpCt27dMHbsWJibm+P06dNo27Ztk29fU0tKSgIALFq0SOlFmQULFvDitA1dWdQCVcdBHTBgQLX5LWEcVFV/Rc+YMQNeXl6IioqCn58fdu/ejXPnzmHLli0Ang9F9/HHH+PLL79Ely5dYGdnh3nz5sHW1hYBAQHc+96+fRuPHz/G7du3IZPJkJGRAQBwcHCAsbEx3nzzTcyaNQvTpk3Dhx9+CLlcjmXLlkFPTw9Dhgxp0s9IXRSdI8+cORMeHh5cuZ2dXYvoHJkQdZk+fTqmT5+udN6LSY1EIgFjrNb17d69u6GqRjRN0zycrRk0tauIyspKJpFI2PDhw5lMJuPNk8lkbPjw4czOzk7jHu9XdX+sXbuWdezYkQmFQubq6spOnz7NzfPy8mIhISG8+L1797KuXbsyoVDIevbsyQ4dOsSbL5fL2bx585iVlRUTiURs6NCh7Pr167yYkJAQXncwiikxMZGL+e2339jAgQOZWCxmZmZm7I033mCpqamN+lk0Ry2xuwlN1hK2UdNo+j7R5PorugEbNGiQ0u/ZgQMHanU3YJQsVqHJB/KBAweYQCBgw4cPZykpKaywsJClpKSw4cOHM4FAwA4cOKDuKqpMk/dHQ6PPonlpCfujJWyjptH0faLJ9a+srGSWlpYMAPP39+d9z/r7+zMAzNLSUuN+BNd1n9BtaC1Bt/oIIYSQxqGrq4uNGzdi9OjRSEhIQFxcHDfPwMAAAoEAGzdu1Nr215QsapHAwECMHDkSycnJ3BOnnp6eWnvwEkLIy8hkMjonkgYRGBiIESNG4ODBg7zykpISjBw5UqsvylCyqGUU46AS0tzQlzZpajExMZg5cyZycnK4MolEgqioKK3+YieN47PPPsPBgwdhaWmJ4OBgdO7cGTdv3sSPP/6IgwcP4rPPPsPy5cvVXc1GQV3nEEIaXUsdipKoT0se1Yo0vPLycqxevRpWVlbIzc3FihUr8MEHH2DFihXIzc2FlZUVVq9ejfLycnVXtVFQskgIaVT0pU2aGo1qRRrahg0bUFlZiS+//LLaUK16enpYvHgxKisrsWHDBjXVsHFRskgIaTT0pU3UQTGq1Zw5c2oc1So7OxvJyclqqiHRNDdu3AAA+Pv7QyaTISkpCbt27UJSUhJkMhn8/f15cdqG2iwSQhpNSx+KkqhH1VGtlLWV1fZRrUjDs7e3BwAsXrwYR44cqdYO1tfXlxenbShZJIQ0mpY+FCVRD8VoVevWrcPmzZurfbFPnjyZF0fIy0ydOhUzZ87Exo0b8fbbb2PWrFkwMDBASUkJDh06hE2bNkFHRwdTp05Vd1UbBSWLhJBGQ0NREnXw9PSEpaUlIiIi4O/vj127dqFXr164dOkSvvrqK8yZMweWlpbw9PRUd1WJhtDV1YWxsTEKCwtx9OhRHD58mJunuGtibGystT08UJtFQkij8fT0hEQiwdKlSyGXy3nz5HI5IiMjYWdnR1/apMGxKuMcs+ejlb107GNCapKcnIzCwkIAqHYcKV4XFhZqbTtYShYJIY1GV1cXUVFRiIuLQ0BAAO9p6ICAAMTFxWHlypVa+2ucqEdycjIePnyIyMhIXLp0CR4eHjA1NYWHhwcuX76MpUuX4sGDB1r7xU4aXm5uLgDgrbfeQnFxMVavXo3p06dj9erVKC4uxltvvcWL0zaULBJCGpViKMqLFy/yvrQvXbpEQ1GSRqFoAzt9+nRkZWUhMTER0dHRSExMRGZmJqZPn86LI+RlHj58COD5+axVq1ZwdnaGh4cHnJ2d0apVKwQEBPDitA21WSSENIkXb928eFuakIbyYlvZF5+0p7ayRFVt27YF8Ly/xSVLluD27dvcvI4dO8Lc3JwXp23qdWVx/fr1kEgk0NfXh5ubG/74449a4/ft2wdHR0fo6+vDycmJ1zAUeN5p77Bhw2Bubg6BQICMjAze/JycHAgEAqXTvn37uDhl83fv3l2fTSSENBBFp9y9e/fm3Ybu3bs3dcpNGgW1lSUNrV27dgCA8+fP4+7du7x5d+/exfnz53lx2kblZHHPnj0IDw/HggULkJ6ejj59+sDHxwcPHjxQGp+SkoKgoCCEhYXh/PnzCAgIQEBAAPfLDgCKioowaNAgfP3110rX0aFDB9y/f583LVq0CMbGxlw7AYXt27fz4hSXhgkhTY865SbqQG1lSUPz8PDgnnoWiUS8eYrXOjo68PDwaPK6NQmmIldXVzZt2jTutUwmY7a2tiwyMlJp/NixY5mfnx+vzM3NjU2ZMqVabHZ2NgPAzp8//9J6ODs7s3//+9+8MgDsv//978s34v+VlpYyqVTKTXfu3GEAmFQqrfM6SOORSqW0P/6fpn4WiYmJDABLTU1VOj8lJYUBYImJiU1bsVekqftDFdqwjQcOHGASiYQB4CY7Ozt24MABdVetXjR9n2hy/Y8fP84dQ35+fmzdunVs69atbN26dczPz4+bd/z4cXVXVSV13ScqXVksLy9HWloavL29uTIdHR14e3sjNTVV6TKpqam8eADw8fGpMb4u0tLSkJGRgbCwsGrzpk2bBgsLC7i6umLbtm21dpUQGRkJsVjMTR06dKh3nQgh1VGn3ESdAgMDlT7gQg9VEVUlJSUBABYuXIjLly9j+vTpCAsLw/Tp03HlyhUsWLCAF6dtVHrApaCgADKZDFZWVrxyKysrXLt2TekyeXl5SuPz8vJUrOo/tm7diu7du1e73Lt48WK88cYbMDQ0xG+//YapU6fi2bNn+Oijj5SuJyIiAuHh4dzrwsJCShgJaUDUKTdRN11dXRpKkjSoFy9CtYSH9TTuaeiSkhJER0dj3rx51eZVLevbty+KioqwYsWKGpNFkUhUre0BIaThVH3QIDY2ljc+ND1oQAjRFIMHD8aXX36JhQsXws/PD5999hk33N/hw4exaNEiLk4bqZQsWlhYQFdXF/n5+bzy/Px8WFtbK13G2tpapfiX2b9/P4qLixEcHPzSWDc3NyxZsgRlZWWUFBKiBooHDUaPHo2AgABERERww65FRkYiLi4O+/fvpwcNCCHNmqenJ3R0dCCXy5GQkIBDhw5x8/T19QE8b5anrT98VWqzKBQK4eLigoSEBK5M8cG5u7srXcbd3Z0XDwDx8fE1xr/M1q1bMWLEiDr1ZZSRkQEzMzNKFAlRI+qUmxCi6VJSUrjbzeXl5bx5FRUVAJ7nQykpKU1et6ag8m3o8PBwhISEoH///nB1dcWaNWtQVFSE0NBQAEBwcDDatWuHyMhIAMCMGTPg5eWFqKgo+Pn5Yffu3Th37hy2bNnCrfPx48e4ffs27t27BwC4fv06gOdXJategczKysLvv/9erZ9GAPj111+Rn5+PAQMGQF9fH/Hx8Vi6dCk+/fRTVTeRENLAAgMDMXLkSCQnJ+P+/fuwsbGBp6cnXVEkhGgExTB+ffv2xd9//42cnBxuXseOHdG6dWucP39ea4f7UzlZHDduHB4+fIj58+cjLy8Pzs7OOHr0KPcQy+3bt3ntkjw8PBAdHY25c+dizpw56NKlC2JjY3lPR/7yyy9csgkA77zzDgBgwYIFWLhwIVe+bds2tG/fHsOGDatWr1atWmH9+vX45JNPwBiDg4MDVq1ahUmTJqm6iYSQRkAPGhBCNJViGL+pU6ciODgYGzZswI0bN2Bvb4+pU6fihx9+wJQpU7R2uD8Bq61vmRamsLAQYrEYUqkUpqam6q5Oi0f74x/0WTQvLWF/tIRt1DSavk80uf4///wzJkyYoPTKokQigZmZGc6fP4+dO3fi3XffVV9FVVTXfaJxT0MTQgghhDSlqsP9Vb17Cjy/o6pIHmm4P0IIIYSQFqjqcH96evzrbK1atQKg3cP9UbJICCGEEFKL5ORk7mnoF68sCgQCAM+fhk5OTm7yujUFShYJIYQQQmpRdRi/srIy3ryqr2m4P0IIIYSQFqjqkH5vv/023n77bd4ILopOurV16D9KFgkhhBBCamFmZgYAMDU1RWxsLK/d4uTJk9GmTRs8ffqUi9M2dBtay8hkMiQlJWHXrl1ISkqCTCZTd5UIIYQQjfb3338DeN7VzL/+9S+kpqbi6dOnSE1Nxb/+9S88ffqUF6dt6MqiFomJicEnn3yC27dvc2UdO3bE6tWraUg1QgghpJ6qPtSSkJCAuLg47rWhoaHSOG2inVvVAsXExGDUqFG8RBF43v/TqFGjEBMTo6aaEUIIIZpNMfqUo6MjLCwsePMsLCzg6OjIi9M2lCxqAZlMhvfee6/WmPfee49uSRNCCCH1MHjwYFhaWuLatWvVhvR78OABrl27BktLS0oWSfMVHx+P4uLiWmOKi4sRHx/fRDUihBBCtIeuri5CQkIAVO86p7y8HAAQEhICXV3dJq9bU6BkUQtERkY2aBwhhBBC/iGTybBv3z7Y29tXa5eoo6MDe3t77N+/X2vv4FGyqAVOnTrVoHGEEEII+UdycjJycnJw8+ZNCIVC3rxWrVrh5s2byM7OphFcSPNV118y2vqLhxBCCGlMubm5AADGWLWOt+VyORhjvDhtQ8milrGwsMCWLVtw7949bNmypdpTW4QQQghRTV5eHvd/ZbehlcVpE0oWtUxBQQEmT54MW1tbTJ48GQUFBequEiGEEKLRqn6XDh06lNcp99ChQ5XGaRPqlJsQQgghpBZ37tzh/i+Xy7Fr1y6UlpZCX1+fd1u6apw2oWRRCwiFQu7R/ZfFEUIIIUQ1ijaJJiYmOHz4cLX5JiYmePr0KRenbeg2tBbYunVrg8YRQggh5B8SiQQA8PTpUwiFQowfPx6rVq3C+PHjIRQKubGhFXHahpJFLRAUFNSgcYQQQjTf+vXrIZFIoK+vDzc3N/zxxx81xl6+fBmjRo2CRCKBQCDAmjVrXnmd2uT111/n/q+rq4vo6GiEh4cjOjqa1xF31ThtQsmiFtDV1cWBAwdqjTlw4IDW9ixPSHOn6hfsvn374OjoCH19fTg5OfFue1VUVGD27NlwcnKCkZERbG1tERwcjHv37vHW8ddff2HkyJGwsLCAqakpBg0ahMTExEbZPtL87NmzB+Hh4ViwYAHS09PRp08f+Pj44MGDB0rji4uL0blzZyxbtgzW1tYNsk5tcvnyZe7/JSUlvHlVX1eN0yaULGqJwMBAHDhwAB06dOCVd+zYEQcOHEBgYKCaakZIy6bqF2xKSgqCgoIQFhaG8+fPIyAgAAEBAbh06RKA51/q6enpmDdvHtLT0xETE4Pr169jxIgRvPX4+/ujsrISJ06cQFpaGvr06QN/f3+t7dqD8K1atQqTJk1CaGgoevTogU2bNsHQ0BDbtm1TGv/aa69hxYoVeOeddyASiRpkndokOzu7QeM0DiMcqVTKADCpVKruqtRbZWUl27x5MwPANm/ezCorK9VdpXpTdX+sW7eOderUiYlEIubq6srOnDlTa/zevXtZt27dmEgkYr169WKHDh3izZfL5WzevHnM2tqa6evrs6FDh7K//vqLF/Pll18yd3d3ZmBgwMRicY3vtX37dubk5MREIhFr27Ytmzp1ap22SUEbjk1tosr+cHV1ZdOmTeNey2QyZmtryyIjI5XGjx07lvn5+fHK3Nzc2JQpU2p8jz/++IMBYLdu3WKMMfbw4UMGgP3+++9cTGFhIQPA4uPjX1pnxuiYa47quk/KysqYrq4u++9//8srDw4OZiNGjHjp+3Tq1ImtXr36lddZWlrKpFIpN925c0djj6kVK1YwAMzAwIB16tSJAeAmiUTCDAwMGAC2YsUKdVdVJXU9puhpaA2WmZnJNaqtysjIiPv3zz//VLqsiYkJunTp0qj1a0qKqzebNm2Cm5sb1qxZAx8fH1y/fh2WlpbV4hVXbyIjI+Hv74/o6GgEBAQgPT0dvXr1AgAsX74c3377LXbs2AE7OzvMmzcPPj4+uHLlCvT19QE8H0B+zJgxcHd3r/EBolWrViEqKgorVqyAm5sbioqKkJOT02ifBWk+ysvLkZaWhoiICK5MR0cH3t7eSE1NVbpMamoqwsPDeWU+Pj6IjY2t8X2kUikEAgFat24NADA3N0e3bt3w448/ol+/fhCJRNi8eTMsLS3h4uKidB1lZWUoKyvjXhcWFtZxK0lzU1BQAJlMBisrK165lZUVrl271mTrjIyMxKJFi+r1fs2Vnp4erly5gi1btuDGjRuwt7fH5MmTa7x1rzWaKHnVCJr0S/qvv/7i/bKpz/TiVbLmRp1Xb+RyObO2tub9Snzy5AkTiURs165d1da3fft2pVcWHz9+zAwMDNjx48dfug210aRjsyWo6/7Izc1lAFhKSgqvfNasWczV1VXpMq1atWLR0dG8svXr1zNLS0ul8SUlJaxfv35s/PjxvPI7d+4wFxcXJhAImK6uLrOxsWHp6ek11nXBggVKzxN0zDUfjXncVaXsymJ91qlNVxanT5/O/U3o6Ojw/kaqvp4+fbq6q6oSurKo5RRXFHfu3Inu3bvz5pWUlCAnJwcSiQQGBgbVlr169SomTJig9KqkJmqMqzfZ2dnIy8uDt7c3N18sFsPNzQ2pqal455136lS3+Ph4yOVy5Obmonv37nj69Ck8PDwQFRVVrX1pVXSVh9RFRUUFxo4dC8YYNm7cyJUzxjBt2jRYWloiOTkZBgYG+P777zF8+HCcPXsWNjY21dYVERHB+5soLCys9RglzZeFhQV0dXWRn5/PK8/Pz6/3FbD6rFMkEtXY/lHT2Nvbc/9nL/SlWPV11ThtQg+4aDBrYwH62eiin7UObxpoZ4R3h/TEQDujavP6Weugn40urI0F6q5+g6nt9khNjfnz8vJqjVf8q8o6lbl58ybkcjmWLl2KNWvWYP/+/Xj8+DHefPPNWjtSj4yMhFgs5ib60tZM9fmCtba2rlO8IlG8desW4uPjYWpqys07ceIE4uLisHv3bgwcOBD9+vXDhg0bYGBggB07dih9X5FIBFNTU95ENJNQKISLiwsSEhK4MrlcjoSEBLi7uzebdWqSKVOmAHj+ORQWFmL16tWYPn06Vq9ejcLCQm7QC0WctqErixpsiosQ3X+fAvyu2nLd/39Z0vjkcjkqKirw7bffYtiwYQCAXbt2wdraGomJifDx8VG6HF3l0Q5Vv2ADAgIA/PMFO336dKXLuLu7IyEhAR9//DFXFh8fz/tCViSKmZmZSExMhLm5OW8dxcXFAJ5fYa9KR0eHNzQZ0V7h4eEICQlB//794erqijVr1qCoqAihoaEAgODgYLRr1w6RkZEAnt+huXLlCvf/3NxcZGRkwNjYGA4ODnVapzY7c+YMgOefjYODA9599104Ojri5s2bcHBw4H78nzlzBoMHD1ZjTRsHJYsaqri4GJvTytFn7OdwdHTkzSsrK8O9e/dga2ur9BZAdnY2Nqd9gRHV5mimxrh6o/g3Pz+fd8suPz8fzs7Oda6bYtkePXpwZW3btoWFhQVu375d43LadPumpVP1S3vGjBnw8vJCVFQU/Pz8sHv3bpw7dw5btmwB8DxRHD16NNLT0xEXFweZTMZd7W7Tpg2EQiHc3d1hZmaGkJAQzJ8/HwYGBvjuu++QnZ0NPz8/9XwQpEmNGzcODx8+xPz585GXlwdnZ2ccPXqUu1ty+/Zt3o+Je/fuoW/fvtzrlStXYuXKlfDy8kJSUlKd1qnN7t+/DwDw8/PDoUOHsGrVKt58RbkiTus0QftJjaFJDxF899139IBLFa6urryGxTKZjLVr167WB1z8/f15Ze7u7tUecFm5ciWvPqo+4HL9+nUGgPeAy6NHj5iOjg47duzYS7er6ntryrHZEqi6P9auXcs6duzIhEIhc3V1ZadPn+bmeXl5sZCQEF783r17WdeuXZlQKGQ9e/bkdeuUnZ1d4990YmIiF3f27Fk2bNgw1qZNG2ZiYsIGDBjADh8+3GjbSBqfpu8TTa5/YmJinb5Xq/4NaoK67hMBY1o66nU9FBYWQiwWQyqVNvv2OgUFBYiNjYWjoyMMDQ158xQPsCh7+EVBE7rOUWV/7NmzByEhIdi8eTN39Wbv3r24du0arKysql29SUlJgZeXF5YtW8ZdvVm6dCmv65yvv/4ay5Yt43Wdc+HCBV7XObdv38bjx4/xyy+/YMWKFUhOTgYAODg4wNjYGAAQEBCArKwsbNmyBaampoiIiMDNmzeRkZGBVq1aNfhnQRpfS9gfLWEbNY2m7xNNrn95eTn09fXBGIOlpSWCg4PRuXNn3Lx5Ez/++CMePHgAgUCA0tJSrv2iJqjzPmmKzFVTaPKvHoUnT56wPn36MACsT58+7MmTJ+quUr2p8+oNY/90ym1lZcVEIhEbOnQou379Oi8mJCTkpb8upVIp+/e//81at27N2rRpw/71r3+x27dvN+pnQRpXS9gfLWEbNY2m7xNNrv+xY8e487tQKOSd76u+VuWOUXNAVxbrQZN/9QDPr2bduHGjWrm9vT2ysrLUUKNXo+n7oyHRZ9G8tIT90RK2UdNo+j7R5Pq/99572LlzJwBAIBDwusup+nrChAn46aef1FLH+qjrPqEHXLRETYkiANy4cQMODg4amTASQggh6la1X+K3334bDg4OKCkpgYGBAbKysnDo0KFqcdqEkkUtIJVKa0wUFW7cuAGpVAqxWNxEtSKEEEK0g6KHDJFIhAsXLnDJIQB06NABQqEQ5eXlWjvsH3XKrQWGDh3aoHGEEEII+YeZmRmA513T3blzhzfvzp07XD+LijhtQ8miFkhPT2/QOEIIIYT848UO7l81TtNo51a1MHV9RomeZSKEEEJUp2jCJRAIoKury5unp6cHgUDAi9M21GaREEIIIaQWFy5cAPD8oouPjw8cHBxQWloKfX19ZGVl4fDhw7w4bUPJIiGEEEJILYqKirj/JyYmcskhAN7AGFXjtAndhiaEEEIIqYWnpycAoFOnTrC0tOTNs7S0RKdOnXhx2qZeyeL69eshkUigr68PNzc3/PHHH7XG79u3D46OjtDX14eTkxMvIweAmJgYDBs2DObm5hAIBMjIyKi2jsGDB0MgEPCm//znP7yY27dvw8/PD4aGhrC0tMSsWbNQWVlZn00khBBCCAEATJ8+HTo6Orh16xYePHjAm5efn49bt25BR0cH06dPV1MNG5fKyeKePXsQHh6OBQsWID09HX369IGPj0+1D08hJSUFQUFBCAsLw/nz5xEQEICAgABcunSJiykqKsKgQYPw9ddf1/rekyZNwv3797lp+fLl3DyZTAY/Pz+Ul5cjJSUFO3bswA8//ID58+eruomEEEIIIRyhUIjhw4cDAEpKSnjzFK+HDx+uUeNCq0TVcQRdXV3ZtGnTuNcymYzZ2tqyyMhIpfFjx45lfn5+vDI3Nzc2ZcqUarHZ2dkMADt//ny1eV5eXmzGjBk11uvw4cNMR0eH5eXlcWUbN25kpqamrKys7CVb9ZymjlsJJWMT1zRpEk3dH42BPovmpSXsj5awjZpG0/eJJte/srKSicXiWr9fxWIxq6ysVHdVVVLXfaLSlcXy8nKkpaXB29ubK9PR0YG3tzdSU1OVLpOamsqLBwAfH58a42vz888/w8LCAr169UJERASKi4t57+Pk5AQrKyve+xQWFuLy5ctK11dWVobCwkLeRAghhBBS1YkTJyCVSiESiZTOF4lEkEqlOHHiRBPXrGmolCwWFBRAJpPxEjIAsLKyQl5entJl8vLyVIqvyfjx47Fz504kJiYiIiICP/30EyZMmPDS91HMUyYyMhJisZibOnTooFKdCCGEEKL9fvrpJwDPLzIpoyhXxGkbjek6Z/Lkydz/nZycYGNjg6FDh+LGjRuwt7ev1zojIiIQHh7OvS4sLNTIhFFHRwdyubxOcYQQQghRjVQqbdA4TaNS9mBhYQFdXV3k5+fzyvPz82scPNva2lql+Lpyc3MDAGRlZdX6Pop5yohEIpiamvImTSSRSBo0jhBCCCH/kMlkDRqnaVRKFoVCIVxcXJCQkMCVyeVyJCQkwN3dXeky7u7uvHgAiI+PrzG+rhTd69jY2HDvc/HiRd5T2fHx8TA1NUWPHj1e6b2au6ptNxsijhBCCCH/uHnzZoPGaRqVb0OHh4cjJCQE/fv3h6urK9asWYOioiKEhoYCAIKDg9GuXTtERkYCAGbMmAEvLy9ERUXBz88Pu3fvxrlz57BlyxZunY8fP8bt27dx7949AMD169cBPL8iaG1tjRs3biA6Ohpvv/02zM3NceHCBXzyySd4/fXX0bt3bwDAsGHD0KNHD7z33ntYvnw58vLyMHfuXEybNq3GBqnagtHY0IQQQkijefjwYYPGaRqVG7GNGzcOK1euxPz58+Hs7IyMjAwcPXqUe5jk9u3buH//Phfv4eGB6OhobNmyBX369MH+/fsRGxuLXr16cTG//PIL+vbtCz8/PwDAO++8g759+2LTpk0Anl/RPH78OIYNGwZHR0fMnDkTo0aNwq+//sqtQ1dXF3FxcdDV1YW7uzsmTJiA4OBgLF68uH6fjAZ5/fXXGzSOEEIIIf+oOqRfQ8RpGgGjy02cwsJCiMViSKVSjWq/ePToUbz11lsvjTty5Ah8fX2boEYNQ1P3R2Ogz6J5aQn7oyVso6bR9H2iyfXv06cPLly4AOD5w6KdO3fmHi69efMm95Bp79698eeff6qzqiqp6z7RmKehSc1atWrVoHGEEEII+UfVK4ZyuZx7uLa2OG1Cfalogbr2Walq35aEEEIIAYyNjRs0TtNQsqgFFA1qP/jgA3Tq1Ik3TyKRYMqUKbw4QgghhNRd3759GzRO09BtaC3Qtm1bAEBOTg4yMzNx6tQp3L9/HzY2Nhg4cCBGjhzJiyOEEEJI3T179qxB4zQNXVnUAu3atQPw/AGWUaNGQSQSwd/fHyKRCKNGjcKRI0d4cYQQQgipO4FA0KBxmoauLGoBT09PSCQSWFhY4M8//4SHhwc3r1OnTujfvz8ePXoET09PNdaSEEII0Ux1HVa4vsMPN3eULGoBXV1dREVFYdSoUdXm3bp1C7du3cKBAwegq6urhtoRQgghmq1qEmhtbc17YNTGxobrX1pbk0W6Da0lTp8+DeB5/09VKRJExXxCCCGEqGbJkiXc/6sOKwwA+fn5SuO0CSWLWqC8vByrV6+GlZUViouLkZiYiOjoaCQmJqKoqAhWVlZYvXo1ysvL1V1VQgghROM8fvyY+7+iA25lr6vGaRNKFrXAhg0bUFlZiS+//BIikQiDBw9GUFAQBg8eDJFIhMWLF6OyshIbNmxQd1UJIYQQjVN1iOKGiNM0lCxqgRs3bgAA/P39IZPJkJSUhF27diEpKQkymQz+/v68OEIIIYTUXVhYWIPGaRp6wEULKBrULl68GEeOHEFOTg43TyKRwMfHhxdHCCGEkLrbs2dPneMUfRtrE0oWtcDUqVMxc+ZMbNy4EX5+fpg1axYMDAxQUlKCw4cPY/PmzdDR0cHUqVPVXVVCCCFE42RkZDRonKahZFEL6OrqwsTEBFKpFIcPH8ahQ4e4eYoOQk1MTKjrHEIIIaQeFF3jNFScpqE2i1ogOTkZUqm01hipVIrk5OQmqhEhhBCiPWQyWYPGaRpKFrVAbm4uAMDOzq7aUEMCgQB2dna8OEIIIYTUXatWrRo0TtNQsqgFHj58CADIzs5G27Zt8d133+H+/fv47rvv0LZtW2RnZ/PiCCGEEFJ3de2nWFv7M6Y2i1rAzMwMACAUCnH79m0IhUIAwPvvv4/g4GCYmJigvLyciyOEEEJI3ZWWljZonKahZFELnD17FsDzXzSjRo2Cr68v9zT00aNHuV86Z8+eRUhIiDqrSgghhGgcXV1dVFZW1ilOG1GyqAUYYwCATp064ciRI4iLi+Pm6enpoVOnTrh16xYXRwghhJC6e+2113Dy5MmXxrm5uTVBbZoeJYtaoEuXLgCAW7duwdLSEu+99x46d+6Mmzdv4qeffsKtW7d4cYQQQgipu7Fjx9YpWZwzZ04T1KbpCRhdbuIUFhZCLBZDKpXC1NRU3dWps5KSEhgaGkJPTw/t2rXjkkPg+Qgud+/eRWVlJYqLi2FgYKDGmqpGU/dHY6DPonlpCfujJWyjptH0faLJ9X/69CksLS1rbZNoaGiIwsJCjboVXdd9Qk9Da4EzZ84AACorK1FSUoLw8HCsX78e4eHhKC4u5tpZKOIIIYQQUncmJib4+eefa4356aefNCpRVAUli1pA0WP8jBkz8PjxY6xatQrTpk3DqlWr8PjxY8yYMYMXRwghhBDVBAYG4sCBA+jUqROvXCKR4MCBAwgMDFRTzRofJYtawMbGBgBgbW0NW1tb3jxbW1tYWVnx4gghhGi/9evXQyKRQF9fH25ubvjjjz9qjd+3bx8cHR2hr68PJycnHD58mDd/4sSJEAgEvMnX17cxN6HZCQwMxI0bN7B582YAwObNm5GVlaXViSJAyaJW8PT0RNu2bREREYHevXsjNTUVT58+RWpqKnr37o05c+bA0tISnp6e6q4qIYSQJrBnzx6Eh4djwYIFSE9PR58+feDj44MHDx4ojU9JSUFQUBDCwsJw/vx5BAQEICAgAJcuXeLF+fr64v79+9y0a9eupticZkVXVxf9+/cHAPTv319rbz1XRcmillAM88cYQ1paGvbu3Yu0tDTqLocQQlqgVatWYdKkSQgNDUWPHj2wadMmGBoaYtu2bUrjv/nmG/j6+mLWrFno3r07lixZgn79+mHdunW8OJFIBGtra26iwR5aBuo6RwskJyfjwYMHePfdd7Fnzx4cOnSIm6enp4fx48cjOjoaycnJGDx4sPoqSgghpNGVl5cjLS0NERERXJmOjg68vb2RmpqqdJnU1FSEh4fzynx8fBAbG8srS0pKgqWlJczMzPDGG2/gyy+/hLm5udJ1lpWVoaysjHtdWFhYzy0i6kZXFrWA4sGV6Oho+Pr6Yv369di2bRvWr18PX19f7jZBS3jApaHb6DDGMH/+fNjY2MDAwADe3t7IzMzkxXz11Vfw8PCAoaEhWrduXev7PXr0CO3bt4dAIMCTJ0/qs4mEEFKrgoICyGQyrr26gpWVFfLy8pQuk5eX99J4X19f/Pjjj0hISMDXX3+N//3vf3jrrbcgk8mUrjMyMhJisZibOnTo8IpbRtSFkkUtYGlpCQAYOHAgDh48iKlTpyI0NBRTp07FwYMHMXDgQF6ctmqMNjrLly/Ht99+i02bNuHMmTMwMjKCj48Pr6+t8vJyjBkzBh988MFL6xgWFobevXu/+sYSQkgTe+eddzBixAg4OTkhICAAcXFxOHv2LJKSkpTGR0REQCqVctOdO3eatsKkwVCyqGVkMhmSkpKwa9cuJCUlQSaTtZh2iw3dRocxhjVr1mDu3LkYOXIkevfujR9//BH37t3j3ZpZtGgRPvnkEzg5OdVav40bN+LJkyf49NNPG2ybCSHkRRYWFtDV1UV+fj6vPD8/H9bW1kqXsba2VikeADp37gwLCwtkZWUpnS8SiWBqasqbiGaiZFELKK6cnTx5EmKxGEOGDMH48eMxZMgQiMVinDp1ihenjRRtdLy9vbmyurTRqRoPPG+jo4jPzs5GXl4eL0YsFsPNza3GddbkypUrWLx4MX788Ufo6Lz8z66srAyFhYW8iRBC6kIoFMLFxQUJCQlcmVwuR0JCAtzd3ZUu4+7uzosHgPj4+BrjAeDu3bt49OgRdcvWAlCyqAWq/qG+OBRR1dfa/AfdGG10FP+qsk5lysrKEBQUhBUrVqBjx451Woba+hBCXkV4eDi+++477NixA1evXsUHH3yAoqIihIaGAgCCg4N5D8DMmDEDR48eRVRUFK5du4aFCxfi3LlzmD59OgDg2bNnmDVrFk6fPo2cnBwkJCRg5MiRcHBwgI+Pj1q2kTQdehpaC3h4eEBHRwdyuRxvvfUW/Pz8YGBggJKSEhw6dAiHDx+Gjo4OPDw81F3VFikiIgLdu3fHhAkTVFqm6pOJhYWFlDASQups3LhxePjwIebPn4+8vDw4Ozvj6NGj3I/f27dv8+5yeHh4IDo6GnPnzsWcOXPQpUsXxMbGolevXgCe9y144cIF7NixA0+ePIGtrS2GDRuGJUuWQCQSqWUbSdOhZFELJCcnQy6XA3je3yJjjJsU/S/K5XIkJydj6NCh6qxqo2mMNjqKf/Pz83lXZfPz8+Hs7Fznup04cQIXL17E/v37AYBrQ2phYYEvvvgCixYtqraMSCSiEzAh5JVMnz6duzL4ImUPpYwZMwZjxoxRGm9gYIBjx441ZPWIBqHb0FpA8Uc/duxYHDt2DNOnT0dYWBj+r737D2rizP8A/g7UBFRAkVPEqlC1BYUDi4JwWvXqgA5Ycwr2dFR640l7SquH/XF4Cq1VM63i2fOcUq5Xder4W2SsqDfW4lUHqidIr7SgtgWxxaAWDZTfxOf7h99siSQ0oYGQ5f2a2ZHsfrJ5NvsZfNh9ns8mJSXh3//+N+bPn28UJ0ddMUbHz88P3t7eRjE1NTW4cOFCh+N4HnbkyBF8/vnnKCoqQlFREd5//30ADzr5K1assHg/RERE9sArizJy8OBBxMbGYtasWdJt6JMnT+LgwYP2blq3SE5ORkJCAiZMmICwsDBs27at3RidYcOGQaPRAHgwRmfq1KlIT09HTEwM9u/fj0uXLiEzMxPAg6u0q1atwoYNGzBmzBj4+flh3bp18PHxgVqtlj63oqIC1dXVqKiogF6vR1FREQBg9OjR6N+/P0aNGmXUzjt37gAAAgICfrYuIxERkb2xsygDTz31FABg4MCBOHr0KB555KfTmpiYiMGDB+Pu3btSnFzZeowOALz66quoq6tDYmIi7t27h8mTJ+PUqVNwcXGRYlJTU7F7927p9fjx4wEAubm5fGIOERE5PHYWZcDQAbp79y7UanW7K4t37941ipMzW47RAR5cXVy/fj3Wr19vNmbXrl3YtWuXxW2cNm1ar6l9SUREjo+dRRloWz8xJyfH6NnQhgkuD8cRERERWUL+l5p6gY7qJ7a9giXnOotERETUNTrVWdyxYwd8fX3h4uKC8PBwXLx4scP4Q4cOwd/fHy4uLggKCsKJEyeMtmdlZSEqKgqDBg2CQqGQJggYVFdX48UXX8QTTzwBV1dXjBgxAi+99BJ0Op1RnEKhaLfs37+/M4foUAx1FjvCOotERETUGVZ3Fg8cOIDk5GSkpaWhsLAQwcHBiI6ONnuLMy8vDwsWLMDSpUtx+fJlqNVqqNVqFBcXSzF1dXWYPHky3nrrLZP7qKysRGVlJbZs2YLi4mLs2rULp06dwtKlS9vF7ty5Ezdv3pSWtrNW5aptnUVzDHUWiYiIiKxh9ZjFrVu3YtmyZVI5koyMDOTk5OCDDz7AX/7yl3bx77zzDmbOnIlXXnkFAPDmm2/i9OnT+Mc//oGMjAwAwOLFiwEA5eXlJj8zMDAQR44ckV6PGjUKGzduxKJFi9Da2mo0+3fAgAEdPvhcjj7++GOL4+RalJuIiIi6hlVXFpubm1FQUIAZM2b8tAMnJ8yYMQP5+fkm35Ofn28UDwDR0dFm4y2l0+ng7u5u1FEEgBUrVsDLywthYWH44IMPOpx12tTUhJqaGqPFEf33v/+VflYqlVi4cCG2bt2KhQsXQqlUmowjIiIisoRVncU7d+5Ar9dLdesMhgwZAq1Wa/I9Wq3WqnhL2/Hmm28iMTHRaP369etx8OBBnD59GvPmzcPy5cuxfft2s/vRaDTw8PCQFkd99m5dXZ30c3V1NZYtWwZvb28sW7YM1dXVJuOIiIiILOFwpXNqamoQExODsWPH4vXXXzfatm7dOunn8ePHo66uDps3b8ZLL71kcl8pKSlITk422rcjdhh/+OEH6WcvLy80NjZKr9sWj24bR0RERGQJq64senl5wdnZGVVVVUbrq6qqzI4T9Pb2tiq+I7W1tZg5cybc3Nxw9OhR9OnTp8P48PBwfPfdd2hqajK5XaVSwd3d3WhxRG5ubtLPbTuKD79uG0dERERkCas6i0qlEqGhoThz5oy07v79+zhz5gwiIiJMviciIsIoHgBOnz5tNt6cmpoaREVFQalU4tixY0ZXzMwpKirCwIEDoVKprPosRzNx4kSbxhGRbdmy3FhLSwtee+01BAUFoV+/fvDx8cGSJUtQWVnZbj85OTkIDw+Hq6srBg4c2CuqQxCR7Vl9Gzo5ORkJCQmYMGECwsLCsG3bNtTV1Umzo5csWYJhw4ZBo9EAAFauXImpU6ciPT0dMTEx2L9/Py5duoTMzExpn9XV1aioqJB+2V25cgXAg6uS3t7eUkexvr4ee/bsMZqM8qtf/QrOzs746KOPUFVVhUmTJsHFxQWnT5/Gpk2b8PLLL/+yb8gBxMbG4r333rMojoi6l6HcWEZGBsLDw7Ft2zZER0fjypUrGDx4cLt4Q7kxjUaD2NhY7N27F2q1GoWFhQgMDER9fT0KCwuxbt06BAcH4+7du1i5ciWeeeYZXLp0SdrPkSNHsGzZMmzatAm//e1v0draalSyjIg6du3aNdTW1prcVlJSYvTvw9zc3DBmzJgua1u3E52wfft2MWLECKFUKkVYWJj47LPPpG1Tp04VCQkJRvEHDx4Ujz/+uFAqlWLcuHEiJyfHaPvOnTsFgHZLWlqaEEKI3Nxck9sBiLKyMiGEECdPnhQhISGif//+ol+/fiI4OFhkZGQIvV5v8XHpdDoBQOh0us58LXazdu1as99P22Xt2rX2bqpVHPV8dAV+Fz2LNecjLCxMrFixQnqt1+uFj4+P0Gg0JuPnz58vYmJijNaFh4eL559/3uxnXLx4UQAQ169fF0II0dLSIoYNGybef/99Sw7HJOZcz+Po58SR2n/16lWL/l/taLl69aq9D+NnWXpOOjXBJSkpCUlJSSa3nT17tt26+Ph4xMfHm93fc889h+eee87s9mnTpnVYAgcAZs6ciZkzZ3YYI3c+Pj4mb0UNHToUN2/etEOLiHo3Q7mxlJQUaZ0l5cbaTrwDHpQby87ONvs5Op0OCoUCAwYMAAAUFhbi+++/h5OTE8aPHw+tVouQkBBs3rwZgYGBJvfR1NRkNL7bUUuJEdmC4Yrinj17EBAQ0G57Q0MDysvL4evrC1dXV6NtJSUlWLRokdmrko7I4WZDU3vTpk3Dhg0bUFlZCS8vLwQGBkIIAYVCgeLiYqmjOG3aNPs2lKiX6ajcWGlpqcn3WFturLGxEa+99hoWLFggTdL79ttvAQCvv/46tm7dCl9fX6Snp2PatGm4evUqPD092+1Ho9HgjTfesPoYieQsICAATz75pMltv/nNb7q5NfbTqWdDU8/S9pnPEydORFxcHJYsWYK4uDijSS18NjSRvLS0tGD+/PkQQuDdd9+V1hse//nXv/4V8+bNQ2hoKHbu3AmFQoFDhw6Z3FdKSgp0Op203Lhxo1uOgYh6Pl5ZlIG2k1tOnjyJkydPmo1btWpVN7WKiLqy3Jiho3j9+nV88sknRqW/hg4dCgAYO3astE6lUuGxxx5DRUWFyc9VqVSyrxxBRJ3DK4sy8M0339g0johso6vKjRk6iteuXcPHH3+MQYMGGcWHhoZCpVJJlSUM7ykvL8fIkSNtcWgOQ6/X4+zZs9i3bx/Onj0LvV5v7yYRORxeWZQBX19fm8YRke3YutxYS0sL4uLiUFhYiOPHj0Ov10vjGT09PaFUKuHu7o4XXngBaWlpGD58OEaOHInNmzcDQIeTDeUmKysLq1evRnl5ubTOMH5z7ty59msYkYPhlUUZeOKJJ6SfnZyMT2nb123jiKh7PPvss9iyZQtSU1MREhKCoqIinDp1SprEUlFRYVStIDIyEnv37kVmZiaCg4Nx+PBhZGdnS7OYv//+exw7dgzfffcdQkJCMHToUGnJy8uT9rN582b8/ve/x+LFizFx4kTpdvXAgQO79wuwk6ysLMTFxSEoKAj5+fmora1Ffn4+goKCEBcXh6ysLHs3kchhKMTP1aTpRWpqauDh4QGdTudQj/5buHAh9u3bBwB45JFH8NRTT0lldD799FO0trYCABYsWIC9e/fas6lWcdTz0RX4XfQsveF8OPIx6vV6jB49GkFBQcjOzjb6o/n+/ftQq9UoLi7GtWvX4OzsbMeWWseRzwngWO0vLCxEaGgoCgoKzM6G7or3djdLzwlvQ8vA//73PwAPxkc1Nzfjk08+MdpuWG+IIyKSs3PnzqG8vBz79u0zebclJSUFkZGROHfuHEuKEVmAt6FlQKFQAHhQANgUw3pDHBGRnBlu65srQG5Yz4cVEFmGnUUZMFVd/pfEERE5MkPpIHPPwjasN8QRUcd4G1oGPDw8bBpH1BX0ej3OnTuHmzdvYujQoZgyZYpDjRcjxzFlyhT4+vpi06ZNJscsajQa+Pn5YcqUKXZsJfV03v0VcL13Fai07rqa672r8O4vrzt57CzKwJdffmnTOCJbYwkT6k7Ozs5IT09HXFwc1Go1UlJSEBgYiOLiYmg0Ghw/fhyHDx/mHyvUoedDlQj49HngU+veF/D/75UTdhZlwNwzYzsbR2RLhhImsbGx2Ldvn/Sf9qZNmxAXF4fDhw+zw0g2N3fuXBw+fBirV682etSpn58fc44s8l5BM55N3YUAf3+r3ldSWor30hfimS5qlz2wsygD3t7eKCsrA/DTzGeDtq/NPV6MqKvo9XqsXr0asbGxRrcDJ02ahOzsbKjVarz88suYM2cOr/KQzc2dOxdz5szh8AfqFO2PAg0DHgd8Qqx6X4P2PrQ/yqsqITuLMjBu3Djk5+cDeDAucfr06ejbty/q6+uRm5uL27dvS3FE3YklTMjenJ2dmVtEvxA7izLg5eUl/Xz79m0cPHjwZ+OIugNLmBAROT6WzpGBRx6xrM9vaRyRrbCECRGR42PvQQYM5R9cXFzQ1NSEtk9wdHJyQp8+fdDU1MQyEdTtWMKEiBxRfX09gAeP7jOloaEB5eXl8PX1haurq9G2kpKSLm9fd2NnUQYMg7UbGxuhUqnQ1NQkbTN0FNvGEXUXljAhIkdUWloKAFi2bFmn9+Hm5mar5tgdO4sycOvWLennlpYWo22tra0m44i6C0uYEJGjUavVAAB/f3/07du33faSkhIsWrQIe/bsMfl0NDc3N4wZM6arm9lt2FmUgcGDBwN4kNT19fWoqKiQtj366KNwdXVFaWmpFEfU3VjChIgciZeXF/74xz/+bFxAQACefPLJbmiRfbGzKDMPlydRKOT1yCFyXCxhQkTkmDgbWgYMt5dLS0vR0NCAzMxMVFZWIjMzEw0NDdLYC96GJiIiImvxyqIMGG4vBwQEoL6+HomJidI2X19f+Pv78zY0ERERdQo7izIyaNAgFBYWIiMjA9988w1GjRqFF154ATNmzLB304ig1+s5ZpG6HfOO6JdjZ1EGDLeXz58/D09PTzQ0NEjb1qxZI73mbWiyl6ysLKxevRrl5eXSOl9fX6Snp3M2NHUZ5h2RbXDMogx09PSLthNc+JQMsoesrCzExcUhKCgI+fn5qK2tRX5+PoKCghAXF4esrCx7N5FkiHlHZDsK0fZxH71cTU0NPDw8oNPp4O7ubu/mWKy5uRn9+vXDoEGDcP36deTn50u3XCIiIjBy5Ej88MMPqKurg1KptHdzLeao56MrOOp3odfrMXr0aAQFBZl8gotarUZxcTGuXbvmULcGHfV8WMORj5F51zM5evvbKiwsRGhoKAoKChy6dI6l54RXFmUgLy8Pra2tuHXrFuLj46FSqRAbGwuVSoX4+HjcunULra2tyMvLs3dTqZc5d+4cysvLsWbNmnZlnZycnJCSkoKysjKcO3fOTi0kOWLeka3V19ejsLBQWgyP9CspKZHWGR4RKEfsLMrAzZs3AQAffvghvvjiC0RGRsLd3R2RkZEoLi7Ghx9+aBRH1F0MORcYGGhyu2E9c5NsiXn3wI4dO+Dr6wsXFxeEh4fj4sWLHcYfOnQI/v7+cHFxQVBQEE6cOGG0XQiB1NRUDB06FK6urpgxYwauXbvWlYfQY5SWliI0NFRaFi1aBABYtGiRtM5Qpk6O2FmUAcNYxFGjRuHrr79Gbm4u9u7di9zcXFy7dg2PPfaYURxRdzHkXHFxscnthvXMTbIl5h1w4MABJCcnIy0tDYWFhQgODkZ0dLTZiY55eXlYsGABli5disuXL0OtVku36w3efvtt/P3vf0dGRgYuXLiAfv36ITo6Go2Njd11WHbj7++PgoICaTl//jz27NmD8+fPS+v8/f3t3cyuI0ii0+kEAKHT6ezdFKu0trYKX19fMXv2bKHX64226fV6MXv2bOHn5ydaW1vt1MLOcdTz0RUc9btgbjouRz5G5p0QYWFhYsWKFdJrvV4vfHx8hEajMRk/f/58ERMTY7QuPDxcPP/880IIIe7fvy+8vb3F5s2bpe337t0TKpVK7Nu3z+Q+GxsbhU6nk5YbN244bE7JlaU5xSuLMuDs7Iz09HQcP34carXaaOafWq3G8ePHsWXLFocayE3ywNwke+jtedfc3IyCggKjGrtOTk6YMWMG8vPzTb4nPz+/XU3e6OhoKb6srAxardYoxsPDA+Hh4Wb3qdFo4OHhIS3Dhw//pYdGdsLOokzMnTsXhw8fNjlm8fDhw6wpRnbD3CR76M15d+fOHej1egwZMsRo/ZAhQ6DVak2+R6vVdhhv+NeafaakpECn00nLjRs3OnU8ZH/sLMrI3LlzTY5ZlPMvxYfZY0D3xo0bERkZib59+2LAgAHtPuPzzz/HggULMHz4cLi6uiIgIADvvPPOLz5WR8LcJHtg3tmXSqWCu7u70UKOiU9wkRlnZ2dMmzbN3s2wC8OA7oyMDISHh2Pbtm2Ijo7GlStXTD4X2zCgW6PRIDY2Fnv37oVarUZhYaE0W9IwoHv37t3w8/PDunXrEB0dja+++gouLi4AHtzyiY+PR0REBP71r3+1+5yCggIMHjwYe/bswfDhw5GXl4fExEQ4OzsjKSmpa7+UHqQ35ybZT2/MOy8vLzg7O6OqqspofVVVFby9vU2+x9vbu8N4w79VVVVGE4OqqqoQEhJiw9ZTj9Q9QygdgyMP6JYja8+HvQd079y5U3h4eFjU1uXLl4vp06dbFCsEc7On6Q3nozcco6OxdoJLUlKS9Fqv14thw4Z1+PswNjbWaF1ERES734dbtmwxak9HE1x+Sfupe3CCC/UqPWVAt6V0Oh08PT3Nbm9qakJNTY3RQkRkqeTkZPzzn//E7t27UVJSgj/96U+oq6vDH/7wBwDAkiVLkJKSIsWvXLkSp06dQnp6OkpLS/H666/j0qVL0t0PhUKBVatWYcOGDTh27Bi++OILLFmyBD4+PlCr1fY4ROpGvA1NstDRgG5zhVK7YkC3JfLy8nDgwAHk5OSYjdFoNHjjjTc6/RlE1Ls9++yzuH37NlJTU6HVahESEoJTp05Jv88qKiqMnm4TGRmJvXv3Yu3atVizZg3GjBmD7Oxso8Lmr776Kurq6pCYmIh79+5h8uTJOHXqlDQkh+SLnUWiblRcXIw5c+YgLS0NUVFRZuNSUlKQnJwsva6pqWHZCSKySlJSktlx0WfPnm23Lj4+HvHx8Wb3p1AosH79eqxfv95WTSQHwdvQJAtdPaDb0n125KuvvsLTTz+NxMRErF27tsNYziIkIqKeolOdRVuXJ8nKykJUVBQGDRoEhUKBoqKidvtobGzEihUrMGjQIPTv3x/z5s1r9594RUUFYmJi0LdvXwwePBivvPIKWltbO3OI5GCUSiVCQ0Nx5swZad39+/dx5swZREREmHxPRESEUTwAnD59Wor38/ODt7e3UUxNTQ0uXLhgdp/mfPnll5g+fToSEhKwceNGq95LRERkT1Z3FrvieZN1dXWYPHky3nrrLbOf++c//xkfffQRDh06hP/85z+orKw0qpWl1+sRExOD5uZm5OXlYffu3di1axdSU1OtPURyUPYa0F1RUYGioiJUVFRAr9ejqKgIRUVF+PHHHwE8uPU8ffp0REVFITk5GVqtFlqtFrdv3+6+L4eIiKizrJ1mbevyJG2VlZUJAOLy5ctG6+/duyf69OkjDh06JK0rKSkRAER+fr4QQogTJ04IJycnodVqpZh3331XuLu7i6amJouOjdP6e5bOnI/t27eLESNGCKVSKcLCwsRnn30mbZs6dapISEgwij948KB4/PHHhVKpFOPGjRM5OTlG2+/fvy/WrVsnhgwZIlQqlXj66afFlStXjGISEhIEgHZLbm6uEEKItLQ0k9tHjhzZpd8FdZ3ecD56wzE6Gkc/J47efjmy9JxY1VlsamoSzs7O4ujRo0brlyxZIp555hmT7xk+fLj429/+ZrQuNTVV/PrXv24Xa66zeObMGQFA3L1712j9iBEjxNatW4UQQqxbt04EBwcbbf/2228FAFFYWGiybXzIec/GXyw/4XfRs/SG89EbjtHROPo5cfT2y1GX1FnsiudNWkKr1UKpVLZ7lNrDZU5MfY5hmyl8yDkRERFRx3p16ZyHy5PodDqMGDGCBZB7CMN5EELYuSX2Z/gOmJs9Q2/ITeZcz+Poecec6nkszSmrOotdUZ7EEt7e3mhubsa9e/eMri4+XObk4VnZhs8191kqlQoqlUp6bfjSeIWxZ6mtrYWHh4e9m2FXtbW1AJibPY2cc5M513M5at4xp3qun8spqzqLbcuTGGaDGsqTmCv8aShPsmrVKmld2/IklggNDUWfPn1w5swZzJs3DwBw5coVVFRUSPuJiIjAxo0bcevWLQwePFj6HHd3d4wdO9aiz/Hx8cGNGzfg5uYGhUJhcft6GkMB5xs3bjh0fT4hBGpra+Hj42Pvptgdc7Nn6Q25KZecA5h3PQVzquexNKesvg2dnJyMhIQETJgwAWFhYdi2bVu78iTDhg2DRqMB8KA8ydSpU5Geno6YmBjs378fly5dQmZmprTP6upqVFRUoLKyEsCDjiDw4Iqgt7c3PDw8sHTpUiQnJ8PT0xPu7u548cUXERERgUmTJgEAoqKiMHbsWCxevBhvv/02tFot1q5dixUrVhhdPeyIk5MTHn30UWu/kh5LDsWcHfGv567A3Ox55J6bcss5gHlnb8ypnsminOrM7BlblyfZuXOnydIiaWlpUkxDQ4NYvny5GDhwoOjbt6/43e9+J27evGm0n/LycjFr1izh6uoqvLy8xOrVq0VLS0tnDtGhccYZ9VTMTbIH5h3ZWm/LKYUQDjpSlsyqqamBh4cHdDqdw//FQ/LC3CR7YN6RrfW2nOKzoWVIpVIhLS3N4tvvRN2FuUn2wLwjW+ttOcUri0RERERkFq8sEhEREZFZ7CwSERERkVnsLBIRERGRWewsEhEREZFZ7CwSERERkVnsLMrIp59+itmzZ8PHxwcKhQLZ2dn2bhIRAOYm2Qfzjmytt+YUO4syUldXh+DgYOzYscPeTSEywtwke2Deka311pyy+tnQ1HPNmjULs2bNsncziNphbpI9MO/I1nprTvHKIhERERGZxc4iEREREZnFziIRERERmcXOIhERERGZxc4iEREREZnF2dAy8uOPP+Lrr7+WXpeVlaGoqAienp4YMWKEHVtGvR1zk+yBeUe21ltzSiGEEPZuBNnG2bNnMX369HbrExISsGvXru5vENH/Y26SPTDvyNZ6a06xs0hEREREZnHMIhERERGZxc4iEREREZnFziIRERERmcXOIhERERGZxc4iEREREZnFziIRERERmcXOIhERERGZxc4iEREREZnFziIRERERmcXOIhERERGZxc4iEREREZn1f4XIz28PPKtRAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACETklEQVR4nO3deVxUVf8H8M+wDaCCCsqiKCQqLrhhoggpTyQaLjyImj6umWZpaagVpqAtkguJpUVWpj2GGxKVGmoETxRoCVKS4JaooaBmAiGCzJzfH/7m5sgMggKz8Hm/Xvdlc+65d7537mnmy7n3nCsTQggQEREREWlgousAiIiIiEh/MVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIp1xdXWFTCaDTCbD/Pnza6y7Zs0aqa6ZmVkjRXh/+fn5kMlkcHV11XUoREQNgskiEemFzz//HJWVlVrXb968uV7fj0keEVHtMFkkIp3r378//vzzT3z55Zca16enpyMvLw+PPvpoI0d2f+3atUNubi6Sk5N1HQoRUYNgskhEOvf0008D0N57+Mknn6jV0yfm5ubw8PBAp06ddB0KEVGDYLJIRDrn6emJ/v374+DBgygoKFBb9/fff2PXrl1o3749hg0bpnUfVVVV+PjjjzF06FC0bt0acrkcbm5ueO6553Dx4kW1utOnT4ebmxsA4Pz589K9kKpFZfny5ZDJZFi+fDkuXLiAmTNnwsXFBebm5pg+fTqA+1/OvnnzJmJiYuDr64tWrVpBLpejY8eOGDVqFOLi4tTqFhcXY+nSpfD09ESzZs0gl8vh7OyMwYMHIyIiArdv367tR0pEVG/05y5xImrSnn76aRw9ehRbtmzBa6+9JpXv2rULf//9N+bPnw8TE81/35aWlmL06NFITU1F8+bN4eXlhTZt2uD48eOIjY3F7t27cejQIfTt2xcA4Ovri7///ht79uxBs2bNEBoaWmNsp0+fRt++fWFhYYHBgwdDCAF7e/v7HtPFixcxfPhwnDhxAtbW1hg8eDDs7OxQUFCAtLQ0HD9+HJMmTQJwJ6n09fVFTk4O2rRpg8cffxzNmjVDYWEh8vLykJ6ejrCwMLRs2bKWnygRUT0RREQ60rFjRwFApKWliRs3bggrKyvh7u6uVmfw4MFCJpOJs2fPinPnzgkAwtTUVK3OpEmTBAAxcuRIUVRUpLZu3bp1AoDo3LmzqKqqkspV++rYsaPW+CIjIwUAAUBMnjxZ3Lp1q1odbftRKBSif//+AoAYNmyYuHLlitr68vJysW/fPun11q1bBQAxYsQIUVlZWW1fqampoqKiQmusREQNhZehiUgv2NraIiQkBGfOnMH//vc/AMDJkyfx448/YsiQIXjkkUc0bpebm4vt27fD2dkZcXFxaNu2rdr6BQsW4Mknn8Tp06fxzTffPFBsrVu3xoYNGyCXy2u9zddff42jR4/CyckJe/bsQZs2bdTWW1pa4sknn5ReFxUVAQCeeOIJmJubq9U1MTHBkCFDYGFh8UDxExE9DCaLRKQ37h3oovq3poEt+/fvhxACI0aMQIsWLTTWGTp0KIA7o6ofREBAAGxtbeu0TVJSEgBg0qRJaN68+X3rq0Z6r169Gp999hmuX79e90CJiBoAk0Ui0hv+/v5wc3NDfHw8/vrrL3z22WewsbGp8Z7C33//HcCdEdP3DlRRLS+//DIA4OrVqw8U14PMxXj+/HkAgIeHR63qDx06FK+88gquXLmCadOmwd7eHl27dsXTTz+NL7/8Ekqlss4xEBHVBw5wISK9IZPJMH36dERGRmLatGkoLCzE7NmzYWVlpXUbVRLVp08f9O7du8b9e3t7P1BcNb1/fXr77bcxZ84cfP311/jhhx/w448/4tNPP8Wnn36KRx99FCkpKWjWrFmjxEJEpMJkkYj0yvTp07FixQp8/fXXAO4/t6KLiwsAYPDgwdiwYUODx1dbHTp0AADk5eXVaTtXV1e88MILeOGFFwAAP//8MyZPnoyff/4Zq1evxooVK+o9ViKimvAyNBHplQ4dOmDMmDGws7PDwIED79sbOGLECADAV199hVu3btX6fVSDRaqqqh482BoMHz4cALB9+3aUlZU98H4effRRPP/88wCA7Ozs+giNiKhOmCwSkd5JSEjAtWvXkJGRcd+6ffv2xdixY3Hx4kWEhIQgPz+/Wp2ysjJ8/vnn0ohjAGjTpg0sLCxQWFjYIINJRo8ejb59++LSpUsYN24c/vzzT7X1t27dUhud/cUXX+D777+vdm/i7du3pcEyHTt2rPc4iYjuh5ehicjgffrpp7hx4wa++eYbdO3aFb1794abmxuEEMjPz8cvv/yCyspK5ObmwsHBAcCdx/SNHj0a8fHx6NOnD3x9fWFtbQ0A+Pjjjx86JhMTE3zxxRcIDAzEN998gw4dOsDX11ealPuXX35By5YtpeT2f//7H9avXw97e3v07dsXbdu2RWlpKQ4fPowrV66gXbt20kAdIqLGxGSRiAxeixYtcPDgQezcuRPbtm1DZmYmsrOzYWNjAycnJ/znP//B6NGjqz2/+cMPP4SdnR2++eYbxMfHS4/Tq49kEbjTE3j06FG8//77iI+PR0ZGBiorK+Ho6IghQ4ZIT28B7tyraWVlhR9++AEnTpzA//73P9ja2qJDhw5YsGABZs+eDTs7u3qJi4ioLmRCCKHrIIiIiIhIP/GeRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERE3Kli1bIJPJkJ+fr+tQDAKTRSID9PPPP8PHxwfNmjWDTCZDdna2rkOiJoZtkKjpMNN1AERUN7dv38a4ceNgaWmJdevWwdraGh07dtR1WNSEsA0SNS1MFokMzNmzZ3H+/Hl89NFHeOaZZ3QdDjVBbINETQsvQ+uBsrIyXYdABuTKlSsAgJYtW9bL/tj+qK7YBskYvf/+++jRowfkcjmcnZ0xd+5c3LhxQ63O6dOnMXbsWDg6OsLS0hLt27fHU089heLiYqnOoUOH4Ovri5YtW6J58+bo2rUrlixZ0shHU7+adLJYUFCAp59+Gg4ODpDL5ejRowc2b94srU9NTYVMJsOuXbvw1ltvoX379rC0tMTjjz+OM2fOVNvfkSNHMHz4cNja2sLa2hpDhgzBjz/+qFZn+fLlkMlkOHHiBCZNmoRWrVrB19cXAKBUKrF8+XI4OzvD2toa/v7+OHHiBFxdXTF9+nQAwO+//w6ZTIZ169ZVe//09HTIZDJs3769Vsefn58PmUyGtWvXYuPGjXjkkUdgbW2NYcOG4eLFixBC4I033kD79u1hZWWFMWPG4Pr162r7+PLLLxEUFARnZ2fI5XJ06tQJb7zxBhQKxQN9PlSz6dOnY8iQIQCAcePGQSaTYejQoQCA7777Dn5+fmjWrBlatmyJMWPGIDc3V237mtofAGzbtg0DBgyAtbU1WrVqhcceewwHDx5U28c333wjvU+LFi0QFBSE3377Ta1OYWEhZsyYgfbt20Mul8PJyQljxoyp083kqlhPnTqFyZMnw9bWFm3atMGyZcsghMDFixcxZswY2NjYwNHREdHR0dX28d5776FHjx7S8fTv3x9xcXFqde73PUDq2AZr3wYrKysREREBLy8v2NraolmzZvDz80NKSkq191IqlYiJiUGPHj1gaWkJBwcHPPvss/jrr79qHS89uOXLl2Pu3LlwdnZGdHQ0xo4diw8//BDDhg3D7du3Adw5n4GBgTh8+DBeeOEFbNy4EbNnz8bvv/8uJZW//fYbRo4ciYqKCrz++uuIjo7G6NGjDf+3TjRRhYWFon379sLFxUW8/vrr4oMPPhCjR48WAMS6deuEEEKkpKQIAKJv377Cy8tLrFu3TixfvlxYW1uLAQMGqO0vOTlZWFhYiEGDBono6Gixbt060atXL2FhYSGOHDki1YuMjBQARPfu3cWYMWPE+++/LzZu3CiEEOLll18WAMSoUaPEhg0bxKxZs0T79u2Fvb29mDZtmrSPwYMHCy8vr2rH9Pzzz4sWLVqIsrKyWn0G586dEwBEnz59RPfu3cU777wjli5dKiwsLMTAgQPFkiVLhI+Pj3j33XfFiy++KGQymZgxY4baPoKDg8X48ePFmjVrxAcffCDGjRsnAIhFixY90OdDNUtPTxdLliwRAMSLL74o/vvf/4qDBw+KQ4cOCTMzM9GlSxexevVqsWLFCmFvby9atWolzp07J21fU/tbvny5ACB8fHzEmjVrxPr168WkSZPEK6+8Im3/2WefCZlMJoYPHy7ee+89sWrVKuHq6ipatmyp9j4+Pj7C1tZWLF26VHz88cdi5cqVwt/fX/zvf/+r9bGqYu3Tp4+YOHGieP/990VQUJAAIN555x3RtWtX8dxzz4n3339fDB48WABQ2/+mTZsEABEaGio+/PBDsX79ejFz5kzx4osvSnVq8z1A6tgGa98Gr169KpycnERYWJj44IMPxOrVq0XXrl2Fubm5OHbsmNp7PfPMM8LMzEzMmjVLxMbGildeeUU0a9ZMPProo6KysrJuJ4nu69NPPxUAxLlz58SVK1eEhYWFGDZsmFAoFFKdDRs2CABi8+bNQgghjh07JgCI3bt3a93vunXrBABx9erVBj+GxtRkk8WZM2cKJycnce3aNbXyp556Stja2oqbN29KyWK3bt1ERUWFVGf9+vUCgDh+/LgQQgilUik6d+4sAgMDhVKplOrdvHlTuLm5iSeeeEIqU335TJw4Ue19CwsLhZmZmQgODlYrV3153p0sfvjhhwKAyM3NlcoqKyurJZX3o0oW27RpI27cuCGVh4eHCwCid+/e4vbt21L5xIkThYWFhbh165baMd7r2WefFdbW1lK9unw+dH+qdnn3F1afPn1E27ZtxZ9//imV/fLLL8LExERMnTpVKtPW/k6fPi1MTEzEv//9b7UvSyGEdM5KS0tFy5YtxaxZs9TWFxYWCltbW6n8r7/+EgDEmjVrHuo4VbHOnj1bKquqqhLt27cXMplMvP3221L5X3/9JaysrNTa/5gxY0SPHj1qfI/afA9QdWyDtWuDVVVVar8dqnoODg7i6aeflsrS0tIEAPH555+r1U1KStJYTg/v7mQxLi5OABD79+9Xq1NRUSFsbGzE2LFjhRBC/P777wKAeOaZZ7R2yqj2+/HHH1drx4asSV6GFkJgz549GDVqFIQQuHbtmrQEBgaiuLgYWVlZUv0ZM2bAwsJCeu3n5wfgziVhAMjOzsbp06cxadIk/Pnnn9K+ysrK8Pjjj+P777+HUqlUi2HOnDlqr5OTk1FVVYXnn39erfyFF16oFv/48eNhaWmJzz//XCo7cOAArl27hsmTJ9f58xg3bhxsbW2l197e3gCAyZMnw8zMTK28srISBQUFUpmVlZX036Wlpbh27Rr8/Pxw8+ZN5OXlAXiwz4dq7/Lly8jOzsb06dPRunVrqbxXr1544oknsH///mrb3Nv+EhMToVQqERERARMT9a8FmUwG4M59ODdu3MDEiRPV/p8xNTWFt7e3dGnNysoKFhYWSE1NrZdLaHcPoDA1NUX//v0hhMDMmTOl8pYtW6Jr167S/5Oqsj/++AM///yzxv3W9XuAtGMb1NwGTU1Npd8OpVKJ69evo6qqCv3791drW7t374atrS2eeOIJtePy8vJC8+bNNV62pvpz/vx5AEDXrl3Vyi0sLPDII49I693c3BAWFoaPP/4Y9vb2CAwMxMaNG9XuV5wwYQIGDx6MZ555Bg4ODnjqqaewa9cug/+Na5Kjoa9evYobN25g06ZN2LRpk8Y6V65cQatWrQAAHTp0UFunKld9CZ0+fRoAMG3aNK3vWVxcLG0H3Gl0d1M1Rnd3d7Xy1q1bq20H3PlSGjVqFOLi4vDGG28AAD7//HO0a9cO//rXv7TGoM29x6dKHF1cXDSW3/3l+9tvv2Hp0qX47rvvUFJSolZf9T/Qg3w+VHvavugAoFu3bjhw4ADKysrQrFkzqfze9nf27FmYmJige/fuWt9HdR61tTEbGxsAgFwux6pVq7Bw4UI4ODhg4MCBGDlyJKZOnQpHR8e6HRw0t09LS0vY29tXK//zzz+l16+88gq+/fZbDBgwAO7u7hg2bBgmTZqEwYMHA6j99wDdH9vgP+V3t0EA2Lp1K6Kjo5GXlyfd+waoH//p06dRXFyMtm3banx/tkP9ER0djenTp+PLL7/EwYMH8eKLLyIqKgqHDx+W7u///vvvkZKSgn379iEpKQk7d+7Ev/71Lxw8eBCmpqa6PoQH0iSTRVWGP3nyZK0JTK9evXDixAkA0HpyhRBq+1uzZg369OmjsW7z5s3VXt/dI/cgpk6dit27dyM9PR2enp746quv8Pzzz1f7i7w2tB3f/Y77xo0bGDJkCGxsbPD666+jU6dOsLS0RFZWFl555RXpc3mQz4ca1oO0P9V5/O9//6vxB/fuXugFCxZg1KhRSExMxIEDB7Bs2TJERUXhu+++Q9++fev0vpra4f3aJnAnSTl58iT27t2LpKQk7NmzB++//z4iIiKwYsWKWn8PUMNoCm1w27ZtmD59OoKDg7F48WK0bdsWpqamiIqKwtmzZ9WOq23btmpXi+7Wpk2bOsVLdaOaI/TkyZN45JFHpPLKykqcO3cOAQEBavU9PT3h6emJpUuXIj09HYMHD0ZsbCzefPNNAICJiQkef/xxPP7443jnnXewcuVKvPbaa0hJSam2L0PRJJPFNm3aoEWLFlAoFDWeOFWyeD+dOnUCcOev2gdtCKrGeubMGbW/OP/880+Nl1GGDx+ONm3a4PPPP4e3tzdu3ryJKVOmPNB7P6jU1FT8+eefSEhIwGOPPSaVnzt3Tq1efXw+pN3dX3T3ysvLg729vVqPjiadOnWCUqnEiRMntCb0qvPYtm3bWp3HTp06YeHChVi4cCFOnz6NPn36IDo6Gtu2bbvvtvWlWbNmmDBhAiZMmIDKykqEhITgrbfeQnh4eK2/B+j+2AY1i4+PxyOPPIKEhATpUjoAREZGVovz22+/xeDBgx+6I4HqLiAgABYWFnj33XcxfPhw6Vx98sknKC4uRlBQEACgpKQE1tbWan+UeHp6wsTEBBUVFQCA69evq92KAUBqz6o6hqhJ3rNoamqKsWPHYs+ePcjJyam2/urVq3Xan5eXFzp16oS1a9fi77//fqD9Pf744zAzM8MHH3ygVr5hwwaN9c3MzDBx4kTs2rULW7ZsgaenZ6P3gqj+sr77L+nKykq8//77avXq4/Mh7ZycnNCnTx9s3bpVbU6wnJwcHDx4EE8++eR99xEcHAwTExO8/vrr1e6tUZ3fwMBA2NjYYOXKlWqX01RU5/HmzZu4deuW2rpOnTqhRYsWjfplee/lQAsLC3Tv3h1CCNy+fbvevweaMrZBzTR9Rx45cgQZGRlq9caPHw+FQiHdVnS3qqqqanP9Uf1q06YNwsPDkZSUhOHDh2Pjxo148cUX8cILL+DRRx+VxgJ89913cHV1xUsvvYQPPvgA7733Hh5//HHpuwQAXn/9dfTr1w/Lli3Dxx9/jJUrV2L27Nlo37692hRRhqZJ9iwCwNtvv42UlBR4e3tj1qxZ6N69O65fv46srCx8++231eYTrImJiQk+/vhjjBgxAj169MCMGTPQrl07FBQUICUlBTY2Nvj6669r3IeDgwPmz58vzck0fPhw/PLLL/jmm29gb2+v9lepytSpU/Huu+8iJSUFq1atqvNn8LB8fHzQqlUrTJs2DS+++CJkMhn++9//qn0xAvXz+VDN1qxZgxEjRmDQoEGYOXMmysvL8d5778HW1hbLly+/7/bu7u547bXX8MYbb8DPzw8hISGQy+X4+eef4ezsjKioKNjY2OCDDz7AlClT0K9fPzz11FNo06YNLly4gH379mHw4MHYsGEDTp06hccffxzjx49H9+7dYWZmhi+++AJFRUV46qmnGv7D+H/Dhg2Do6MjBg8eDAcHB+Tm5mLDhg0ICgpCixYtANTv90BTxzZY3ciRI5GQkIB///vfCAoKwrlz5xAbG4vu3bur/eE8ZMgQPPvss4iKikJ2djaGDRsGc3NznD59Grt378b69esRGhraaHE3RcuXL0ebNm2wYcMGvPTSS2jdujVmz56NlStXwtzcHADQu3dvBAYG4uuvv0ZBQQGsra3Ru3dvfPPNNxg4cCAAYPTo0cjPz8fmzZtx7do12NvbY8iQIVixYoXaQFKD0/gDsPVHUVGRmDt3rnBxcRHm5ubC0dFRPP7442LTpk1CCM3TQwjxz5Qzn376qVr5sWPHREhIiLCzsxNyuVx07NhRjB8/XiQnJ0t1VFMxaJqDqaqqSixbtkw4OjoKKysr8a9//Uvk5uYKOzs7MWfOHI3H0KNHD2FiYiL++OOPOh+/6jjunV5C23GrpgT4+eefpbIff/xRDBw4UFhZWQlnZ2fx8ssviwMHDggAIiUlRW372nw+dH/azs+3334rBg8eLKysrISNjY0YNWqUOHHihFqdmtqfEEJs3rxZ9O3bV8jlctGqVSsxZMgQcejQoWrvHxgYKGxtbYWlpaXo1KmTmD59ujh69KgQQohr166JuXPnCg8PD9GsWTNha2srvL29xa5du+p0nNpinTZtmmjWrFm1+kOGDFGbKufDDz8Ujz32mNTeOnXqJBYvXiyKi4vVtrvf9wBVxzZYuzaoVCrFypUrRceOHYVcLhd9+/YVe/fuFdOmTRMdO3astv2mTZuEl5eXsLKyEi1atBCenp7i5ZdfFpcuXapT3ET1TSbEPd1ApFdu3LiBVq1a4c0338Rrr71WbX3fvn3RunVrJCcn6yA6IiIiMnZN8p5FfVVeXl6tLCYmBgCkx2nd7ejRo8jOzsbUqVMbODIiIiJqqtizqEe2bNmCLVu24Mknn0Tz5s3xww8/YPv27Rg2bBgOHDgg1cvJyUFmZiaio6Nx7do1/P7777C0tJTWKxSK+96c37x5c05XQzrx999/axzodLc2bdoY7HxkpP/YBonqpskOcNFHvXr1gpmZGVavXo2SkhJp0Itq7iaV+Ph4vP766+jatSu2b9+uligCwMWLF6tNeHuvyMjIWt10TlTf1q5dixUrVtRY59y5c3B1dW2cgKjJYRskqhv2LBqhW7du4YcffqixziOPPKI2+ShRY/n999/VHommia+vb7U/gojqC9sgUd0wWSQiIiIirZrMZWilUolLly6hRYsWGucsJN0TQqC0tBTOzs4P9NhCY8G2qv+aQltlO9R/+t4O2Yb0X23bUJNJFi9dugQXFxddh0G1cPHiRbRv317XYegM26rhMOa2ynZoOPS1HbINGY77taEmkyyqnthw8eJF2NjY6Dga0qSkpAQuLi7SuWqq2Fb1X1Noq2yH+k/f2yHbkP6rbRtqMsmiqgvcxsaGjVbPNfXLFWyrhsOY2yrboeHQ13bINmQ47teG9O8mByIiIiLSG0wWiYiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEirJvO4P2OjUCiQlpaGy5cvw8nJCX5+fjA1NdV1WERq2E5JX7At0sNo6u2HPYsGKCEhAe7u7vD398ekSZPg7+8Pd3d3JCQk6Do0IgnbKekLtkV6GGw/TBYNTkJCAkJDQ+Hp6YmMjAyUlpYiIyMDnp6eCA0NbVKNl/QX2ynpC7ZFehhsP3fIhBBC10E0hpKSEtja2qK4uBg2Nja6DueBKBQKuLu7w9PTE4mJiTAx+SfXVyqVCA4ORk5ODk6fPm2Q3ePGcI7qg6F/DsbeTgHDP0e1YQzHaOxtUd/Pkb7Hdz/G3n6A2p8j9iwakLS0NOTn52PJkiUQQiA1NRXbt29HamoqhBAIDw/HuXPnkJaWputQqQm7u53e/eUKACYmJmyn1GjYFulhsP38gwNcDMjly5cBAGfPnsXEiRORn58vrXN1dcWbb76pVo9IF1Ttr2fPnhrXq8rZTqmhsS3Sw2D7+Qd7Fg2Ik5MTAGDKlCka75+YMmWKWj0iXVC1v5ycHI3rVeVsp9TQ2BbpYbD9/IP3LBqQyspKNGvWDHZ2dvjjjz9gZvZPx3BVVRXat2+PP//8E2VlZbCwsNBhpA/GGM5RfTD0z4H3+RgHYzhGY2+L+n6O9D2++zH29gPwnkWjlJ6ejqqqKhQVFSEkJEStZzEkJARFRUWoqqpCenq6rkOlJszU1BTR0dHYu3cvgoOD1dppcHAw9u7di7Vr1xrslysZDrZFehhsP/9gsmhAVPdFbNu2DcePH4ePjw9sbGzg4+ODnJwcbNu2Ta0eka6EhIQgPj5eYzuNj49HSEiIrkOkJoJtkR4G288dHOBiQFT3RXTq1AlnzpypNpv8Tz/9pFaPSJdCQkIwZsyYJv3UA9IPbIv0MNh+mCwaFD8/P7i6umLlypXYs2eP2jqlUomoqCi4ubnBz89PRxESqTM1NcXQoUN1HQYR2yI9lKbefpgsGhDV/RNjx46Fra0tysvLpXVWVlYoLy/Hnj17mtRfO0RERNSweM+iAZLJZBrLNJUTERERPQwmiwZEoVBg4cKFGDlyJIqLi5GSkoK4uDikpKTgxo0bGDlyJBYtWgSFQqHrUImIiMhI8DK0AVE9emj79u0wNzevdv9EeHg4fHx8kJaW1qTvrSAiIqL6w55FA8JHDxEREVFjY7JoQPjoISIiImpsTBYNyN1T5yiVSrV1nDqHiIiIGgKTRQPCRw8RERFRY2OyaEBu3rwJV1dXrF69GpmZmWqPHsrKysLq1asxfPhwXYdJRER65vvvv8eoUaPg7OwMmUyGxMTEGusnJCTgiSeeQJs2bWBjY4NBgwbhwIEDjRMs6R0miwYkLy8PXl5eWLx4MS5duqS2rqCgAIsXL0ZeXp6OoiMiIn1VVlaG3r17Y+PGjbWq//333+OJJ57A/v37kZmZCX9/f4waNQrHjh1r4EhJH3HqHAPi4eGBzMxM6XVubi4mT56Mbdu2oVu3blIdIiKiu40YMQIjRoyodf2YmBi11ytXrsSXX36Jr7/+Gn379q3n6EjfMVk0INbW1ujXr1+18m7dumksJyIiqg9KpRKlpaVo3bq11joVFRWoqKiQXpeUlDRGaNQIeBmaiIiIarR27Vr8/fffGD9+vNY6UVFRsLW1lRYXF5dGjJAaEpNFIiIi0iouLg4rVqzArl270LZtW631wsPDUVxcLC0XL15sxCipIfEyNBEREWm0Y8cOPPPMM9i9ezcCAgJqrCuXyyGXyxspMmpM7FkkIiKiarZv344ZM2Zg+/btCAoK0nU4pEPsWSQiIjJyf//9N86cOSO9PnfuHLKzs9G6dWt06NAB4eHhKCgowGeffQbgzqXnadOmYf369fD29kZhYSEAwMrKCra2tjo5BtId9iwSEREZuaNHj6Jv377StDdhYWHo27cvIiIiAACXL1/GhQsXpPqbNm1CVVUV5s6dCycnJ2mZP3++TuIn3WLPIhERkZEbOnQohBBa12/ZskXtdWpqasMGRAaFPYtEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaPVCyuHHjRri6usLS0hLe3t746aefaqy/e/dueHh4wNLSEp6enti/f7/a+oSEBAwbNgx2dnaQyWTIzs7Wui8hBEaMGAGZTIbExMQHCZ+IiIiIaqnOyeLOnTsRFhaGyMhIZGVloXfv3ggMDMSVK1c01k9PT8fEiRMxc+ZMHDt2DMHBwQgODkZOTo5Up6ysDL6+vli1atV93z8mJgYymayuYRMRERHRA6hzsvjOO+9g1qxZmDFjBrp3747Y2FhYW1tj8+bNGuuvX78ew4cPx+LFi9GtWze88cYb6NevHzZs2CDVmTJlCiIiIu773Mns7GxER0drfS8iIiIiql91ShYrKyuRmZmpltSZmJggICAAGRkZGrfJyMiolgQGBgZqra/NzZs3MWnSJGzcuBGOjo73rV9RUYGSkhK1hYiIiIjqpk7J4rVr16BQKODg4KBW7uDgID038l6FhYV1qq/NSy+9BB8fH4wZM6ZW9aOiomBraystLi4udXo/IiIiIjKQ0dBfffUVvvvuO8TExNR6m/DwcBQXF0vLxYsXGy5AIqIa1PegwLvNmTMHMplM4/fjvn374O3tDSsrK7Rq1QrBwcEPeSRE1BTVKVm0t7eHqakpioqK1MqLioq0Xhp2dHSsU31NvvvuO5w9exYtW7aEmZkZzMzuPNJ67NixGDp0qMZt5HI5bGxs1BYiosbWEIMCVb744gscPnwYzs7O1dbt2bMHU6ZMwYwZM/DLL7/gxx9/xKRJk+r9+IjI+NUpWbSwsICXlxeSk5OlMqVSieTkZAwaNEjjNoMGDVKrDwCHDh3SWl+TV199Fb/++iuys7OlBQDWrVuHTz/9tC6HQEakvntrhBCIiIiAk5MTrKysEBAQgNOnT2vcV0VFBfr06VNtqqf8/HzIZLJqy+HDhx/6eMkwNcSgQAAoKCjACy+8gM8//xzm5uZq66qqqjB//nysWbMGc+bMQZcuXdC9e3eMHz++wY6TiIxXnS9Dh4WF4aOPPsLWrVuRm5uL5557DmVlZZgxYwYAYOrUqQgPD5fqz58/H0lJSYiOjkZeXh6WL1+Oo0ePYt68eVKd69evIzs7GydOnAAAnDx5EtnZ2dJ9jY6OjujZs6faAgAdOnSAm5vbgx89GayG6K1ZvXo13n33XcTGxuLIkSNo1qwZAgMDcevWrWr7e/nllzX25qh8++23uHz5srR4eXk9/EGTwWmoQYFKpRJTpkzB4sWL0aNHj2r7yMrKQkFBAUxMTNC3b184OTlhxIgRGnsnVTgokIi0Eg/gvffeEx06dBAWFhZiwIAB4vDhw9K6IUOGiGnTpqnV37Vrl+jSpYuwsLAQPXr0EPv27VNb/+mnnwoA1ZbIyEitMQAQX3zxRa1jLi4uFgBEcXFxrbfRd5mZmQKAyMzM1HUo9aIu52jAgAFi7ty50muFQiGcnZ1FVFSUxvrjx48XQUFBamXe3t7i2WefFUIIoVQqhaOjo1izZo20/saNG0Iul4vt27erbbd//37h4eEhfvvtNwFAHDt2TFp37ty5amV1ZYxt1djU9hwVFBQIACI9PV2tfPHixWLAgAEatzE3NxdxcXFqZRs3bhRt27aVXq9cuVI88cQTQqlUCiGE6Nixo1i3bp20fvv27QKA6NChg4iPjxdHjx4VEydOFHZ2duLPP//U+L6RkZEav4fZDvWXvn9X6Ht8VPtz9EADXObNm4fz58+joqICR44cgbe3t7QuNTUVW7ZsUas/btw4nDx5EhUVFcjJycGTTz6ptn769OkQQlRbli9fXlOSy5u1m6iG6K05d+4cCgsL1erY2trC29tbbZ9FRUWYNWsW/vvf/8La2lprjKNHj0bbtm3h6+uLr776qsbjYY8O1UVmZibWr1+PLVu2aH1AgVKpBAC89tprGDt2LLy8vPDpp59CJpNh9+7dGrfhoEAi0sYgRkMT3a0hpnBS/VtTHSEEpk+fjjlz5qB///4a36d58+aIjo7G7t27sW/fPvj6+iI4OLjGhJHTPBmvhhgUmJaWhitXrqBDhw7SgL/z589j4cKFcHV1BQA4OTkBALp37y7tQy6X45FHHsGFCxc0vi8HBRKRNma6DoBqdvr0aZSWlmpcl5ubq/bvvVq0aIHOnTs3WGxNzXvvvYfS0lK1e3LvZW9vj7CwMOn1o48+ikuXLmHNmjUYPXq0xm3Cw8PVtikpKWHCaCTuHhSouhKiGhR4933bd1MNClywYIFUdvegwClTpmjsJVeNfAYALy8vyOVynDx5Er6+vgCA27dvIz8/Hx07dqznoyQiY8dkUY+dPn0aXbp0uW+9yZMna1136tQpo0sYG6K3RvVvUVGR1Cujet2nTx8Ad6ZwysjIgFwuV9tP//798Z///Adbt27V+N7e3t44dOiQ1uORy+XV9knGIywsDNOmTUP//v0xYMAAxMTEVBsU2K5dO0RFRQG4MyhwyJAhiI6ORlBQEHbs2IGjR49i06ZNAAA7OzvY2dmpvYe5uTkcHR3RtWtXAICNjQ3mzJmDyMhIuLi4oGPHjlizZg2AO7cFERHVBZNFPabqUdy2bRu6detWbX15eTny8/Ph6uoKKysrtXW5ubmYPHmy1l5JQ9YQvTVubm5wdHREcnKylByWlJTgyJEjeO655wAA7777Lt58801p+0uXLiEwMBA7d+5Uu2/3XtnZ2WoJKDUtEyZMwNWrVxEREYHCwkL06dMHSUlJ0i0PFy5cgInJP3cE+fj4IC4uDkuXLsWSJUvQuXNnJCYmSrNA1NaaNWtgZmaGKVOmoLy8HN7e3vjuu+/QqlWrej0+ImoCGnqkjb4wxFFZDzPa2RBHStflHO3YsUPI5XKxZcsWceLECTF79mzRsmVLUVhYKIQQYsqUKeLVV1+V6v/444/CzMxMrF27VuTm5orIyEhhbm4ujh8/LtV5++23RcuWLcWXX34pfv31VzFmzBjh5uYmysvLNcagaeTzli1bRFxcnMjNzRW5ubnirbfeEiYmJmLz5s0N8jmQbjSFc9QUjtHQ6fs50vf4qPbniD2LZJAaorfm5ZdfRllZGWbPno0bN27A19cXSUlJsLS0rFNsb7zxBs6fPw8zMzN4eHhg586dCA0NrZ8DJyIiamQyIYTQdRCNoaSkBLa2tiguLjaYUX5ZWVnw8vJCZmYm+vXr12jb6oohnqOGwM9B/zWFc9QUjtHQ6fs50vf4qPbniFPnEBEREZFWTBaJiIiISCves6jnHJvLYHXjFHCpbnm91Y1TcGyu+ekORERERLXFZFHPPetlgW7fPwt8X7ftuv3/tkREREQPg8minvswsxITIragm4dHnbbLzcvDh9GToPmZIURERES1w2RRzxX+LVDesgvg3KdO25UXKlH4d5MY6E5EREQNiANciIiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrPsFFj928eRMAkJWVpXF9eXk58vPz4erqCisrK7V1ubm5DR4fERERGT8mi3osLy8PADBr1qwH3keLFi3qKxwiIiJqgpgs6rHg4GAAgIeHB6ytrautz83NxeTJk7Ft2zZ069at2voWLVqgc+fODR0mERERGTEmi3rM3t4ezzzzzH3rdevWDf369WuEiIiIiKip4QAXIiIiItKKySIRERERacVkkYiIiIi0YrJIRERERFoxWSQiIjJy33//PUaNGgVnZ2fIZDIkJibed5vU1FT069cPcrkc7u7u2LJlS4PHSfqJySIREZGRKysrQ+/evbFx48Za1T937hyCgoLg7++P7OxsLFiwAM888wwOHDjQwJGSPuLUOUREREZuxIgRGDFiRK3rx8bGws3NDdHR0QDuTNH2ww8/YN26dQgMDGyoMElPsWeRiIiI1GRkZCAgIECtLDAwEBkZGVq3qaioQElJidpCxoHJIhEREakpLCyEg4ODWpmDgwNKSkpQXl6ucZuoqCjY2tpKi4uLS2OESo2AySIRERE9tPDwcBQXF0vLxYsXdR0S1RPes0hERERqHB0dUVRUpFZWVFQEGxsbWFlZadxGLpdDLpc3RnjUyNizSERERGoGDRqE5ORktbJDhw5h0KBBOoqIdInJIhERkZH7+++/kZ2djezsbAB3psbJzs7GhQsXANy5hDx16lSp/pw5c/D777/j5ZdfRl5eHt5//33s2rULL730ki7CJx1jskhERGTkjh49ir59+6Jv374AgLCwMPTt2xcREREAgMuXL0uJIwC4ublh3759OHToEHr37o3o6Gh8/PHHnDanieI9i0REREZu6NChEEJoXa/p6SxDhw7FsWPHGjAqMhTsWSQiIiIirZgsEhEREZFWTBaJiIiISCsmi0RERESkFZNFIiIiItKKySIRERERacVkkYiIiIi0YrJIRERERFoxWSQiIiIirZgsEhEREZFWTBaJiIiISCs+G9qA3Lx5E3l5edLr3NxctX8BwMPDA9bW1o0eGxERERknJosGJC8vD15eXtXKJ0+eLP13ZmYm+vXr15hhERERkRFjsmhAPDw8kJmZKb0uLy9Hfn4+XF1dYWVlJdUhIiIiqi9MFg2ItbV1tV7DwYMH6ygaIiIiagqYLBoohUKBtLQ0XL58GU5OTvDz84OpqamuwyIiIiIjw9HQBighIQHu7u7w9/fHpEmT4O/vD3d3dyQkJOg6NCIiIjIy7Fk0MAkJCQgNDUVQUBAWL14MKysrlJeX45tvvkFoaCji4+MREhKi6zCJiIjISLBn0YAoFAosXLgQXl5eOH78OObOnYunn34ac+fOxfHjx+Hl5YVFixZBoVDoOlQiusvGjRvh6uoKS0tLeHt746effqqx/u7du+Hh4QFLS0t4enpi//79WuvOmTMHMpkMMTExGtdXVFSgT58+kMlkyM7OfoijIKKmismiAUlLS0N+fj6OHj2KXr16ISMjA6WlpcjIyECvXr1w9OhRnDt3DmlpaboOlYj+386dOxEWFobIyEhkZWWhd+/eCAwMxJUrVzTWT09Px8SJEzFz5kwcO3YMwcHBCA4ORk5OTrW6X3zxBQ4fPgxnZ2et7//yyy/XuJ6I6H6YLBqQgoICAMCIESOwa9cuHD58GOHh4Th8+DB27dqFESNGqNUjIt175513MGvWLMyYMQPdu3dHbGwsrK2tsXnzZo31169fj+HDh2Px4sXo1q0b3njjDfTr1w8bNmxQq1dQUIAXXngBn3/+OczNzTXu65tvvsHBgwexdu3aej8uImo6HihZrO9LKgkJCRg2bBjs7Ow0Xiq5fv06XnjhBXTt2hVWVlbo0KEDXnzxRRQXFz9I+Abr6tWrAAClUonmzZvjpZdewoYNG/DSSy+hefPm0uVnVT0i0q3KykpkZmYiICBAKjMxMUFAQAAyMjI0bpORkaFWHwACAwPV6iuVSkyZMgWLFy9Gjx49NO6nqKgIs2bNwn//+99aPdWpoqICJSUlagsREfAAyWJDXFIpKyuDr68vVq1apXEfly5dwqVLl7B27Vrk5ORgy5YtSEpKwsyZM+savkFr06YNAODAgQPV7ktUKBQ4ePCgWj0i0q1r165BoVDAwcFBrdzBwQGFhYUatyksLLxv/VWrVsHMzAwvvviixn0IITB9+nTMmTMH/fv3r1WsUVFRsLW1lRYXF5dabUdExq/Oo6HvvqQCALGxsdi3bx82b96MV199tVr9uy+pAMAbb7yBQ4cOYcOGDYiNjQUATJkyBQCQn5+v8T179uyJPXv2SK87deqEt956C5MnT0ZVVRXMzJrGoO67k0Bzc3OEhoaif//+OHr0KOLj43H79u1q9YjIuGRmZmL9+vXIysqCTCbTWOe9995DaWkpwsPDa73f8PBwhIWFSa9LSkqYMBIRgDr2LDbUJZUHUVxcDBsbG62JojFeUjl27BgAQCaTQaFQYPv27Vi4cCG2b98OpVIp/XCo6hGRbtnb28PU1BRFRUVq5UVFRXB0dNS4jaOjY43109LScOXKFXTo0AFmZmYwMzPD+fPnsXDhQri6ugIAvvvuO2RkZEAul8PMzAzu7u4AgP79+2PatGka31cul8PGxkZtISIC6pgsNtQllbq6du0a3njjDcyePVtrHWO8pPL1118DuHOJyd7eHgsXLsTGjRuxcOFC2NnZQQihVs/Y1fe9s0IIREREwMnJCVZWVggICMDp06c17qum6Uh+/fVX+Pn5wdLSEi4uLli9evVDHScZLgsLC3h5eSE5OVkqUyqVSE5OxqBBgzRuM2jQILX6AHDo0CGp/pQpU/Drr78iOztbWpydnbF48WIcOHAAAPDuu+/il19+kdar2vrOnTvx1ltvNcShEpERM7jrtyUlJQgKCkL37t2xfPlyrfWM+ZJK+/btYWpqiujoaKnM1dUV7dq1azIjoVX3zsbGxsLb2xsxMTEIDAzEyZMn0bZt22r1VffORkVFYeTIkYiLi0NwcDCysrLQs2dPAMDq1avx7rvvYuvWrXBzc8OyZcsQGBiIEydOwNLSUm1/qulIfvnlF7XykpISDBs2DAEBAYiNjcXx48fx9NNPo2XLljX+cUPGKywsDNOmTUP//v0xYMAAxMTEoKysTLqVZ+rUqWjXrh2ioqIAAPPnz8eQIUMQHR2NoKAg7NixA0ePHsWmTZsAAHZ2drCzs1N7D3Nzczg6OqJr164AgA4dOqitb968OYA7t/C0b9++QY+XiIxPnXoWG+KSSl2UlpZi+PDhaNGiBb744gut00UAxnlJRTXq8erVq1AqlWrrFAoFrl27plbPmNX3dCRCCMTExGDp0qUYM2YMevXqhc8++wyXLl1CYmKi2r5qmo7k888/R2VlJTZv3owePXrgqaeewosvvoh33nmn3j8DMgwTJkzA2rVrERERgT59+iA7OxtJSUnSFZcLFy7g8uXLUn0fHx/ExcVh06ZN6N27N+Lj45GYmCj9UUNE1NjqlCw2xCWV2lL12FhYWOCrr76q1tPTFPj6+gK4cwm0qKgIr7zyCk6dOoVXXnkFRUVFqKioUKtnrBri3tlz586hsLBQrY6trS28vb3V9nm/6UgyMjLw2GOPwcLCQu19Tp48ib/++ktjbMZ4fy2pmzdvHs6fP4+KigocOXIE3t7e0rrU1FRs2bJFrf64ceNw8uRJVFRUICcnB08++WSN+8/Pz8eCBQu0rnd1dYUQAn369HmIoyCipqrOl6Hr+5IKcGcexQsXLuDSpUsAgJMnTwK40yvp6OgoJYo3b97Etm3b1H5Q27RpA1NT04f7FAzE3U9hqKysxKpVqzRON2TsT2uo6d7ZvLw8jdvc795Z1b811bl3OhJNo/cLCwvh5uZWbR+qda1ataq2TVRUFFasWKHtcImIiHSqzvMsNsQlla+++gp9+/ZFUFAQAOCpp55C3759pal1srKycOTIERw/fhzu7u5wcnKSlosXLz7UB2CIWrduXadyqh8PMh1JbYSHh6O4uFhammKbJiIi/fVAA1zmzZuHefPmaVyXmpparWzcuHEYN26c1v1Nnz4d06dP17p+6NCh0kjfpkw18fn169fRpk0b+Pv7o1mzZigrK0NKSor05BZtE6Qbi4a4d1b1b1FREZycnNTqqC7d3T0dyd369++P//znP9i6davW97n7Pe4ll8ur7ZOIiEhf8NnQBkQ1yrdbt26wtrbGrl278Omnn2LXrl1o1qwZPDw81OoZq4a4d9bNzQ2Ojo5qdUpKSnDkyBGpTm2mIxk0aBC+//57aYJ01ft07dpV4yVoIiIifWdwU+fQnakzfvnlF/z444+4fPkynJycMHjwYPj7++s6tEZT3/fOymQyLFiwAG+++SY6d+4sTZ3j7OyM4OBgALWbjmTSpElYsWIFZs6ciVdeeQU5OTlYv3491q1b1xgfCxERUb1jsmhAVJeXf/jhB4wdOxbh4eEYOXIkcnJyMHbsWPz4449q9YzZhAkTcPXqVURERKCwsBB9+vSpdu+sick/Heeqe2eXLl2KJUuWoHPnztXunX355ZdRVlaG2bNn48aNG/D19UVSUlKdRt7b2tri4MGDmDt3Lry8vGBvb4+IiAjOsUhERAZLJprIzYAlJSWwtbWVHhNoiFJTU+Hv74+oqCh8+OGHaqNx3dzcMGvWLCxZsgQpKSkYOnSozuJ8UMZwjuoDPwf91xTOUVM4RkOn7+dI3+Oj2p8j9iwaED8/P7i6uiI9PR25ubmIjY3F2bNn0alTJ8yZMwfjx4+Hm5sb/Pz8dB0qERERGQkmiwZE9Yi/sWPHonXr1igvL5fWLVmyBOXl5dizZ0+TmXeSiIiIGh5HQxsgmUymsUxTOREREdHDYLJoQBQKBRYuXIiRI0eiuLgYKSkpiIuLQ0pKCm7cuIGRI0di0aJFUCgUug6ViIiIjAQvQxuQtLQ05OfnY/v27TA3N682iCU8PBw+Pj5IS0szyAEuREREpH/Ys2hAVI9RvHu6l7upyu9+3CIRERHRw2CyaEBUj6HLycnRuF5Vfvfj6oiIiIgeBpNFA6KaOmflypVQKpVq65RKJaKiojh1DukVhUKB1NRUbN++HampqbyflojIADFZNCCqqXP27t2L4OBgZGRkoLS0FBkZGQgODsbevXuxdu1aTp1DeiEhIQHu7u7w9/fHpEmT4O/vD3d3dyQkJOg6NCIiqgMmiwYmJCQE8fHxOH78OHx8fGBjYwMfHx/k5OQgPj4eISEhug6RCAkJCQgNDYWnp6faHzWenp4IDQ1lwkhEZECYLBqoe5/SeO9laSJduXuKp8TERAwcOBDNmzfHwIEDkZiYyCmeiHRk48aNcHV1haWlJby9vfHTTz/VWD8mJgZdu3aFlZUVXFxc8NJLL+HWrVuNFC3pEyaLBkbVY9OrVy+1HptevXqxx4b0gmqKpyVLlsDERP0rxsTEBOHh4Th37hzS0tJ0FCFR07Nz506EhYUhMjISWVlZ6N27NwIDA3HlyhWN9ePi4vDqq68iMjISubm5+OSTT7Bz504sWbKkkSMnfcBk0YCwx4YMAad4ItI/77zzDmbNmoUZM2age/fuiI2NhbW1NTZv3qyxfnp6OgYPHoxJkybB1dUVw4YNw8SJE+/bG0nGicmiAWGPDRkCTvFEpF8qKyuRmZmJgIAAqczExAQBAQHIyMjQuI2Pjw8yMzOl5PD333/H/v378eSTT2p9n4qKCpSUlKgtZByYLBoQ9tiQIeAUT0T65dq1a1AoFHBwcFArd3BwQGFhocZtJk2ahNdffx2+vr4wNzdHp06dMHTo0BovQ0dFRcHW1lZaXFxc6vU4SHeYLBoQ9tiQIeAUT0SGLzU1FStXrsT777+PrKwsJCQkYN++fXjjjTe0bhMeHo7i4mJpuXjxYiNGTA2Jz4Y2IHf32CQmJqpdimaPDekT1RRPCxcuhI+Pj1Tu5ubGKZ6IGpm9vT1MTU1RVFSkVl5UVARHR0eN2yxbtgxTpkzBM888AwDw9PREWVkZZs+ejddee63arVAAIJfLIZfL6/8ASOfYs2hA2GNDhiQkJARnzpxBSkoK4uLikJKSgtOnTzNRJGpkFhYW8PLyQnJyslSmVCqRnJyMQYMGadzm5s2b1RJC1W/LvVO3kfFjz6KBYY8NGRJTU1MMHTpU12EQNXlhYWGYNm0a+vfvjwEDBiAmJgZlZWWYMWMGAGDq1Klo164doqKiAACjRo3CO++8g759+8Lb2xtnzpzBsmXLMGrUKHZINEFMFg1QSEgIxowZg7S0NFy+fBlOTk7w8/Pj/8BERKTRhAkTcPXqVURERKCwsBB9+vRBUlKSNOjlwoULaj2JS5cuhUwmw9KlS1FQUIA2bdpg1KhReOutt3R1CKRDMtFE+pNLSkpga2uL4uJi2NjY6Doc0oDn6A5+DvqvKZyjpnCMhk7fz5G+x0e1P0e8Z5GIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrTp1joBQKBafOISIiogbHnkUDlJCQAHd3d/j7+2PSpEnw9/eHu7s7EhISdB0aERERGRn2LBqYhIQEhIaGIigoCIsXL4aVlRXKy8vxzTffIDQ0lE9xISIionrFZNGAKBQKLFy4EF5eXsjJycHevXulda6urvDy8sKiRYswZswYXpImIiKiesHL0AYkLS0N+fn5yMzMhKenJzIyMlBaWoqMjAx4enoiMzMT586dQ1pamq5DJSIiIiPBZNGAFBQUAACGDx+OxMREDBw4EM2bN8fAgQORmJiI4cOHq9UjIiIielhMFg3I1atXAQAhISEQQiA1NRXbt29HamoqhBAIDg5Wq0dERET0sHjPogFp06YNAOD999/HW2+9hfz8fGmdq6srWrVqpVaPiIju4HRjRA+OPYsGpF27dgCAY8eOoby8HJs2bcKlS5ewadMmlJeX49ixY2r1iIiI040RPSwmiwbEx8cHZmZmsLW1hVwux+zZs+Hs7IzZs2fD0tIStra2MDMzg4+Pj65DJSLSC6rpxjQNCgwNDWXCSFQLTBYNSHp6OqqqqlBSUlLtvsQrV66gpKQEVVVVSE9P11GERET6QzXd2MiRIzUOChw5ciQWLVoEhUKh61CJ9BqTRQNy+fJlAIAQoto6mUwmlavqERE1ZarpxpYsWQITE/WfOxMTE4SHh3O6MaJaYLJoQNq2bQsA8PX1RXFxMVJSUhAXF4eUlBTcuHEDgwcPVqtHRNSUqf5w7tmzp8b1qnL+gU1UMyaLRkQmk+k6BCI1CoVCbYonXu6jxuTk5AQAyMnJ0bheVa6qR0SaceocA3LlyhUAwI8//ghbW1uUl5dL66ysrHDr1i21ekS6lJCQgIULF1ab4ik6OprPL6dG4efnB1dXV6xcuRKJiYlql6KVSiWioqLg5uYGPz8/HUZJpP/Ys2hAVH/93u+eRf6VTLrGEaikD0xNTREdHY29e/ciODhYrS0GBwdj7969WLt2LedbJLoPmdCUeRihkpIS2Nraori4GDY2NroO54FUVlaiWbNmaNasGWxsbHDx4kVpnYuLC0pKSlBWVoaysjJYWFjoMNIHYwznqD4Y+uegUCjg7u4OT09Pjb05wcHByMnJwenTpw32R9rQz1FtGNMxaurldnNzw9q1aw26l1vfz5G+x0e1P0fsWTQgqqlziouLUVlZqTYpd2VlJYqLizl1DukcR6CSvgkJCcGZM2fUBgWePn3aoBNFosbEexYNSEFBAQCgb9+++OuvvzB79mxpnZubG/r27Ytjx45J9Yh0gSNQSR+Zmppi6NChug6DyCCxZ9GAqCbifv755zX+lTxnzhy1ekS6wBGoRETGhcmiAWnTpg2AO/ffyGQyDB06FBMnTsTQoUMhk8mQmJioVo9IF+4egapUKtXWcQQqEZHhYbJoQNq1awcASEpK0jiyLykpSa0ekS5wBGp1GzduhKurKywtLeHt7Y2ffvqpxvq7d++Gh4cHLC0t4enpif3792utO2fOHMhkMsTExEhl+fn5mDlzJtzc3GBlZYVOnTohMjISlZWV9XVIRNSE8J5FA6LqsbG3t8fx48fh4+MjrXNzc4OXlxf+/PNP9tiQzoWEhCA+Ph4LFy6s1k7j4+Ob1MCCnTt3IiwsDLGxsfD29kZMTAwCAwNx8uRJjU9bSk9Px8SJExEVFYWRI0ciLi4OwcHByMrKqnYf6BdffIHDhw/D2dlZrTwvLw9KpRIffvgh3N3dkZOTg1mzZqGsrAxr165t0OMlIuPDqXMMjGr+uqCgIAwfPhxWVlYoLy9HUlIS9u3bZ9A/xMZyjh6WMX0OCoUCaWlpuHz5MpycnODn52cUPYp1OUfe3t549NFHsWHDBgB3LsW7uLjghRdewKuvvlqt/oQJE1BWVoa9e/dKZQMHDkSfPn0QGxsrlRUUFMDb2xsHDhxAUFAQFixYgAULFmiNY82aNfjggw/w+++/1/sxkm7o+znS9/io9ueIPYsG5u4em7t/TJpijw3pv6Y+ArWyshKZmZkIDw+XykxMTBAQEICMjAyN22RkZCAsLEytLDAwULonGbiTcE6ZMgWLFy9Gjx49ahVLcXExWrdurXV9RUUFKioqpNclJSW12i8RGT8miwYoJCQEY8aMMcoeGyJjcu3aNSgUCjg4OKiVOzg4IC8vT+M2hYWFGusXFhZKr1etWgUzMzO8+OKLtYrjzJkzeO+992q8BB0VFYUVK1bUan9E1LQwWTRQTb3HhqipyszMxPr165GVlQWZTHbf+gUFBRg+fDjGjRuHWbNmaa0XHh6u1qNZUlICFxeXeomZiAwbR0MTETUQe3t7mJqaoqioSK28qKgIjo6OGrdxdHSssX5aWhquXLmCDh06wMzMDGZmZjh//jwWLlwIV1dXte0uXboEf39/+Pj4YNOmTTXGKpfLYWNjo7YQEQFMFomIGoyFhQW8vLyQnJwslSmVSiQnJ2PQoEEatxk0aJBafQA4dOiQVH/KlCn49ddfkZ2dLS3Ozs5YvHgxDhw4IG1TUFCAoUOHwsvLC59++mm1Ry8SEdUWL0MTETWgsLAwTJs2Df3798eAAQMQExODsrIyzJgxAwAwdepUtGvXDlFRUQCA+fPnY8iQIYiOjkZQUBB27NiBo0ePSj2DdnZ2sLOzU3sPc3NzODo6omvXrgD+SRQ7duyItWvXqj3VSVuPJhGRNkwWiYga0IQJE3D16lVERESgsLAQffr0QVJSkjSI5cKFC2q9fj4+PoiLi8PSpUuxZMkSdO7cGYmJiVqfta3JoUOHcObMGZw5cwbt27dXW9dEZksjonrEeRZJb/Ac3cHPQf81hXPUFI7R0On7OdL3+Kj254g3sRARERGRVg+ULNb3c04TEhIwbNgw2NnZQSaTITs7u9o+bt26hblz58LOzg7NmzfH2LFjq40YpKalvtuhEAIRERFwcnKClZUVAgICcPr0abU6o0ePRocOHWBpaQknJydMmTIFly5dktbn5+dDJpNVWw4fPlx/B05ERNSI6pwsqp5zGhkZiaysLPTu3RuBgYG4cuWKxvqq55zOnDkTx44dQ3BwMIKDg5GTkyPVKSsrg6+vL1atWqX1fV966SV8/fXX2L17N/73v//h0qVLfFpJE9YQ7XD16tV49913ERsbiyNHjqBZs2YIDAzErVu3pDr+/v7YtWsXTp48iT179uDs2bMIDQ2t9n7ffvstLl++LC1eXl71/yEQERE1BlFHAwYMEHPnzpVeKxQK4ezsLKKiojTWHz9+vAgKClIr8/b2Fs8++2y1uufOnRMAxLFjx9TKb9y4IczNzcXu3bulstzcXAFAZGRkaHzfW7duieLiYmm5ePGiACCKi4tre6jUyIqLi2t9juq7HSqVSuHo6CjWrFkjrb9x44aQy+Vi+/btWuP48ssvhUwmE5WVlUII7W24JmyrhqcubdVQNYVjNHT6fo70PT6q/TmqU8+i6jmnAQEBUlltnnN6d33gznNOtdXXJDMzE7dv31bbj4eHBzp06KB1P1FRUbC1tZUWPonAeDREOzx37hwKCwvV6tja2sLb21vrPq9fv47PP/8cPj4+MDc3V1s3evRotG3bFr6+vvjqq69qPB62VSIi0md1ShZres7p3c8tvVttnnN6P4WFhbCwsEDLli1rvZ/w8HAUFxdLy8WLF2v9fqTfGqIdqv6tzT5feeUVNGvWDHZ2drhw4QK+/PJLaV3z5s0RHR2N3bt3Y9++ffD19UVwcHCNCSPbKhER6TOjnWdRLpdDLpfrOgwyQosXL8bMmTNx/vx5rFixAlOnTsXevXshk8lgb2+v9nzdRx99FJcuXcKaNWswevRojftjWyUiIn1Wp57FhnjOaW04OjqisrISN27ceKj9kHFoiHao+rc2+7S3t0eXLl3wxBNPYMeOHdi/f3+No529vb1x5syZ2h0cERGRnqlTstgQzzmtDS8vL5ibm6vt5+TJk7hw4UKd9kPGoSHaoZubGxwdHdXqlJSU4MiRIzW2MaVSCQCoqKjQWic7OxtOTk73PzAiIiI9VOfL0PX9nFPgzkCBCxcuSPPVnTx5EsCd3h5HR0fY2tpi5syZCAsLQ+vWrWFjY4MXXngBgwYNwsCBAx/6QyDDU9/tUCaTYcGCBXjzzTfRuXNnuLm5YdmyZXB2dkZwcDAA4MiRI/j555/h6+uLVq1a4ezZs1i2bBk6deokJZRbt26FhYUF+vbtC+DOHKKbN2/Gxx9/3MifEBERUT15kKHW7733nujQoYOwsLAQAwYMEIcPH5bWDRkyREybNk2t/q5du0SXLl2EhYWF6NGjh9i3b5/a+k8//VQAqLZERkZKdcrLy8Xzzz8vWrVqJaytrcW///1vcfny5VrHzCH8+q+u56i+26FSqRTLli0TDg4OQi6Xi8cff1ycPHlSWv/rr78Kf39/0bp1ayGXy4Wrq6uYM2eO+OOPP6Q6W7ZsEd26dRPW1tbCxsZGDBgwQG3Kp4b4HKjxNYVzZGzHWFVVJVJSUkRcXJxISUkRVVVVug7podX1HG3YsEF07NhRyOVyMWDAAHHkyJEa6//111/i+eefF46OjsLCwkJ07ty52vdmfcZHja+254jPhia9wXN0Bz8H/dcUzpExHWNCQgIWLlyI/Px8qczV1RXR0dEG/XCHupyjnTt3YurUqYiNjYW3tzdiYmKwe/dunDx5Em3btq1Wv7KyEoMHD0bbtm2xZMkStGvXDufPn0fLli3Ru3fveo+PdIPPhiYioiYvISEBoaGh8PT0REZGBkpLS5GRkQFPT0+EhoYiISFB1yE2infeeQezZs3CjBkz0L17d8TGxsLa2hqbN2/WWH/z5s24fv06EhMTMXjwYLi6umLIkCE1JooVFRUoKSlRW8g4MFkkIiKjpFAosHDhQowcORKJiYkYOHAgmjdvjoEDByIxMREjR47EokWLoFAodB1qg3qQBxl89dVXGDRoEObOnQsHBwf07NkTK1eurPGz4gMGjBeTRSIiMkppaWnIz8/HkiVLYGKi/nNnYmKC8PBwnDt3DmlpaTqKsHE8yIMMfv/9d8THx0OhUGD//v1YtmwZoqOj8eabb2p9Hz5gwHgZ7aTcRETUtF2+fBkA0LNnT43rVeWqevQPpVKJtm3bYtOmTTA1NYWXlxcKCgqwZs0aREZGatyGDxgwXuxZJCIio6Sa3zQnJ0fjelW5sc+D+iAPMnByckKXLl1gamoqlXXr1g2FhYWorKxs0HhJ/zBZJCIio+Tn5wdXV1esXLlSmkBfRalUIioqCm5ubvDz89NRhI3jQR5kMHjwYJw5c0btczt16hScnJxgYWHR4DGTfmGySERERsnU1BTR0dHYu3cvgoOD1UZDBwcHY+/evVi7dq1a75mxCgsLw0cffYStW7ciNzcXzz33XLUHGYSHh0v1n3vuOVy/fh3z58/HqVOnsG/fPqxcuRJz587V1SGQDvGeRSIiMlohISGIj4/HwoUL4ePjI5W7ubkhPj7eoOdZrIsJEybg6tWriIiIQGFhIfr06YOkpCRp0MuFCxfUBgG5uLjgwIEDeOmll9CrVy+0a9cO8+fPxyuvvKKrQyAd4qTcpDd4ju4wps9BoVAgLS0Nly9fhpOTE/z8/IyiF8eYzpE2xnaMxtgW9f0c6Xt8VPtzxJ5FImoQxvrUDDJMpqamGDp0qK7DIDJIvGeRiOodn5pBRGQ8mCwSUb3iUzOIiIwLk0Uiqld8agYRkXFhskhE9YpPzSAiMi5MFomoXvGpGURExoXJIhHVKz41g4jIuDBZJKJ6xadmEBEZF86zSET1TvXUjLCwMLWnZri6ujapp2YQERkD9iwSUYORyWS6DoGIiB4Sk0UiqneclJuIyHgwWSSiesVJuYmIjAuTRSKqV5yUm4jIuDBZJKJ6xUm5iYiMC5NFIqpXnJSbiMi4MFkkonrFSbmJiIwLk0UiqleclJuIyLhwUm4iqneqSbkXLlyoNim3m5sbJ+UmIjIwTBaJqEGEhIRgzJgxSEtLw+XLl+Hk5AQ/Pz/2KBIRGRgmi0TUYExNTTF06FBdh0FERA+B9ywSERERkVZMFomIiIhIKyaLRERERKQVk0UiIiIi0orJIhERERFpxWSRiIiIiLRiskhEREREWnGeRSIiMnoKhYITxBM9IPYsEhGRUUtISIC7uzv8/f0xadIk+Pv7w93dHQkJCboOjcggMFkkIiKjlZCQgNDQUHh6eiIjIwOlpaXIyMiAp6cnQkNDmTAS1QKTRSIiMkoKhQILFy7EyJEjkZiYiIEDB6J58+YYOHAgEhMTMXLkSCxatAgKhULXoRLpNd6zSET16ubNm8jLy5Nel5eXIz8/H66urrCyspLKPTw8YG1trYsQqYlIS0tDfn4+tm/fDhMT9b4RExMThIeHw8fHB2lpaXyGOVENmCwSUb3Ky8uDl5fXfetlZmaiX79+jRARNVWXL18GAPTs2VPjelW5qh4RacbL0AZKoVAgNTUV27dvR2pqKi+jkN7w8PBAZmamtGzbtg0AsG3bNrVyDw8PHUfaeDZu3AhXV1dYWlrC29sbP/30U431d+/eDQ8PD1haWsLT0xP79+/XWnfOnDmQyWSIiYlRK79+/Tr+85//wMbGBi1btsTMmTPx999/18fhGAwnJycAQE5Ojsb1qnJVPSLSjMmiAeLIPtJn1tbW6Nevn7R069YNANCtWze18qZyCXrnzp0ICwtDZGQksrKy0Lt3bwQGBuLKlSsa66enp2PixImYOXMmjh07huDgYAQHB2tMeL744gscPnwYzs7O1db95z//wW+//YZDhw5h7969+P777zF79ux6Pz595ufnB1dXV6xcuRJKpVJtnVKpRFRUFNzc3ODn56ejCIkMhGgiiouLBQBRXFys61Aeyp49e4RMJhOjRo0SGRkZorS0VGRkZIhRo0YJmUwm9uzZo+sQH5ixnKOHZWyfQ2ZmpgAgMjMzdR1KvanLORowYICYO3eu9FqhUAhnZ2cRFRWlsf748eNFUFCQWpm3t7d49tln1cr++OMP0a5dO5GTkyM6duwo1q1bJ607ceKEACB+/vlnqeybb74RMplMFBQUaHzfW7duieLiYmm5ePGiUbTDu78z09PTRUlJiUhPT+d3ZiPQ9/io9ueIPYsGhCP7iAxLZWUlMjMzERAQIJWZmJggICAAGRkZGrfJyMhQqw8AgYGBavWVSiWmTJmCxYsXo0ePHhr30bJlS/Tv318qCwgIgImJCY4cOaLxfaOiomBraystLi4udTpWfRUSEoL4+HgcP34cPj4+sLGxgY+PD3JychAfH4+QkBBdh0ik95gsGhDVyL4lS5ZoHdl37tw5pKWl6ShCIrrbtWvXoFAo4ODgoFbu4OCAwsJCjdsUFhbet/6qVatgZmaGF198Ues+2rZtq1ZmZmaG1q1ba33f8PBwFBcXS8vFixfve3yGIiQkBGfOnEFKSgri4uKQkpKC06dPM1EkqiWOhjYgHNlHRJmZmVi/fj2ysrIgk8nqbb9yuRxyubze9qdvTE1NOT0O0QNiz6IB4cg+IsNib28PU1NTFBUVqZUXFRXB0dFR4zaOjo411k9LS8OVK1fQoUMHmJmZwczMDOfPn8fChQvh6uoq7ePeATRVVVW4fv261vclItKGyaIB4cg+IsNiYWEBLy8vJCcnS2VKpRLJyckYNGiQxm0GDRqkVh8ADh06JNWfMmUKfv31V2RnZ0uLs7MzFi9ejAMHDkj7uHHjBjIzM6V9fPfdd1AqlfD29q7vwyQiI8fL0AbE1NQU0dHRCA0NRXBwMMLDw9GzZ0/k5OQgKioKe/fuRXx8PExNTXUdKhH9v7CwMEybNg39+/fHgAEDEBMTg7KyMsyYMQMAMHXqVLRr1w5RUVEAgPnz52PIkCGIjo5GUFAQduzYgaNHj2LTpk0AADs7O9jZ2am9h7m5ORwdHdG1a1cAd6YpGj58OGbNmoXY2Fjcvn0b8+bNw1NPPaVxmh0iopowWTQwqpF9CxcuhI+Pj1Tu5ubGkX1EemjChAm4evUqIiIiUFhYiD59+iApKUkaxHLhwgW1AWs+Pj6Ii4vD0qVLsWTJEnTu3BmJiYla71XW5vPPP8e8efPw+OOPw8TEBGPHjsW7775br8dGRE2DTAghdB1EYygpKYGtrS2Ki4thY2Oj63AemkKhQFpaGi5fvgwnJyf4+fkZfI+isZ2jB2Vsn0NWVha8vLyM6vF+xnaONGkKx2jo9P0c6Xt8VPtzxJ5FA8WRfURERNQYOMCFiIiIiLRiskhERNQEbNy4Ea6urrC0tIS3tzd++umnWm23Y8cOyGQyBAcHN2yAekyhUCA1NRXbt29Hampqk3tSGpNFIiIyek39x37nzp0ICwtDZGQksrKy0Lt3bwQGBlabj/Ne+fn5WLRoUZOeki0hIQHu7u7w9/fHpEmT4O/vD3d3dyQkJOg6tEbDZJGIiIwaf+yBd955B7NmzcKMGTPQvXt3xMbGwtraGps3b9a6jUKhwH/+8x+sWLECjzzySCNGqz8SEhIQGhoKT09PZGRkoLS0FBkZGfD09ERoaGiTaUNMFslg1fWSyu7du+Hh4QFLS0t4enpi//79auuFEIiIiICTkxOsrKwQEBCA06dPq9UZPXo0OnToAEtLSzg5OWHKlCm4dOmSWp1ff/0Vfn5+sLS0hIuLC1avXl0/B0xEdcYfe6CyshKZmZkICAiQykxMTBAQEICMjAyt273++uto27YtZs6cWav3qaioQElJidpiyBQKBRYuXIiRI0ciMTERAwcORPPmzTFw4EAkJiZi5MiRWLRoUZPopWaySAaprpdU0tPTMXHiRMycORPHjh1DcHAwgoOD1R6duHr1arz77ruIjY3FkSNH0KxZMwQGBuLWrVtSHX9/f+zatQsnT57Enj17cPbsWYSGhkrrS0pKMGzYMHTs2BGZmZlYs2YNli9fLk2oTESNhz/2d1y7dg0KhUKa21PFwcEBhYWFGrf54Ycf8Mknn+Cjjz6q9ftERUXB1tZWWlxcXB4qbl1LS0tDfn4+lixZojYXKnAn2Q4PD8e5c+eQlpamowgbkWgiiouLBQBRXFys61BIi7qcowEDBoi5c+dKrxUKhXB2dhZRUVEa648fP14EBQWplXl7e4tnn31WCCGEUqkUjo6OYs2aNdL6GzduCLlcLrZv3641ji+//FLIZDJRWVkphBDi/fffF61atRIVFRVSnVdeeUV07dr1vsekYmxtNTMzUwAQmZmZug6l3hjbOdLEGI4xJSVFABAZGRka16enpwsAIiUlpXEDqye1PUcFBQUCgEhPT1crX7x4sRgwYEC1+iUlJcLV1VXs379fKps2bZoYM2ZMje9z69YtUVxcLC0XL1406DYUFxcnAIjS0lJRVVUlUlJSRFxcnEhJSRFVVVWipKREABBxcXG6DvWB1bYNcZ5FMjiqSyrh4eFS2f0uqWRkZCAsLEytLDAwEImJiQCAc+fOobCwUO0yja2tLby9vZGRkYGnnnqq2j6vX7+Ozz//HD4+PjA3N5fe57HHHoOFhYXa+6xatQp//fUXWrVqVW0/FRUVqKiokF4b+qUbIn1x+fJlAEDPnj01PshA9VQcVT1jZW9vD1NTUxQVFamVFxUVwdHRsVr9s2fPIj8/H6NGjZLKlEolAMDMzAwnT55Ep06dqm0nl8shl8vrOXrdcXJyAgBs2LABH374IfLz86V1rq6umD17tlo9Y/ZAl6F1ca/YqVOnMGbMGNjb28PGxga+vr5ISUl5kPDJwD3IJZXCwsIa66v+rc0+X3nlFTRr1gx2dna4cOECvvzyy/u+z93vcS9ju3RDpC/u/rHXNMBlw4YNavWMlYWFBby8vJCcnCyVKZVKJCcnY9CgQdXqe3h44Pjx48jOzpaW0aNHw9/fH9nZ2U3mO8rPzw9t2rRBeHg4evTogY0bN2Lz5s3YuHEjevTogSVLlqBt27ZNYqR4nZNFXd0rNnLkSFRVVeG7775DZmYmevfujZEjR2r9ASZqKIsXL8axY8dw8OBBmJqaYurUqRAP8dTM8PBwFBcXS8vFixfrMVqipsvPzw9t27ZFeHg4evbsqTbApWfPnk3qxz4sLAwfffQRtm7ditzcXDz33HMoKyvDjBkzAABTp06VrtZYWlqiZ8+eakvLli3RokUL9OzZU+3KibGTyWQAgOTkZMydOxdPP/005s6dq5Z4NwV1ThbrOvx+/fr1GD58OBYvXoxu3brhjTfeQL9+/aS/6IQQiImJwdKlSzFmzBj06tULn332GS5duiRdIrx27RpOnz6NV199Fb169ULnzp3x9ttv4+bNm2pJJzUNdb2kAgCOjo411lf9W5t92tvbo0uXLnjiiSewY8cO7N+/H4cPH67xfe5+j3vJ5XLY2NioLURUP+7+Q04IIS1NzYQJE7B27VpERESgT58+yM7ORlJSknTl48KFC0Z/Ob6u0tLSpI4wVdKoohrwcuXKlSYxwKVOyeKDDL/PyMhQqw/cuYdLVf9+94oBgJ2dHbp27YrPPvsMZWVlqKqqwocffoi2bdvCy8tL4/sa2xB++kddL6kAwKBBg6r9JXjo0CGpvpubGxwdHdXqlJSU4MiRI1r3qXpfANI9h4MGDcL333+P27dvq71P165dNd6vSEQNJy0tDVevXkVUVBRycnLg4+MDGxsb+Pj44LfffsPKlSubzI89AMybNw/nz59HRUUFjhw5Am9vb2ldamoqtmzZonXbLVu2SB04TUVBQQEAYMSIESguLkZKSgri4uKQkpKCGzduYMSIEWr1jFmdBrjUdK9YXl6exm3q414xmUyGb7/9FsHBwWjRogVMTEzQtm1bJCUlaf0BjoqKwooVK+pyeGRAwsLCMG3aNPTv3x8DBgxATExMtUsq7dq1Q1RUFABg/vz5GDJkCKKjoxEUFIQdO3bg6NGj0pQ2MpkMCxYswJtvvonOnTvDzc0Ny5Ytg7Ozs/SIqyNHjuDnn3+Gr68vWrVqhbNnz2LZsmXo1KmTlFBOmjQJK1aswMyZM/HKK68gJycH69evx7p16xr/QyJq4lQ9ZfPmzcPixYurDXC5efMmlixZwh410ujq1asAgJCQEJibm2Po0KFq64ODg/HNN99I9YyZQYyGFkJg7ty5aNu2LdLS0mBlZYWPP/4Yo0aNws8//6zx5uTw8HC10a8lJSVN5qbcpmDChAm4evUqIiIiUFhYiD59+lS7pHL3vFg+Pj6Ii4vD0qVLsWTJEnTu3BmJiYnSaEgAePnll1FWVobZs2fjxo0b8PX1RVJSEiwtLQEA1tbWSEhIQGRkJMrKyuDk5IThw4dj6dKl0ghAW1tbHDx4EHPnzoWXlxfs7e0REREhjZojosaj+m3IycnBwIEDq/3Yq25jMvYBLvRg2rRpA+DOxO5PP/202m+KUqmUelpV9YxaXebjqaioEKampuKLL75QK586daoYPXq0xm1cXFzEunXr1MoiIiJEr169hBBCnD17VgAQx44dU6vz2GOPiRdffFEIIcS3334rTExMqs0D5O7urnVevXsZw5xhxo7n6A5j+xw4z6JhMoZjrKqqEq6urmLUqFFCoVCorVMoFGLUqFHCzc1NVFVV6SjCh6Pv50jf47sf1TydMplMjBo1SqSnp4uSkhKRnp4uRo0aJWQymUHP0ylEA82zePe9YqpLc6p7xebNm6dxG9W9YgsWLJDKtN0r1qdPHwD/3Cv23HPPAQBu3rwJABpnUFfdM0ZEunX69GmUlpZWK8/NzVX7V5MWLVqgc+fODRYbNU2mpqaIjo5GaGgogoODpVHROTk5iIqKwt69exEfHw9TU1Ndh0p6yM/PD66urrC3t8fx48fh4+MjrXNzc4OXlxf+/PPPJjGavs5PcNmxY4eQy+Viy5Yt4sSJE2L27NmiZcuWorCwUAghxJQpU8Srr74q1f/xxx+FmZmZWLt2rcjNzRWRkZHC3NxcHD9+XKrz9ttvi5YtW4ovv/xS/Prrr2LMmDHCzc1NlJeXCyGEuHr1qrCzsxMhISEiOztbnDx5UixatEiYm5uL7Ozses2eSXd4ju4wxM/h1KlTAsBDLadOndL1YdSaIZ6jujKmY9yzZ49wdXVVa29ubm5iz549ug7toej7OdL3+Gpjz549QiaTiZEjR4oNGzaITz75RGzYsEGMHDlSyGSyJtOG6nzPoi7uFbO3t0dSUhJee+01/Otf/8Lt27fRo0cPfPnll+jdu3ddD4GI6pmqR3Hbtm3o1q2b2rry8nLk5+fD1dUVVlZW1bbNzc3F5MmTNfZKEtWHkJAQjBkzptoAF/Yo0v2EhIQgPj4eCxcuxN69e6VyNzc3xMfHIyQkRIfRNR6ZEE1jwqmSkhLY2tqiuLiY89jpKZ6jOwzxc8jKyoKXlxcyMzPRr1+/RttWVwzxHNVVUzhGQ6fv50jf46sLTY+LNIY/Nmp7jgxiNDQREVFd3bx5U21aN2293B4eHrC2ttZFiGQgTE1Nq42mb0qYLBIRkVHKy8vT+uCGuxlSrzaRLjBZJCIio+Th4YHMzEzpter+2HvvrfXw8NBFeEQGg8kiEREZJWtra409ht26dWNPIlEd1OnZ0ERERETUtDBZJCIiIiKtmCwSERERkVZMFomIiIhIKyaLRERERKQVk0UiIiIi0orJIhERERFpxWSRiIiIiLRiskhEREREWjFZJCIiIiKtmCwSERERkVZMFomIiIhIKyaLRERERKQVk0UiIiIi0orJIhERERFpxWSRiIiIiLRiskhEREREWjFZJCIiIiKtmCwSERERkVZmug6AiIyDY3MZrG6cAi7V7W9Qqxun4Nhc1kBRERHRw2KySET14lkvC3T7/lng+7pt1+3/tyUiIv3EZJGI6sWHmZWYELEF3Tw86rRdbl4ePoyehNENFBcRET0cJotEVC8K/xYob9kFcO5Tp+3KC5Uo/Fs0TFBERPTQOMCFiIiIiLRizyIRPbSbN28CALKysqqtKy8vR35+PlxdXWFlZVVtfW5uboPHR0RED47JIhE9tLy8PADArFmzHngfLVq0qK9wiIioHjFZJKKHFhwcDADw8PCAtbW12rrc3FxMnjwZ27ZtQ7du3TRu36JFC3Tu3LmhwyQiogfAZJGIHpq9vT2eeeaZGut069YN/fr1a6SIiIiovnCACxERERFpxWSRiKiBbdy4Ea6urrC0tIS3tzd++umnGuvv3r0bHh4esLS0hKenJ/bv36+2fvny5fDw8ECzZs3QqlUrBAQE4MiRI2p1Tp06hTFjxsDe3h42Njbw9fVFSkpKvR8bERk/JotERA1o586dCAsLQ2RkJLKystC7d28EBgbiypUrGuunp6dj4sSJmDlzJo4dO4bg4GAEBwcjJydHqtOlSxds2LABx48fxw8//ABXV1cMGzYMV69eleqMHDkSVVVV+O6775CZmYnevXtj5MiRKCwsbPBjJjI2lZWViImJwQsvvICYmBhUVlbqOqTGJZqI4uJiAUAUFxfrOhTSgufoDmP7HDIzMwUAkZmZqetQ6k1dztGAAQPE3LlzpdcKhUI4OzuLqKgojfXHjx8vgoKC1Mq8vb3Fs88+e994vv32WyGEEFevXhUAxPfffy/VKSkpEQDEoUOH7hvz3fs0lnYohPG1RX0/R/oeX20tXrxYmJmZCQDSYmZmJhYvXqzr0B5abc8RexaJiBpIZWUlMjMzERAQIJWZmJggICAAGRkZGrfJyMhQqw8AgYGBWutXVlZi06ZNsLW1Re/evQEAdnZ26Nq1Kz777DOUlZWhqqoKH374Idq2bQsvLy+N+6moqEBJSYnaQtTUvfzyy1izZg3s7Ozw0Ucf4fLly/joo49gZ2eHNWvW4OWXX9Z1iI2CyaKBUigUSE1Nxfbt25GamgqFQqHrkIjoHteuXYNCoYCDg4NauYODg9bLwYWFhbWqv3fvXjRv3hyWlpZYt24dDh06BHt7ewCATCbDt99+i2PHjqFFixawtLTEO++8g6SkJLRq1Urj+0ZFRcHW1lZaXFxcHvSwiYxCZWUl1q1bBwcHB5w/fx7u7u5ISUmBu7s7zp8/DwcHB6xbt65JXJJmsmiAEhIS4O7uDn9/f0yaNAn+/v5wd3dHQkKCrkMjokbi7++P7OxspKenY/jw4Rg/frx0H6QQAnPnzkXbtm2RlpaGn376CcHBwRg1ahQuX76scX/h4eEoLi6WlosXLzbm4RDpnffffx9VVVUICQmBh4eH2m+uh4cH/v3vf6Oqqgrvv/++rkNtcEwWDUxCQgJCQ0Ph6emJjIwMlJaWIiMjA56enggNDWXCSKRH7O3tYWpqiqKiIrXyoqIiODo6atzG0dGxVvWbNWsGd3d3DBw4EJ988gnMzMzwySefAAC+++477N27Fzt27MDgwYPRr18/vP/++7CyssLWrVs1vq9cLoeNjY3aQsalLqPyP/roI/j5+aFVq1bSiPv7jeI3NmfPngUAfPDBB+jZsyc2btyIzZs3Y+PGjejZsydiY2PV6hkzTsptQBQKBRYuXIiRI0ciMTERJiZ3cv2BAwciMTERwcHBWLRoEcaMGQNTU1MdR0tEFhYW8PLyQnJysvSUG6VSieTkZMybN0/jNoMGDUJycjIWLFgglR06dAiDBg2q8b2USiUqKioA/POsbtV3hIqJiQmUSuUDHo1hOH36NEpLSzWuUz2HXNvzyI35SUKqUfmxsbHw9vZGTEwMAgMDcfLkSbRt27Za/dTUVEycOBE+Pj6wtLTEqlWrMGzYMPz2229o166dDo6g8bm6ukr/Hj9+HHv37pXWdezYER07dsT58+elekatccbb6J4xjMpKSUkRAERGRobG9enp6QKASElJadzA6okxnKP6YGyfg7GNQBWibudox44dQi6Xiy1btogTJ06I2bNni5YtW4rCwkIhhBBTpkwRr776qlT/xx9/FGZmZmLt2rUiNzdXREZGCnNzc3H8+HEhhBB///23CA8PFxkZGSI/P18cPXpUzJgxQ8jlcpGTkyOEuDMa2s7OToSEhIjs7Gxx8uRJsWjRImFubi6ys7Pr/Rj1xalTp9RGrD7IcurUKV0fRq015Kj8e1VVVYkWLVqIrVu3Nkh8+ujAgQNSuwgKChIZGRmitLRUZGRkiKCgIGndgQMHdB3qA6vtOWLPogFR3WvUs2dPjetV5druSSKixjdhwgRcvXoVERERKCwsRJ8+fZCUlCQNYrlw4YJaD6CPjw/i4uKwdOlSLFmyBJ07d0ZiYqL0/7epqSny8vKwdetWXLt2DXZ2dnj00UeRlpaGHj16ALhz+TspKQmvvfYa/vWvf+H27dvo0aMHvvzyS2nEtDFS9Shqew55eXk58vPz4erqCisrK7V1qmeYa+uVNGSqUfnh4eFS2f1G5d/r5s2buH37Nlq3bq21TkVFhdS7DcDgR9TfPW/p0aNH8euvv6JDhw749ddfcfToUY31jBWTRQPi5OQEAMjJycHAgQOrrVdN2quqR0T6Yd68eVovO6emplYrGzduHMaNG6exvqWlZa3uTe7fvz8OHDhQpziNRU3PIR88eHAjR6N7NY3Kz8vLq9U+XnnlFTg7O1eb1uluUVFRWLFixUPFqk9USWBgYCCSk5Px7LPPSuvMzMwwbNgwHDx4sEkkixzgYkD8/Pzg6uqKlStXVrvvSKlUIioqCm5ubvDz89NRhEREZGzefvtt7NixA1988QUsLS211jO2EfVt2rQBcKcXtrS0FOvWrcO8efOwbt06lJaWSmMDVPWMGZNFA2Jqaoro6Gjs3bsXwcHBaqOhg4ODsXfvXqxdu5aDW4iISPIgo/JV1q5di7fffhsHDx5Er169aqxrbCPqVQN5kpKSMH78eHh7e2PlypXw9vbG+PHjkZSUpFbPmPEytIEJCQlBfHw8Fi5cCB8fH6nczc0N8fHxCAkJ0WF0RESkbx5kVD4ArF69Gm+99RYOHDiA/v37N1K0+kN1Nc/e3h7Hjx+v9pvr5eWFP//8s0lczWOyaIBCQkIwZswYpKWl4fLly3BycoKfnx97FImISKOwsDBMmzYN/fv3x4ABAxATE4OysjLMmDEDADB16lS0a9cOUVFRAIBVq1YhIiICcXFxcHV1lZ4g1Lx5czRv3lxnx9GYVFfzQkND8eSTT2L06NG4desWLC0tcfbsWezfvx/x8fFN4reXyaKBMjU1xdChQ3UdBhERGYC6jsr/4IMPUFlZidDQULX9REZGYvny5Y0Zuk6FhIRg0aJFWLduHaqqqqRyMzMzLFq0qMlczWOySERE1ATUZVR+fn5+wwdkABISErB27VqMGDECVlZW+Ouvv9CqVSuUl5dj7dq1GDhwYJNIGJksEhEREd1D9dS0Rx55BAcOHIBCoZDWmZqa4pFHHmkyT01jskhERER0j7S0NK09rAqFQnomdFpamtHfFsZkkYiIiOged88TaW5ujnHjxqF///44evQodu/ejdu3b1erZ6w4zyIRERHRPX744QcAgEwmg6OjI+Li4hAWFoa4uDg4OjpCJpOp1TNmTBaJiIiI7pGeng4AEEKgd+/eag/C6N27N4QQavWMGZNFMlgbN26Eq6srLC0t4e3tjZ9++qnG+rt374aHhwcsLS3h6emJ/fv3q60XQiAiIgJOTk6wsrJCQEAATp8+La3Pz8/HzJkz4ebmBisrK3Tq1AmRkZGorKxUqyOTyaothw8frt+DJyKNHJvLYHXjFHApu06L1Y1TcGwu01HUpI/u/m4XQiAzMxO7du1CZmamlCjeW89Y8Z5FMkg7d+5EWFgYYmNj4e3tjZiYGAQGBuLkyZNo27Zttfrp6emYOHEioqKiMHLkSMTFxSE4OBhZWVno2bMngDtPK3j33XexdetWuLm5YdmyZQgMDMSJEydgaWmJvLw8KJVKfPjhh3B3d0dOTg5mzZqFsrIyrF27Vu39vv32W/To0UN6bWdn17AfCBEBAJ71skC3758Fvq/bdt3+f1silS5duuDUqVMwNTXFN998g3379knrTE1NYWpqCoVCgS5duugwykYimoji4mIBQBQXF+s6FNKiLudowIABYu7cudJrhUIhnJ2dRVRUlMb648ePF0FBQWpl3t7e4tlnnxVCCKFUKoWjo6NYs2aNtP7GjRtCLpeL7du3a41j9erVws3NTXp97tw5AUAcO3bsvsegjbG11czMTAFAZGZm6jqUemNs50gTQzzGzMxM4dhcJk4kbxei4FidlhPJ24Vjc5lBtVN9P0f6Ht/9bNmyRQAQAISpqalwdnYWjo6OwtnZWZiamkrrtmzZoutQH1htzxF7FsngVFZWIjMzE+Hh4VKZiYkJAgICkJGRoXGbjIwMhIWFqZUFBgYiMTERAHDu3DkUFhYiICBAWm9rawtvb29kZGTgqaee0rjf4uJitG7dulq56rFQXbp0wcsvv4zRo0drPZ6KigpUVFRIr0tKSrTWJaKaFf4tUN6yC+Dcp07blRcqUfi3uH9FajLat28v/bdCocClS5fuW89Y8Z5FMjjXrl2DQqGQHlOl4uDgID2/9F6FhYU11lf9W5d9njlzBu+99x6effZZqax58+aIjo7G7t27sW/fPvj6+iI4OBhfffWV1uOJioqCra2ttLi4uGitS0RE1NjYs0j0AAoKCjB8+HCMGzcOs2bNksrt7e3VejAfffRRXLp0CWvWrNHauxgeHq62TUlJCRNGIiIdu3DhQr3WM2TsWSSDY29vD1NTUxQVFamVFxUVwdHRUeM2jo6ONdZX/VubfV66dAn+/v7w8fHBpk2b7huvt7c3zpw5o3W9XC6HjY2N2kJERLpVm+/3utQzZA+ULDb2lCUq+/btg7e3N6ysrNCqVSsEBwc/SPhk4CwsLODl5YXk5GSpTKlUIjk5GYMGDdK4zaBBg9TqA8ChQ4ek+m5ubnB0dFSrU1JSgiNHjqjts6CgAEOHDoWXlxc+/fRTmJjc/3+h7OxsODk51ekYiYhIt7Q96u9B6xmyOieLqilLIiMjkZWVhd69eyMwMBBXrlzRWF81ZcnMmTNx7NgxBAcHIzg4GDk5OVId1ZQlsbGxOHLkCJo1a4bAwEDcunVLqrNnzx5MmTIFM2bMwC+//IIff/wRkyZNeoBDJmMQFhaGjz76CFu3bkVubi6ee+45lJWVYcaMGQCAqVOnqg2AmT9/PpKSkhAdHY28vDwsX74cR48exbx58wDcmaF/wYIFePPNN/HVV1/h+PHjmDp1KpydnaU/SlSJYocOHbB27VpcvXoVhYWFavc0bt26Fdu3b0deXh7y8vKwcuVKbN68GS+88ELjfThERPTQ7h54WB/1DFpdh1nrYsqS27dvi3bt2omPP/64ruFKDH0If1NQ13P03nvviQ4dOggLCwsxYMAAcfjwYWndkCFDxLRp09Tq79q1S3Tp0kVYWFiIHj16iH379qmtVyqVYtmyZcLBwUHI5XLx+OOPi5MnT0rrP/30U2mqhHsXlS1btohu3boJa2trYWNjIwYMGCB2797doJ+DvuPUOYbJEI/xYdqaIbZTfT9H+h7f/djb22v9zr97sbe313WoD6y256hOPYuqKUvunl6kNlOW3F0fuDNliar+/aYsAYCsrCwUFBTAxMQEffv2hZOTE0aMGKHWO3mviooKlJSUqC1kXObNm4fz58+joqICR44cgbe3t7QuNTUVW7ZsUas/btw4nDx5EhUVFcjJycGTTz6ptl4mk+H1119HYWEhbt26hW+//VZtstXp06dDCKFxUZk2bRpOnDiBsrIyFBcX48iRIwgNDW2YD4CIiBqMhUXtJmmvbT1DVqdkUVdTlvz+++8AgOXLl2Pp0qXYu3cvWrVqhaFDh+L69esa35fTkRAREdGDYrL4D4MYDa1UKgEAr732GsaOHSsNLpDJZNi9e7fGbcLDw1FcXCwtFy9ebMyQiYiIyIBVVVXVaz1DVqdkUVdTlqhGknbv3l1aL5fL8cgjj2id34jTkRAREdGDqu3ta03hNrc6Tcp995QlqhGiqilLVKNK76WasmTBggVSmbYpS/r06QPgnylLnnvuOQCAl5cX5HI5Tp48CV9fXwDA7du3kZ+fj44dO9blEIiIyEjdvHkTwJ373DUpLy9Hfn4+XF1dYWVlpbYuNze3weMjw8KexX/U+QkuYWFhmDZtGvr3748BAwYgJiam2pQl7dq1Q1RUFIA7U5YMGTIE0dHRCAoKwo4dO3D06FFpEsu7pyzp3Lkz3NzcsGzZMrUpS2xsbDBnzhxERkbCxcUFHTt2xJo1awDcGbRARPrj5s2byMvLk16rfoTv/TH28PCAtbV1o8ZGxk3V7u5+qlJdtWjRor7CIQN39+DF+qhnyOqcLE6YMAFXr15FREQECgsL0adPHyQlJUkDVC5cuKA2UbGPjw/i4uKwdOlSLFmyBJ07d0ZiYiJ69uwp1Xn55ZdRVlaG2bNn48aNG/D19UVSUhIsLS2lOmvWrIGZmRmmTJmC8vJyeHt747vvvkOrVq0e5viJqJ7l5eXBy8urWvnkyZPVXmdmZqJfv36NFRY1AaoOBm1/iOTm5mLy5MnYtm0bunXrVm19ixYt0Llz54YOkwyEpaUlysvLa1XP2MlEU0iJcefStq2tLYqLi3n/op7iObrD0D+He3sWtV36M+SeRUM/R7VhjMeYlZUFLy8vo/lDRd/Pkb7Hdz9OTk5aZ3q5m6OjIy5fvtwIEdW/2p6jOvcsEhHVxNrautoP8eDBg3UUDRHRg6nN41zrUs+QGf8REhEREdXR7du367WeIWOySERERHQPjob+B5NFIiIionvcuHGjXusZMiaLRERERPfg1Dn/YLJIREREdI/mzZvXaz1DxmSRiIiI6B7angT0oPUMGZNFIiIiont07twZFhYWNdaxsLBoEhO5M1kkIiIi0qCiokJrwmhhYYGKiopGjkg3mCwSERERaVFRUYE//vhDesKJjY0N/vjjjyaTKAJMFomIiIhq1K5dO6SkpAAAUlJS0K5dOx1H1LiYLBIRERGRVkwWiYiIiEgrJotEREREpJWZrgMgIiIi0genT59GaWmpxnW5ublq/2rSokULo5xKh8kiERERNXmnT59Gly5d7ltv8uTJNa4/deqU0SWMTBaJiIioyVP1KG7btg3dunWrtr68vBz5+flwdXWFlZVVtfW5ubmYPHmy1p5JQ8ZkkYiIiOj/devWDf369dO4bvDgwY0cjX7gABciIiIi0oo9i0REREQAHJvLYHXjFHCp7n1pVjdOwbG5rAGi0j0mi0REREQAnvWyQLfvnwW+r/u23f5/e2PEZNFAKRQKpKWl4fLly3BycoKfnx9MTU11HRaRGrZTIjIkH2ZWYkLEFnTz8Kjztrl5efgwehJGN0BcusZk0QAlJCRg4cKFyM/Pl8pcXV0RHR2NkJAQ3QVGdBe2UyIyJDdv3kTh3wI//v43ylsqq62/72joywoU/i0aI9RGxwEuBiYhIQGhoaHw9PRERkYGSktLkZGRAU9PT4SGhiIhIUHXIRKxnRLpoY0bN8LV1RWWlpbw9vbGTz/9VGP93bt3w8PDA5aWlvD09MT+/fsbKVLdyMvLAwDMmjULXl5e1RZfX19MnjwZvr6+Gter5l9s0aKFLg+jQciEEMaZBt+jpKQEtra2KC4uho2Nja7DeSAKhQLu7u7w9PREYmIiTEz+yfWVSiWCg4ORk5OD06dPG+SlPmM4R/XB0D8HY2+ngOGfo9owxmPMysqCl5cXMjMztU6NYkjqco527tyJqVOnIjY2Ft7e3oiJicHu3btx8uRJtG3btlr99PR0PPbYY4iKisLIkSMRFxeHVatWISsrCz179qz3+PTBtWvXkJiYCA8PD1hbW1dbr5pHUds8jIDhPcGltueIPYsGJC0tDfn5+ViyZInaDzAAmJiYIDw8HOfOnUNaWpqOIiRiO9Wkvnt0li9fDg8PDzRr1gytWrVCQEAAjhw5Um0/+/btg7e3N6ysrNCqVSsEBwfX52HpvZs3byIrK0ta7n5c293lN2/e1HGkDe+dd97BrFmzMGPGDHTv3h2xsbGwtrbG5s2bNdZfv349hg8fjsWLF6Nbt25444030K9fP2zYsKGRI2889vb2eOaZZ+Dr64t+/frBo5b3LXp4eKBfv37o16+fQSWKdcF7Fg3I5cuXAUDrX3WqclU9Il1gO1W3c+dOhIWFqfXoBAYG1tijM3HiRLUeneDgYLUenS5dumDDhg145JFHUF5ejnXr1mHYsGE4c+YM2rRpAwDYs2cPZs2ahZUrV+Jf//oXqqqqkJOT06jHrmt5eXnw8vKqVn7v49qMpadRm8rKSmRmZiI8PFwqMzExQUBAADIyMjRuk5GRgbCwMLWywMBAJCYman2fiooKVFRUSK9LSkoeLnAdY/v5B5NFA+Lk5AQAyMnJwcCBA6utV/0QqOoR6QLbqbq7e3QAIDY2Fvv27cPmzZvx6quvVqt/d48OALzxxhs4dOgQNmzYgNjYWADApEmTqr3HJ598gl9//RWPP/44qqqqMH/+fKxZswYzZ86U6nXv3r2hDlMveXh4IDMzU3qtbYBCbXuQDNW1a9egUCjg4OCgVu7g4CDdp3evwsJCjfULCwu1vk9UVBRWrFjx8AHrCbaffzBZNCB+fn5wdXXFypUrNd4LFhUVBTc3N/j5+ekwSmrq2E7/0Rg9OpWVldi0aRNsbW3Ru3dvAHfuzSsoKICJiQn69u2LwsJC9OnTB2vWrNHa42tsvUIAYG1tXa3Hp6k+rq0xhIeHq7XdkpISuLi46DCih8P28w/es2hATE1NER0djb179yI4OFhtlGlwcDD27t2LtWvXGuygATIObKf/qKlHR1sPTW17dPbu3YvmzZvD0tIS69atw6FDh2Bvbw8A+P333wHcubdx6dKl2Lt3L1q1aoWhQ4fi+vXrGt83KioKtra20mLIP/Kkzt7eHqampigqKlIrLyoqgqOjo8ZtHB0d61QfAORyOWxsbNQWMg5MFg1MSEgI4uPjcfz4cfj4+MDGxgY+Pj7IyclBfHw8568jvcB22vD8/f2RnZ2N9PR0DB8+HOPHj8eVK1cA3OnBBYDXXnsNY8eOhZeXFz799FPIZDLs3r1b4/7Cw8NRXFwsLRcvXmy0Y6GGZWFhAS8vLyQnJ0tlSqUSycnJGDRokMZtBg0apFYfAA4dOqS1Phk3XoY2QCEhIRgzZgyfjEF6je20YXt0mjVrBnd3d7i7u2PgwIHo3LkzPvnkE4SHh0v3g959j6JcLscjjzyCCxcuaHxfuVwOuVxe52MkwxAWFoZp06ahf//+GDBgAGJiYlBWVibdSzt16lS0a9cOUVFRAID58+djyJAhiI6ORlBQEHbs2IGjR49i06ZNujwM0hEmiwbK1NQUQ4cO1XUYRDVq6u307h4d1bQ1qh6defPmadxG1aOzYMECqaw2PTpKpVK659DLywtyuRwnT56Er68vAOD27dvIz89Hx44dH/7AyOBMmDABV69eRUREhHQPa1JSknTLw4ULF9TuL/bx8UFcXByWLl2KJUuWoHPnzkhMTKz1HItkXJgsEhE1oPru0SkrK8Nbb72F0aNHw8nJCdeuXcPGjRtRUFCAcePGAQBsbGwwZ84cREZGwsXFBR07dsSaNWsAQKpDTc+8efO0/pGSmpparWzcuHFsLwSAySIRUYOq7x4dU1NT5OXlYevWrbh27Rrs7Ozw6KOPIi0tDT169JD2s2bNGpiZmWHKlCkoLy+Ht7c3vvvuO7Rq1apxPwAiMnh83B/pDZ6jO/g56L+mcI6awjEaOn0/R/oeH/Fxf0RERERUD5gsEhEREZFWTBaJiIiISCsmi0RERESkFZNFIiIiItKKySIRERERacVkkYiIiIi0ajKTcqumkywpKdFxJKSN6tw0kak/tWJb1X9Noa2yHeo/fW+HbEP6r7ZtqMkki6WlpQAAFxcXHUdC91NaWgpbW1tdh6EzbKuGw5jbKtuh4dDXdsg2ZDju14aazBNclEolLl26hBYtWkAmk+k6nHpRUlICFxcXXLx40ShmxxdCoLS0FM7OzmqPP2tqjK2tGls7BZpGWzW2dggYX1vU93ZobG3I2NoPUPs21GSSRWPERymRIWA7JX3BtkgPoym3H/37U4SIiIiI9AaTRSIiIiLSismiAZPL5YiMjIRcLtd1KERasZ2SvmBbpIfRlNsP71kkIiIiIq3Ys0hEREREWjFZJCIiIiKtmCwSERERkVZMFomIiIhIKyaLRERERKQVk0UD9P3332PUqFFwdnaGTCZDYmKirkMi0ohtlfQB2yE9DLYfJosGqaysDL1798bGjRt1HQpRjdhWSR+wHdLDYPsBzHQdANXdiBEjMGLECF2HQXRfbKukD9gO6WGw/bBnkYiIiIhqwGSRiIiIiLRiskhEREREWjFZJCIiIiKtmCwSERERkVYcDW2A/v77b5w5c0Z6fe7cOWRnZ6N169bo0KGDDiMjUse2SvqA7ZAeBtsPIBNCCF0HQXWTmpoKf3//auXTpk3Dli1bGj8gIi3YVkkfsB3Sw2D7YbJIRERERDXgPYtEREREpBWTRSIiIiLSiskiEREREWnFZJGIiIiItGKySERERERaMVkkIiIiIq2YLBIRERGRVkwWiYiIiEgrJotEREREpBWTRSIiIiLSiskiEREREWn1f27Kexsr8ukQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/examples/02_Molecular_Dynamics.ipynb b/examples/02_Molecular_Dynamics.ipynb index 5c0ea519..6590871c 100644 --- a/examples/02_Molecular_Dynamics.ipynb +++ b/examples/02_Molecular_Dynamics.ipynb @@ -59,10 +59,10 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732192456.416833 472756 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732192456.419973 472756 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "Epochs: 0%| | 0/100 [00:00" ] @@ -334,80 +334,23 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732192548.207012 473799 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732192548.210026 473799 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "INFO | 12:35:51 | reading structure\n", - "INFO | 12:35:51 | Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig'\n", - "INFO | 12:35:51 | Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory\n", - "INFO | 12:35:51 | initializing model\n", - "INFO | 12:35:52 | loading checkpoint from /SCR1/segreto/dev/apax/examples/project/models/etoh_md/best\n", - "INFO | 12:35:52 | Building Standard model\n", - "INFO | 12:35:52 | initializing simulation\n", - "INFO | 12:36:00 | running simulation for 5.0 ps\n", - "Simulation: 5%|█▊ | 500/10000 [00:02<00:54, 172.75it/s, T=219.0 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 96442.95it/s]\u001b[A\n", - "\n", - "Creating groups: 100%|██████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1377.71it/s]\u001b[A\n", - "\n", - "Creating observables: 100%|█████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1746.90it/s]\u001b[A\n", - "Simulation: 15%|█████ | 1500/10000 [00:04<00:18, 451.01it/s, T=351.5 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 105676.59it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1103.13it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1321.04it/s]\u001b[A\n", - "Simulation: 25%|████████▌ | 2500/10000 [00:05<00:11, 630.34it/s, T=187.4 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 82338.12it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1094.89it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1349.52it/s]\u001b[A\n", - "Simulation: 35%|███████████▉ | 3500/10000 [00:06<00:08, 733.28it/s, T=124.0 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 98550.38it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1105.86it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1385.63it/s]\u001b[A\n", - "Simulation: 45%|███████████████▎ | 4500/10000 [00:07<00:06, 787.98it/s, T=265.5 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 106131.17it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1112.84it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1368.45it/s]\u001b[A\n", - "Simulation: 55%|██████████████████▋ | 5500/10000 [00:08<00:05, 817.04it/s, T=345.3 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 76664.30it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1107.90it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1321.87it/s]\u001b[A\n", - "Simulation: 65%|██████████████████████ | 6500/10000 [00:10<00:04, 831.74it/s, T=187.6 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 106861.25it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1095.46it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1338.32it/s]\u001b[A\n", - "Simulation: 75%|█████████████████████████▌ | 7500/10000 [00:11<00:02, 837.36it/s, T=418.3 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 109198.23it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1088.75it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1358.70it/s]\u001b[A\n", - "Simulation: 85%|████████████████████████████▉ | 8500/10000 [00:12<00:01, 839.68it/s, T=249.0 K]\n", - "Preparing data: 100%|██████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 65423.55it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1094.89it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1337.47it/s]\u001b[A\n", - "Simulation: 95%|████████████████████████████████▎ | 9500/10000 [00:13<00:00, 840.71it/s, T=514.8 K]\n", - "Preparing data: 100%|█████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 107463.59it/s]\u001b[A\n", - "\n", - "Extending groups: 100%|█████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1090.79it/s]\u001b[A\n", - "\n", - "Extending observables: 100%|████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1328.15it/s]\u001b[A\n", - "Simulation: 100%|█████████████████████████████████| 10000/10000 [00:14<00:00, 705.16it/s, T=442.2 K]\n", - "WARNING | 12:36:14 | SaveArgs.aggregate is deprecated, please use custom TypeHandler (https://orbax.readthedocs.io/en/latest/custom_handlers.html#typehandler) or contact Orbax team to migrate before August 1st, 2024.\n", - "INFO | 12:36:14 | simulation finished after: 14.23 s\n", - "INFO | 12:36:14 | performance summary: 30.35 ns/day, 158.15 mu s/step/atom\n" + "E0000 00:00:1732268531.123831 523603 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1732268531.126852 523603 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "INFO | 09:42:13 | reading structure\n", + "INFO | 09:42:13 | Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig'\n", + "INFO | 09:42:13 | Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory\n", + "INFO | 09:42:13 | initializing model\n", + "INFO | 09:42:14 | loading checkpoint from /SCR1/segreto/dev/apax/examples/project/models/etoh_md/best\n", + "INFO | 09:42:14 | Building Standard model\n", + "INFO | 09:42:14 | initializing simulation\n", + "INFO | 09:42:22 | running simulation for 5.0 ps\n", + "Simulation: 100%|█████████████████████████████████| 10000/10000 [00:14<00:00, 710.91it/s, T=177.5 K]\n", + "WARNING | 09:42:36 | SaveArgs.aggregate is deprecated, please use custom TypeHandler (https://orbax.readthedocs.io/en/latest/custom_handlers.html#typehandler) or contact Orbax team to migrate before August 1st, 2024.\n", + "Preparing data: 100%|████████████████████████████████████████████████████████████| 1000/1000 [00:00<00:00, 73997.11it/s]\n", + "Creating groups: 100%|███████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 256.12it/s]\n", + "Creating observables: 100%|█████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1202.15it/s]\n", + "INFO | 09:42:36 | simulation finished after: 14.16 s\n", + "INFO | 09:42:36 | performance summary: 30.50 ns/day, 157.38 mu s/step/atom\n" ] } ], @@ -430,7 +373,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjPklEQVR4nO3df3BU1f3/8VdCyCYK2UiEXSIJBKSGn8oPhRVaWkzNUGRgyFhxkEZgoGMDAmlFUgULikHGAoIBqoMBR2gqI1DRFgajhGFM+BHAEX8gKpJU2KVWswvYLJTczx9+2a8LUdhk9yQbno+ZO+Oee+/Z9z2z3Lw8e+/eGMuyLAEAABgS29QFAACAawvhAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRcU1dwKXq6up04sQJtW3bVjExMU1dDgAAuAqWZen06dNKTU1VbOyPz200u/Bx4sQJpaWlNXUZAACgAaqrq9WpU6cf3abZhY+2bdtK+q74pKSkJq4GAABcDZ/Pp7S0tMDf8R/T7MLHxa9akpKSCB8AAESZq7lkggtOAQCAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgVFxTF4DmpcucN8PSzxeLRoalHwBAy8PMBwAAMIrwAQAAjCJ8AAAAowgfAADAqJDCx4ULFzR37lxlZGQoMTFR3bp105NPPinLsgLbWJalefPmqWPHjkpMTFRWVpaOHj0a9sIBAEB0Cil8PPPMM1q1apWef/55ffTRR3rmmWe0ePFirVixIrDN4sWLtXz5cq1evVp79uzR9ddfr+zsbNXW1oa9eAAAEH1CutX23Xff1ejRozVy5He3UXbp0kV//etftXfvXknfzXosW7ZMjz/+uEaPHi1Jevnll+VwOLRlyxaNGzcuzOUDAIBoE9LMx5133qnS0lJ98sknkqT33ntPu3fv1ogRIyRJx44dk9vtVlZWVmAfu92uQYMGqby8vN4+/X6/fD5f0AIAAFqukGY+5syZI5/Pp8zMTLVq1UoXLlzQwoULNX78eEmS2+2WJDkcjqD9HA5HYN2lCgsLNX/+/IbUDgAAolBIMx+vvvqq1q9frw0bNujAgQNat26dnn32Wa1bt67BBRQUFMjr9QaW6urqBvcFAACav5BmPh555BHNmTMncO1Gnz59dPz4cRUWFio3N1dOp1OS5PF41LFjx8B+Ho9Ht912W7192mw22Wy2BpYPAACiTUgzH99++61iY4N3adWqlerq6iRJGRkZcjqdKi0tDaz3+Xzas2ePXC5XGMoFAADRLqSZj1GjRmnhwoVKT09Xr169dPDgQS1ZskSTJk2SJMXExGjmzJl66qmn1L17d2VkZGju3LlKTU3VmDFjIlE/AACIMiGFjxUrVmju3Ln63e9+p1OnTik1NVW//e1vNW/evMA2s2fP1tmzZzV16lTV1NRo6NCh2rZtmxISEsJePAAAiD4x1vd/nrQZ8Pl8stvt8nq9SkpKaupyrjld5rwZln6+WDQyLP0AAKJDKH+/ebYLAAAwKqSvXQAAiCRmX68NzHwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwKiQwkeXLl0UExNz2ZKXlydJqq2tVV5enlJSUtSmTRvl5OTI4/FEpHAAABCdQgof+/bt08mTJwPLjh07JEn33nuvJGnWrFnaunWrNm7cqLKyMp04cUJjx44Nf9UAACBqxYWycfv27YNeL1q0SN26ddOwYcPk9Xq1Zs0abdiwQcOHD5ckFRcXq0ePHqqoqNDgwYPDVzUAAIhaDb7m49y5c3rllVc0adIkxcTEqLKyUufPn1dWVlZgm8zMTKWnp6u8vPwH+/H7/fL5fEELAABouRocPrZs2aKamho9+OCDkiS32634+HglJycHbedwOOR2u3+wn8LCQtnt9sCSlpbW0JIAAEAUaHD4WLNmjUaMGKHU1NRGFVBQUCCv1xtYqqurG9UfAABo3kK65uOi48eP66233tKmTZsCbU6nU+fOnVNNTU3Q7IfH45HT6fzBvmw2m2w2W0PKAAAAUahBMx/FxcXq0KGDRo4cGWgbMGCAWrdurdLS0kDbkSNHVFVVJZfL1fhKAQBAixDyzEddXZ2Ki4uVm5uruLj/v7vdbtfkyZOVn5+vdu3aKSkpSdOnT5fL5eJOFwAAEBBy+HjrrbdUVVWlSZMmXbZu6dKlio2NVU5Ojvx+v7Kzs7Vy5cqwFAoAAFqGkMPH3XffLcuy6l2XkJCgoqIiFRUVNbowAADQMvFsFwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAY1aCfVwcA4Pu6zHmzqUtAFGHmAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGBVy+Pjyyy/1wAMPKCUlRYmJierTp4/2798fWG9ZlubNm6eOHTsqMTFRWVlZOnr0aFiLBgAA0Suk8PHNN99oyJAhat26tf75z3/qww8/1J///GfdcMMNgW0WL16s5cuXa/Xq1dqzZ4+uv/56ZWdnq7a2NuzFAwCA6BMXysbPPPOM0tLSVFxcHGjLyMgI/LdlWVq2bJkef/xxjR49WpL08ssvy+FwaMuWLRo3blyYygYAANEqpJmP119/XQMHDtS9996rDh06qF+/fnrxxRcD648dOya3262srKxAm91u16BBg1ReXl5vn36/Xz6fL2gBAAAtV0gzH59//rlWrVql/Px8/fGPf9S+ffv08MMPKz4+Xrm5uXK73ZIkh8MRtJ/D4Qisu1RhYaHmz5/fwPIBALhclzlvhqWfLxaNDEs/CBbSzEddXZ369++vp59+Wv369dPUqVM1ZcoUrV69usEFFBQUyOv1Bpbq6uoG9wUAAJq/kMJHx44d1bNnz6C2Hj16qKqqSpLkdDolSR6PJ2gbj8cTWHcpm82mpKSkoAUAALRcIYWPIUOG6MiRI0Ftn3zyiTp37izpu4tPnU6nSktLA+t9Pp/27Nkjl8sVhnIBAEC0C+maj1mzZunOO+/U008/rV//+tfau3evXnjhBb3wwguSpJiYGM2cOVNPPfWUunfvroyMDM2dO1epqakaM2ZMJOrH/xOu7zcBAIi0kMLH7bffrs2bN6ugoEALFixQRkaGli1bpvHjxwe2mT17ts6ePaupU6eqpqZGQ4cO1bZt25SQkBD24gEAQPQJKXxI0j333KN77rnnB9fHxMRowYIFWrBgQaMKAwAALRPPdgEAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgVEjh409/+pNiYmKClszMzMD62tpa5eXlKSUlRW3atFFOTo48Hk/YiwYAANEr5JmPXr166eTJk4Fl9+7dgXWzZs3S1q1btXHjRpWVlenEiRMaO3ZsWAsGAADRLS7kHeLi5HQ6L2v3er1as2aNNmzYoOHDh0uSiouL1aNHD1VUVGjw4MGNrxYAAES9kGc+jh49qtTUVHXt2lXjx49XVVWVJKmyslLnz59XVlZWYNvMzEylp6ervLw8fBUDAICoFtLMx6BBg7R27VrdcsstOnnypObPn6+f/vSnOnz4sNxut+Lj45WcnBy0j8PhkNvt/sE+/X6//H5/4LXP5wvtCAAAQFQJKXyMGDEi8N99+/bVoEGD1LlzZ7366qtKTExsUAGFhYWaP39+g/ZF89Vlzpth6eeLRSPD0g8AoPlo1K22ycnJ+slPfqJPP/1UTqdT586dU01NTdA2Ho+n3mtELiooKJDX6w0s1dXVjSkJAAA0c40KH2fOnNFnn32mjh07asCAAWrdurVKS0sD648cOaKqqiq5XK4f7MNmsykpKSloAQAALVdIX7v84Q9/0KhRo9S5c2edOHFCTzzxhFq1aqX7779fdrtdkydPVn5+vtq1a6ekpCRNnz5dLpeLO10AAEBASOHjX//6l+6//3795z//Ufv27TV06FBVVFSoffv2kqSlS5cqNjZWOTk58vv9ys7O1sqVKyNSOAAAiE4hhY+SkpIfXZ+QkKCioiIVFRU1qigAANBy8WwXAABgFOEDAAAYFfLPqwMAmh6/pYNoxswHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKB4sBwDXsHA9oA4IBTMfAADAKMIHAAAwivABAACM4poPIATh+n78i0Ujw9IPAEQjZj4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARvEjY7gmtNSHZ/GjZwCiETMfAADAKMIHAAAwivABAACMalT4WLRokWJiYjRz5sxAW21trfLy8pSSkqI2bdooJydHHo+nsXUCAIAWosHhY9++ffrLX/6ivn37BrXPmjVLW7du1caNG1VWVqYTJ05o7NixjS4UAAC0DA0KH2fOnNH48eP14osv6oYbbgi0e71erVmzRkuWLNHw4cM1YMAAFRcX691331VFRUXYigYAANGrQeEjLy9PI0eOVFZWVlB7ZWWlzp8/H9SemZmp9PR0lZeXN65SAADQIoT8Ox8lJSU6cOCA9u3bd9k6t9ut+Ph4JScnB7U7HA653e56+/P7/fL7/YHXPp8v1JIAAEAUCWnmo7q6WjNmzND69euVkJAQlgIKCwtlt9sDS1paWlj6BQAAzVNI4aOyslKnTp1S//79FRcXp7i4OJWVlWn58uWKi4uTw+HQuXPnVFNTE7Sfx+OR0+mst8+CggJ5vd7AUl1d3eCDAQAAzV9IX7vcddddev/994PaJk6cqMzMTD366KNKS0tT69atVVpaqpycHEnSkSNHVFVVJZfLVW+fNptNNputgeUDAIBoE1L4aNu2rXr37h3Udv311yslJSXQPnnyZOXn56tdu3ZKSkrS9OnT5XK5NHjw4PBVDQAAolbYHyy3dOlSxcbGKicnR36/X9nZ2Vq5cmW43wbXiJb6QDiY0dwevMfnOfo0t89QS9Ho8LFz586g1wkJCSoqKlJRUVFjuwYAAC0Qz3YBAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgVNgfLAfg2sVDuABcDWY+AACAUYQPAABgFOEDAAAYxTUfTSxc35EDiBz+nQLhxcwHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKB4sB4AHpwEwipkPAABgFOEDAAAYRfgAAABGhXTNx6pVq7Rq1Sp98cUXkqRevXpp3rx5GjFihCSptrZWv//971VSUiK/36/s7GytXLlSDocj7IUD0YxrLABcy0Ka+ejUqZMWLVqkyspK7d+/X8OHD9fo0aP1wQcfSJJmzZqlrVu3auPGjSorK9OJEyc0duzYiBQOAACiU0gzH6NGjQp6vXDhQq1atUoVFRXq1KmT1qxZow0bNmj48OGSpOLiYvXo0UMVFRUaPHhw+KoGAABRq8HXfFy4cEElJSU6e/asXC6XKisrdf78eWVlZQW2yczMVHp6usrLy3+wH7/fL5/PF7QAAICWK+Tf+Xj//fflcrlUW1urNm3aaPPmzerZs6cOHTqk+Ph4JScnB23vcDjkdrt/sL/CwkLNnz8/5MIBtFxcEwO0bCHPfNxyyy06dOiQ9uzZo4ceeki5ubn68MMPG1xAQUGBvF5vYKmurm5wXwAAoPkLeeYjPj5eN998syRpwIAB2rdvn5577jndd999OnfunGpqaoJmPzwej5xO5w/2Z7PZZLPZQq8cAABEpUb/zkddXZ38fr8GDBig1q1bq7S0NLDuyJEjqqqqksvlauzbAACAFiKkmY+CggKNGDFC6enpOn36tDZs2KCdO3dq+/btstvtmjx5svLz89WuXTslJSVp+vTpcrlc3OkCAAACQgofp06d0m9+8xudPHlSdrtdffv21fbt2/XLX/5SkrR06VLFxsYqJycn6EfGAAAALoqxLMtq6iK+z+fzyW63y+v1KikpqanLiTiu6geAlu+LRSObuoSIC+XvN892AQAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABgVUvgoLCzU7bffrrZt26pDhw4aM2aMjhw5ErRNbW2t8vLylJKSojZt2ignJ0cejyesRQMAgOgVUvgoKytTXl6eKioqtGPHDp0/f1533323zp49G9hm1qxZ2rp1qzZu3KiysjKdOHFCY8eODXvhAAAgOsWFsvG2bduCXq9du1YdOnRQZWWlfvazn8nr9WrNmjXasGGDhg8fLkkqLi5Wjx49VFFRocGDB4evcgAAEJUadc2H1+uVJLVr106SVFlZqfPnzysrKyuwTWZmptLT01VeXl5vH36/Xz6fL2gBAAAtV4PDR11dnWbOnKkhQ4aod+/ekiS32634+HglJycHbetwOOR2u+vtp7CwUHa7PbCkpaU1tCQAABAFGhw+8vLydPjwYZWUlDSqgIKCAnm93sBSXV3dqP4AAEDzFtI1HxdNmzZNb7zxhnbt2qVOnToF2p1Op86dO6eampqg2Q+PxyOn01lvXzabTTabrSFlAACAKBTSzIdlWZo2bZo2b96st99+WxkZGUHrBwwYoNatW6u0tDTQduTIEVVVVcnlcoWnYgAAENVCmvnIy8vThg0b9Pe//11t27YNXMdht9uVmJgou92uyZMnKz8/X+3atVNSUpKmT58ul8vFnS4AAEBSiOFj1apVkqSf//znQe3FxcV68MEHJUlLly5VbGyscnJy5Pf7lZ2drZUrV4alWAAAEP1CCh+WZV1xm4SEBBUVFamoqKjBRQEAgJaLZ7sAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjAo5fOzatUujRo1SamqqYmJitGXLlqD1lmVp3rx56tixoxITE5WVlaWjR4+Gq14AABDlQg4fZ8+e1a233qqioqJ61y9evFjLly/X6tWrtWfPHl1//fXKzs5WbW1to4sFAADRLy7UHUaMGKERI0bUu86yLC1btkyPP/64Ro8eLUl6+eWX5XA4tGXLFo0bN65x1QIAgKgX1ms+jh07JrfbraysrECb3W7XoEGDVF5eXu8+fr9fPp8vaAEAAC1XWMOH2+2WJDkcjqB2h8MRWHepwsJC2e32wJKWlhbOkgAAQDPT5He7FBQUyOv1Bpbq6uqmLgkAAERQWMOH0+mUJHk8nqB2j8cTWHcpm82mpKSkoAUAALRcYQ0fGRkZcjqdKi0tDbT5fD7t2bNHLpcrnG8FAACiVMh3u5w5c0affvpp4PWxY8d06NAhtWvXTunp6Zo5c6aeeuopde/eXRkZGZo7d65SU1M1ZsyYcNYNAACiVMjhY//+/frFL34ReJ2fny9Jys3N1dq1azV79mydPXtWU6dOVU1NjYYOHapt27YpISEhfFUDABBFusx5s6lLCPLFopFN+v4xlmVZTVrBJXw+n+x2u7xe7zVx/Udz+0ACAFq+SISPUP5+N/ndLgAA4NpC+AAAAEaFfM0HvsPXJQAANAwzHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwKi4pi7AtC5z3mzqEgAAuKYx8wEAAIwifAAAAKMIHwAAwKiIhY+ioiJ16dJFCQkJGjRokPbu3RuptwIAAFEkIuHjb3/7m/Lz8/XEE0/owIEDuvXWW5Wdna1Tp05F4u0AAEAUiUj4WLJkiaZMmaKJEyeqZ8+eWr16ta677jq99NJLkXg7AAAQRcJ+q+25c+dUWVmpgoKCQFtsbKyysrJUXl5+2fZ+v19+vz/w2uv1SpJ8Pl+4S5Mk1fm/jUi/AABEi0j8jb3Yp2VZV9w27OHjq6++0oULF+RwOILaHQ6HPv7448u2Lyws1Pz58y9rT0tLC3dpAABAkn1Z5Po+ffq07Hb7j27T5D8yVlBQoPz8/MDruro6ff3110pJSVFMTEwTVnZ1fD6f0tLSVF1draSkpKYup0kwBt9hHBiDixgHxuCia2kcLMvS6dOnlZqaesVtwx4+brzxRrVq1Uoejyeo3ePxyOl0Xra9zWaTzWYLaktOTg53WRGXlJTU4j9YV8IYfIdxYAwuYhwYg4uulXG40ozHRWG/4DQ+Pl4DBgxQaWlpoK2urk6lpaVyuVzhfjsAABBlIvK1S35+vnJzczVw4EDdcccdWrZsmc6ePauJEydG4u0AAEAUiUj4uO+++/Tvf/9b8+bNk9vt1m233aZt27ZddhFqS2Cz2fTEE09c9tXRtYQx+A7jwBhcxDgwBhcxDvWLsa7mnhgAAIAw4dkuAADAKMIHAAAwivABAACMInwAAACjCB/1KCoqUpcuXZSQkKBBgwZp7969P7jt+fPntWDBAnXr1k0JCQm69dZbtW3btkb12RyEewwKCwt1++23q23bturQoYPGjBmjI0eORPowGiUSn4OLFi1apJiYGM2cOTMClYdXJMbhyy+/1AMPPKCUlBQlJiaqT58+2r9/fyQPo1HCPQYXLlzQ3LlzlZGRocTERHXr1k1PPvnkVT0Toyns2rVLo0aNUmpqqmJiYrRly5Yr7rNz5071799fNptNN998s9auXXvZNtF2XozEOETjuTEsLAQpKSmx4uPjrZdeesn64IMPrClTpljJycmWx+Opd/vZs2dbqamp1ptvvml99tln1sqVK62EhATrwIEDDe6zqUViDLKzs63i4mLr8OHD1qFDh6xf/epXVnp6unXmzBlThxWSSIzBRXv37rW6dOli9e3b15oxY0aEj6RxIjEOX3/9tdW5c2frwQcftPbs2WN9/vnn1vbt261PP/3U1GGFJBJjsHDhQislJcV64403rGPHjlkbN2602rRpYz333HOmDisk//jHP6zHHnvM2rRpkyXJ2rx5849u//nnn1vXXXedlZ+fb3344YfWihUrrFatWlnbtm0LbBNt50XLisw4RNu5MVwIH5e44447rLy8vMDrCxcuWKmpqVZhYWG923fs2NF6/vnng9rGjh1rjR8/vsF9NrVIjMGlTp06ZUmyysrKwlN0mEVqDE6fPm11797d2rFjhzVs2LBmHz4iMQ6PPvqoNXTo0MgUHAGRGIORI0dakyZN+tFtmqur+aM7e/Zsq1evXkFt9913n5WdnR14HW3nxUuFaxwu1dzPjeHC1y7fc+7cOVVWViorKyvQFhsbq6ysLJWXl9e7j9/vV0JCQlBbYmKidu/e3eA+m1IkxqA+Xq9XktSuXbswVB1ekRyDvLw8jRw5Mqjv5ipS4/D6669r4MCBuvfee9WhQwf169dPL774YmQOopEiNQZ33nmnSktL9cknn0iS3nvvPe3evVsjRoyIwFGYV15eftlnPDs7OzBm0XZebKgrjUN9mvO5MZwIH9/z1Vdf6cKFC5f9EqvD4ZDb7a53n+zsbC1ZskRHjx5VXV2dduzYoU2bNunkyZMN7rMpRWIMLlVXV6eZM2dqyJAh6t27d9iPobEiNQYlJSU6cOCACgsLI1p/uERqHD7//HOtWrVK3bt31/bt2/XQQw/p4Ycf1rp16yJ6PA0RqTGYM2eOxo0bp8zMTLVu3Vr9+vXTzJkzNX78+Igejylut7veMfP5fPrvf/8bdefFhrrSOFyquZ8bw4nw0UjPPfecunfvrszMTMXHx2vatGmaOHGiYmOvnaENdQzy8vJ0+PBhlZSUGK40cq40BtXV1ZoxY4bWr19/2f8VtyRX81moq6tT//799fTTT6tfv36aOnWqpkyZotWrVzdh5eFzNWPw6quvav369dqwYYMOHDigdevW6dlnn22WAQzmtMRz4w+5dv5CXoUbb7xRrVq1ksfjCWr3eDxyOp317tO+fXtt2bJFZ8+e1fHjx/Xxxx+rTZs26tq1a4P7bEqRGIPvmzZtmt544w2988476tSpU0SOobEiMQaVlZU6deqU+vfvr7i4OMXFxamsrEzLly9XXFycLly4EPHjClWkPgsdO3ZUz549g/br0aOHqqqqwn8QjRSpMXjkkUcCsx99+vTRhAkTNGvWrKiZFbsSp9NZ75glJSUpMTEx6s6LDXWlcfi+aDg3hhPh43vi4+M1YMAAlZaWBtrq6upUWloql8v1o/smJCTopptu0v/+9z+99tprGj16dKP7bAqRGANJsixL06ZN0+bNm/X2228rIyMjYsfQWJEYg7vuukvvv/++Dh06FFgGDhyo8ePH69ChQ2rVqlVEj6khIvVZGDJkyGW3En7yySfq3LlzeA8gDCI1Bt9+++1lM4OtWrVSXV1deA+gibhcrqAxk6QdO3YExizazosNdaVxkKLr3BhWTX3Fa3NTUlJi2Ww2a+3atdaHH35oTZ061UpOTrbcbrdlWZY1YcIEa86cOYHtKyoqrNdee8367LPPrF27dlnDhw+3MjIyrG+++eaq+2xuIjEGDz30kGW3262dO3daJ0+eDCzffvut6cO7KpEYg0tFw90ukRiHvXv3WnFxcdbChQuto0ePWuvXr7euu+4665VXXjF9eFclEmOQm5tr3XTTTYFbbTdt2mTdeOON1uzZs00f3lU5ffq0dfDgQevgwYOWJGvJkiXWwYMHrePHj1uWZVlz5syxJkyYENj+4i2mjzzyiPXRRx9ZRUVF9d5qG03nRcuKzDhE27kxXAgf9VixYoWVnp5uxcfHW3fccYdVUVERWDds2DArNzc38Hrnzp1Wjx49LJvNZqWkpFgTJkywvvzyy5D6bI7CPQaS6l2Ki4sNHVHoIvE5+L5oCB+WFZlx2Lp1q9W7d2/LZrNZmZmZ1gsvvGDiUBos3GPg8/msGTNmWOnp6VZCQoLVtWtX67HHHrP8fr+pQwrJO++8U++/34vHnZubaw0bNuyyfW677TYrPj7e6tq1a73/1qPtvBiJcYjGc2M4xFhWM/1JPQAA0CJxzQcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMCo/wNcbZpV68KIsQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjxklEQVR4nO3df3BU1f3/8Vd+kE0UspEIu0QSEpUaxF+ACiu0tJiaoZGBIWPVQRqVgdYGBGLFpAoWFYOOBUQDVAeDjtBURqEiLQxGieOYAAZw/BlRwaTCLrWaLGJZKLnfP/phv1mIhd3cJSfZ52Pmzrjn3nvyPmeWm5cnd+/GWZZlCQAAwGDxnV0AAADA6RBYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGS+zsAk7W2tqq/fv3q1evXoqLi+vscgAAwBmwLEuHDh1SRkaG4uPtXw8xLrDs379fmZmZnV0GAACIQFNTk/r37297v8YFll69ekn674BTU1M7uRoAAHAm/H6/MjMzg7/H7WZcYDnxZ6DU1FQCCwAAXUy0bufgplsAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4yV2dgEAAJyQXbrRln72LSywpR+YgxUWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHhhBZbjx49r7ty5ysnJUUpKii666CI9/PDDsiwreIxlWZo3b5769eunlJQU5eXlac+ePbYXDgAAYkdYgeWxxx7T8uXL9fTTT+vjjz/WY489pscff1xPPfVU8JjHH39cS5cu1YoVK7Rt2zade+65ys/P15EjR2wvHgAAxIbEcA5+5513NH78eBUUFEiSsrOz9ec//1nbt2+X9N/VlSVLluiBBx7Q+PHjJUkvvPCCXC6X1q9fr1tuucXm8gEAQCwIa4XluuuuU3V1tT799FNJ0nvvvae3335bY8eOlSTt3btXXq9XeXl5wXOcTqeGDx+u2tradvsMBALy+/0hGwAAQFthrbCUlpbK7/crNzdXCQkJOn78uBYsWKBJkyZJkrxeryTJ5XKFnOdyuYL7TlZeXq758+dHUjsAAIgRYa2wvPTSS1q9erXWrFmjnTt36vnnn9cTTzyh559/PuICysrK1NLSEtyampoi7gsAAHRPYa2w3HvvvSotLQ3ei3L55Zfryy+/VHl5uYqKiuR2uyVJPp9P/fr1C57n8/l01VVXtdunw+GQw+GIsHwAABALwlph+f777xUfH3pKQkKCWltbJUk5OTlyu92qrq4O7vf7/dq2bZs8Ho8N5QIAgFgU1grLuHHjtGDBAmVlZWnw4MHatWuXFi1apDvvvFOSFBcXp1mzZumRRx7RwIEDlZOTo7lz5yojI0MTJkyIRv34P9mlG23pZ9/CAlv6AQDATmEFlqeeekpz587Vb3/7Wx08eFAZGRn69a9/rXnz5gWPmTNnjg4fPqxp06apublZo0aN0qZNm5ScnGx78QAAIDbEWW0fU2sAv98vp9OplpYWpaamdnY5XQYrLAC6A65lXVe0f3/zXUIAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYLK7BkZ2crLi7ulK24uFiSdOTIERUXFys9PV09e/ZUYWGhfD5fVAoHAACxI6zAsmPHDh04cCC4bdmyRZJ00003SZJmz56tDRs2aO3ataqpqdH+/fs1ceJE+6sGAAAxJTGcg/v06RPyeuHChbrooos0evRotbS0aOXKlVqzZo3GjBkjSaqsrNSgQYNUV1enESNG2Fc1AACIKRHfw3L06FG9+OKLuvPOOxUXF6f6+nodO3ZMeXl5wWNyc3OVlZWl2traH+wnEAjI7/eHbAAAAG1FHFjWr1+v5uZm3X777ZIkr9erpKQkpaWlhRzncrnk9Xp/sJ/y8nI5nc7glpmZGWlJAACgm4o4sKxcuVJjx45VRkZGhwooKytTS0tLcGtqaupQfwAAoPsJ6x6WE7788ku9/vrreuWVV4JtbrdbR48eVXNzc8gqi8/nk9vt/sG+HA6HHA5HJGUAAIAYEdEKS2Vlpfr27auCgoJg27Bhw9SjRw9VV1cH2xoaGtTY2CiPx9PxSgEAQMwKe4WltbVVlZWVKioqUmLi/z/d6XRqypQpKikpUe/evZWamqoZM2bI4/HwCSEAANAhYQeW119/XY2NjbrzzjtP2bd48WLFx8ersLBQgUBA+fn5WrZsmS2F4uzILt1oSz/7Fhac/iAAAM5Q2IHlhhtukGVZ7e5LTk5WRUWFKioqOlwYAADACXyXEAAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxEju7AAAA7JZdutGWfvYtLLClH3QcKywAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8cIOLF999ZVuu+02paenKyUlRZdffrnefffd4H7LsjRv3jz169dPKSkpysvL0549e2wtGgAAxJawAsu3336rkSNHqkePHvr73/+ujz76SH/84x913nnnBY95/PHHtXTpUq1YsULbtm3Tueeeq/z8fB05csT24gEAQGxIDOfgxx57TJmZmaqsrAy25eTkBP/bsiwtWbJEDzzwgMaPHy9JeuGFF+RyubR+/XrdcsstNpUNAABiSVgrLK+++qquvvpq3XTTTerbt6+GDBmiZ599Nrh/79698nq9ysvLC7Y5nU4NHz5ctbW17fYZCATk9/tDNgAAgLbCWmH54osvtHz5cpWUlOj3v/+9duzYobvvvltJSUkqKiqS1+uVJLlcrpDzXC5XcN/JysvLNX/+/AjLBwCYILt0Y2eXgG4urBWW1tZWDR06VI8++qiGDBmiadOmaerUqVqxYkXEBZSVlamlpSW4NTU1RdwXAADonsIKLP369dOll14a0jZo0CA1NjZKktxutyTJ5/OFHOPz+YL7TuZwOJSamhqyAQAAtBVWYBk5cqQaGhpC2j799FMNGDBA0n9vwHW73aqurg7u9/v92rZtmzwejw3lAgCAWBTWPSyzZ8/Wddddp0cffVS//OUvtX37dj3zzDN65plnJElxcXGaNWuWHnnkEQ0cOFA5OTmaO3euMjIyNGHChGjUDwAAYkBYgeWaa67RunXrVFZWpoceekg5OTlasmSJJk2aFDxmzpw5Onz4sKZNm6bm5maNGjVKmzZtUnJysu3FAwCA2BBWYJGkG2+8UTfeeOMP7o+Li9NDDz2khx56qEOFAQAAnMB3CQEAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGC+swPKHP/xBcXFxIVtubm5w/5EjR1RcXKz09HT17NlThYWF8vl8thcNAABiS9grLIMHD9aBAweC29tvvx3cN3v2bG3YsEFr165VTU2N9u/fr4kTJ9paMAAAiD2JYZ+QmCi3231Ke0tLi1auXKk1a9ZozJgxkqTKykoNGjRIdXV1GjFiRMerBQAAMSnsFZY9e/YoIyNDF154oSZNmqTGxkZJUn19vY4dO6a8vLzgsbm5ucrKylJtbe0P9hcIBOT3+0M2AACAtsJaYRk+fLhWrVqlSy65RAcOHND8+fP14x//WB988IG8Xq+SkpKUlpYWco7L5ZLX6/3BPsvLyzV//vyIigeAriS7dKNtfe1bWGBbX0BXEFZgGTt2bPC/r7jiCg0fPlwDBgzQSy+9pJSUlIgKKCsrU0lJSfC13+9XZmZmRH0BAIDuqUMfa05LS9OPfvQjffbZZ3K73Tp69Kiam5tDjvH5fO3e83KCw+FQampqyAYAANBWhwLLd999p88//1z9+vXTsGHD1KNHD1VXVwf3NzQ0qLGxUR6Pp8OFAgCA2BXWn4R+97vfady4cRowYID279+vBx98UAkJCbr11lvldDo1ZcoUlZSUqHfv3kpNTdWMGTPk8Xj4hBAAAOiQsALLP/7xD916663617/+pT59+mjUqFGqq6tTnz59JEmLFy9WfHy8CgsLFQgElJ+fr2XLlkWlcAAAEDvCCixVVVX/c39ycrIqKipUUVHRoaIAAADa4ruEAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4YT2aHwDQvWSXbuzsEoAzwgoLAAAwHoEFAAAYj8ACAACMxz0siAl2/Z1+38ICW/oBAISHFRYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPF4DguigueeAADsxAoLAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4HXoOy8KFC1VWVqaZM2dqyZIlkqQjR47onnvuUVVVlQKBgPLz87Vs2TK5XC476u127HpeCQAA3VnEKyw7duzQn/70J11xxRUh7bNnz9aGDRu0du1a1dTUaP/+/Zo4cWKHCwUAALErosDy3XffadKkSXr22Wd13nnnBdtbWlq0cuVKLVq0SGPGjNGwYcNUWVmpd955R3V1dbYVDQAAYktEgaW4uFgFBQXKy8sLaa+vr9exY8dC2nNzc5WVlaXa2tqOVQoAAGJW2PewVFVVaefOndqxY8cp+7xer5KSkpSWlhbS7nK55PV62+0vEAgoEAgEX/v9/nBLAgAA3VxYKyxNTU2aOXOmVq9ereTkZFsKKC8vl9PpDG6ZmZm29AsAALqPsAJLfX29Dh48qKFDhyoxMVGJiYmqqanR0qVLlZiYKJfLpaNHj6q5uTnkPJ/PJ7fb3W6fZWVlamlpCW5NTU0RDwYAAHRPYf1J6Prrr9f7778f0nbHHXcoNzdX9913nzIzM9WjRw9VV1ersLBQktTQ0KDGxkZ5PJ52+3Q4HHI4HBGWDwAAYkFYgaVXr1667LLLQtrOPfdcpaenB9unTJmikpIS9e7dW6mpqZoxY4Y8Ho9GjBhhX9UAACCmdOjBce1ZvHix4uPjVVhYGPLgOAAAgEh1OLBs3bo15HVycrIqKipUUVHR0a4BAAAk8V1CAACgCyCwAAAA49l+DwvQndn1ZZX7FhbY0o9pmJ+zhy9ORaxhhQUAABiPwAIAAIxHYAEAAMbjHhYA3Rb31ADdByssAADAeAQWAABgPAILAAAwHvewAOCZHgCMxwoLAAAwHoEFAAAYj8ACAACMxz0sMBr3VgAAJFZYAABAF0BgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYjwfHATAODwwEcDJWWAAAgPEILAAAwHgEFgAAYDzuYQG6MO71ABArWGEBAADGI7AAAADjEVgAAIDxwrqHZfny5Vq+fLn27dsnSRo8eLDmzZunsWPHSpKOHDmie+65R1VVVQoEAsrPz9eyZcvkcrlsLxzoyrj3BADCE9YKS//+/bVw4ULV19fr3Xff1ZgxYzR+/Hh9+OGHkqTZs2drw4YNWrt2rWpqarR//35NnDgxKoUDAIDYEdYKy7hx40JeL1iwQMuXL1ddXZ369++vlStXas2aNRozZowkqbKyUoMGDVJdXZ1GjBhhX9UAACCmRHwPy/Hjx1VVVaXDhw/L4/Govr5ex44dU15eXvCY3NxcZWVlqba29gf7CQQC8vv9IRsAAEBbYQeW999/Xz179pTD4dBvfvMbrVu3Tpdeeqm8Xq+SkpKUlpYWcrzL5ZLX6/3B/srLy+V0OoNbZmZm2IMAAADdW9iB5ZJLLtHu3bu1bds23XXXXSoqKtJHH30UcQFlZWVqaWkJbk1NTRH3BQAAuqewn3SblJSkiy++WJI0bNgw7dixQ08++aRuvvlmHT16VM3NzSGrLD6fT263+wf7czgccjgc4VcOAABiRoefw9La2qpAIKBhw4apR48eqq6uDu5raGhQY2OjPB5PR38MAACIYWGtsJSVlWns2LHKysrSoUOHtGbNGm3dulWbN2+W0+nUlClTVFJSot69eys1NVUzZsyQx+PhE0IAgC7Jrmcm7VtYYEs/sSyswHLw4EH96le/0oEDB+R0OnXFFVdo8+bN+vnPfy5JWrx4seLj41VYWBjy4DgAAICOCCuwrFy58n/uT05OVkVFhSoqKjpUFAAAQFt8lxAAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOOF/aRbAIg1dj2LA0DkWGEBAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMF1ZgKS8v1zXXXKNevXqpb9++mjBhghoaGkKOOXLkiIqLi5Wenq6ePXuqsLBQPp/P1qIBAEBsCSuw1NTUqLi4WHV1ddqyZYuOHTumG264QYcPHw4eM3v2bG3YsEFr165VTU2N9u/fr4kTJ9peOAAAiB2J4Ry8adOmkNerVq1S3759VV9fr5/85CdqaWnRypUrtWbNGo0ZM0aSVFlZqUGDBqmurk4jRoywr3IAABAzOnQPS0tLiySpd+/ekqT6+nodO3ZMeXl5wWNyc3OVlZWl2tradvsIBALy+/0hGwAAQFsRB5bW1lbNmjVLI0eO1GWXXSZJ8nq9SkpKUlpaWsixLpdLXq+33X7Ky8vldDqDW2ZmZqQlAQCAbiriwFJcXKwPPvhAVVVVHSqgrKxMLS0twa2pqalD/QEAgO4nrHtYTpg+fbpee+01vfXWW+rfv3+w3e126+jRo2pubg5ZZfH5fHK73e325XA45HA4IikDAADEiLBWWCzL0vTp07Vu3Tq98cYbysnJCdk/bNgw9ejRQ9XV1cG2hoYGNTY2yuPx2FMxAACIOWGtsBQXF2vNmjX661//ql69egXvS3E6nUpJSZHT6dSUKVNUUlKi3r17KzU1VTNmzJDH4+ETQgAAIGJhBZbly5dLkn7605+GtFdWVur222+XJC1evFjx8fEqLCxUIBBQfn6+li1bZkuxAAAgNoUVWCzLOu0xycnJqqioUEVFRcRFAQAAtMV3CQEAAOMRWAAAgPEi+lgzpOzSjZ1dAgAAMYMVFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABgvsbMLAACgu8su3WhLP/sWFtjST1fECgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYLywA8tbb72lcePGKSMjQ3FxcVq/fn3IfsuyNG/ePPXr108pKSnKy8vTnj177KoXAADEoLADy+HDh3XllVeqoqKi3f2PP/64li5dqhUrVmjbtm0699xzlZ+fryNHjnS4WAAAEJvCfjT/2LFjNXbs2Hb3WZalJUuW6IEHHtD48eMlSS+88IJcLpfWr1+vW265pWPVAgCAmGTrPSx79+6V1+tVXl5esM3pdGr48OGqra1t95xAICC/3x+yAQAAtGVrYPF6vZIkl8sV0u5yuYL7TlZeXi6n0xncMjMz7SwJAAB0A53+KaGysjK1tLQEt6amps4uCQAAGMbWwOJ2uyVJPp8vpN3n8wX3nczhcCg1NTVkAwAAaMvWwJKTkyO3263q6upgm9/v17Zt2+TxeOz8UQAAIIaE/Smh7777Tp999lnw9d69e7V792717t1bWVlZmjVrlh555BENHDhQOTk5mjt3rjIyMjRhwgQ76wYAIOZkl260pZ99Cwts6edsCjuwvPvuu/rZz34WfF1SUiJJKioq0qpVqzRnzhwdPnxY06ZNU3Nzs0aNGqVNmzYpOTnZvqoBAEBMibMsy+rsItry+/1yOp1qaWkx+n4Wu1IuAABnWzRWWKL9+7vTPyUEAABwOgQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxkvs7ALOtuzSjZ1dAgAACBMrLAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA40UtsFRUVCg7O1vJyckaPny4tm/fHq0fBQAAurmoBJa//OUvKikp0YMPPqidO3fqyiuvVH5+vg4ePBiNHwcAALq5qASWRYsWaerUqbrjjjt06aWXasWKFTrnnHP03HPPRePHAQCAbs72R/MfPXpU9fX1KisrC7bFx8crLy9PtbW1pxwfCAQUCASCr1taWiRJfr/f7tIkSa2B76PSLwAAXUU0fsee6NOyLNv7lqIQWL7++msdP35cLpcrpN3lcumTTz455fjy8nLNnz//lPbMzEy7SwMAAJKcS6LX96FDh+R0Om3vt9O//LCsrEwlJSXB162trfrmm2+Unp6uuLi4Tqzs9Px+vzIzM9XU1KTU1NTOLuesi/XxS8xBrI9fYg5iffwSc3Bi/I2NjYqLi1NGRkZUfo7tgeX8889XQkKCfD5fSLvP55Pb7T7leIfDIYfDEdKWlpZmd1lRlZqaGpNv0hNiffwScxDr45eYg1gfv8QcOJ3OqI7f9ptuk5KSNGzYMFVXVwfbWltbVV1dLY/HY/ePAwAAMSAqfxIqKSlRUVGRrr76al177bVasmSJDh8+rDvuuCMaPw4AAHRzUQksN998s/75z39q3rx58nq9uuqqq7Rp06ZTbsTt6hwOhx588MFT/qQVK2J9/BJzEOvjl5iDWB+/xBycrfHHWdH6/BEAAIBN+C4hAABgPAILAAAwHoEFAAAYj8ACAACMR2Bpo6KiQtnZ2UpOTtbw4cO1ffv2Hzz22LFjeuihh3TRRRcpOTlZV155pTZt2tShPk1g9xyUl5frmmuuUa9evdS3b19NmDBBDQ0N0R5GxKLxHjhh4cKFiouL06xZs6JQuX2iMQdfffWVbrvtNqWnpyslJUWXX3653n333WgOI2J2j//48eOaO3eucnJylJKSoosuukgPP/xw1L5vpSPeeustjRs3ThkZGYqLi9P69etPe87WrVs1dOhQORwOXXzxxVq1atUpx3Sl62A05qArXQej9R44oUPXQQuWZVlWVVWVlZSUZD333HPWhx9+aE2dOtVKS0uzfD5fu8fPmTPHysjIsDZu3Gh9/vnn1rJly6zk5GRr586dEffZ2aIxB/n5+VZlZaX1wQcfWLt377Z+8YtfWFlZWdZ33313toZ1xqIx/hO2b99uZWdnW1dccYU1c+bMKI8kctGYg2+++cYaMGCAdfvtt1vbtm2zvvjiC2vz5s3WZ599draGdcaiMf4FCxZY6enp1muvvWbt3bvXWrt2rdWzZ0/rySefPFvDOmN/+9vfrPvvv9965ZVXLEnWunXr/ufxX3zxhXXOOedYJSUl1kcffWQ99dRTVkJCgrVp06bgMV3tOhiNOehK18FojP+Ejl4HCSz/59prr7WKi4uDr48fP25lZGRY5eXl7R7fr18/6+mnnw5pmzhxojVp0qSI++xs0ZiDkx08eNCSZNXU1NhTtI2iNf5Dhw5ZAwcOtLZs2WKNHj3a6MASjTm47777rFGjRkWnYJtFY/wFBQXWnXfe+T+PMdGZ/LKaM2eONXjw4JC2m2++2crPzw++7mrXwbbsmoOTmXwdbMvO8dtxHeRPQpKOHj2q+vp65eXlBdvi4+OVl5en2trads8JBAJKTk4OaUtJSdHbb78dcZ+dKRpz0J6WlhZJUu/evW2o2j7RHH9xcbEKCgpC+jZRtObg1Vdf1dVXX62bbrpJffv21ZAhQ/Tss89GZxAdEK3xX3fddaqurtann34qSXrvvff09ttva+zYsVEYxdlVW1t7yvs6Pz8/OF9d7ToYidPNQXtMvQ5G4kzHb8d1kMAi6euvv9bx48dPeRKvy+WS1+tt95z8/HwtWrRIe/bsUWtrq7Zs2aJXXnlFBw4ciLjPzhSNOThZa2urZs2apZEjR+qyyy6zfQwdEa3xV1VVaefOnSovL49q/XaI1hx88cUXWr58uQYOHKjNmzfrrrvu0t13363nn38+quMJV7TGX1paqltuuUW5ubnq0aOHhgwZolmzZmnSpElRHc/Z4PV6250vv9+vf//7313uOhiJ083ByUy+DkbiTMZv13WQwBKhJ598UgMHDlRubq6SkpI0ffp03XHHHYqPj50pDXcOiouL9cEHH6iqquosVxodpxt/U1OTZs6cqdWrV5/yf+HdxZm8B1pbWzV06FA9+uijGjJkiKZNm6apU6dqxYoVnVi5Pc5k/C+99JJWr16tNWvWaOfOnXr++ef1xBNPGBfYcHZ0t+vg6dh5HYyd367/w/nnn6+EhAT5fL6Qdp/PJ7fb3e45ffr00fr163X48GF9+eWX+uSTT9SzZ09deOGFEffZmaIxB21Nnz5dr732mt588031798/KmPoiGiMv76+XgcPHtTQoUOVmJioxMRE1dTUaOnSpUpMTNTx48ejPq5wROs90K9fP1166aUh5w0aNEiNjY32D6IDojX+e++9N7jKcvnll2vy5MmaPXt2l1h1Ox23293ufKWmpiolJaXLXQcjcbo5aMv062AkTjd+O6+DBBZJSUlJGjZsmKqrq4Ntra2tqq6ulsfj+Z/nJicn64ILLtB//vMfvfzyyxo/fnyH++wM0ZgDSbIsS9OnT9e6dev0xhtvKCcnJ2pj6IhojP/666/X+++/r927dwe3q6++WpMmTdLu3buVkJAQ1TGFK1rvgZEjR57yEc5PP/1UAwYMsHcAHRSt8X///fenrDomJCSotbXV3gF0Ao/HEzJfkrRly5bgfHW162AkTjcHUte5DkbidOO39ToY9m263VRVVZXlcDisVatWWR999JE1bdo0Ky0tzfJ6vZZlWdbkyZOt0tLS4PF1dXXWyy+/bH3++efWW2+9ZY0ZM8bKycmxvv322zPu0zTRmIO77rrLcjqd1tatW60DBw4Et++///5sD++0ojH+k5n+KaFozMH27dutxMREa8GCBdaePXus1atXW+ecc4714osvnu3hnVY0xl9UVGRdcMEFwY81v/LKK9b5559vzZkz52wP77QOHTpk7dq1y9q1a5clyVq0aJG1a9cu68svv7Qsy7JKS0utyZMnB48/8ZHWe++91/r444+tioqKdj/W3JWug9GYg650HYzG+E8W6XWQwNLGU089ZWVlZVlJSUnWtddea9XV1QX3jR492ioqKgq+3rp1qzVo0CDL4XBY6enp1uTJk62vvvoqrD5NZPccSGp3q6ysPEsjCk803gNtmR5YLCs6c7BhwwbrsssusxwOh5Wbm2s988wzZ2MoEbF7/H6/35o5c6aVlZVlJScnWxdeeKF1//33W4FA4GwN6Yy9+eab7f57PTHmoqIia/To0aecc9VVV1lJSUnWhRde2O6/7a50HYzGHHSl62C03gNtRXodjLMsAx+3CAAA0Ab3sAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgvP8H0b1Tg1KMlH0AAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/examples/03_Transfer_Learning.ipynb b/examples/03_Transfer_Learning.ipynb index 9d77aaa1..5080e533 100644 --- a/examples/03_Transfer_Learning.ipynb +++ b/examples/03_Transfer_Learning.ipynb @@ -157,23 +157,23 @@ "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", - "E0000 00:00:1732193066.962431 477038 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "E0000 00:00:1732193066.965633 477038 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", - "INFO | 12:44:30 | Running on [CudaDevice(id=0)]\n", - "INFO | 12:44:30 | Initializing Callbacks\n", - "INFO | 12:44:30 | Initializing Loss Function\n", - "INFO | 12:44:30 | Initializing Metrics\n", - "INFO | 12:44:30 | Running Input Pipeline\n", - "INFO | 12:44:30 | Reading data file project/benzene_mod.xyz\n", - "INFO | 12:44:36 | Found n_train: 1000, n_val: 200\n", - "INFO | 12:44:37 | Computing per element energy regression.\n", - "INFO | 12:44:38 | Building Standard model\n", - "INFO | 12:44:38 | initializing 1 model(s)\n", - "INFO | 12:44:45 | Initializing Optimizer\n", - "INFO | 12:44:45 | Beginning Training\n", - "Epochs: 0%| | 0/100 [00:00" + "" ] }, "execution_count": 13, @@ -431,7 +380,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHACAYAAABONwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdvUlEQVR4nO2deXhTdfbG35s9XZJ0L6VlKaAFF2QRBFEYQUScUcddK4rDD9QRdx1xHPdxcBydRWdx30EdZ9RRZkRBBBSRQlmUrSxl6UJpoW3SNm3W+/vj5ntzb/aUpEma83mePLQ39958b0iTN+e85xyO53keBEEQBEEQaYgi0QsgCIIgCIJIFCSECIIgCIJIW0gIEQRBEASRtpAQIgiCIAgibSEhRBAEQRBE2kJCiCAIgiCItIWEEEEQBEEQaQsJIYIgCIIg0hYSQgRBEARBpC0khAiCIAiCSFtICMWJ//73v5g4cSL0ej1ycnJw6aWXBt3X4XDggQcewGmnnYbMzEyUlJTghhtuQGNjo2y/zZs34/zzz4fJZEJeXh4WLFiAzs5O8f4333wTHMcFvDU3N0e89ptvvhnDhg2DXq9HQUEBLrnkEuzevTvq54AgCIIgkh0SQnHg3//+N+bMmYObbroJ27Ztw7p163DdddcF3d9qtWLz5s14+OGHsXnzZnz00UeoqanBxRdfLO7T2NiIGTNmYPjw4diwYQOWL1+OHTt2YO7cueI+V199NY4cOSK7XXDBBZg6dSoKCwsjXv+4cePwxhtvYNeuXfjiiy/A8zxmzpwJl8vVq+eDIAiCIJIWnogpDoeDHzhwIP/qq6+e0Hmqqqp4APyhQ4d4nuf5l156iS8sLORdLpe4zw8//MAD4Pfu3RvwHM3Nzbxarebffvtt2fZPPvmEHzNmDK/VavmhQ4fyjz32GO9wOIKuZdu2bTwAft++fSd0TQRBEASRbFBEKMZs3rwZDQ0NUCgUGDNmDAYMGIALL7wQ27dvj+o8ZrMZHMfBZDIBAGw2GzQaDRQK73+ZXq8HAHz77bcBz/H2228jIyMDV1xxhbjtm2++wQ033IA777wTO3fuxEsvvYQ333wTTz31VMBzdHV14Y033sDQoUNRVlYW1TUQBEEQRLJDQijG1NbWAgAee+wx/OY3v8GyZcuQk5ODadOmobW1NaJz9PT04IEHHsC1114Lg8EAADjvvPPQ1NSEP/zhD7Db7Whra8OiRYsAAEeOHAl4ntdeew3XXXedKJgA4PHHH8eiRYtw4403ory8HOeffz6efPJJvPTSS7Jj//73vyMrKwtZWVn4/PPPsWLFCmg0mqifD4IgCIJIZkgIRciiRYuCGpHZbffu3XC73QCAhx56CJdffrnot+E4Dh9++GHYx3E4HLjqqqvA8zz+8Y9/iNtPOeUUvPXWW3juueeQkZGB4uJiDB06FEVFRbIoEWP9+vXYtWsX5s2bJ9u+bds2PPHEE6LIycrKwvz583HkyBFYrVZxv8rKSmzZsgVr1qzBSSedhKuuugo9PT29ffoIgiAIIinheJ7nE72IVKClpQXHjx8PuU95eTnWrVuH8847D9988w2mTJki3jdx4kTMmDEjaAoK8Iqg2tparFq1Cnl5eQH3O3r0KDIzM8FxHAwGA95//31ceeWVsn3mzZuHzZs3Y8uWLbLter0ejz/+OC677LKA6w8kqux2O3JycvDqq6/i2muvDfkcEARBEEQqoUr0AlKFgoICFBQUhN1v3Lhx0Gq1qKmpEYWQw+HAwYMHMXjw4KDHMRG0d+9efP3110FFEAAUFRUBAF5//XXodDqcf/75svs7Ozvxz3/+E4sXL/Y7duzYsaipqcHw4cPDXguD53nwPA+bzRbxMQRBEASRCpAQijEGgwG33HILHn30UZSVlWHw4MH4wx/+AACyqE1FRQUWL16Mn//853A4HLjiiiuwefNmLFu2DC6XC01NTQCA3Nxc0Zvz17/+FZMnT0ZWVhZWrFiB+++/H08//bRoqGZ88MEHcDqduP766/3W98gjj+CnP/0pBg0ahCuuuAIKhQLbtm3D9u3b8dvf/ha1tbX44IMPMHPmTBQUFKC+vh5PP/009Ho9Zs+eHadnjSAIgiASREJr1vopdrudv/fee/nCwkI+OzubnzFjBr99+3bZPgD4N954g+d5nj9w4AAPIODt66+/Fo+ZM2cOn5uby2s0Gv7000/3K4tnTJo0ib/uuuuCrm/58uX85MmTeb1ezxsMBn7ChAn8yy+/zPM8zzc0NPAXXnghX1hYyKvVar60tJS/7rrr+N27d5/Yk0IQBEEQSQh5hAiCIAiCSFuoaowgCIIgiLSFhBBBEARBEGkLmaXD4Ha70djYiOzsbHAcl+jlEARBEAQRATzPo6OjAyUlJQFbwzBICIWhsbGRRksQBEEQRIpSV1eH0tLSoPeTEApDdnY2AOGJZOMuCIIgCIJIbiwWC8rKysTP8WCQEAoDS4cZDAYSQgRBEASRYoSztZBZmiAIgiCItIWEEEEQBEEQaUvKCKHW1lZUVlbCYDDAZDJh3rx56OzsDHnMyy+/jGnTpsFgMIDjOLS3t/fNYgmCIAiCSAlSxiNUWVmJI0eOYMWKFXA4HLjpppuwYMECLF26NOgxVqsVs2bNwqxZs/Dggw/24WoJgiCIVMLtdsNutyd6GUQUqNVqKJXKEz5PSozY2LVrF0aNGoWNGzdi/PjxAIDly5dj9uzZqK+vR0lJScjjV69ejZ/85Cdoa2vzG1AaDovFAqPRCLPZTGZpgiCIfojdbseBAwfgdrsTvRQiSkwmE4qLiwMaoiP9/E6JiND69ethMplEEQQAM2bMgEKhwIYNG/Dzn/88Zo9ls9lgs9nE3y0WS8zOTRAEQSQXPM/jyJEjUCqVKCsrC9l4j0geeJ6H1WpFc3MzAGDAgAG9PldKCKGmpiYUFhbKtqlUKuTm5qKpqSmmj7V48WI8/vjjMT0nQRAEkZw4nU5YrVaUlJQgIyMj0cshokCv1wMAmpubUVhY2Os0WUKl76JFi8BxXMjb7t27+3RNDz74IMxms3irq6vr08cnCIIg+g6XywUA0Gg0CV4J0RuYeHU4HL0+R0IjQvfeey/mzp0bcp/y8nIUFxeL4S+G0+lEa2sriouLY7omrVYLrVYb03MSBEEQyQ3NkkxNYvH/llAhVFBQgIKCgrD7TZo0Ce3t7aiursa4ceMAAKtWrYLb7cbEiRPjvUyCIAiCIPopKeEKGzlyJGbNmoX58+ejqqoK69atw8KFC3HNNdeIFWMNDQ2oqKhAVVWVeFxTUxO2bt2Kffv2AQB+/PFHbN26Fa2trQm5DoIgCIJINAcPHgTHcdi6dWtcH2fu3Lm49NJL4/oYsSAlhBAALFmyBBUVFZg+fTpmz56NKVOm4OWXXxbvdzgcqKmpgdVqFbe9+OKLGDNmDObPnw8AOPfcczFmzBh8+umnfb5+giAIguiPBBNWf/nLX/Dmm28mZE3RkBJVYwCQm5sbsnnikCFD4NsS6bHHHsNjjz0W55URBJEOdNtd0GtOvHkb0c8wm4GODqC01P+++nogOxswGvt+XUmAMUWuO2UiQgRBEImi+lAbTn/8C/zt632JXgqRTJjNwKxZwNSpgG+FcV2dsH3WLGG/OPCvf/0Lp512GvR6PfLy8jBjxgx0dXUBAF599VWMHDkSOp0OFRUV+Pvf/x7yXNu3b8eFF16IrKwsFBUVYc6cOTh27Jh4v9vtxjPPPIPhw4dDq9Vi0KBBeOqppwAAQ4cOBQCMGTMGHMdh2rRpAPxTYzabDXfccQcKCwuh0+kwZcoUbNy4Ubx/9erV4DgOX331FcaPH4+MjAxMnjwZNTU1sXi6gkJCiCAIIgzbG8xwuHhUH2pL9FKIZKKjA2huBmprgWnTvGKork74vbZWuL+jI+YPfeTIEVx77bX4xS9+gV27dmH16tW47LLLwPM8lixZgkceeQRPPfUUdu3ahd/97nd4+OGH8dZbbwU8V3t7O8477zyMGTMGmzZtwvLly3H06FFcddVV4j4PPvggnn76aTz88MPYuXMnli5diqKiIgAQvbkrV67EkSNH8NFHHwV8nF/96lf497//jbfeegubN2/G8OHDccEFF/j5dh966CE899xz2LRpE1QqFX7xi1/E4ikLDk+ExGw28wB4s9mc6KUQBJEgXl6znx/8wDL+2pfXJ3opRIzp7u7md+7cyXd3d/fuBIcP83x5Oc8Dwr/r1sl/P3w4tgv2UF1dzQPgDx486HffsGHD+KVLl8q2Pfnkk/ykSZN4nuf5AwcO8AD4LVu2iPfNnDlTtn9dXR0PgK+pqeEtFguv1Wr5V155JeBafM/HuPHGG/lLLrmE53me7+zs5NVqNb9kyRLxfrvdzpeUlPDPPPMMz/M8//XXX/MA+JUrV4r7/Pe//+UBBP3/CfX/F+nnd8p4hAiCIBKF3SXMoOpxuBK8EiLpKCsDVq/2RoDOPlvYXl4ubC8ri8vDjh49GtOnT8dpp52GCy64ADNnzsQVV1wBjUaD/fv3Y968eWKhECD03gvm2dm2bRu+/vprZGVl+d23f/9+tLe3w2azYfr06b1e7/79++FwOHA2e34gDE2dMGECdu3aJdv39NNPF39mozOam5sxaNCgXj9+KEgIEQRBhMHmZEKIhnISASgrA955xyuCAOH3OIkgAFAqlVixYgW+++47fPnll3jhhRfw0EMP4bPPPgMAvPLKK3599oKNoOjs7MTPfvYz/P73v/e7b8CAAaitrY39BYRArVaLP7OGifEciEseIYIgiDDYnEIkqMdJESEiAHV1wJw58m1z5vgbqGMMx3E4++yz8fjjj2PLli3QaDRYt24dSkpKUFtbi+HDh8tuzNTsy9ixY7Fjxw4MGTLE75jMzEyMGDECer0eX331VcDj2XgSNq4kEMOGDRPXx3A4HNi4cSNGjRp1As/CiUMRIYIgiDDYPREhG0WECF+kxujyciESNGeO10Adp/TYhg0b8NVXX2HmzJkoLCzEhg0b0NLSgpEjR+Lxxx/HHXfcAaPRiFmzZsFms2HTpk1oa2vDPffc43eu2267Da+88gquvfZa/OpXv0Jubi727duH999/H6+++ip0Oh0eeOAB/OpXv4JGo8HZZ5+NlpYW7NixA/PmzUNhYSH0ej2WL1+O0tJS6HQ6vzRcZmYmbr31Vtx///3Izc3FoEGD8Mwzz8BqtWLevHkxf36igYQQQRBEGOxO8ggRAaivl4sgJnqknqFp04A1awL3GToBDAYD1q5diz//+c+wWCwYPHgwnnvuOVx44YUAhGGkf/jDH3D//fcjMzMTp512Gu66666A5yopKcG6devwwAMPYObMmbDZbBg8eDBmzZoFhUJIHD388MNQqVR45JFH0NjYiAEDBuCWW24BAKhUKjz//PN44okn8Mgjj+Ccc87B6tWr/R7n6aefhtvtxpw5c9DR0YHx48fjiy++QE5OTkyfm2jheN6nCyEhw2KxwGg0wmw2w2AwJHo5BEEkgPs/3IYPq+uRoVFi5xOzEr0cIob09PTgwIEDGDp0KHQ6XXQHsz5Czc3+kR8WKSosBJYvT9umivEm1P9fpJ/fFBEiCIIIg7RqjOd5mlROCBiNgsgJ1Fm6rEyIBKVxZ+lUgYQQQRBEGFhqzM0DDhcPjYqEEOHBaAwudGKcDiPiA1WNEQRBhIEJIYAqxwiiv0FCiCAIIgwsNQaQYZog+hskhAiCIMJgk0SEqIS+f0J1Q6lJLP7fSAgRBEGEQZoa66aIUL+CdVu22+0JXgnRG6xWKwB5N+poIbM0QRBEGGQeIRJC/QqVSoWMjAy0tLRArVaLfXOI5IbneVitVjQ3N8NkMgUdHxIJJIQIgiDCIPcIUWqsP8FxHAYMGIADBw7g0KFDiV4OESUmkwnFxcUndA4SQgRBEGGwSSrFKCLU/9BoNBgxYgSlx1IMtVp9QpEgBgkhgiCIMFBqrP+jUCii7yxN9AsoGUoQBBEGeR8hSo0RRH+ChBBBEEQYZELIThEhguhPkBAiCIIIg8wsTZ2lCaJfQUKIIAgiBG43D4fL27SNPEIE0b8gIUQQBBECaTQIoPJ5guhvkBAiCIIIgb8QoogQQfQnSAgRBEGEwO6kiBBB9GdICBEEQYTATwiRWZog+hUkhAiCIELgJ4SSvHze5nThvarDaO7oSfRSCCIlICFEEAQRAj+PUJJHhJ79ogYPfvQj/rZqX6KXQhApAQkhgiCIENgcqeMRsvQ48F5VHQCgob37hM/39vqDWLrh8AmfhyCSGZo1RhAEEQK7Sx4BSuaqsferDqPT5gQAtFkdJ3SuTpsTj366AwqOw+XjBkKrOvHhlgSRjFBEiCAIIgQ2v6qx5BRCDpcbb6w7KP7ebj2xSeqdPU7wPOBy8+ixJ28UjCBOFBJCBEEQIUiV8vn//XgER8w9UCk4AEC7T0TI4XLjpTX7sbPREtH5rHan+HOy+6II4kQgIUQQBBECfyGUfKKA53m8vLYWAHDNhDIAQHu3AzzvHQ2ypqYFiz/fjaeX747onN2S60zGayaIWJEyQqi1tRWVlZUwGAwwmUyYN28eOjs7Q+5/++234+STT4Zer8egQYNwxx13wGw29+GqCYJIdVjVmF4teGSSURSsrz2OHY0W6NQKLPzJCABCSqvD5o3qHDEL5umOnsi8Q912qRBKzigYQcSClBFClZWV2LFjB1asWIFly5Zh7dq1WLBgQdD9Gxsb0djYiGeffRbbt2/Hm2++ieXLl2PevHl9uGqCIFIdFhEy6tUAgB5n8omCtXuOAQB+dnoJio066NTCW3t7l1f0HO8SPEMOV2Trl0aEbJQaI/oxKVE1tmvXLixfvhwbN27E+PHjAQAvvPACZs+ejWeffRYlJSV+x5x66qn497//Lf4+bNgwPPXUU7j++uvhdDqhUqXEpRMEkWCYEDLoVWiyJGdEqNMmCJ4Skx4AkJOhwRFzD9q77RiEDABAq0cIOV184JP4YKWIEJEmpEREaP369TCZTKIIAoAZM2ZAoVBgw4YNEZ/HbDbDYDCEFEE2mw0Wi0V2IwgifWGpMYPOExFyuGTem2SgyyaIliyt8N7GolfSEnoWEfJtEBkMeWos+cQfQcSKlBBCTU1NKCwslG1TqVTIzc1FU1NTROc4duwYnnzyyZDpNABYvHgxjEajeCsrK+v1ugmCSH28ESFBXLh5wBFhVKWvYL2DMrSCjyknQwNAXkLf2hldRIjM0kS6kFAhtGjRInAcF/K2e3dkFQ6hsFgsuOiiizBq1Cg89thjIfd98MEHYTabxVtdXd0JPz5BEKkL6yNk0HkjyclWTt7lEUIsImTKEESbtITemxqLLCIkS40loS+KIGJFQo0y9957L+bOnRtyn/LychQXF6O5uVm23el0orW1FcXFxSGP7+jowKxZs5CdnY2PP/4YarU65P5arRZarTai9RME0f9hEaFMrQocB/C8MHiVpcri+bgaVWTfVbs8oiVTw4QQiwgFSo1FFhGSRoFsFBEi+jEJFUIFBQUoKCgIu9+kSZPQ3t6O6upqjBs3DgCwatUquN1uTJw4MehxFosFF1xwAbRaLT799FPodLqYrZ0giPSAeWq0KiX0aiWsdlfMzMM9DhfsLrefqHrwox/x6dYGLL/rXJTlZoQ9T5dPaoxFhNo8qTG3mxd/drojjQhJGypSRIjov6SER2jkyJGYNWsW5s+fj6qqKqxbtw4LFy7ENddcI1aMNTQ0oKKiAlVVVQAEETRz5kx0dXXhtddeg8ViQVNTE5qamuBy0bcbgiAigw1d1agU0LFeQp7UWJfNiblvVOG9qt4NJr3ule9x9tOr0Nbl9fK43TyWbWtEl92FHRF2gfZNjeV4hJC5W4gIWXoccLmFSJAjQlHTLRmrQREhoj+TMjXkS5YswcKFCzF9+nQoFApcfvnleP7558X7HQ4HampqYLVaAQCbN28WK8qGDx8uO9eBAwcwZMiQPls7QRCpCxu6qlEpoPOkqljaaMOB41hd04Ij7T24dsKgqM+9o9ECm9ON9bXHMfu0AQCA/S2dYiPELklDxFCw/TKZR0gvpMZYFOi4RGg53JGapSURIRJCRD8mZYRQbm4uli5dGvT+IUOGyEpap02blnQlrgRBpB7MI6SVRoQ8USLmwemyRyZYpLjcvGjE3niwVRRCWw63i/t0RiCEeJ4P4BGSl8+3SoSQaJY2m4GODqC01P+k9fXo7uoRf6U+QkR/JiVSYwRBEImCCSGNUgGtz5gNJoSkFVaRIi1Prz7UJv68pa5d/DkSIWRzusW0V6boERIiQmYWEeqUpN54wNXWDsyaBUydCvhWxtbVAVOnwrrmG8ljUESI6L+QECIIgggBM0sLHiHhLZOJmPZuJoSijwhZJSJnR6NFTG9tOewVRZGkxqT7sIhQToiIEAA4zBaguRmorQWmTfOKobo64ffaWnRLHpoiQkR/hoQQQRBECMSIkEoBnUoeEWIRlx6HNyoTKdIoksvNY2tdOzptTuw52iFujyQixLpKZ2iUUCg4AN6IEDNJt3bZZMc4B5QAq1cD5eVAbS12XnIdmld9K4oglJeje8xYcX/yCBH9GRJCBEEQIbBJUmN6jSCEWCUZiwgB8lRXJPim0zYebMUP9e2Q6qlIhJDYVVrjtXyyERs8D1i6HTKzNOCpHCsrA1avRtOoMfjpjPsx761NogjC6tWwQtpAkiJCRP+FhBBBEEQIZBEhT2qMlc9LGxZaI6zwEvf3SadtOtgmGqU5IbCDzp4IIkJ2VjqvFLdpVAqxlL692+GfGmO9hMrKcPSZP8OtUOJQjmDWxjvvAGVlsigQRYSI/gwJIYIgiBDIPEIqX7O0V2BEa5hm+zNxtflwGzYdbAUAnFpiBBBZNZpv6TzDO3jV7i+EWHfpujo4Hn8CANCp0YMHgDlzgLo6n+nzJISI/gsJIYIgiBBII0Ja3/J5SWos2hJ6FhEamatDtk4Fq92FNXtaAADnjMgHAHT6eHsCwTxCmRq5EMrJ9DRVtDpkVWOAp4TeY4y2HxXGF7kVSlhHVIgG6m6b99pslBoj+jEkhAiCIEIg7yPkUzUmSY11RxsRau8EAGRt24xxhXoAQmm7WslhYrbwmJ37Dgr9fkLgjQgpZdulTRX9IkKNR0RjtGNgmbi989P/igbqbqtXhFFnaaI/Q0KIIAgiBN5ZY9KGii643DwsPdKIUJRCqLMLAJBhbsWZ//U2ix2Vp0PeHbcK5+RUQtPDELBIlG9qTNpU0U8I6TKAwkKgvByOp58Rt3fkFgKrV8M5bDjsSolZmsrniX4MCSGCIIgQiLPGlEqJR8iNjh4HpM3rozZLZ2QDADJ0aoz/4Vtx+5h1nyPzwD4AQKcxN3DnZwliREgTWAjVt1lFMcf6Czn1mcDy5cCaNXDk5IrHdNqcQFkZur9cKTtXDzVUJPoxJIQIgiBCEKihos3hkqXFgN6bpfWzL8BonRNql3C+MbuqkFlcAADocrrDjgrqZB4hn4hQjqeXUG2LEHnSq5XI9ky5t7vcgNEIlJaK1wd4q9S684tk5yKzNNGfISFEEAQRAqlZmvUR6nG6ZEZpIPru0sxTlJlrhO6t13H1ti8x7Hgdph7YjOwX/wZA6AMUTmB5J8/LPUKsamx/i+BFys3UQKUU6vKdEvEjVpAB6PQYpH17IpFZmujPpMzQVYIgiEQQuLO0W1Y6D0QfEWLeHn13F3DHHPy2tla8j7/pBiiueh5uXkhX+UZ7Ap0nI0hEqKG9GwCQl6UR03xOSddGh0QUdXgiQr7XQhEhoj9DESGCIIgg8DzvTY0pFdCyhooOF8w+EaGozdIsIvTay96OzuvWAeXl4GprkWmzAgjfXTpYHyFWPs8ya7mZGqhVQkTILosISVJjnnOxiJBe0i4gXIqOIFIVEkIEQRBBkAoGjaRqrDuAR6g72tSYWUhZZRxtFMdaYPJkcQZYdo9wf+fhxpDnYX2E/FNjGtnvuZkaqBTCW75Tkg6zOwN4hDwiLTfTew5KjxH9FRJCBEEQQZCKBHn5vNtPCPlFhMxmoL4+8Inr68X99SaDIH7KPP18PDPAMnnh/i6VNuQaxfJ534aKngoxRl6mBholE0LBPELy1JhJcg4bldAT/RQSQgRBEEGQCiGNUgGdSlI11i14hDSebbKGimYzMGsWMHWq0MFZSl0dMHUqurfvBABkPvKQVwQxysqQddIwAEBnOCEUJDXGJtAzcjO1olk6WGqswyc1ZtCp4RloDxuV0BP9FBJCBEEQQWCCQaXgoFBwsoaKZk9EqMSoA+AVJACEJojNzeK4ClEMecZaoLYWXW7h7Vc/oDDgY2cZMgBE4hEKXD7PqsYYeZkaqJT+qTFHoPJ5ZsDWKGVRMILoj5AQIgiCCIK0YgyApHzeLZbPDzAK4zFkJeelpaLXB7W1cE/7Cfh160QRhPJydA8pBwBkaAJXhLFUV1cYIdQZpHxeqeBg0HnPnZupgcYTEZKKH3sgszQbCKtRQuu5dmqqSPRXSAgRBEEEwVcISafPs/L5EpMghPwEi8fr4yofhovOvRNX/OM78Kw6bPVqWHlBlGRo5AKGkeURMR1hhJBVjN74C6ocidk5N8trlnZIy+edEo8QK5/3iLoMtVIWBSOI/ggJIYIg0oKDx7rwwcbDcLkjLwO3SQauApANXWVm6RKTkBoL2EeorAxHXnoDu4rKUV06Cp0aPfDOO0BZGayelFZQIaQNHxGyOV2i2TlQryGTJD2WF6Shot3lXTcTXT3MyE2pMSINoIaKBEGkBQ//Zzu+2XsMlm4n5p9bHtEx0vEaAKD1iAKeB1o6hOnsLCIUUAjV1aHlwUeB6fcCACzaLGTPmQP+66/FqEuwZoleIRQ8EiO9LzOAoJIapnMlVWPS1JgsIuTpLG2VCCExNRYkIlTXasWaPS1gZxlg0GH6yEJwHBd03QSRTJAQIgii38PzPLY3mAEAL62txfVnDRb9PqHwDlyVR4QAb/RkgDFIRMhjjD6myBc3mYefjIFbvoV9+vlwXf5HAAi6DiaQWLfnQLBokValEI3QUlj5u0alQJZWJUaEHOHM0pKGiiwiFKyP0ML3tmBbXbts20e/nIyxg3KCrpsgkglKjREE0e853mVHmyeVdazThveqDst3qK8XSt598EaEBDGgUSrgG+jwRoQkgqW+XjRGtww+Sdxs/vvLQHk5rPVHxG0Z6mCpMWF7qNQY6yGUFSSqxMZs5GVqwHEc1AEiQr5maZ7nRbN0RgQRoYY2oQP2OSPyReHFomUEkQqQECIIot+zp7ZJ9vuLa/Z7P9g9fX0wa5afGPI1S3McJxqmASFCxMSG1e6Cm/mPsrOBwkKgvBwtv7xT3N+SnSMYpYcJ4kij5AJGcgCvWTpU+XywHkIMVkLPOkSrw5TPO1w8bE63JDWmCmuWtniiSIsvOw0nFWX7nZ8gkh0SQgRB9Hv21rcBAKbWbkKJtRXNHTZ8sLFO1tcHzc1C/x8JTAhpJWJFmsoy6TXIlJStiyXmRiOwfDmwZg2OKXTi/eZuh2CUXvo+AP9BqVJY+XxoIRTaZ8S6SzMhpPJ0R3S4A3eWZo8nT42x8nn/1FiPwyU+R9k6NdTMjO0mYzWROpAQIgii37PXLoiVUbY23PrNewCAf3y5E7bzZngHnq5eLfT/kcAqqlhECIDYXRoQPDjSCJHM2Gw0AqWlsjSRxdN7yJoj+IaCpcUAb0QoZGqMRYSC+Ix+UlGIUwcacMU44brUnrVLDdLSiBAgeJKkqTHRIxQgIiT1L2VpVWJ5vp3mkhEpBAkhgiD6PXuOCgNMT7r9F7iqcz+KO46hqYfHF+pirwjyHXMB/9QYAFEYAELqSaHgxBL47gCVY8c6AwghJjRCRISY70caEdp7tAPPLN8tRJYk9wWLCA3Oy8Sy28/BJWcMBACoFf4RG1/R0tnjExFSBTdLd/QI68jWqqBUcJKIEKXGiNSBhBBBEP0anuex96iQ8hoxcjC0b72Bsw9uBQA0GArEvj6BEIWQJDWmlQghZg5mQqgrwAT6FokQMotCyCk7LhCZAYTQn1fuxd9X78fHm4Vhrl220GZpX1SByud9I0I2h7g+oY9QcLM0iwhle6JX3un2FBEiUgcSQgRB9GtYxRjHAcNs7cCcOTD2CBGidl02MGeO/2BUD7aAESFJakwveG9YV+dAvYSOdQQSQqGbKQJClAUQxA7PCxGWOk+F1sHjwr9dEZxHirdqTJoa8/EI9TjF5ol6tVIUfoGEkIVFhHSCIAxUnk8QyQ4JIYIg+jV7PNGgQdka6M8/D6itFTsuWwoH+A9GleDbUBGAzBPkGxGy+kSEumxOUawAXiHk9eCEMEt7hJCb9/b1aWzvASA0MWTnl+4bDnWAztIsIqT0pM06bU5ZxEonls8HSo3JI0JiVRqZpYkUgoQQQRD9mr0ef9CIXdWiMdp463wAQPv5s8XBqJg2Tej/IyGwR8j7s9FPCMmjJlJ/EOAtNe+SpJ6CkaFRij2LOm1O2Jwu8XwsMhRtaixQRIiJPVZhJgghz9DVMBEh5hEyeISlWJVGESEihSAhRBBEv2Zvs8cf5LKIxmjTwEIAgBkq75T4wkKh/48Eu8+sMcC/fB7wRmR8I0K+Qsg3NRas2gsQehZlsRL6HieOmr3nqmvtBs/z3tSYNrLUmCrA9HmHKISEa7F0O8SUoKxqLKBZ2scjFKBPEUEkOySECILo14gVY7fdBKxZA5SViREM1tcHa9YIfX+MRtmxASNCAVJjenXgiBArnWf3+5ulQ0dyMiXzxhrN3eL2bocLx7vs0UeEmJk5wPR5NqleWu6foVGFNEuzKjhvaoz6CBGpR8oIodbWVlRWVsJgMMBkMmHevHno7OwMeczNN9+MYcOGQa/Xo6CgAJdccgl2797dRysmCCLRyCrGhhSKfYKYR4hNkEdpqZ8IAiTT54NVjXnOI0aEfAaktnTaAQDlBZkA/Mvnw807Y72EOmwONJl7ZPfVtVq95fNhBBVDrQoeEcr1RISkVW5alQJaj/AL1FDRIkaEWGrMP/VGEMlOygihyspK7NixAytWrMCyZcuwdu1aLFiwIOQx48aNwxtvvIFdu3bhiy++AM/zmDlzJlyu4NOcCYLoP8gqxgqyxO1s9AQTJsGI1COkD+IRYtEV9tg2pxs9Dpdolg6VGgOCR4QAoK6tW2KWjjA1JgoV/1ljLCLUbPFGsRQKLqLyeYNHCAUyYxNEspMS0+d37dqF5cuXY+PGjRg/fjwA4IUXXsDs2bPx7LPPoqSkJOBxUqE0ZMgQ/Pa3v8Xo0aNx8OBBDBs2rE/WThBE4hArxnIzZNEXJoQ6bE44Xe6g874CVo3J+gh5PEJBqsaYEBqSnwmOA3heEF9dklleoZAOXj3S7h8REr1GUVaNBZo+n5cpjwix50tsqBjCLO31CFFDRSL1SImI0Pr162EymUQRBAAzZsyAQqHAhg0bIjpHV1cX3njjDQwdOhRlQZqnEdHB8zz2NXd4B00SRJIhVowVyk3QTAgB3vROIAI1VJR5hPQsIhS4jxAzSxdma8WoiaXHge4IGioCXu9Ph82JI56IUH6WFgBQ32YN21naF+/QVf9ZY4EiQgBCmqUtvkIoQMSJIJKdlBBCTU1NKCwslG1TqVTIzc1FU1NTkKME/v73vyMrKwtZWVn4/PPPsWLFCmg0mqD722w2WCwW2Y0IzAcb6zDjj2vx+roDiV4KQQRErBgrypJtVykVoshot9qDHu9tqCifOA8I0RUmZDKDdJZmEaGCbK0ovszdjogaKgLS1JhT7CE0cWguAKFyrPedpQXx43LzcHm+yORmCusTx2uwiFAkqTG9b2qMvhwRqUNChdCiRYvAcVzI24mamysrK7FlyxasWbMGJ510Eq666ir09PQE3X/x4sUwGo3ijaJHwdnbLHzb3tcc2rROEIHY39KJ0x79An9csadXx6+uacby7aG/CLGI0Ek+QgiATJgEI1BqjAkEo14DztPoR+wjZAscEfIVQl0RNFQE5N2lmyzC+9YEJoTarL3oLC03S0sjN6x8nsHOKZqlQzRUNPiUzzuoaoxIIRLqEbr33nsxd+7ckPuUl5ejuLgYzc3Nsu1OpxOtra0oLi4OeTwTNCNGjMBZZ52FnJwcfPzxx7j22msD7v/ggw/innvuEX+3WCwkhoLA/BAdIaZjE0QwVu48ig6bEx9sPIy7Z4wQRUUkOF1u3PJuNZwuHlseOV+sWvKFRWRKjHq/+4x6NRrau9EeSgg5A02fF4QBK50HJCM2JFETnue9EaEsLQx6YR9Lt1NMjUVqlj7WaUdrlxC5YkKooa1b9OJE21CRHScVQrmZciGkU/tEhJyhPELyhooUESJSiYQKoYKCAhQUFITdb9KkSWhvb0d1dTXGjRsHAFi1ahXcbjcmTpwY8ePxPA+e52Gz2YLuo9VqodVqIz5nrHG43Pi+9jjGDsqJOO+fKDo93367SAgRvaCmSUhbHbXYUN/WjbLcjIiP7ZDMw2q3OoIKId/ybilMyEgrx9bvP46H/7MdT1xyCiYPyw/oEWJ/l7mSCIo3IuT9W+iwOcXUWn5W4NRYuPJ59lj7PCm+DI0SJxVlQ63kZIbncJElBhMq7Lqk5wgWEdIF6SzN87zk+aURG0TqkhIeoZEjR2LWrFmYP38+qqqqsG7dOixcuBDXXHONWDHW0NCAiooKVFVVAQBqa2uxePFiVFdX4/Dhw/juu+9w5ZVXQq/XY/bs2Ym8nJB8tLkec16rwl++2pvopYSFvel3hjCbEkQwajwVXQCw6VBrVMdKJ7J3hhDi3hEQ/kLB6NtLCMD/fjyCfc2d+GxbIwBvakzaWfqck/Jx2diB+OVPvJWnGVp/szQbtpqlVUGvUQbxCIVJjXkEBktDDzDqoFRwKDF5I1wapUIWsQqFr1BhESGVghPN3OI1sdSY6BFyi8NfAcFLxPxFBhq6SqQwKSGEAGDJkiWoqKjA9OnTMXv2bEyZMgUvv/yyeL/D4UBNTQ2sVmEGj06nwzfffIPZs2dj+PDhuPrqq5GdnY3vvvvOz3idTPzYYAYAHDjWleCVhId9AIX6ICKIQDhdbvHDHQA2HWyL6nhWrQQEf/3ZnC4xIhMqIiT1CB31+HDq24QKrUB9hAw6Nf541RmYdrL3fSTQ0FWpUZodxx7PGmHVGGuUyMQaE0BlOd7oWaQ9hABp1Rgvuz61UuF3Hp1P1RjgFYaA1x+kVHhN42LnaqoaI1KI5M69SMjNzcXSpUuD3j9kyBDZt5WSkhL873//64ulxZRDxwUh19YVvJIlWWAVMiSEiGg51GoVP4SB6IVQhyQKGSwiKd0nkIfGEMAsfdQjXhp8hJA2TMQl0NDVY56u0gWecnf2eG1Wu5jWi7RqjFFs0AEAynL1QfcJBYvY2H3M0molB5VSAb1aKVaNZfj0EQKEqBAzT7NoW5ZWJfq7qI8QkYqkTEQoXTjc6hFCIUp6kwVWIUNCiIgW5g9iH+g1Rztgtobu8ixFKnKCmfXZPllaFZQKfyM2G5gqTY01s4hQezfcbj5gRCgQmQH6CLV0COfKzxYeh6XGWJ8eIPLUGGOAJyJUKo0IRegPArxeJxYRYiksdn1ZksdjfYTUSg7Mxy5tqmjulvuDAGl5PkWEiNSBhFAS4XS5xW+ibVF8KCQKJoC6bE5ZNI4gwsGE0FlD81CeL8zhqj4cuU+oQ5oaCxoR8viDdIGFgm/5vNvtrfKyO9041mmT9BGKNCLk/VtgHZpZRIg9HhuVwXHycR2B8I32lBhZRKh3qTGVz1BUb0RIWEe25PFYk0iO48SokLSE3vv8etOOaqoaI1IQEkJJRGN7jxhSbrfak75jM6sWc7j4gF1nifRl1e6jOPOplfi6pjng/UwInVycjfFDcgAAG6NIj8nN0oG/NFi6g1eMAVKPkBB9bbXaZSmd+vbugFVjgWBmaTfvbcJ4rEM4b75PaowNT81QK8O2DPBN6Q0QPUK9S42pJQ0VeZ4XU2Rse6CIEBC4hL6jJ0REKMnfuwhCCgmhJOJQq9cg7eblhtBkw+3mZT1TKD1GSFm5qxktHTZ8/uORgPezGWCCEBL64mw6GE1EKBKPkHz8gy++ESFmlGbUt3XDFqChYiCkooGlx1o65WZp9nhixVgEAsZXCAWMCEWRGmNmZkDw8TicXo+Q7+NJ/UvimA2Hv1laKjRVNHSVSEFICCURzCjNSOb0WLfDBWk2jHoJEVKOe0RAoOrHHocLB48L208uysb4wUJEaFu9GbYATfsCIa8aC3xMoIiFFN/y+eYOeX+xOomhO5wQUkqmtLO/hWNBhBAjkm7QvmkvFhHKy9SI4qs3ZmlASIsxj5AYEZKlxvyFkDQiZAnQmsBbNUYRISJ1ICGURBw6Lv/QaE3iyjFf4dNBvYQICcc9FVOBhNC+5k64eSAnQ42CbC2G5mciL1MDu9ON7Z72EeGQRYSCpcbED+rAqTHfiFCzT0RI+veoVYYXLcz4zKqumN8oPyuwEJJGkYIhjfZk61SiUOE4TjSaZ/WifB4Q0mMOn4hXsNQYq5qTNlUM5BES+whRQ0UihSAhlET4RoRCDYMMhNvN4/b3tuCZ5Sc2ny0SunymbFNEiJBy3CPij3Xa/WZ5MX/QSUXZ4kzBaH1CciEU+LXn2/XYF+YRsjnd6HG4cNRTzcVEQW2LVwhF0rCQRXhY8YBvRMh3HZFEchQKThzD4TsmhPUSis4j5I0IOV1uP49QdpDUmFYdyCzt//zS0FUiFSEhlESw0nn2ZhJtRGhPcwc+29aIF9fsFzu+xgtf4UMeIUIKS40BwEGfqBDrKF1RnC1uOzNKn1CnJDUWLBrpOwfLF2lZvbnbIXqEThtoBADUHuudEOq2u2Dudohpp7wsoXxerVTIZotFOiiVRWmKPf4gxlhPSnF4of9A2WBwHCeO2ZBGhESPUDCzdICIEBtNIjNLU0NFIgUhIZQk8DwvCqFRAwwA5P1NIoF94Lh5+QdRPPAVPiSECIbd6RajMYB/ekyMCEmEUEWx8JpnfwPhiCQi5J2MHlgIcRwn8wkxj9A4j8BgX0SUCi5gHyJfWGqsy+7Cfk80KT9LKzYgBOTpsUhSY4A34lNikguhW6YOw9f3TcPPxwyM6DwMlWQCvW/5fJZWsr5AZmmnf0QocGqMIkJE6kBCKElo6bTBandBwQGner6RtkaZGjsoSa0dtcRXCElHCQAkhAgvvpHM2pZO2e9MCEkjQsxwG6nXLBZVY4DcJ8Q8QmeUmSCtag9XOs+Q9hJika2xg0yyfaR+pUhTWswXNMAnNaZUcBianxm2BN8XZmh2uNxwOD0NFQOVz2sClM87ApXPS/oIKSkiRKQeJISShMMeETPAqEeRp41+tB4haQrCtxQ41vhW6tDgVYJxzCcaKU0xma0ONHlemyOKJEJI5z8JPhQdEcwaswTofOyLNyJkF788DDTpxVEWQGRpMcAbEbLaXaLXacLQXNk+UiEUbvI8w+SZCl+aow+zZ2SoVWzwqn8fIZlHSO39OdAEeksAoamihopECpIys8b6O8woPTgvAzkeE2e0HqGDkioX31LgWOPrESKzNMHwfd1KU2N7moVo0ECTXpZSYR+mXXZhonm4VFREESGbf1WTL9LUGOv7U2TQYaBJjyOexofh5owxpGbp6kNCRIj1SPJ9PAAyv1Ao7pw+HOX5mbjglOKI9g+H1yMkSY2p/MvndRrvdbPnIFBqTG6WZg0VKSJEpA4UEUoSDrVKhFCm8A3Qr4+Q2QzU1wc+QX09DklSEPGOCPmVz5MQIjwc7xIExQCPuffAsS5x7AQrjz+pSG7wlaZXwkUX3W4enZLUbKfdGbALu+hh0Qf/vscqx2qPdcHl5sFxQH6WRhZ9iTQixHr+/NhgRpvVAZ1agVNKDLJ9ZB6hCBshjhuci8cuPiWq6rBQSLtLhzJLS+eghYoISaNcKqoaI1IQEkJJAutZMig3EzmeULhsAr3ZDMyaBUydCtTVyQ+uq0P3eTNwpMO7f3NHvIUQpcaIwLAeQmeUmaBUcLDaXWKE8tu9xwAAZ/qkjDQqhRh1CNdRvcvulDXz5HnIupwzvFVN4SNCrNN1XqYWKqVCNtQ02tTYN55rHFOWI+vbA8ijU5FWjcUataT7szh0NVBDRXVws7TbzYspyUARIaebp/mDRMpAQihJkKfGAkSEOjqA5magthaYNs0rhurqgGnTcLhNLnzibZbu8nwjZx9eXXYSQoQA6yFUZNCJM7FqW7pgd7qxvvY4AODcEQV+x7HIQjghxCI9aqW3FNxXiPM8H7azNACYfIRQkUHo+SOLCEVplmapwTM9vZGk9CY1FmtUkoiQ3Sn3CLEIWYZGKUtP+pbPS8WofOiqfIQHQaQCJISSBFY2PCg3AzmZXgOn+K2qtBRYvRooLwdfW4v3b3oQOz5fK4ii2locqBgjO19fpcaYsZs6SxMM1rohP0uDoZ7J8geOdWHToVZY7S7kZ2nFFhFSmGAJ91qSViuxVI5vd+keh1v8IA4VEWLiq75NmAjPXs8DJUIoco+QXHD5+oMAwKiXVmUlxqLpTY35l8+X5mTgrhkj8OjPRsmO0fqkxlh7BI1SIXt+VLKGjSSEiNSAhFAS0NHjEL9FSiNCTjcv996UlQGrV2PL+POwaPy1uOOjnUKEqLwch+77DQBvc7W+Mkuz6hoySxMMlhrLy9JiaL7weqxt6cSaPS0AgHNH5EMRwAzNBEt4ISSIniytd+SEbxUj20fBhY68sIoshjci1JvUmPdxFBwwxqd0HpD7aRKeGnNLzdLe/4+7ZpyEq88cJDvGO2JD2F/amkBavi+bZUaGaSJFICGUBLC0WF6mBtk6NXRqpZifb/OtHCsrQ/OihwEA+/PK0JSVB7zzDg66hDd01qH3WKctrr082AdPoeeDg/oIEYxjntdsXqYG5QXeiNDaPYJ3ZurJ/mkxADCIEaEwqTGJN0UUQj7iySLpKh2qz47v/K+CbEHYS5sX9kYIjRxgCBiJMiaBEGLpRLuT9/MIBcPXLB0s7ShLjVFEiEgRSAglAWJaLM/7LTQ3WOVYXR06/vaS+OuGslOBOXNwsEHwXowdJBhUeV6Y8xQvWENFlkogs3T/478/HMHTn+8OWJEVilZP1VhelgblntTYlrp27DpiAccBU4bnBzwu0l5C0g9hb0RIfky4OWMM5olhsIiQVqUUf47cI+R9rDMDpMUAXyGU2NSY0+0/aywY3unzvhEh+fOnUHBgwT5qqkikCiSEkgDRKJ3rFULMJySLCHmM0R0Wbwfp70+dDNTW4tBewTxdXpCFQs+Qx3j6hLweocRHhPa3dOKDjYfjPl8t3Xj00x14cc1+7Gi0RHWcmBrL1GKoJyLEUr+nDTQizzON3ZfIPULeD+GsIMcE6nocCN+IUFG2NxI00CT4hCKOCEmmwI8PYJT2fbzEpcZY92ceDmekQsjTR4h5hLqDtyYQzdj090ikCCSEkoBdR4QPmmEF3t4q3soxjxCqrxeN0R3FpeJ+34/5CXqGn4zGDOEb6BC7GYWeKE08hVCnj1m60zNxOxE89ukOPPDvH7HBU5FEnDidNqfYITqa15HV7oTVLnxY5mVpUJStk5VhB6oWY4hCKIyoDhwR8hVCrJlimIiQjxBiqV7A6xPSqCITLBmS6xw/OHBEKBk8QszHY5eZpUM3sNSpgkSEtP5CU63wlucTRCpAQigJ2FbfDgA4Q2KuZEJI7NKbnQ0UFgLl5eiovEHc74DZjo1vfSTs4uxBboFJjAjF0zDNPuyYEHLzXiNlX8M+qI9H2YmbCE6dZPip78iMULBokEalQJZWBYWCwxBPegwI7g8CpGZpeZqrvs0qGzfj/RBWieLJzyPUHVlEyOAbEZKM1mAl9JFWjZV4IkgnFWX5TYpnJFVqzCXxCIW5RrGPkE/VWKDUo7Q8nyBSARqxkWBau+xiauz0gSZxOxuzIU6gNxqB5cuBjg50fN8qO8f7BwUhMKQ0H5zJJKarmvsgIpSfpQXHCU3tOmyOiOcnxRLW3LEnQFM9oncc7qUQapUYpZlJuTw/E7uOWJCtVeGMMlPQY9mHKhMxgNBCYvpzazA4LwNf3j0VgFf0ZOvUsDmF//PeRoR0aiV0agV6HG4oOGHdjJ+eXoJv9h7DT08fEPa6AaAsNwMf/3KyTEwFeryfnFyAVqsDBdmBU4TxRi2ZPh+pR0jrM3Q1VOpRWpVGEKkACaEEw6JB5fmZMEqMm2zMhmwCvdEIGI3osB0FIHwj7rA58eWOJgDAkCKhNwvzOcSrqSLP86JHKFunQpZGWEdnjxOF2WEOjgOsmaN0DhJxYsgjQpFH2o5LjNKMYZ6WDpOH54X8wBXN0pKI0MHjVticbuw52okehws6tVKWGlM7hPP5ptMiaabIMOrV6HHYkJ+lFaMZADCqxIDPbp8S9ngpYwYF9gZJeeOmCeB5Puqp8bEiVB+hYIipMU/U1zteI0BESOGNOBFEKkCpsQSzra4dAPy+KbPUWKAJ9OxNnqUZWAh6iKfqjH0jPRqnMRs2pxvMB5mhUYqGVd+xG30FE2XJJIR+88mPuOmNKrFzb6ohjQi1RBEROiYxSjPmTh6CuZOH4NezR4Y8NpBZmlWgAUBju9D00BKooWKQ8nnf1FcgTHrhb03qD4o3iRJBgESouP1njQVDNEs7w0eEVJKIE0GkAiSEEsxWjxAa7SuEMn08QhLYB8F5FYWQ9qUbnCd4MQrE1Fh8IkLSNESGRiUOg+ywhS57jgc2p0sUgsmSGutxuPDu94fxdU2L+P+bakiF0PFeeISkEaHcTA0eu/gU8fUZjEAeIWk0qsEjhKTN/LKDmqWjiwgB8oqx/oyYGnO64XBG20fIv6Gi//m9QosgUgESQgmE53kxIuQnhHw9QhI6PW9CA4x6nDrQKG4fmu+JCHne0OM1eNXqifzo1cI8Ila5k4iIkPQxkyUixD6wAaD6UFsCV9J7epsaE3sIZWrC7OmP6BGSRYS8j90oCiGvyMkM0lAxWJ+bQLCUdGEIb09/Qi0pb4/aI+R0yea4GQJFhBQUESJSCxJCCaSutRttVgc0SgVGDpCba/yqxiRIPwjOKs8Tt7Nv3MwsfazTHpc3I/btm30IZQeZ99QXSEd72JIkIsTmVgGpKYTcbh51kmvoTdVYsF5BoWCRGWlESPr6b/CsSTr1PCtIyX2kDRUBr2gbEKTSq7+hkk2fZyM2wgghj0eI54Wye9b0MpAZXaUkjxCRWpAQSiBbPUbpkSUG8Y2GwVJj7VaHX38e6bexs8qFfiXZWpX4hp6ToRHD3y1xKKFn5uQsTwO5TE3gb+V9gXTqfbJEhOrbvNGUzYfbEtZfqbc0d9hk3qZ2qyNiQS0drxEtTLT0OLwf0FIR1tAuRDhlDRXFaKRv+Tz7oA4fEbpx8hBcPb4MV4wrDbtvfyCwWToyjxAAXPfKBhw83gWAqsaI/gEJoQSy9XA7AOCMUqPffbmeiJDd5UaX3RvpcLjc6PZEPrJ1KkwZXoArx5Xi/lkniwZMhYJDYXb8miqyDx3WB8U7ATwRqTHvB2CyeISkEaHWLjsOHreG2Dv5YP6g0hw9lJ40x/EI02MsNZbfi4gQEzWAV+zLIkLtVllaJlsn6SN0Ah6hkQMM+P0Vp4t9gPo73vL5yGeNaZQK8bmsPtQGh4uHKUONwfkZfvt6U2Op9QWASF+ofD6BBGqkyNBrlNCqFLA53WjrsgccLpmlU0GtVOAPV472O74gW4uG9u64NFVkvhy2pmDznvqCziT0CEmFECB8cAzND20UTiaYEBqSlwmb042WDhuOddqCNgmUEsgsHSkqpQIZGiWsdhcs3Q7kZmp8PEI96HG4RRNutk4NFmw7EY9QusGqxhwutxj5C+cR4jgOr94wHpsPt2Ngjh6lOXqMKMwKUjVGqTEitaCIUIJwuNzY3mAGAIwuNQXcxzt4VdpVV3jD16uVId+84tlUsUv0CAmpsUSapa29iAgd67ThTyv2yEzNsYSlxgZ72hlUH2oNtXvSwYRQWW6GGNmJxCfE87wohHJ7kRoD/EvopZGoI+ZumD0pL44DMiWtG+wut1ja7XbzYoQoXEPFdIR1kRY6S0cmhABgYnkebp02DBePLsHYQTlBRSalxohUg4RQgqhp6oDN6YZBp8KQIGXFpgCGaUuIslUpYi+hOJTQM19OhkcAieXzCfAISVMikUaEPthYh798tRfPfVkTlzWxiNAlo0sApJ5hmlWMDcrNQL4nsiOtHDt83IqPt9T7e9dsTrEKSdpHKBoMPiX0xyV9hBwuHrXHOgEI4pvjONGfBnijQl12p9jnKpI+QumGmLpyez1CGlXs+hp5I04UESJSAxJCCULaP0ihCPwmlJvpX0IfqfehKI6DV1lEKMvPI5TgqjFnZBEh1qRy7Z5jcMe410mPwyUa1C8+QxBCe452ipGMVOCwRAgVBIgI/eY/23H3B9uwfHuT7LhWj1jK1Ch7PWpFWkJvtTvFvjUmT4l7TVMHAK9gUio4ZHoei4li9jeiVnIRzwlLJ6SzwJhYiSQiFClqJQ1dJVILepdIEME6SksJFBGK1PvA5hgdjYNHiPlyxPL5RPYRkhjJfYe+Huu04d/V9X4pM2Y2P9Zpw64mS0zXw9JtmRolhhVkid2+txxOnaiQVAjle15HxySvo52NQkr3u/3HZcd5x2v0vkNztmTMhnSA6wjPmA4mhKRfBLJ80mnSrseJ7OCcrGgkQiXSPkLRIEaEqKEikSKkjBBqbW1FZWUlDAYDTCYT5s2bh87OzoiO5XkeF154ITiOwyeffBLfhUbIrFOLccOkwThnRPBp3LkBxmxIe6iEgkWE4uERstrlHiFvZ+kElM+HiAj9ZeVe3PvhNvxna4Nse7fdK5jW7jnW68d2u3nMeW0D7vnnVnEbS4uV5mSA4ziMHSzMntqcIumxbrs3oiVPjQnbzN0OMU22yeeajp2gPwiQe4SOe74A5GdqMNBT0bUrkBDy6S4dafo4XVH1YtZYdOeniBCRWqSMEKqsrMSOHTuwYsUKLFu2DGvXrsWCBQsiOvbPf/5z0n0znD6yCE9cciomDM0Nuk+gwauRp8Y8Zum4RITkDRWD9XLpC+Tl8/I3XvaB7ttLSRohWrunpdePXd/WjW/2HsNHmxvEFCQzSpfmCB/c4zxCqDpFIkJs/QadCsYMtej1YSKntsX75WN3k0U2IJVFcPJ7UTHGMEiaKrJS/NwsDQZ6ns89ohDyRkR9Kyq9k+fJHxQI5hHqcbjFqrtw5fPRoKaqMSLFSAkhtGvXLixfvhyvvvoqJk6ciClTpuCFF17A+++/j8bGxpDHbt26Fc899xxef/31Plpt7GBjNtq6pB4hz7ddbeg3edZHqLXLHvPBn11BhFAiGirKy+cDp8Csdvl2qRDadKhVjHBFi9T3wyI+3oiQXAhtPdyeEt+QpRVjALypMU9EqLalS9yX54Etnl5YgHS8xomkxiQRITHCpBV7/LD/U2nPoSyfXkLR9BBKR1jVmPR1r46pWdprxiaIVCAlhND69ethMpkwfvx4cduMGTOgUCiwYcOGoMdZrVZcd911+Nvf/obi4uKIHstms8FischuiSIvgFE10jd5k14tviEFGtNxIjBhwUyqvh9EfUmoiBD70OwO4hECBMPo97Vyr0uktHd7n9dqHyHEhMSIwmxkaVXosrtw4FiX/0nC0ONwwRxg3ly8kPqDAPhVjbGqLUb1QW9rgGMn0EOIwaI4lm6H+LqVpsYYgVJjHWJqjIRQKJiHR/oFIbapMYoIEalFSgihpqYmFBYWyrapVCrk5uaiqakpyFHA3XffjcmTJ+OSSy6J+LEWL14Mo9Eo3srKynq97hOl0PNtXJrasUiMoKFQKDjRqxHNrKhI8E2NMa9Ql90Z8yqscMhGbPgKHs8bfTCzNHt+e+sTklbzsdSXb2pMqeBQ6ElTHo9QkG6oPY6fvvANznjiS1Q8vByjn/gSn20LHfmMFb5CiFWNtXbZ4HLzopgbViC0fNh4ULhunuexdq+QZhxyAs0jA3mEcgMKIWlqTPiZRSSjGa+RjrCqLqkQUgWpXD2R86dCBJQggCiE0BVXXIHly5fHdG7SokWLwHFcyNvu3bt7de5PP/0Uq1atwp///OeojnvwwQdhNpvFW11dXa8ePxawD2ppCXxHFEbQQBGlWCCmxjSsakz4wOF5wNrHYy5kESFnkIiQPbBAOn9UEYDe+4SkqbHtDWb0OFwyszSDDRONtIT+g4112N5gkQmtDQd6F7WKljqf1FhupgYcB7h5obEnS41dNV74grC1rh0OlxsbDrSitqULmRolZp82oNePL/YRsnmrxnKzNH7jL6Svf/Zzl19qjIRQIFj0h6XGNEpFTD2UVDVGpBoRC6G2tjZcdNFFGDRoEB555BHU1tae8IPfe++92LVrV8hbeXk5iouL0dzcLDvW6XSitbU1aMpr1apV2L9/P0wmE1QqFVQq4c3y8ssvx7Rp04KuSavVwmAwyG6JotBT+dVldwV4kw8vhFhaI9I5UZHSJZbPC5EgnVohzqTqa8O0tGTf7nTLhDoTPL6pMRYhmj6yEEoFh9pjXaIAiAapsHG4eGw82CpG71hECIheCLGI290zTsKDF1YAiE9jzED4RoRUSgVyPNWLzRabGBG64JRiGHQqdDtc2HXEgqUbDgMALj5joMy/Ey3SiJDXc6RBplYl9hIC5B2jfavGovmykI6ofCJC4QauRgtFhIhUI2Ih9NVXX6G2thbz5s3Du+++ixEjRuC8887D0qVLYbP17k26oKAAFRUVIW8ajQaTJk1Ce3s7qqurxWNXrVoFt9uNiRMnBjz3okWL8MMPP2Dr1q3iDQD+9Kc/4Y033ujVevuaLK0KGR4fDqv+imaGEhuPIO3OGwu80+eFDxqhw6/Ss774CSGe5+Hy+Zbp60uSdpfuCWqWFvYpzNZhjKePE0vrRIO0rQEAMX2VpVWJ4geQ+14igQm3sly9OKMsHtV/gWjwMXsD3knyPza0w+Z0Q6NUoCw3A+OHCBWPX+44KjZXrJw46IQePzuAR4iZr0uM3jVlRdRHiIRQIFhEiL3O1DFuOqlS0tBVIrWI6i9g8ODBeOyxx1BbW4sVK1agpKQE8+fPx4ABA3DbbbfJhEosGTlyJGbNmoX58+ejqqoK69atw8KFC3HNNdegpETo3tvQ0ICKigpUVVUBAIqLi3HqqafKbgAwaNAgDB06NC7rjAcsPcb6AUXzJp+X6T8eIRaI0+e10vSEWnZfPFi4dAvO+f0qmfjxrfiySQzT7I0+mEdIp1Ziyoh8AMCmg9GXt7MID/Nife4RA6U5elmqIdqIEItkZWiUYlQwHv2gfHG43GKDSmkvICaoqw4Iz9HgvAwoFZxYEffy2lrYXW6cXmrEqQONJ7QGaUTomCQ1BkAsoQfkVZO+Q39ZST+N1wgMi9iw4GksjdKANzVGs8aIVKHXfwHnnXce3n33XTQ1NWHx4sV4//33g0ZnYsGSJUtQUVGB6dOnY/bs2ZgyZQpefvll8X6Hw4GamhpYrdGnOJIZVgbPIgKRNlQE4uMRsjvd4je9LMmcJ5Ymi2fl2OqaZjSae7DnaIe4zbebNSuh53k+bNWYTq0QU0C+vYYigXl4pp0sNMVkIlUaTQGiF0IsgqXXqMR+UC0dtrgb0aXRPGl6i5XQb/RUiLEo1XiPEGLdia+dcGLRIMA3NcYiQh4hJPEJBfII+ZbP08DVwDChwohlDyHAK7QcTooIEanBCb1THDhwAG+++SbefPNNmM1mzJgxI1br8iM3NxdLly4Nev+QIUPCGrljafTuKwp8GiNGYwSNh0dIGvHJ0HrnSWXFefCqNFrBZlrZnd4RAQyW9rI5vc3ipGZpl5sX+yrp1coTEotM2Jw9LB/LfjginldqlAa8Qija1JherUR+lhYcBzjdPFqtdjE6Ew9Y2jVToxRLoAHv64j5h8oLhHEXo8tMUCs5OFw8srQqXOwZMnsisCiO3eUGPP9t7P9ILoS8r39m2vdtqEhm6cD4RoBi7RESO1dTRIhIEaL+KtDT04N3330X5513HkaMGIG3334b8+bNw4EDB7B8+fJ4rDGtEVNjHT1wufmoIkLx8Aixx9eoFLI31Kw4p8akIoJFCqSPxZ4PFhGSpsOk/YWk2/UapRht6E2vJSaECg1anC5JCZ1oREiaGlMrFeIam+NsmLZ0BxbZvuKr3FM6r1MrxVTYJWeUiO0UToQsjQrSAiaNSiH6z0qCRIREj5DNibpWq2joZn87hBxf4RP71BgzS6feF08iPYn4L6Cqqgq33HILBgwYgPnz56O4uBjLly9HbW0tHnnkkYT22+nPsNRYi8UmSztFlhrzeIQ6YhcRYmkb38qgrDinxqQigo0cYaZtrUohRgWY6JGmw7plosj7s06lFJ+j1i571BFDlhoz6tWiXwbwF0KGqFNjwnWxCe4FntfA0Y7e+4RsThfmv70JT38evB2F11sj/78t8BFCrIcQANw14yTMGFmEhecN7/XapCgUnCzlmpepEf1WJSaduN0QZMTGs1/WwOHiMWV4PkYUZcdkTf0N/4hQrFNj5BEiUouIv8KdddZZGD16NJ588klUVlYiJycn/EHECeONCNnEkL9GpYBWpQx1GABvSuF4lw08z8ekV4i3maL88X1LmGNNe8CIkFeU6dTCmy+LCEnTYVJDNRNFWpVC1nTS6eZh6XbCmBF5OoUJG5NeIw5XBYKnxiKOCElSY4AwN27XEUEMR7Km29/bgtmnFuMaiWfn+9pWrNh5FCu5o5h/ztCAE+KDzejy7RQ9ND9L/HnqSQWYelLwwcG9IVunErtESx97UG4GOE74oJW+/tiXgmOdNvxnq1C5t8jTdoDwR+UbEaKqMSLNiVgIbdq0CWPHjo3nWogAFBq8qbFoTaAspeJw8bD0OGUl3b3Ft5kiIzPOQsgcQAhJO1wzYcjK57t9UmNuNw+FghMjQjqPyNCqlMjSqtBpc+JYly1iIWRzusTHMGaoMXZQDjgO4ACU+QghFmExd4d/boSJ4MIHCGudEKixZjA2HmjF2j0t2HXEgqvPLBPF7yaP0ZnnhVYBPx9T6nesNzUm/7+VpsZMGeoTmi4fCQa9Go1m4VpzJXPL8rK0+MMVo6FXyz1MTIQzL/klZ5SccPVaf8Y3AqSJdR8hVjVGfYSIFCHirwJSEfTNN9/g+uuvx6RJk9DQ0AAAeOedd/Dtt9/GfoVpjrRqLNqOuTq1Etla77flWMCiK75+kOw4D14N5RHK0CjFiFBPkJJ5USDZvUZphjQ9FilMmHGccO0F2Vr86aoz8OyVo/3ElNQsHS791u3jYQKAIoO8cjAULF3Y0mHDfsmk+KoD3plgq2sC90wKVnaeL/HalJ/A+IxIkQqxPB/RdcW4Ulx0urxztbSnkEapwH0zT47vAlOceKfGWETISZ2liRQh6r+Af//737jgggug1+uxZcsWsZmi2WzG7373u5gvMN1h0YB2qwPHPWImmkZxeTGuHOsUu0r7CCFddOmfaJGel82gskoaO/pGhHybKPqW0jORAXh75hyPQiyaJf4ghccceumYgbhsrH+kxSiphPIdDOsLS+kpFZxY1hxNREh63d/tF8Zy2JwubK1rF7ev3dPi15gSCD6sVCpGWMVYPJEKfV8hFAitSik+V3MmDRbHgxCB8UuNxVwIearGKCJEpAhR/wX89re/xYsvvohXXnkFarX3Devss8/G5s2bY7o4QkhFsDf5Wk81TDQjDMTKMcmH/GOf7sBVL633a0YYCd7UmNwjVGwUohZHzN1RnzMSpBPY28TUmFeUaX0iQn7zxXwiRTppRCgzuqGogNezFEm6MUurEkeQsKhLMMQeQmqlmNYqjCIiJBVC6/YJw2S3N5hhc7qRk6GGQadCm9WBbfXtfscGG1aqUytFcTS0jyNCuRFOsp91ajFOKsrCwp/ExrTdn1Er4myWpqoxIsWI+i+gpqYG5557rt92o9GI9vb2WKyJkMBxHAo8EQGW6uhNROiY50Pe4XLj3e8PoepAK77a1Rzq0IB0BUmNsUopNnQ01gTyCDFRFigi5NdE0bNurxHZ+9LPy4w+asaEmSkCIcRxnOjrChcx67b7R6x8u4uHwirxaH1f2wqXmxc7Qp85JBfnjBCMzYHSY6IHLcA1sdegtGIsXhiijAgBwPPXjsEXd52LnDj7l/oDvuXzGlW8+giRECJSg6iFUHFxMfbt2+e3/dtvv0V5eXlMFkXIYYbp/Z7J39E0ihMbBnqiCYeOW8Xc/cpdR6Nei1R8SGGVUk2WHrGxYDT8UN+Ov6zci/lvb8LZT6/CLe9Uy/w0UgHRaXPC5nSJZulIPELMGxQwItQLj5AYEcqI7IM30sqxbof3mhjMI9TSGb67tFVy3eZuB3YdsYhG6QlDczHV0wV7TY2/CLaEGFa64JxyzBhZiHNjXCEWCLlHKPJeQLGcoN6fYdFJRtw8QpQaI1KEqDugzZ8/H3feeSdef/11cByHxsZGrF+/Hvfddx8efvjheKwx7WERgdrm6CNC+Sza4WmqWCsx0H69uxkOlzuqN0JWsp7hkxrLz9JAq1LA5nTjiLkbg/Mijxwc77Th8n98Jyu3bWjvRpvVIfp3fAVEW5dDZtxm+sBrig7iEbLLS9MBr0coGkM5G7gaaSWeKISskafGGCy96XDxaLPaA5a+M3yv+9t9x7DpkDciNMCTwvyhwYxjnTZZRViw8nkAuGbCIFk5fjyRCv1IU2NE5HCc4D9jXdljnxpjVWMUESJSg6j/AhYtWoTrrrsO06dPR2dnJ84991z83//9H26++Wbcfvvt8Vhj2sMqxzps0VWNAd6KH5b2YVElQDDHbpRUE0WCOYg3huO4XqfHfqg3w+HikZ+lxcM/HRWw0s1XCB3vssn6CPl5hHxMyX4eIY2/0IgmImTpjjw1BkTeVDFQakyjknSXDuMTYuKQXdO73x+CuduBDI0Sp5QYUGjQ4ZQSg1BGv0eeHgtWPt/XhKoaI2KD1DAdr4gQjdggUoWo/wI4jsNDDz2E1tZWbN++Hd9//z1aWlrw5JNPxmN9BPxHBUQzTJKlFpioYD4jFh5fEWV6jBmKA3kxWHqsvi26wbc7Gs0AgMnD8jBvylAUeaIWoYRQa5dd1kdIF9YjJBdIgSJC0XiEWGrMFGHfoYiFkCNwxK0gwsoxFlGaXlEIwCtKxwwyid4NNiTW1yeULFPbZUIojrPV0hmVJD0W8z5CSjJLE6lFr78KaDQajBo1ChMmTEBWVvxLatMZ5hFinEj5PEuN/dTTi2XFzqNRjZZo85kILqW3EaGdRywAgFNKDLJzH5MIEyYgWLVaa5fdW8GmVYoRIZtD7gVi9PiWzwfwCEVTNRYsMhaMSD1CgVJjQOS9hNjxYwaZZI0PzxySK/78k5MFkfTN3hbZ/32yTG1nQkw6Z4yILRpJN+nYzxqjhopEahHbvwAiLrDUGCOq1FiW1//C87yYGrth0hBoVQrUt3Wj5mhHxOdrjSgiFJ0Q2tHIhJDQDZil8451+EeEhnqqllq77OI0+kyNNyLUE2DEBuAVCF6ztLRqTHi8Nqs9rBmZIZ0zFgliU8Uw5fPe1JhcjERaOcZSYxlaFSYNyxO3T5AIIdZ1uc3qENOtPM+H9Aj1JbkeA3phtpYM0HFCJSmhj9uIDaoaI1IEEkIpQEF27yNCzCti6XGiydIDc7cDHCdEX84ZkQ8AWLkz8vRYa0QRochTY5YeBw4dF/Yf5YkI+Rq8HS63KGSG5EmEkHTEhk9EyC81FoFZ2uXmI24IGU0fIel+EafGehkREifXq5WY7BFCKgWHMYO8s9B0aqVY9cfEZpfdJRrOE50aO22gETefW47fXDQyoevoz8TTIyQOXaWIEJEikBBKAXxTY9E0VDTo1KIfgI1ZGGjSQ6dWYsbIIgBCeiwSuu3e+VqBI0LRp8Z2HxGiUQOMOlGQ5Isl/4LokoqHQEIoS6uCzvOtVowIBUmNBTJLa1QKUVwy8RUO0SwdZfm8JWxqTD55nsFeA5F6hDK0Spw/sgj5WRr89PQBfufzRgrtsnWplRy0MY4QRItCweHB2SMx69QB4XcmeoVGIn5i7RFSUUNFIsWI+B3vkUceQXV1dTzXQgQhL1MLaeuPaFJj0gnrTAgN84xJOG9kITgO2FZvRpM5fLO+Vk/JuFrJiZVdUnrTS4gZpZk/CJBUunlECRNC2TqVGB2TmqUztEpoPREU0SPkE/nxmqUDe3C8Hbgj8wmx8vlIzdJRe4R8hVB2dB6hDI0KhQYdNv3mfPz5mjF++4li02NIt0jSYpSO6v/0RUSIqsaIVCHiv4D6+npceOGFKC0txa233orPP/8cdnts5lcRoVEqOFm/l2jNrOxYJoTKPT6bwmwdxg8WUibvVR0Oe55Wj0jIydAE/LBkvYR4PvJRG8wfNKrEOy2cpd1aOuURIaPeO/m8tcsufuhnaVWi58fmiQix+9j+vuXzvkJIrByLwDDtlqTQIk2NGSKcxdYTJDXGIkLNlsjK532rznzxFUIdQeaMEf0TqfiJX0NFiggRqUHEfwGvv/46mpqa8N577yE7Oxt33XUX8vPzcfnll+Ptt99Ga2t0/WiICDGbgfp6WXpMjAjV1wv3h4FVRe31NGQcJhmceePkIQCEfjO+lVa+sIhQbpDeLr3pJbSTCaEBASJCnfKIkK8QkpbPiyM2fDxCvkKoO0BnaUAyZiMCIdRpd4p+mrhVjWkCe4RaOmwhq/yCVZ35kp/tSY15IkzinLEE+4OIvkGljKNZmlWNufmoKlIJIlFE9RegUChwzjnn4JlnnkFNTQ02bNiAiRMn4qWXXkJJSQnOPfdcPPvss2hoaIjXetMLsxmYNQuYOhWFKuENRaXghOhHXR0wdapwfxgxlO/Ti0UqhGadUowSow7Hu+z4dFtjyPO0elJVwYQQEF0vIbvTjb3NgkdIlhqT9D7ieV426Z099lFJ+i1LoxJ9Lcwj1OMrhOxys7SfEGJjNiJIjbH16NQKv/MEI5AQ2ny4DX/8skaMYgHBhVCB5//Q7nKLFWu+uNy82EfJdxacL+w1waJuFBFKL9R90EcIgDjOhyCSmRP6KjBy5Ej86le/wrp161BXV4cbb7wR33zzDd57771YrS+96egAmpuB2loUfv0FAOGDiquvB6ZNA2prhfs7Qpe/+1Z4SQdnqpQKMSr0+rcHQn6Da+0SPoBDC6HII0J7mzvgcPEw6FTicYA3WtHjcKPL7pJFhNi1WHq8w0UztEpRkASNCInl856GihrfiJDclxSKaNNi0n17HG5R+Dzx2U48v2of1u45Ju7XE6Shokal8IrAjsB+LqlBPNLUWEuHv0eI6P/ENzXmPR+lx4hUIGZ/AQUFBZg3bx7+85//4L777ovVadOb0lJg9WqgvByFRw4BALLh8oqg8nLh/tLSkKfJl5TfZ2tVfuX415w5CHq1ErubOrB+//Gg52HNFCOLCIUXQl5/kEHmOcrQqMTUzvFOm0x4+FZpaVQKqJUKMSJk8+kjlJMRe49Quzh5PvLxD9k6FdglWrqdcLt57PH0b5J20PamtvwjM95eQoHFGps8z3EIW/kVzCNEQig9iOuIDUm0iQzTRCpA5fPJTlkZsHo1CnTCB3d27R65CCorC3sKaUSovDDLz+hszFDjyvGCmHrt2wNBz3M8IiEUeS+hnT6NFKWIHhYfISQtdQe8rQRYRKjHLyKklv0erGrM24E7fESovTu6gauAUL3HKu3M3Q40mrtF0SMtqQ+WGgOAQo9PKFgJvVXSQyhc5VeB5PmVroFSY+lBPCNCaooIESkGCaFUoKwMI++YBwAY0ubx8bzzTkQiCJB7hIblB54KP9eTHvtqdzMOHe8KuE9kEaHIU2NeIWTwu887I80uCiFm5JU+fqZWEAy+ESGvR0gr+707QGdp6eNFMnhVFGYRls4z2P7mbodoXJeeT7rOQKktMSIUpITeGqQrdSCkESGe55NmzhjRN0h9PBpVbD1CSgUnRj+pqSKRCtDXv1Sgrg7j77oJn1oVGNrqMaLPmRN5RCjLKxyGFQaeC1dekIUzh+Rg48E2bDncjsF5/oKpNYrUGOslpAmSonG7ecmMsQARIckHta8nJzdTI3ajztT4R4QcLjccnm+iLCJkDWOWjmbwqjc1Fp1oENJO3bB0O8Tht4BcCIkNFQOYsIs9ESHWe8mXbod39lo42PPLfFgWMkunFao4RoQAQK1QwO5y05gNIiWI+i+gqytwtICIE3V1oifo9Aw3sr9eKaTFamuF7XV1YU8hiwgVBI4IARDFT7C0llg+H6KbcqS9hA61WtFpc0KjUoh9jaSw1M1xSUSINS/Mk0WEhA9uaURIahoWPUJ2F9ySqqpgnZbbrHa4wrx5W3phlpbub+52YO9RrxCSGr+9DRH9xcwFpxQDAP73YxO21bX73d9li6x0HhCeN7bfsQ6bt3yePEJpgSbOQsjbS4giQkTyE/VfQFFREX7xi1/g22+/jcd6CCnS6jDmCZo8WTRQi2Kovj7kaaQRnPKCwBEhwJvWamgPLGDEiFBWcCEUaS+h7/YLlVJnlJoCvhHnSUrofYVHTkYgISR8qLt5r/GX47zpqB6HSxRBgL9YYCND3Ly3a3QwxIhQtKkxqRBq9lb6SSNC3SE8QqeVGnHZ2IEAgCeW7fSr8AslogIh9WGJZmlKjaUFUkNzXISQ5/wO8ggRKUDUfwHvvvsuWltbcd555+Gkk07C008/jcbG0P1niF6SnQ0UFvoboz0GapSXC/dnZ4c8jU6txDVnlmHGyEJZDyFfQlV8udy8KBBCRYTk5wlumP52ryCEpngGv/rinYUVIDUmEWJZzCMk8fywderVSmR4qq+6HfJIkW9qTK1UiOcP5xMSzdIRzhljyIWQJCLkuT6Hyy32XckIUDUGAL+6oAJ6tRLVh9qw7IcjsvtYaiwjAo8Q4O1NdKzTJnqEKDWWHqhks8bikBpjg1epaoxIAaL+C7j00kvxySefoKGhAbfccguWLl2KwYMH46c//Sk++ugjOJ3O8CchIsNoBJYvB9as8fcClZUJ25cvF/YLw9OXn45XbzwTSkVwY+RAU/BIjrnbIXZTDjRwVUq4iJDLzeM7T5n+2cMDC6G8LK9Zut0qF0LS1Bj70JeWi7OGh3q1UoysdDtcov9Go1QEfB7YeY+F8Qn1po+QdP+9zZ1iBAbwCiEW0QECR4QAoNiowy1ThwEAnv58t6wbeNQRIUlTRUs3lc+nE9ImiuoYm6UBGrNBpBa9/ipQUFCAe+65Bz/88AP++Mc/YuXKlbjiiitQUlKCRx55BFZr+PJpIgKMxuB9gkpLIxJBkSJNjbl9fDIsSpKtU4UNpbOIUF1r4NfA9gYzzN0OZOtUGF0aeP3sQ/qIuVuM5ARKjbHyeY7zTk1vEzs/e4UQz3sFjG/FGEPsLh0uItRbs7Rn/+qDwjgaJsbYulhaTKngZFU9viw4txwDjDo0tHfjre8Oitu7o06NecRmhw0dFBFKK+JtlmZjNhzkESJSgF7/BRw9ehTPPPMMRo0ahUWLFuGKK67AV199heeeew4fffQRLr300hguk+gLio06KDhh9MUxn346TBz4dqkORIlJqG5qCtLv5tt9QlpsUnme7A1ZCkuNSaNKbMaatApOWiHlFUKe1JhGCZ0kUtTm6YwdLNribaoYupfQiZqlG83C88Lmq1l6HOB5XhR84foA6TVKzJsyFACw8WCbuF00S0eYGmNis7G9W/RPkUcoPZA2VIxPaswTEaKqMSIFiPrr30cffYQ33ngDX3zxBUaNGoVf/vKXuP7662EymcR9Jk+ejJEjR8ZynUQfoFYqMMCoR0N7N+rausUGfoBXCIVLiwHeAaHBOiB/s7cFAHBOEH8Q4P2QZn7gbJ0Kyg4L0NGB3Eyvz0mcqVVfD51KAQu8HqEMjRIqpQIapVDK2yrxDgWCpePCldC3d/fOLO0rMsYNzsGPDWY4XLwsdRdMqEkZYBSid+Zu71qtokcosohQgUdQHjjmrQTNCjOjjOgfxL9qjCJCROoQ9V/ATTfdhJKSEqxbtw5bt27FwoULZSIIAEpKSvDQQw/Fao1EHzIwSOVYNBEh1vgvUAdkq92JzYfaAQT3BwFC9ERa2WLUKsUBtLlm72yuTI1KHECrbTkKwJu6YoZolgpjDSGDDUrNiyAiZHe6RS9ONCM22DVJGV1mlKXHQlWM+ZLjEWHSAazs+MwoPUK1HiGUrVWF9JAR/QeWugIQtNfXiZ2fPEJE6hD1178jR44gIyMj5D56vR6PPvporxdFJI5Skx5V8K/4YummnAgqpVgkqcvuQqfNKYsyVB1ohd3lxkCTHkODdLkGhJEUuZkasYuyUaMQB9DmXn4x8PM/AAAyu8zAtMuA2lro7D2A3usRYpEfvUYJS49TFHPhhNCXO45Cq1LizCE5mHZyoWx/5ufhuOj9NL5CaERhNox6NVq7BLNysPEfAc/FhFDA8RwRpsay5d20KS2WPkgN0qH8aL0+P1WNESlE1F8FnE4nLBaL362jowN2e/iuvL2ltbUVlZWVMBgMMJlMmDdvHjo7O0MeM23aNHAcJ7vdcsstcVtjf0A0TPtUfLF0UageQowsrUoUP80+USGxbH54fth5WNJGkCZjhtgyIHPPLmhcggDIevIxsc+Sdng5AG+6iAkKVlnWHiY1NrrMBJWCQ3OHDa99ewC3vLsZd76/RbaPKBp0aiiijJ5IhRDHAcMKsmDQeeePRVP1xYbPmq0OsZ9Q1GZpyfMLkFE6nVAr4p0aoz5CROoQ9V+AyWRCTk6O381kMkGv12Pw4MF49NFH4Y7xN4HKykrs2LEDK1aswLJly7B27VosWLAg7HHz58/HkSNHxNszzzwT03X1NwYGKX1vi7CHEMObHpOnmZhR+uwQ/iCG1BRt1KvF/klceTlyrcKYicy6g2KfJW2GzrNWuSmaRXTY0Nhgqacxg3Lw7QPn4S/XnCE2Lvy+tlXWuJBNjA/UDTscUiFUmqOHXqMUt1miTI2xijW7y5uq64rCYwR4DekMKp1PH+I5fR7wCi1KjRGpQNRfAd9880089NBDmDt3LiZMmAAAqKqqwltvvYXf/OY3aGlpwbPPPgutVotf//rXMVnkrl27sHz5cmzcuBHjx48HALzwwguYPXs2nn32WZSUlAQ9NiMjA8XFxTFZRzoQrBliJJPnpRQatKg91oXmDm9EqLmjB7ubBCFx9rC8sOcokEQsRBFRVga88w7O+e0/8eWIs1DRfBBY8V+grAw6tTCHjUV+mADSq32qyUKknoqNOlxyxkDMOrUYn25t9EyK7xF7LLH5aCMH+A+KDYdBEnEZUSg0wTRImiyK4z+CNFOUkqFRiibw9m4HMrUqURBlRpgay9KqoFUpxMeliFD6wMSPUsHFxRcm9hGi1BiRAkT9VeCtt97Cc889hyeffBI/+9nP8LOf/QxPPvkknn32WXzwwQd46KGH8Pzzz+Ptt9+O2SLXr18Pk8kkiiAAmDFjBhQKBTZs2BDy2CVLliA/Px+nnnoqHnzwQepvFAZpLyFpJCSSyfNSAlWObW8QojgnFWWJFVqhkEaERP9KXR0wZw6e+fwv2PTX61FgbRcG0NbViWM2mI9H6hECgNYuuYk6FFqVEiOKBLGyo8E75HRnoyCERvVCCKmUCjFlOMIz/FYqhLpDTJ73heM4r0/II/CiTY1xHCdLj5FHKH1gvqB4+IMAadUYRYSI5CdqIfTdd99hzJgxftvHjBmD9evXAwCmTJmCw4cPn/jqPDQ1NaGwsFC2TaVSITc3F01NTUGPu+666/Duu+/i66+/xoMPPoh33nkH119/fcjHstlsfv6ndGKAUQ+OE6aSH5c0Foxk8ryUQJVjda1Cui2USVpKvm9ESDKAlisvh/qbtbKZazqHILraxdSY8PJmgshbNRbZy56JHRYFkv48qiR6IQR4o0LDPUJITI31ONBtj678naXHWCftaMrvGcwwDVBEKJ1gVWPxSIsBgFqsGqOIEJH8RP1XUFZWhtdee81v+2uvvYYyzxiI48ePIycnJ+y5Fi1a5Gdm9r3t3r072iWKLFiwABdccAFOO+00VFZW4u2338bHH3+M/fv3Bz1m8eLFMBqN4q3Md7RFP0ejUqAoW4jmSH1C0QohFhE62uGNCB32dJouywlddciQRo2MPV1hB9BqV60E4G3i5o0ICR/w4foI+cLEDosCtXTY0NJhA8cBFcWh57uFOqdSweHMIbnCdUkiQiy1FUnECvD2MWr3GdERqZACvL2EAPIIpRNqT8l8PJopAhKzNDVUJFKAqL8CPvvss7jyyivx+eef48wzzwQAbNq0Cbt378a//vUvAMDGjRtx9dVXhz3Xvffei7lz54bcp7y8HMXFxWhubpZtdzqdaG1tjcr/M3HiRADAvn37MGzYsID7PPjgg7jnnnvE3y0WS9qJoYE5ejRZetDQ1o0zykzotnsHlkbuEWKpMWlESBBCg/IiE0JSM6/RlCkMmAUCD6CdNs1PQPh6hOzMgxOhUPCNCO3y/Ds0PzPiwaa+/K1yLNq6HCg2Cs8PEx9s1hcQuZAxevoYMe9Tb4SQPDVGEaF0gUVs4hURYqkxiggRqUDU73wXX3wxampq8NJLL6GmpgYAcOGFF+KTTz7BkCFDAAC33nprROcqKChAQUFB2P0mTZqE9vZ2VFdXY9y4cQCAVatWwe12i+ImErZu3QoAGDBgQNB9tFottNrw/pX+TGmOHtWH2kTDNIukqJVcxJ2HWWqs+QQiQrLUWJ5nAG1Hh//sNc8AWu36ZqDaO5GdCR7fCFCkERcmhOrbumHudpyQUZqhVSlRbPQ+vjQixPwakQoZ36aKXo9Q5H/W0uc4myJCaQMTQPEYuApIU2MUESKSn6iEkMPhwKxZs/Diiy9i8eLF8VqTHyNHjsSsWbMwf/58vPjii3A4HFi4cCGuueYasWKsoaEB06dPx9tvv40JEyZg//79WLp0KWbPno28vDz88MMPuPvuu3Huuefi9NNP77O1pyK+0+NbO71psXC9fxhiaswTEeJ5XjxfWW4vhJBeLQyYDTZktrQU2qwO2SYmgHQ+wiLS1JgxQ43SHD3q27qx64jlhIzSQR9DUj6f4VPuHw6WGjN3O+B0uWH3fPuOKjUm8QhRaix9UCn7JiLkoKoxIgWI6q9ArVbjhx9+iNdaQrJkyRJUVFRg+vTpmD17NqZMmYKXX35ZvN/hcKCmpkasCtNoNFi5ciVmzpyJiooK3Hvvvbj88svx2WefJWT9qcRAkyBU2JiN1ii6SjNYRMjq6S7dZnWg0yakf5jQCodfH6EwsKoxRsYJRoQAr+jZ0WgRU2O9NUoHgqWjLD3SqrHIvp+wportVjusnmOBKM3SWWSWTkdYijuav+loEIeuUkSISAGifue7/vrr8dprr+Hpp5+Ox3qCkpubi6VLlwa9f8iQIbJy77KyMqxZs6Yvltbv8EaEPKkxz+ytvAi6SjMyPd2lO21OHLX0oLNHEEFFBm3EQkStVKBy4iA0mXsiSqdpfWYm6cTO0j4RIU3k+n9UiQFf7jyKzYfbsL9F6GR+ShwiQuZuB/Kj9PiwY9usDlg9k+eVCi4qA2x+oBYFRL/ntIFG/Onq0Ti1JEiE9QRRKcgjRKQOUQshp9OJ119/HStXrsS4ceOQmSkvhf7jH/8Ys8URiUHaXZrnebH/TrTfHgsNWnS2CEKIjeiI1B/EeOrnp0W8r6/AEqvGgmyPBBYRWrnzKNy8MI9Mmk46UbxmaYdY/h6pUMyRjNmwSkrvI01fAvLyeQNFhNIGjuPw8zGl4XfsJVQ1RqQSUb/zbd++HWPHjgUA7NmzR3ZfNG/ARPLCuihb7S60Wx3eiFCEFWOMomwdalu60GyxodEspNkGRegP6g2+ESHfERuMqFJjnjQY6748qsQQ09c5i+p02V3o6Imyj5BYPm/vVcUYQGZpIj6oqWqMSCGiFkJff/11PNZBJBE6tRIF2Vq0dNjw4tr9WFPTAgDIiVIIFRpY5ViPWDpfGkchFDQi1EuzNCCIQqNeLXarjqVRGpD7cpo8xvJoU2Pt1uj9RQyDToWfjS5Bj8PlN3uMIHqLSkFDV4nUodclA/v27cMXX3yB7m7hm77Un0OkPiwq9NKaWnE+GOuGHCneyjGb2FW6LyNCuiCpsWgiQhzHycRPLI3SgHzsBosIRWp2ljZU7PIY0aMReYBwfS9cOwav3DCeIrpEzBD7CHmqxj7d1oifPLtaLDggiGQi6ojQ8ePHcdVVV+Hrr78Gx3HYu3cvysvLMW/ePOTk5OC5556LxzqJPuaq8WVotvRgWGEWxgzKwVlDczEpgkGpUqRjNuraWA+hyCrGeoNfRChI1Vg0VVWAIH7W1x4Xfo5xRAgQIjusog6IXMywqjG70y12/s7URndtBBEPfPsIfbatEQeOdWF1TcsJ9eEiiHgQtRC6++67oVarcfjwYYwcOVLcfvXVV+Oee+4hIdRPuG7iIFw3cdAJnYN1l24yC12qgci7SvcGP49QDFJjgFf8aFSKiOekRYNBrxZbFQCRp7cyNUqolRwcLh6NnuP1vex4TRCxxHfoKpvzxwYEE0QyEfW75pdffokvvvgCpT7dfUeMGIFDhw7FbGFE6lPkiQhtbzTD6eahUXrnmMWDoCM2NL1PjQHA2cPzka1TYepJBeIbfCzxrdaKNGLFcRyMeg2OddrQaPb4i6K8NoKIB2IfIU9qjPUia+0iIUQkH1ELoa6uLmRk+H+rb21tTfvRFIQc5hHqcQhvhqU5eigU8fOhSCNCGpUCSs9jnWhqrNiow6bfzBB7o8Qa32aR0USsTBlqHOu04YgnIhRt1RhBxAOVT2qMRYTaPONgCCKZiPqd/ZxzzsHbb78t/s5xHNxuN5555hn85Cc/ieniiNSGVY0x4lkxBgBatfflLBUTfmZpVfSCRqtSisIq1kgbGaoUHDRRrM/kObax3RMRIo8QkQR4U2NuuNw82j1Vl5QaI5KRqCNCzzzzDKZPn45NmzbBbrfjV7/6FXbs2IHW1lasW7cuHmskUpQMjQrZWhU6PEbgQbnxM0oDgE4VWPxIZ42plVxc0lsngjQiFG20ihmmG8WIEHmEiMTjTY3xMHc7wIqK20gIEUlI1J8Ip556Kvbs2YMpU6bgkksuQVdXFy677DJs2bIFw4YNi8caiRRGGhWKtqt0tEgjQtIUkUwUJaGHRiaEolwfK6Hv6GX5PEHEA5ZGdrjcMl9QO6XGiCSkV18fjUYjHnrooVivhehPmM1ARwcKs3XY39IFQNJDqL4eyM4OPkm+l0gjQlLBo1YqxOqqZBQKUrN0tB4fk4+/iDxCRDKgkgxdlUaB2rsdcLv5uHoFCSJaeiWE2tvbUVVVhebmZrjd8hbqN9xwQ0wWRqQwZjMwaxbQ3Iyih7x+srLcDKCuDpg2DSgsBJYvj6kYknmEAlSKOVzO5IwIZUhTY9H9SZoySAgRyYda0lBRGhFyuXl09Dhlr3mCSDRRC6HPPvsMlZWV6OzshMEgn7vEcRwJIQLo6ACam4HaWhR9+i+gYgYAoKy7DbhgOlBb690vlkIoiEeI/d7R40zKiJA0NRatkDH6DMIljxCRDEhHbLT5lMy3We0khIikImqP0L333otf/OIX6OzsRHt7O9ra2sRba2trPNZIpBqlpcDq1UB5OQoaDgAADGoORiaCysuF+0tjO/1aqeBEk2awLtO6JIyYGHS99wjlUESISEJkESGrvxAiiGQiaiHU0NCAO+64I2AvIYIQKSsDVq/GgAzhg3nw4T1yEVRWFpeHZVGhYN2k9erkqhgDTrBqTC+PCEV7PEHEA5lHyCciRIZpItmI+lPhggsuwKZNm+KxFqK/UVaGnzx5D67Z9gXu/eYdYds778RNBAGAziN0fAVPsLljyYDhBFJj/h4hSo0RiYdVjdldbrR2yYUPRYSIZCPqd82LLroI999/P3bu3InTTjsNarX8jfjiiy+O2eKIFKeuDhk33YCnmScIAObM6ZuIkFopVq6htFQUQGLKLE6Va73hRMrnfbtSU2qMSAbUQarGAOouTSQfUQuh+fPnAwCeeOIJv/s4joPL5TrxVRGpD6sOY+mwd94RRFBtrbA9TmKIVY7peKdYuYbVqyWpMWVcK9d6g06thEalgN3pjjq1lZPpa5YmIUQkHtEjJOkjVGLUodHc45cqI4hEE3VqzO12B72RCCIACNEWqQhavRqYPFk0UItiqL4+5g8tRoTcTrFyDdOmQee0AQB09m7v2pqbhYhREsAM09EKmUyNUqzQEY6n1BiReJhHyOH2RoTKC7IAUGqMSD6SzzlKpD7Z2UK0xdcY7TFQo7xcuD87O+YPLXqE8nJkwku/4gth+8f/jmvlWm8x6gUBE21qjOM4mU+IzNJEMhAoIlRekAmAzNJE8hGxEJo9ezbMZrP4+9NPP4329nbx9+PHj2PUqFExXRyRohiNQsppzRr/9FdZmbA9TikpNoFer1HKhJfhWBMAILu5Me6Va72BeX2ibagoPRag1BiRHLAoZbfDhY4eYfxLeb4ghCgiRCQbEQuhL774AjabTfz9d7/7naxvkNPpRE1NTWxXR6QuRmPwaEtpadx8OaycnA0jRVkZ8M47uH7L/3BD9TJc+cPKuFeu9YZcj9cnWxe9EGLXqlEqxG/iBJFI2OuwxyFMHlBwwOA8JoQoIkQkFxG/6/JsfHCQ3wkiGbhn5kk4daAB548sEjbU1QFz5qC8rRFPrHxR2BbnyrXecMvUYcjL1HrXHQWsqSKlxYhkgXmEGDkZGuRlCYK9nSJCRJJBzkqiX3FSUTZOKvJ4jxJUudYbxg/Jxfghub061uiJglFajEgWWB8hRk6mBjmeyGUrVY0RSUbEcXSO42Rzxdg2gkhKEli51teYKCJEJBlqn4hQboZGfJ3anG5026nCmEgeokqNzZ07F1qtFgDQ09ODW265BZmZQt5X6h8iiITDKteAwJVrrI9QHCrX+hqTxyydSaXzRJKgUvpGhNTI0qqgUnBwekrq9Rp9glZHEHIifue88cYbZb9ff/31fvvQ5HkiaWCVa57O0jJY5VqSdJY+UUweozVFhIhkQdrbChCKAYRWDxoc67ShzWpHiYmEEJEcRCyE3njjjXiugyBij9EYXOgkSf+gWDBqgBDVOqkoK8ErIQgB3+pFVtmYk6HGsU4b9RIikgqKpRNEijNucC7WLToPxQZdopdCEAAApYIDxwGsuDiXCSFP9JJ6CRHJBDUdIYh+wECTHkoFFS8QyYNaUjnGBBBr9UDzxohkgoQQQRAEEXOkvYRyMwUBxEroqakikUyQECIIgiBijtQwzQSQKYNSY0TyQUKIIAiCiDlSw3SuT2qMzNJEMpEyQqi1tRWVlZUwGAwwmUyYN28eOjs7wx63fv16nHfeecjMzITBYMC5556L7u7uPlgxQRBE+iJNjXk9QhQRIpKPlBFClZWV2LFjB1asWIFly5Zh7dq1WLBgQchj1q9fj1mzZmHmzJmoqqrCxo0bsXDhQigUKXPZBEEQKQkbs6FScMjWCgXK3qoxiggRyUNKlM/v2rULy5cvx8aNGzF+/HgAwAsvvIDZs2fj2WefRUlJScDj7r77btxxxx1YtGiRuO3kk0/ukzUTBEGkM2zMRo6nmSJAVWNEcpISoZH169fDZDKJIggAZsyYAYVCgQ0bNgQ8prm5GRs2bEBhYSEmT56MoqIiTJ06Fd9++21fLZsgCCJtYWM2WA8hgMzSRHKSEkKoqakJhWxulAeVSoXc3Fw0NTUFPKa2thYA8Nhjj2H+/PlYvnw5xo4di+nTp2Pv3r1BH8tms8FischuBEEQRHSwqrEcT+k84I0IdfQ44XS5E7IugvAloUJo0aJF4lT7YLfdu3f36txut/BHdvPNN+Omm27CmDFj8Kc//Qknn3wyXn/99aDHLV68GEajUbyVsWGdBEEQRMSwqjFWMQYARr1XFLV3k0+ISA4S6hG69957MXfu3JD7lJeXo7i4GM3NzbLtTqcTra2tKC4uDnjcgAEDAACjRo2SbR85ciQOHz4c9PEefPBB3HPPPeLvFouFxBBBEESUsKqxHElqTKVUwKhXw9ztQLvVjvwsbaKWRxAiCRVCBQUFKCgoCLvfpEmT0N7ejurqaowbNw4AsGrVKrjdbkycODHgMUOGDEFJSQlqampk2/fs2YMLL7ww6GNptVpotfTHSRAEcSKwERvSiBAgpMfM3Q6qHCOShpTwCI0cORKzZs3C/PnzUVVVhXXr1mHhwoW45pprxIqxhoYGVFRUoKqqCgDAcRzuv/9+PP/88/jXv/6Fffv24eGHH8bu3bsxb968RF4OQRBEvydQRAjwGqZbqXKMSBJSonweAJYsWYKFCxdi+vTpUCgUuPzyy/H888+L9zscDtTU1MBqtYrb7rrrLvT09ODuu+9Ga2srRo8ejRUrVmDYsGGJuASCIIi0odigAwAMLciUbfd2lyYhRCQHHM/zfKIXkcxYLBYYjUaYzWYYDIZEL4cgCCIlMFsd2NFoxlnleVBI5o7d88FWfLSlAYsurMAtU+lLKRE/Iv38TpmIEEEQBJE6GDPUmDw83287S43RvDEiWUgJjxBBEATRPzB5UmPmbkqNEckBCSGCIAiizzDRBHoiySAhRBAEQfQZrKkiCSEiWSAhRBAEQfQZzCNkps7SRJJAQoggCILoM1hEiIQQkSyQECIIgiD6DJOe+ggRyQUJIYIgCKLPYGbpLrsLdidNoCcSDwkhgiAIos/I1qnBeforUnqMSAZICBEEQRB9hlLBwaAjnxCRPJAQIgiCIPoUr2GafEJE4iEhRBAEQfQp1FSRSCZICBEEQRB9CjVVJJIJEkIEQRBEnyIOXiWPEJEEkBAiCIIg+hTWS8hMvYSIJICEEEEQBNGnUHdpIpkgIUQQBEH0KaJZmoQQkQSQECIIgiD6FDJLE8kECSGCIAiiTyGzNJFMkBAiCIIg+hSWGiOzNJEMkBAiCIIg+hQTmaWJJIKEEEEQBNGnSKvG3G4+wash0h0SQgRBEESfYvAIITcPdNicCV4Nke6QECIIgiD6FJ1aCb1aCQAwU+UYkWBICBEEQRB9jreXEBmmicRCQoggCILoc6iXEJEskBAiCIIg+hwas0EkCySECIIgiD6HxmwQyQIJIYIgCKLPMemF7tLUVJFINCSECIIgiD5HjAiRR4hIMCSECIIgiD7HSKkxIkkgIUQQBEH0OWJqjIQQkWBICBEEQRB9jlg1RqkxIsGQECIIgiD6HGqoSCQLJIQIgiCIPocaKhLJQsoIodbWVlRWVsJgMMBkMmHevHno7OwMuv/BgwfBcVzA24cfftiHKycIgiB8kfYR4nmaQE8kjpQRQpWVldixYwdWrFiBZcuWYe3atViwYEHQ/cvKynDkyBHZ7fHHH0dWVhYuvPDCPlw5QRAE4YspQzBL251u9DjcCV4Nkc6oEr2ASNi1axeWL1+OjRs3Yvz48QCAF154AbNnz8azzz6LkpISv2OUSiWKi4tl2z7++GNcddVVyMrK6pN1EwRBEIHJ1CihVHBwuXmYux3Qa5SJXhKRpqRERGj9+vUwmUyiCAKAGTNmQKFQYMOGDRGdo7q6Glu3bsW8efNC7mez2WCxWGQ3giAIIrZwHAeTngzTROJJCSHU1NSEwsJC2TaVSoXc3Fw0NTVFdI7XXnsNI0eOxOTJk0Put3jxYhiNRvFWVlbW63UTBEEQwTFSd2kiCUioEFq0aFFQQzO77d69+4Qfp7u7G0uXLg0bDQKABx98EGazWbzV1dWd8OMTBEEQ/piocoxIAhLqEbr33nsxd+7ckPuUl5ejuLgYzc3Nsu1OpxOtra1+PqBA/Otf/4LVasUNN9wQdl+tVgutVht2P4IgCOLEYIZpM6XGiASSUCFUUFCAgoKCsPtNmjQJ7e3tqK6uxrhx4wAAq1atgtvtxsSJE8Me/9prr+Hiiy+O6LEIgiCIvoFFhGjMBpFIUsIjNHLkSMyaNQvz589HVVUV1q1bh4ULF+Kaa64RK8YaGhpQUVGBqqoq2bH79u3D2rVr8X//93+JWDpBEAQRBINHCLVRaoxIICkhhABgyZIlqKiowPTp0zF79mxMmTIFL7/8sni/w+FATU0NrFar7LjXX38dpaWlmDlzZl8vmSAIgghBaY4eALC9wZzglRDpDMdTS8+QWCwWGI1GmM1mGAyGRC+HIAii37C/pRPTn1sDtZJD9cPnw6BTJ3pJRD8i0s/vlIkIEQRBEP2LYQVZKM/PhMPFY+2elkQvh0hTSAgRBEEQCeP8UUUAgBU7jyZ4JUS6QkKIIAiCSBhMCH29uxkOF80cI/oeEkIEQRBEwhgzKAd5mRpYepzYeKA10csh0hASQgRBEETCUCo4nFchjFD6ktJjRAIgIUQQBEEklBme9NjKXUdBhcxEX0NCiCAIgkgo54zIh1alQH1bN3Y3dSR6OUSaQUKIIAiCSCgZGhXOGZEPAPjNJ9vxftVhHLX0JHhVRLqQ0FljBEEQBAEAl44ZiJW7mlF9qA3Vh9oAABePLsETl5wiDmcliHhAQoggCIJIOD89vQRD8zPx1a5mrNrdjG317fh0WyO+rz2OZ644HdNOLkz0Eol+Co3YCAON2CAIguh7ttW14+5/bkVtSxcA4MZJg/Hri0ZCq1ImeGVEqkAjNgiCIIiUZXSZCf+9/RzcdPYQAMBb6w/h8n98h0PHuxK7MKLfQUKIIAiCSEr0GiUe/dkpeOOmM5GTocb2Bgt++vy3+M/WBiqzJ2IGCSGCIAgiqfnJyYX4353nYPzgHHTYnLjz/a2Y99YmNLR3J3ppRD+AhBBBEASR9Aww6vH+grNw94yToFEqsGp3M87/4xq8ue4A3G6KDhG9h4QQQRAEkRKolArcOWME/nfnFEwYkgur3YXHPtuJOa9vQCNFh4heQkKIIAiCSCmGF2bj/QVn4clLT4VercS6fcdxwZ/X4uMt9eQdIqKGhBBBEASRcigUHOacNRj/u/McnFFmQkePE3d/sA23Ld2Mti57opdHpBAkhAiCIIiUZWh+Jv51yyTce/5JUCk4/O/HJsz881os334ELvIOERFADRXDQA0VCYIgUoMf682464Mt2O9pwliao8e1Ewbh6jPLkJ+lTfDqiL4m0s9vEkJhICFEEASROvQ4XHj+q7149/tDsPQ4AQDZWhX+WjkWU08qSPDqiL6EhFCMICFEEASRevQ4XFj2wxG8/u0B7DxigVLB4fGLT8H1Zw1O9NKIPoJGbBAEQRBpi06txBXjSvHJbWfj8rGlcLl5/OaT7fjtsp3kHSJkkBAiCIIg+i0alQLPXnk67pt5EgDg1W8P4JZ3q2G1OxO8MiJZICFEEARB9Gs4jsPC80bg+WvHQKNSYMXOo7j6pe9x1NKT6KURSQAJIYIgCCItuHh0Cd6bPxG5mRr82GDGpX9bh+pDrYleFpFgSAgRBEEQacO4wbn45JdnY3hhFo6Ye3DVS9/jH6v307yyNIaEEEEQBJFWDMrLwCe3nY2LR5fA5ebx++W7MffNjeiykW8oHSEhRBAEQaQdWVoV/nLNGfj95adBp1Zg7Z4W/O5/uxK9LCIBkBAiCIIg0hKO43D1mYPw2o1nAgCWbDiMb/a2JHhVRF9DQoggCIJIa84eno8bJwmNFn/1rx9g6XEkeEVEX0JCiCAIgkh7HriwAkPyMnDE3IMnPtuZ6OUQfQgJIYIgCCLtydCo8OyVo8FxwL+q67F8+5FEL4noI0gIEQRBEASA8UNyseDccgDAfR/+gNqWzgSviOgLUkYItba2orKyEgaDASaTCfPmzUNnZ+gXaVNTE+bMmYPi4mJkZmZi7Nix+Pe//91HKyYIgiBSjftmnowJQ3LRaXPi1nc30yiONCBlhFBlZSV27NiBFStWYNmyZVi7di0WLFgQ8pgbbrgBNTU1+PTTT/Hjjz/isssuw1VXXYUtW7b00aoJgiCIVEKtVOCv141BQbYWNUc78OuPfgTPU7PF/kxKCKFdu3Zh+fLlePXVVzFx4kRMmTIFL7zwAt5//300NjYGPe67777D7bffjgkTJqC8vBy/+c1vYDKZUF1d3YerJwiCIFKJQoMOf712DJQKDp9sbcRr3x5I9JKIOJISQmj9+vUwmUwYP368uG3GjBlQKBTYsGFD0OMmT56MDz74AK2trXC73Xj//ffR09ODadOm9cGqCYIgiFRlYnkeHrywAgDw1P924csdTQleEREvUkIINTU1obCwULZNpVIhNzcXTU3BX5z//Oc/4XA4kJeXB61Wi5tvvhkff/wxhg8fHvQYm80Gi8UiuxEEQRDpx7wpQ3HdxEHgeeDO97fix3pzopdExIGECqFFixaB47iQt927d/f6/A8//DDa29uxcuVKbNq0Cffccw+uuuoq/Pjjj0GPWbx4MYxGo3grKyvr9eMTBEEQqQvHcXj84lNwzoh8dDtcmPfWRjS0dyd6WUSM4fgEusBaWlpw/PjxkPuUl5fj3Xffxb333ou2tjZxu9PphE6nw4cffoif//znfsft378fw4cPx/bt23HKKaeI22fMmIHhw4fjxRdfDPh4NpsNNptN/N1isaCsrAxmsxkGgyHaSyQIgiBSHEuPA1f+Yz1qjnZgcF4GPlgwCcVGXaKXRYTBYrHAaDSG/fxW9eGa/CgoKEBBQUHY/SZNmoT29nZUV1dj3LhxAIBVq1bB7XZj4sSJAY+xWq0AAIVCHvRSKpVwu91BH0ur1UKr1UZ6CQRBEEQ/x6BT442bzsTVL6/HoeNWXPvK9/hgwVkoNJAY6g+khEdo5MiRmDVrFubPn4+qqiqsW7cOCxcuxDXXXIOSkhIAQENDAyoqKlBVVQUAqKiowPDhw3HzzTejqqoK+/fvx3PPPYcVK1bg0ksvTeDVEARBEKlGiUmP9+afhYEmPQ4c68K1r3yP5o6eRC+LiAEpIYQAYMmSJaioqMD06dMxe/ZsTJkyBS+//LJ4v8PhQE1NjRgJUqvV+N///oeCggL87Gc/w+mnn463334bb731FmbPnp2oyyAIgiBSlNKcDLy/4CyUGHXY39KFylc24FinLfyBRFKTUI9QKhBpjpEgCIJIDw4d78LVL32PJksPTi7KxnsLzkJupibRyyJ8iPTzO2UiQgRBEASRDAzOy8R7C85Coaf79HWvfI+2Lnuil0X0EhJCBEEQBBElQ/MFMZSfpcXupg78cslmuNyUYElFSAgRBEEQRC8YVpCFpfMnIkOjxPra4/jrqn2JXhLRC0gIEQRBEEQvOakoG0/9/FQAwF++2oPva0P3xiOSDxJCBEEQBHEC/HxMKa4YVwo3D9z5/hYcp0qylIKEEEEQBEGcIE9ccgqGFWTiqMWGW96tRpfNmeglERFCQoggCIIgTpAMjQp/rxyHbJ0KGw+24RdvboTVTmIoFSAhRBAEQRAx4OTibLz9iwnI1qqw4UAr5r25Cd12V6KXRYSBhBBBEARBxIgxg3Lw1rwJyNKqsL72OK579Xs00sT6pIaEEEEQBEHEkLGDcvDWL85Etk6FLYfbcdHz32DNnpbAO5vNQH194Pvq64X7ibhCQoggCIIgYsy4wbn47+3n4JQSA9qsDsx9owrPLN8Nm1OSKjObgVmzgKlTgbo6+Qnq6oTts2aRGIozJIQIgiAIIg4MysvAv2+djMqJg8DzwN9X78clf12H7Q0eYdPRATQ3A7W1wLRpXjFUVyf8Xlsr3N/RkahLSAto6GoYaOgqQRAEcaJ8/uMRPPTJdrR22aFScLjglGKU5uhR7O5B8TNPonjfDhTnZqHwpeehvOEGQQSVlwOrVwNlZYlefkoS6ec3CaEwkBAiCIIgYsGxThse+c92/O/HpqD7aB02jDheh5N7jmP4tZegbOgAlOZkIFungqXbAUuPEwoOGDXAgLwsbR+uPvUgIRQjSAgRBEEQseS7fcewo9GCI+YeHLX04Ii5G0dbLDjaaYdTqYr4PANNepxcnA2DToVMreemUSFTq4RRr8bIAQacXJwNtTI9XTCRfn5H/owTBEEQBHHCTB6ej8nD870bPJ4g14GDqDMWYXfBENScNAYHL7sO9XYO9W3d6LQ5YdCpYdCr0eNw4cCxLjS0d6MhTGm+VqVAxQADig1a5GZqkZOhhsvNo9vhgsPF45QSA6aeVICy3Iw4X3XyQhGhMFBEiCAIgogbUmN0eTnwzjvAnDlhPUIdPQ7saLTgwLEudNmc6LQ5YbW70GlzosvmREuHDdsbzLD0RNbdurwgEwNNemhVCmhVSgzNz8S4ITkYOygHBp0KXXYXOnucyPZEn1IBSo3FCBJCBEEQRFyorxdK5H1Fj684WrMGKC2N+vRuN4+Dx7uwu6kDxzttON5lR7vVAbWSg06thJvnUXWgFZsPt8PlDi4FFBwgvbsgW4sheRk4pcSIqScXYFJ5HnRqZfTXH2coNUYQBEEQyUx2NlBYKPwsjfyUlQm/T5sm3J+d3avTKxQcyguyUF6QFXI/c7cDGw+0wtLjgN3phtXuwo5GC6oPteLgcasogpggaumwoaXDho0H2/DmdwehVSkwND8TTjcPl5uHQafCmEE5GDs4BycVZUGjVEClUMDqcOLgsS4cOGZFk7kbPQ43bE4XbE43rj9rMM6Wpgv7EIoIhYEiQgRBEETcMJuFPkGBIj719YIIMhr7fl0eWrvscLrcyNapoVMrYOlx4tDxLhw41oXva1uxpqYZjeaeE36cp35+KionDo7Bir1QaixGkBAiCIIgiMDwPI+9zZ04aumBSqGASsnhiLkHmw+1ofpQG+rbrHC5eTjdPNRKBYbkZWBIfiZKc/TI0Kg8niQFJpbn4aSi3kW+gkGpMYIgCIIg4grHcTipKNtPxFw8uiRBK4qe9GwuQBAEQRAEARJCBEEQBEGkMSSECIIgCIJIW0gIEQRBEASRtpAQIgiCIAgibSEhRBAEQRBE2kJCiCAIgiCItIWEEEEQBEEQaQsJIYIgCIIg0hYSQgRBEARBpC0khAiCIAiCSFtICBEEQRAEkbaQECIIgiAIIm0hIUQQBEEQRNqiSvQCkh2e5wEAFoslwSshCIIgCCJS2Oc2+xwPBgmhMHR0dAAAysrKErwSgiAIgiCipaOjA0ajMej9HB9OKqU5brcbjY2NyM7OBsdxMTuvxWJBWVkZ6urqYDAYYnbeZCcdr5uuOT2uGUjP607HawbS87pT7Zp5nkdHRwdKSkqgUAR3AlFEKAwKhQKlpaVxO7/BYEiJF1SsScfrpmtOH9LxutPxmoH0vO5UuuZQkSAGmaUJgiAIgkhbSAgRBEEQBJG2kBBKEFqtFo8++ii0Wm2il9KnpON10zWnD+l43el4zUB6Xnd/vWYySxMEQRAEkbZQRIggCIIgiLSFhBBBEARBEGkLCSGCIAiCINIWEkIJ4m9/+xuGDBkCnU6HiRMnoqqqKtFLihmLFy/GmWeeiezsbBQWFuLSSy9FTU2NbJ+enh7cdtttyMvLQ1ZWFi6//HIcPXo0QSuOPU8//TQ4jsNdd90lbuuv19zQ0IDrr78eeXl50Ov1OO2007Bp0ybxfp7n8cgjj2DAgAHQ6/WYMWMG9u7dm8AVnxgulwsPP/wwhg4dCr1ej2HDhuHJJ5+UtfHvD9e8du1a/OxnP0NJSQk4jsMnn3wiuz+Sa2xtbUVlZSUMBgNMJhPmzZuHzs7OPryK6Ah1zQ6HAw888ABOO+00ZGZmoqSkBDfccAMaGxtl5+hP1+zLLbfcAo7j8Oc//1m2PdWu2RcSQgnggw8+wD333INHH30UmzdvxujRo3HBBRegubk50UuLCWvWrMFtt92G77//HitWrIDD4cDMmTPR1dUl7nP33Xfjs88+w4cffog1a9agsbERl112WQJXHTs2btyIl156Caeffrpse3+85ra2Npx99tlQq9X4/PPPsXPnTjz33HPIyckR93nmmWfw/PPP48UXX8SGDRuQmZmJCy64AD09PQlcee/5/e9/j3/84x/461//il27duH3v/89nnnmGbzwwgviPv3hmru6ujB69Gj87W9/C3h/JNdYWVmJHTt2YMWKFVi2bBnWrl2LBQsW9NUlRE2oa7Zardi8eTMefvhhbN68GR999BFqampw8cUXy/brT9cs5eOPP8b333+PkpISv/tS7Zr94Ik+Z8KECfxtt90m/u5yufiSkhJ+8eLFCVxV/GhubuYB8GvWrOF5nufb29t5tVrNf/jhh+I+u3bt4gHw69evT9QyY0JHRwc/YsQIfsWKFfzUqVP5O++8k+f5/nvNDzzwAD9lypSg97vdbr64uJj/wx/+IG5rb2/ntVot/9577/XFEmPORRddxP/iF7+Qbbvsssv4yspKnuf75zUD4D/++GPx90iucefOnTwAfuPGjeI+n3/+Oc9xHN/Q0NBna+8tvtcciKqqKh4Af+jQIZ7n++8119fX8wMHDuS3b9/ODx48mP/Tn/4k3pfq18zzPE8RoT7GbrejuroaM2bMELcpFArMmDED69evT+DK4ofZbAYA5ObmAgCqq6vhcDhkz0FFRQUGDRqU8s/Bbbfdhosuukh2bUD/veZPP/0U48ePx5VXXonCwkKMGTMGr7zyinj/gQMH0NTUJLtuo9GIiRMnpux1T548GV999RX27NkDANi2bRu+/fZbXHjhhQD65zX7Esk1rl+/HiaTCePHjxf3mTFjBhQKBTZs2NDna44HZrMZHMfBZDIB6J/X7Ha7MWfOHNx///045ZRT/O7vD9dMs8b6mGPHjsHlcqGoqEi2vaioCLt3707QquKH2+3GXXfdhbPPPhunnnoqAKCpqQkajUZ882AUFRWhqakpAauMDe+//z42b96MjRs3+t3XX6+5trYW//jHP3DPPffg17/+NTZu3Ig77rgDGo0GN954o3htgV7vqXrdixYtgsViQUVFBZRKJVwuF5566ilUVlYCQL+8Zl8iucampiYUFhbK7lepVMjNze0Xz0NPTw8eeOABXHvtteLcrf54zb///e+hUqlwxx13BLy/P1wzCSEirtx2223Yvn07vv3220QvJa7U1dXhzjvvxIoVK6DT6RK9nD7D7XZj/Pjx+N3vfgcAGDNmDLZv344XX3wRN954Y4JXFx/++c9/YsmSJVi6dClOOeUUbN26FXfddRdKSkr67TUTchwOB6666irwPI9//OMfiV5O3KiursZf/vIXbN68GRzHJXo5cYNSY31Mfn4+lEqlX7XQ0aNHUVxcnKBVxYeFCxdi2bJl+Prrr1FaWipuLy4uht1uR3t7u2z/VH4Oqqur0dzcjLFjx0KlUkGlUmHNmjV4/vnnoVKpUFRU1O+uGQAGDBiAUaNGybaNHDkShw8fBgDx2vrT6/3+++/HokWLcM011+C0007DnDlzcPfdd2Px4sUA+uc1+xLJNRYXF/sVgDidTrS2tqb088BE0KFDh7BixQrZFPb+ds3ffPMNmpubMWjQIPF97dChQ7j33nsxZMgQAP3jmkkI9TEajQbjxo3DV199JW5zu9346quvMGnSpASuLHbwPI+FCxfi448/xqpVqzB06FDZ/ePGjYNarZY9BzU1NTh8+HDKPgfTp0/Hjz/+iK1bt4q38ePHo7KyUvy5v10zAJx99tl+rRH27NmDwYMHAwCGDh2K4uJi2XVbLBZs2LAhZa/barVCoZC/dSqVSrjdbgD985p9ieQaJ02ahPb2dlRXV4v7rFq1Cm63GxMnTuzzNccCJoL27t2LlStXIi8vT3Z/f7vmOXPm4IcffpC9r5WUlOD+++/HF198AaCfXHOi3drpyPvvv89rtVr+zTff5Hfu3MkvWLCAN5lMfFNTU6KXFhNuvfVW3mg08qtXr+aPHDki3qxWq7jPLbfcwg8aNIhftWoVv2nTJn7SpEn8pEmTErjq2COtGuP5/nnNVVVVvEql4p966il+7969/JIlS/iMjAz+3XffFfd5+umneZPJxP/nP//hf/jhB/6SSy7hhw4dynd3dydw5b3nxhtv5AcOHMgvW7aMP3DgAP/RRx/x+fn5/K9+9Stxn/5wzR0dHfyWLVv4LVu28AD4P/7xj/yWLVvECqlIrnHWrFn8mDFj+A0bNvDffvstP2LECP7aa69N1CWFJdQ12+12/uKLL+ZLS0v5rVu3yt7bbDabeI7+dM2B8K0a4/nUu2ZfSAgliBdeeIEfNGgQr9Fo+AkTJvDff/99opcUMwAEvL3xxhviPt3d3fwvf/lLPicnh8/IyOB//vOf80eOHEncouOArxDqr9f82Wef8aeeeiqv1Wr5iooK/uWXX5bd73a7+YcffpgvKiritVotP336dL6mpiZBqz1xLBYLf+edd/KDBg3idTodX15ezj/00EOyD8P+cM1ff/11wL/jG2+8kef5yK7x+PHj/LXXXstnZWXxBoOBv+mmm/iOjo4EXE1khLrmAwcOBH1v+/rrr8Vz9KdrDkQgIZRq1+wLTZ8nCIIgCCJtIY8QQRAEQRBpCwkhgiAIgiDSFhJCBEEQBEGkLSSECIIgCIJIW0gIEQRBEASRtpAQIgiCIAgibSEhRBAEQRBE2kJCiCAIgiCItIWEEEEQBEEQaQsJIYIgUoq5c+fi0ksvTfQyCILoJ5AQIgiCIAgibSEhRBBEyjJt2jTcfvvtuOuuu5CTk4OioiK88sor6Orqwk033YTs7GwMHz4cn3/+uXiMy+XCvHnzMHToUOj1epx88sn4y1/+Ijuv0+nEHXfcAZPJhLy8PDzwwAO48cYbZZEot9uNxYsXi+cZPXo0/vWvf/XVpRMEESNICBEEkdK89dZbyM/PR1VVFW6//XbceuutuPLKKzF58mRs3rwZM2fOxJw5c2C1WgEIAqa0tBQffvghdu7ciUceeQS//vWv8c9//lM85+9//3ssWbIEb7zxBtatWweLxYJPPvlE9riLFy/G22+/jRdffBE7duzA3Xffjeuvvx5r1qzpy8snCOIEoenzBEGkFHPnzkV7ezs++eQTTJs2DS6XC9988w0AIdpjNBpx2WWX4e233wYANDU1YcCAAVi/fj3OOuusgOdcuHAhmpqaxIhOcXEx7rvvPtx3333iecvLyzFmzBh88sknsNlsyM3NxcqVKzFp0iTxPP/3f/8Hq9WKpUuXxvMpIAgihqgSvQCCIIgT4fTTTxd/ViqVyMvLw2mnnSZuKyoqAgA0NzeL2/72t7/h9ddfx+HDh9Hd3Q273Y4zzjgDAGA2m3H06FFMmDBBdt5x48bB7XYDAPbt2wer1Yrzzz9ftha73Y4xY8bE/BoJgogfJIQIgkhp1Gq17HeO42TbOI4DAFHEvP/++7jvvvvw3HPPYdKkScjOzsYf/vAHbNiwIeLH7OzsBAD897//xcCBA2X3abXaXl0HQRCJgYQQQRBpxbp16zB58mT88pe/FLft379f/NloNKKoqAgbN27EueeeC0BIjW3evFmMGo0aNQparRaHDx/G1KlT+3T9BEHEFhJCBEGkFSNGjMDbb7+NL774AkOHDsU777yDjRs3YujQoeI+t99+OxYvXozhw4ejoqICL7zwAtra2sToUnZ2Nu677z7cfffdcLvdmDJlCsxmM9atWweDwYAbb7wxUZdHEESUkBAiCCKtuPnmm7FlyxZcffXV4DgO1157LX75y1/KSuwfeOABNDU14YYbboBSqcSCBQtwwQUXQKlUivs8+eSTKCgowOLFi1FbWwuTyYSxY8fi17/+dSIuiyCIXkJVYwRBEGFwu90YOXIkrrrqKjz55JOJXg5BEDGEIkIEQRA+HDp0CF9++SWmTp0Km82Gv/71rzhw4ACuu+66RC+NIIgYQw0VCYIgfFAoFHjzzTdx5pln4uyzz8aPP/6IlStXYuTIkYleGkEQMYZSYwRBEARBpC0UESIIgiAIIm0hIUQQBEEQRNpCQoggCIIgiLSFhBBBEARBEGkLCSGCIAiCINIWEkIEQRAEQaQtJIQIgiAIgkhbSAgRBEEQBJG2kBAiCIIgCCJt+X9uCTGID/02VwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHACAYAAABONwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeNUlEQVR4nO2deZwT9fnHP5Nzs0eSvQ92gV1AAUXkUARRqCAirfctoijFo1pvBWvVWquo1f7aWq3aKh7Fq1ZtSysWQUARuVFBWI7lWFiWhV02e2Q35/z+mHwnM9lJMskmm+t5v177gk0mk+8k2cxnnufzPA/H8zwPgiAIgiCIDEST6AUQBEEQBEEkChJCBEEQBEFkLCSECIIgCILIWEgIEQRBEASRsZAQIgiCIAgiYyEhRBAEQRBExkJCiCAIgiCIjIWEEEEQBEEQGQsJIYIgCIIgMhYSQgRBEARBZCwkhOLEf/7zH4wbNw4mkwn5+fm4+OKLg27rcrkwb948jBgxAjk5OaioqMD111+PhoYG2XabNm3CueeeC6vVisLCQtx8883o6OgQ73/jjTfAcZziT1NTk+q133LLLRg0aBBMJhOKi4tx0UUXYceOHRG/BgRBEASR7JAQigP/+Mc/MGvWLNx444349ttvsXr1alx77bVBt7fb7di0aRMeeeQRbNq0CR999BFqa2tx4YUXits0NDRg6tSpGDx4MNauXYslS5Zg27ZtmD17trjNVVddhcOHD8t+zjvvPEyaNAklJSWq1z9mzBgsXLgQ27dvx2effQae5zFt2jR4PJ6oXg+CIAiCSFp4Iqa4XC6+X79+/F//+tde7WfdunU8AH7//v08z/P8K6+8wpeUlPAej0fc5rvvvuMB8Lt27VLcR1NTE6/X6/m33npLdvsnn3zCjxo1ijcajXx1dTX/q1/9ine5XEHX8u233/IA+N27d/fqmAiCIAgi2aCIUIzZtGkTDh06BI1Gg1GjRqG8vBznn38+tm7dGtF+bDYbOI6D1WoFADgcDhgMBmg0/rfMZDIBAL766ivFfbz11lvIzs7G5ZdfLt725Zdf4vrrr8ddd92FH374Aa+88greeOMNPPnkk4r76OzsxMKFC1FdXY2qqqqIjoEgCIIgkh0SQjGmrq4OAPCrX/0Kv/zlL7F48WLk5+dj8uTJaGlpUbWP7u5uzJs3D9dccw3MZjMA4JxzzkFjYyN++9vfwul04vjx45g/fz4A4PDhw4r7ee2113DttdeKggkAHn/8ccyfPx833HADampqcO655+KJJ57AK6+8InvsSy+9hNzcXOTm5uLTTz/F0qVLYTAYIn49CIIgCCKZISGkkvnz5wc1IrOfHTt2wOv1AgAefvhhXHbZZaLfhuM4/P3vfw/7PC6XC1deeSV4nsef//xn8faTTjoJb775Jp5//nlkZ2ejrKwM1dXVKC0tlUWJGGvWrMH27dsxZ84c2e3ffvstfv3rX4siJzc3F3PnzsXhw4dht9vF7WbOnInNmzdj5cqVOOGEE3DllVeiu7s72pePIAiCIJISjud5PtGLSAWOHj2K5ubmkNvU1NRg9erVOOecc/Dll19i4sSJ4n3jxo3D1KlTg6agAL8Iqqurw/Lly1FYWKi43ZEjR5CTkwOO42A2m/Hee+/hiiuukG0zZ84cbNq0CZs3b5bdbjKZ8Pjjj+PSSy9VXL+SqHI6ncjPz8df//pXXHPNNSFfA4IgCIJIJXSJXkCqUFxcjOLi4rDbjRkzBkajEbW1taIQcrlc2LdvHwYMGBD0cUwE7dq1C1988UVQEQQApaWlAIDXX38dWVlZOPfcc2X3d3R04IMPPsCCBQt6PHb06NGora3F4MGDwx4Lg+d58DwPh8Oh+jEEQRAEkQqQEIoxZrMZt956Kx577DFUVVVhwIAB+O1vfwsAsqjN0KFDsWDBAlxyySVwuVy4/PLLsWnTJixevBgejweNjY0AgIKCAtGb86c//QkTJkxAbm4uli5digceeABPP/20aKhmvP/++3C73bjuuut6rO/RRx/FT37yE/Tv3x+XX345NBoNvv32W2zduhW/+c1vUFdXh/fffx/Tpk1DcXExDh48iKeffhomkwkzZsyI06tGEARBEAkioTVraYrT6eTvu+8+vqSkhM/Ly+OnTp3Kb926VbYNAH7hwoU8z/P83r17eQCKP1988YX4mFmzZvEFBQW8wWDgTznllB5l8Yzx48fz1157bdD1LVmyhJ8wYQJvMpl4s9nMn3766fyrr77K8zzPHzp0iD///PP5kpISXq/X85WVlfy1117L79ixo3cvCkEQBEEkIeQRIgiCIAgiY6GqMYIgCIIgMhYSQgRBEARBZCxklg6D1+tFQ0MD8vLywHFcopdDEARBEIQKeJ5He3s7KioqFFvDMEgIhaGhoYFGSxAEQRBEilJfX4/Kysqg95MQCkNeXh4A4YVk4y4IgiAIgkhu2traUFVVJZ7Hg0FCKAwsHWY2m0kIEQRBEESKEc7WQmZpgiAIgiAyFhJCBEEQBEFkLCSECIIgCILIWMgjRBAEQWQ8Xq8XTqcz0csgIkCv10Or1fZ6PySECIIgiIzG6XRi79698Hq9iV4KESFWqxVlZWW96vNHQoggCILIWHiex+HDh6HValFVVRWy8R6RPPA8D7vdjqamJgBAeXl51PsiIUQQBEFkLG63G3a7HRUVFcjOzk70cogIMJlMAICmpiaUlJREnSYj6UsQBEFkLB6PBwBgMBgSvBIiGph4dblcUe+DhBBBEASR8dAsydQkFu8bCSGCIAiCIDIWEkIEQRAEkUHs27cPHMdhy5YtcX2e2bNn4+KLL47rc8QCMksTBEEQBBE1+/btQ3V1NTZv3oxTTz1VvP0Pf/gDeJ5P3MJUQhEhgiCixu3xpsQXHUHEDZsNOHhQ+b6DB4X7MxSLxQKr1ZroZYSFhBBBJCn/3HIIN7y+DjZ79NUQ8WRHYxtOeuwzLPh0R6KXQhCJwWYDpk8HJk0C6uvl99XXC7dPnx43MfThhx9ixIgRMJlMKCwsxNSpU9HZ2QkA+Otf/4phw4YhKysLQ4cOxUsvvRRyX1u3bsX555+P3NxclJaWYtasWTh27Jh4v9frxbPPPovBgwfDaDSif//+ePLJJwEA1dXVAIBRo0aB4zhMnjwZQM/UmMPhwJ133omSkhJkZWVh4sSJWL9+vXj/ihUrwHEcli1bhrFjxyI7OxsTJkxAbW1tLF6uoJAQIogEc7TdgYPH7T1uf331PqzceRSr9xxTeFTiWfztYTjcXny8+RBFhYjMpL0daGoC6uqAyZP9Yqi+Xvi9rk64v7095k99+PBhXHPNNbjpppuwfft2rFixApdeeil4nseiRYvw6KOP4sknn8T27dvx1FNP4ZFHHsGbb76puK/W1lacc845GDVqFDZs2IAlS5bgyJEjuPLKK8VtHnroITz99NN45JFH8MMPP+Cdd95BaWkpAGDdunUAgM8//xyHDx/GRx99pPg8Dz74IP7xj3/gzTffxKZNmzB48GCcd955aGlpkW338MMP4/nnn8eGDRug0+lw0003xeIlCw5PhMRms/EAeJvNluilEGnKhAXL+JMeXcJ3dLtkt5/1zHJ+wLzF/AfrDyRoZaG57KXV/IB5i/kB8xbz+491Jno5BBEVXV1d/A8//MB3dXVFt4MDB3i+pobnAeHf1avlvx+Iz9/vxo0beQD8vn37etw3aNAg/p133pHd9sQTT/Djx4/neZ7n9+7dywPgN2/eLN43bdo02fb19fU8AL62tpZva2vjjUYj/5e//EVxLYH7Y9xwww38RRddxPM8z3d0dPB6vZ5ftGiReL/T6eQrKir4Z599lud5nv/iiy94APznn38ubvOf//yHBxD0/Qn1/qk9f5NZmiASiMvjxaHWLgDAYVs3Bpfkive12oUBkF0uT0LWFooupwffHmwVf994oAX9C6krL5GBVFUBK1b4I0BnnincXlMj3F5VFZenHTlyJKZMmYIRI0bgvPPOw7Rp03D55ZfDYDBgz549mDNnDubOnStu73a7YbFYFPf17bff4osvvkBubm6P+/bs2YPW1lY4HA5MmTIl6vXu2bMHLpcLZ7LXB8LQ1NNPPx3bt2+XbXvKKaeI/2ejM5qamtC/f/+onz8UJIQIIoF0S0QOEz6AYEJu63YDAOzO5BNCmw4ch8vjT4dt2Hccl4yqTOCKCCKBVFUBb7/tF0GA8HucRBAAaLVaLF26FF9//TX+97//4YUXXsDDDz+Mf//73wCAv/zlLxg3blyPxyjR0dGBCy64AM8880yP+8rLy1FXVxf7AwiBXq8X/88aJsZzIC55hAgigUijPcclpmgmgoDkFELf1DUDAApyhLEEG/cfT+RyCCKx1NcDs2bJb5s1q6eBOsZwHIczzzwTjz/+ODZv3gyDwYDVq1ejoqICdXV1GDx4sOyHmZoDGT16NLZt24aBAwf2eExOTg6GDBkCk8mEZcuWKT6ejSdh40qUGDRokLg+hsvlwvr16zF8+PBevAq9h4QQQSSQbqf/Kue4JCIk/X+X041kY22dYG68ccJAAEDtkXa0dSdndRtBxBWpMbqmBli9Wvg30EAdY9auXYunnnoKGzZswIEDB/DRRx/h6NGjGDZsGB5//HEsWLAAf/zjH7Fz5058//33WLhwIX73u98p7uv2229HS0sLrrnmGqxfvx579uzBZ599hhtvvBEejwdZWVmYN28eHnzwQbz11lvYs2cPvvnmG7z22msAgJKSEphMJtFkbVOoksvJycFtt92GBx54AEuWLMEPP/yAuXPnwm63Y86cOXF5jdRCqTGCSCBdQVJjrZLoULJFhLqcHmypbwUAXDCyAh9srEd9Sxe2HGjF2ScUJ3ZxBNGXHDwoF0HMEyT1DE2eDKxcCVTGNnVsNpuxatUq/P73v0dbWxsGDBiA559/Hueffz4AYRjpb3/7WzzwwAPIycnBiBEjcPfddyvuq6KiAqtXr8a8efMwbdo0OBwODBgwANOnT4dGI8RLHnnkEeh0Ojz66KNoaGhAeXk5br31VgCATqfDH//4R/z617/Go48+irPOOgsrVqzo8TxPP/00vF4vZs2ahfb2dowdOxafffYZ8vPzY/raRArH81T3Goq2tjZYLBbYbDaYzeZEL4dIM7bUt+LiF4VQ8W2TB2He9KEAgGXbj2DOmxsAAJeO6offXXVqopbYg693H8O1f12LMnMW1jx0Du794Ft8vPkQ7pwyBPeee0Kil0cQEdHd3Y29e/eiuroaWVlZkT2Y9RFqauppjGaRopISYMkSIIhRmegdod4/tedviggRRALpkkR7jnemRkTom71CWuyMmgJwHIfRA/Lx8eZD2EQ+ISLTsFgEkdPe3jPiU1UlRILy8kgEJTkkhAgigXTLzNISIdQlEUJJVj7PjNLjagoBAGMHCGHtzQeOw+3xQqcl6yGRQVgswYVOjNNhRHygbyyCSCDBqsZak9Qs3e3yYMuBVgDAGT4hdEJpHvKMOnQ6Pag9EvsOugRBEPGEhBDRKw7busQIARE50tRYKpilNx9ohdPjRanZiIG+BopaDYdT+1sBUBk9QRCpBwkholfc9e4WXP3qN9hJkYCoCBYRkpfPJ48Q2tYglMWOGZAvNjpjvwMkhIjUheqGUpNYvG8khNIZm00o71Ti4MGYTERmw0IP27p7va9MJLCzNPujtnUlZ0SIiTKLSS+7fVR/QQhtPRSfKdsEES9Yt2Wn0xlmSyIZsduFc5C0G3WkkFk6Xemjss4Oh+Bf6U4yQ2+qII32uDw8Op0e5Bp1soiQPYk8Qk6P0ADSEGCILsgWOssmk2gjCDXodDpkZ2fj6NGj0Ov1Yt8cIrnheR52ux1NTU2wWq1Bx4eogYRQutLeLogg1tCLiSFpF1S2XZRCiOeFEzdAQihaAgeqHu90Iteok3mEkmnoqsMtCCGjXv6lk6UXTh70OSBSDY7jUF5ejr1792L//v2JXg4RIVarFWVlZb3aBwmhdKWyskd307bX34L5puvlXVB7Ud7pcHvh8QqpHDoBRkcPIWR3oqogWyaEXB4eLo8X+iQoS3e6lSNCWT5hlEyijSDUYjAYMGTIEEqPpRh6vb5XkSAGCaF0RtLqfWH+SXj801b8RVOEc2vQM10WBSwtBgDdrvhNBk5nAgXkcbsLLo9X9toCQsrJYkq8EGIRIYNOvhajGBHygud5mZGaIFIBjUYTeWdpIi1I/DcrEV+qqoC338bmihMBAFtLBwNvv91rEQQAnTIhRJGAaAisCGu1O0WjNMcBGk55u0ThcAvrMAYIIZMkVcbEEkEQRCpAQijdqa8HZs1CuzEHANCtNwKzZsVkInKnw39ypohQdCh5hFg/IXOWHtkGIWibLIZpZ5CIUJZUCNFngSCIFCJlhFBLSwtmzpwJs9kMq9WKOXPmoKOjI+RjbrnlFgwaNAgmkwnFxcW46KKLsGPHjj5acRIgMUa3WYQuwN0FRX4DdS/FUKfk5NztTo6IRarR5RMNzGx83O4S/UH52XqYDILASJZqLCaEjDp5Xl6v1UDrC1+RT4ggiFQiZYTQzJkzsW3bNixduhSLFy/GqlWrcPPNN4d8zJgxY7Bw4UJs374dn332GXiex7Rp0+DxZMAX9cGDfqN0TQ3aTxgGAOi68GLBKM3EULA+QyrooNRYr2GvW4XFBEBIjbHGipZsA7J9QihZXt9gHiEAyNJR5RhBEKlHSgih7du3Y8mSJfjrX/+KcePGYeLEiXjhhRfw3nvvoaGhIejjbr75Zpx99tkYOHAgRo8ejd/85jeor6/Hvn37+m7xiSIvT+gT5KsOa/cIV+vdBpNglK6pEe7Py4v6Kcgj1HtEIWQVhFCL3SWmxvKz9aL3JtkiQkpCiEWvKDpIEEQqkRJVY2vWrIHVasXYsWPF26ZOnQqNRoO1a9fikksuCbuPzs5OLFy4ENXV1agKYRR2OBxwOBzi721tbb1bfKKwWIRmie3tQGUl2rq2AfClLaqqgJUrBRHUi2aKnVQ11muYCbrcIlSrtNqdYmrMatKjzWecThYhFMwsLdzGolf0WSAIInVIiYhQY2MjSkpKZLfpdDoUFBSgsbEx5GNfeukl5ObmIjc3F59++imWLl0Kg8EQdPsFCxbAYrGIP6FEU9JjsQCVlfB4FRofVlb2SgQBgWbp5DhRpxrMT1PuiwgdtzvR2iVEhKzZBtEs3eVKErO0J0RqjJoqEgSRgiRUCM2fPx8cx4X86a25eebMmdi8eTNWrlyJE044AVdeeSW6u4PPxXrooYdgs9nEn/oYVFclmo7u+KSwKDXWe/weISEidLzTb5a2JrNZWqG5IzVVJAgiFUloauy+++7D7NmzQ25TU1ODsrIyNDU1yW53u91oaWkJ21qbRXaGDBmCM844A/n5+fj4449xzTXXKG5vNBphNBojOo5kp607PuMaOpyUGustYmrM6jdLS1NjzCydPH2E2IiN4ELIQUKIIIgUIqFCqLi4GMXFxWG3Gz9+PFpbW7Fx40aMGTMGALB8+XJ4vV6MGzdO9fPxPA+e52UeoExAJoRieEKVRYTIIBsxPM+LwpRFhDqdHjS1CxHL/Bx/1ViyRYQMCm3tmbGbRDFBEKlESniEhg0bhunTp2Pu3LlYt24dVq9ejTvuuANXX301KioqAACHDh3C0KFDsW7dOgBAXV0dFixYgI0bN+LAgQP4+uuvccUVV8BkMmHGjBmJPJw+p707PpEbaqjYO5weL3yj2lBizhK7SO89ZgcAWEx6mPSsoWKSCSHyCBEEkSakhBACgEWLFmHo0KGYMmUKZsyYgYkTJ+LVV18V73e5XKitrYXdLpxEsrKy8OWXX2LGjBkYPHgwrrrqKuTl5eHrr7/uYbxOd9rj5BGiPkK9o9vpF4/ZBi2s2YKJ/1iHELHMl/QR6uqwB+/5dPAgYLPFd7E+xNSYUtUYeYQIgkhBUqJ8HgAKCgrwzjvvBL1/4MCB4Hle/L2iogL//e9/+2JpSQ8rwQZiK1jsThJCvYEJBr2Wg16rgTVbj5ZO//RrmVl68afA/Nd7Dstl3cNLSoR2Cb2sBAxHyIhQmpTP09BYgsgsUiYiRERPe4BZWioYe0MHlc8rcrTdoeo1ZkKImYzzs+VtHaySiJDd7e05GkUyQgVNTULPqDji9fJi+bxSRMhkSP3U2Nq6Zpz666X4eHP0HdcJgkgtSAhlANLUmJf394LpLdRQsScrdx7FaU9+jv9bujPstsy4bhKFkF68T8MBeUadPzU2cZJ8NMrXX8tGqGDFCqE3VByRfm5CRoRS2Di/bm8LbF0ufLnzWKKXQhBEH0FCKAOQVo0BsRMtgVVjsYo0pTKbDxwHAGzYfzzstiwixNJfVklEyGLSQ6PhYGLT57V6cTTKbpsTdy/4CHtaHX4R1AeNP8MKIbF8PnVFscvnXk8WczpBEPGHhFAGII0IAbFLXUjN0nwMI02pzJE2wejc0NoVdlv2PihFhFiaLFsv6SNUVQW8/TbeGTkdn5z0I7w5+gLg7bf7RAQBcoFjUGyoqPGvNUVx+z7Dnc7k6ORNEET8ISGUAQQKoVicqHiel0WEAHkVVKbS1Cb0AGpo7YbXGzpCxt4HVm2VnyOJCPlEkayPUH09MGsWjuVYAQA7i/oDs2b5PUNxRjpeQ8lMzCJCqZwac/ves1QWcwRBRAYJoQygR2osBicqh9vfAyeW+011mtqFiJDT48WxztCNO8XUmC+SIjVLs/+LVWNdDtET1FIodFPfXTqwp4E6joQarwFIhFAKm6VdYkQodY+BIIjIICGUAbTFISIkTYtRIz0/R9r8c+waWoPPtAOkQqhnasxqYhEh39DVY8dFY3Tz8FMBAMeyzGgZOsIvhoL1GYoR4uR5hfEagFQIpW5k0O1hESFKjRFEpkBCKANoj4NZmqXFsg1a8WSdyifAWOD2eMVmiEB4n1B3CLM0+7+YGtMZRWP0ccnbufuND4TbS0qAvLyYHEcw/OM1ggmh1BfEbi9FhAgi00iZhopE9LR1CaJFp+Hg9vIxOVGxiFCOUSeeGFP5BBgLmjudsnRhOCHEInNKfYSsvugQE0ndWj28K1aAq6xES+dWcbtdMOH0lSsFERTnZoqOEM0UAWlDxdT9HLg85BEiiEyDIkIZAIsIFecZAcRmBAKbM5Zr1ImpklQ+AcYCaVoMAA6FE0Ihq8bkZmkA6CopR4fDLavO23WkQ+gfFEYErdx5VCztjxbRI6TrOXAVSKLUmM0W9TgSadUYtYMgiMyAhFCa43R7xSv5Ep8QioVg6RQjQloxEpDpM6ZY6TwjbEQoQAjJ+gj5/p8lER12p0c2ggMAdjWF7yZ9vNOJm95Yj+tfWyeagaMh1HgNQNJZOpGmeZsNmD4dmDSpp4G8vl64ffr0oGKI9RHieX8EjCCI9IaEUJoj9QfFNCLkM5PmGHQSb0hmnzhYRIgJhXBm6W6n3CNk0GmQaxSy1SwipNFwolDqUhJCRzrCr6u9Gx4vj3aHG7WN0Y/hEM3SQYSQMRlSY+3twriRKMeRuCVCkZoqEkRmQEIozWEVYzkGLXJ8J9lY+B86JR4hsaNwhpfPsx5CJ1eYAaiPCLHXDwCqCrIBAJX52eJtomHa5RaFUHVRjvCc7Q7Y7HIzfCCtkvu31LeGPY5ghPUISZs/JorKSrEDdzTjSDwSk1dgnyyCINITEkJpDosImU16Mc0Si5A/G7gqFULkERJSY6P65wMQzNOhXhMWQTNJhNCL147CmzedLgodQNJLyOlBs08I9S/IRrklCwCw+2joKI9UCH3bCyEULjUmRgYTnVKqqhLF0GM15+KSP6+BY/8BVeNImFkaoFQvQWQKJITSHNZVOi9LJ55QYxkRyjVqxRN5pqfGmtqFiNCQklzk+F7rUFGhwFljAFBTnItJJxTLtsuWvG/HfUKoMMeAwSW5AMKnx2xd/nTatwdb1RyKIg7RLB3EI+T7HDjd3rBdteNOVRXaXn8Lb4+agc39hmJXYX9V40hY+TxAESGCyBRICKU5bV1CNCAvSx/T6i4xNWagqjEGiwiVWrJQYTUBCO0TCpw1Fgxx8KrEI1SQY8AJpULfoF1NoYWQNCK0q6lD1gwzEvwRodBVY0ASGI3r67HhF0/DqxHW1GkwqRpHIosIkUeIIDICEkJpDosImbN0ftNtLM3SktRYpqcSWESoNE8qhEJEhJw9PUJKsMGrdqdbTI3l5xgwxBcR2nkkTGqsyy+EeB74LsqokCNsQ0X/cSRUFPuM0WsN/siavX+1qnEkUrM0NVUkiMyAhFCaw+aM5WXpYyuEJH2E/I30Mjc15vJ4caxDECmlZqMohFgvoeYOB85+9gvM+/A78TFKqTElpKmxFklqbEipIIR2RxARAoBv64P30QmF2EcoyIgNrYaDXisMY02YKD54UDRGfzN4jHhzxxNPyQ3UQfoMuSUpPTuN2SCIjICEUJrTJvEIidVdMRAsHbKqMUqNHfUNW9VpOORnG9DPKhiZWUTov1sbcaDFjk+3HhYfE9hHKBhSs7Q0NTa4WEiNHbZ19xijIoWlR/v5xFm0hmmnR1hvsIgQkATdpfPygJISdJwwDFuLBoo3d+Za/NVkIcaRSFNjVD5PEJkBCaE0pz1uESFJQ0Uqnxd7CJXkGaHRcP7UmE0QQsu3HwEgCFMmEsQ+QuFSYwb/+yZGhHINsGTrxSaZoaJCrT6z9Nk+E3a0hmkmoIOZpQEgy5Dg6KDFAixZgo2vfwiJphGEe1UVsHIlsGRJ0E7cydRHqNXu9Jfz96JbNkEQoSEhlOaIHiGTTjxJxbSPkEFHVWPwG6VLzEIkSGqWtjvdWL2nWdyWDWb1p8ZC/xlmi2Zpfx8hNpeMpcdCGaZZamzi4CJoOCGCFDgORA1stEdIISSW0CdQRFgsWNsuXyNL5YYbRyJLjSWwaqy+xY7Tnvwcd7+/pdfdsgmCCA0JoSSD53ms2dMcMtURCdKIUJau50nK5fHik82HIj4xUmpMjmiUNgsRmn4Sj9CXu46J/hphW7kQCmeWZqkxW5dLfN0Lc4TnGVIipHhCRoR8QqjCmiVWmkXTWDFcHyFAkhpLcDRl7d4WAIKXCvCb+8MhHUFiT+DneVdTO1weHtsPt/W6WzZBEKEhIZRkrKg9imv+8g0elJhqewObPG8O0kfof9uO4O73t+CZT3dEtF+WNhCGrlLVWBMrnfdFhErNWeA4QTz8fYM8pXG03QGvl1dsqKgEqxo7dFxIs+k0HMwmIUrEGi/ub+4M+nibzyNkzTZgZKUVQHQ+IUeYoauAZPBqAiNCXU6PWBk3+cQSAFDdMsCdJOXz7LPR7fL06JbdOP0iHFn+lepu2QRBhIaEUJLBrtQ/335EPIH1hnaHr7N0ll7i5fFf9R5qtQMAjgXMsApHh4JHKJMjQiyixoSQQacR/TvLdwj+IItJmB92tN0hew/URoQO+oRQfo4BHCdUZ7H5cc0dyu+fy+MV3yurSY9T+1sBROcTUhURSoK5c5sOHIfLw6PckoVh5UIETG1zRHeSjNhgf0vi58TXLds1aDDOn3I/fvzxPrj27VfVLZsgiNCQEEoy2JW9y8Njmc9g2xtknaUVZkExseWM4Aqe53lJZ2mdP+WWyR4hX7qLCRPA7xPy8sKst2nDSwEIqTFp9CxsHyGfR4gJoQLJlPqiXOH5mO8oEKmYNpv0YkTou3qbbK6WGsLNGgOQFKJ4bZ3gxxpXXSDO1xM9QmGQdpZOZGqMvday17GqCu1/WYjj2RYcy8lHY26hqm7ZBEGEhoRQkrGv2S7+/7/fN/Z6f9LO0kqND/1CSL2I6XZ5wc6h2TRrDIB/4CqLCAF+IQQIFVv98oXfj0qEkEGngVbDhdy3tGoMEErnGYW5wv+PBYkI2cT3XwethsMJpbmwZuvR7nBj4eq96g8Q4afPA1IhlDhR/I3PHzSuplAihCJPjSXSLC1GhKSvY309un9+l/jrYXOxqm7ZBEGEhoRQkiH1eqzadbRXpmme5+VVYwqmZpvPQ+T0qD9xSf0W2XqtmLpJ+FiFBOJPjfkjQv0kQmjKsFIxWnS03SFG5cL5g4CeDRcLcntGhDocbkUhyozS1mwhLafTajBv+lAAwHP/q8UBifAOh7rUWGL9Yh4vL6aXT68uQK7RN2IjGrN0EniEnB7f3DafMdrR4L84ahh8kqpu2QRBhIaEUBJh63LhuN3f/M7p9mL5jqao99ft8oqeB2kfIYdkKCaLGLnc6tMk/tJ5LTQaLvFN9BKMw+0R37fSPElEyDcdnuOAyScWoziXCaFu1XPGAH9EiFEoiQiZs3Rig0PW1FEKG7hqNfkfc/VpVRhfU4hulxfzP/oOPK/uvQ83YgOAJE2amM+C3ekWBVs/qwk5vrSiarO0NzkaKkpfP8d+f3VY98Aa8faGux5U1S2bIIjQkBBKItjVeXGeEZeM6gcA+O/3h0M9JCRsvIaGE0SLNLLAqnrE1FgEESHpnDHAb5DN1KoxVjFm0GrEyAsADK8Q+tWMrylEUa5R7DEkTY2FG68B9BRC+RKPEMdxKBLTYz2FUGBEiD3m6ctGIEuvwdd7mvH+enXRBP+IjeBrFqODCfossNeV44QUXiSpMZ7nZb6pRI7YkFbdOUzZQjfsmhp0v/JX8fYGGFR1yyYIIjQkhJKIfb602ICCbJw/ogyAUE4fbfUKS6vlGnXgOH/kBvCH3tui8AhJ54wByWGQTSSsh1CJ2ShWcwFCauadn47DH68ZBcBvpD7a4RCjDeGM0gBg0utkvxdKUmMAUBSicowJIVaxxhhQmIP7p50IAHjyP9tF0RwKJpZDRoTE8vnEpEm7nf6WBBzHRWSWlo7XABIbEZJ6g7pNuUI37JUr0V1QJN5+uLVbVbdsgiBCQ0IoiWD+oAGFORhebsaAwmw43F58URs6PfbUf7fjlrc3yMYDAP45Y2bfSVCj4UR/B7tyZhGhSPw9nQ55RMgoKZlWm2ZJJ1hEqERSMcaYMLhI9PGwyI3Lw6PRN3rDFGSAqZTAiJDULC3sN3jlWGtXz4gQ48Yzq1GUa0S7w409YQa3An6zdOiGir7PV4JERGCTyhyJRyjcZ1NaMQYkWAhJI0JujyByKitlkaIGm68Japhu2QRBhIaEUBLBKsYGFmaD4zjMGFEOAPg0RPXYkbZuvLqqDp9tO4Lth+WdZf2l8/6ToNTDwfN8VOXz0h5CgDyqkYmG6cAeQsEw6rSiIDnQIrzX0aTGAoUQ8wwpCSEW8ZN6hBhaDSeuR02Vl5gaCyGEjDGIDjLDc6CwV0Og94pFLXk+fOq2Z0QokVVjXsX/SyNFbKAvQRC9g4RQEsE8QgN83YJ/5OuKG2ocwrLt/mgRa47IaJOUTjOk3aXtTo9oDg08CYRCOmcMkBt+YzHZPtVgPYSUIkKBMMP0gRYWEYq8aoyN12Cw1JhSCX2r3WeWVogIAZHNBlMjhHqbGuN5Hne+txkXv7ga72+IvBLKHxES1mjSa8G6E4QzTAcKL5eHl1WR9SUys3RgdMiHrcuV0KaPBJEukBBKIqQeIcA/PqHB1hV0svvnkqaLrOEeQyydl0SETJIrdmmzvWjK51lqTK/198JJ6LDNBNHsi8SwFFUomE/ogO+9VuMRYg0VGfk5clHDnvdoiNSY2RRECOnUm5vVjNgw9TIi9MbX+/Cf74QCgV1HwqfrAgk0oXMcJwr2cD4ht0KDyUSlx6Svnzw6JF/PYRtFhQiit5AQShLsTrc4jHNgoSCAinINyDZowfM9RQ57zOrdx8TfD7UGCiE2XsN/IpU2vJMKIY+XV91pmJ0cmBACEu8NSSRsInyhCiHEokZiakyFENJKvF2AvGoM8HuPjimUz4tVY0GEkCmgWWMoIhuxEfnnYNOB43jyP9vF31k0KxKYoJMWBqitHGNCyKDTQOcT9olKj8nSYW5lUQQADa2RDUsmCKInJISShP2+tJg1Ww+LL43BcRz6+6JDSo3vvtp1TD43LEAstXX3TI1JG94FzjJTWznmH6/hP9kkw7DNRMFSUoHeHSVYRIj1HVLjEQL8PiGLSQ99QNUWS7c1K8yLkw5cVcKo8wvjUHi8vEwoBCPaCsKWTifuWLQJbi8vvo7sNYoEpbYE2b7PqdrUmF7Dia93wiJCQcQPRYQIIvaQEEoSmBAa4IsGMQYUCkJon8J0ceYPYtv0jAjJq8YAec+faIVQYGpM2G/iRyskCn9ESL0QYqiJCEm3K1QQW36PkFJESKVHKIxwkX42QnuEops7939Ld6LB1o3qohw8+pPhAKKLCHX5yuelKcdclREh5pPTaTViOtKuckZZrHGojAgdoogQQfQaEkJJwv4AfxCDCaP9AREhr5fHMl/X6VlnDAAQXAjJzNJBPEKAep+QdOAqozcpkVRHFEIqIkIlefLKMjUeIcAf4chXeA72vK12l8zc6/X6qwKDpsZUjsSQCqF4RIS2NdgAAHdPHYKqAmE0SWtX9BEh6euqtrs0K5/XazkxihTv1Nj2w2247M9f4+s9x2S3B4sIBXoFD1PlGEH0GhJCSYK0dF6KmBprkQuhbw+24liHA3lGHS4bXQlAOBFKr3qlA1cZ7ITa7fKI9zPUCqEO31Wy1MSbqU0Vu10e8QQbWM2lRI+IUISpMaX0W362QTSrS5sqdjjd4nDcoGZplZE8dgLmOIj+mZD7izBFetjXE6eqIBsWX6n/cYVUXzj85fP+rza1TRXZwFWdRtNnqbFPtzZi4/7j+NeWBtnt4SJCZb5WDQ2UGiOIXkNCKEmQNlOUwtJe+wNSY6xa7OwTi5GfYxAN0dKoEEunSaegS+eCRZsaszvlfYSAzE2NsWiQTsPBbNKF2Tr61Fi2r7u0UtRJo+FEgSRNj9mYD0mvDRp5YpG8cFVjDknpvLR7do/9qfQcSXF7vGIvpgqLCfm+NF5btzviXkJKM9xyVUZ3WDRNp+X8qbE4C6EOX9S2M+B5glaN+UQRqyg9TKkxgug1JISSBL9HSB4RYhVk9ce7xEGpgN8fNHWY0GuoX77PJ+QzTHe7PGKUaWiZfwZRlthHyBsDszSlxpgQKsgxhBQIjMBeQ6o9QiEiQoByCb3SnLEe+1WbGlMxXgOQfA4iEBBHOxzw8oKYLM4zysaBsO7oamFVi1mSSBuLCIVPjQl/X3qtPyKkdmp9tHQ4hPeoK+B5gvURYrdXF/tba2RiN3eCiCUkhJIAh9sjhrgDI0LllizoNBycbi8afVfNR9q6saOxXZhqfoJPCPmiPgd9EaE9Rzvg8fKwmPSyk68pBlVjimbpDJ1AzyIwairGAKHqSyomslSmxpjPK1iJPiuhl6bGWn2T5wPnjElR2wmapWoMIXoIAdGlxlgJeKk5C1oNB51WIx7v8QgN0+x5peXz6s3SvoiQxt97SNoOoqXTqRyhstmCT34/eFC4PwgsXRcYeZI2pFTqLF3t+57odnmjqq4jCMIPCaEE8fXuY5jzxnpsPnAc9S1d4HlhQnxRQOWRTqtBZb4gcljUaMO+4wCAoWVm0TzLtmERoZ1HhHEbJ5blySIV0shNtB6hwKGrwn4zUwixiJCaZoqA0BKhWEGYhuOmidW4dFQ/XHBKueL9xQrzxoINXJWiNqXJPhuhKsYA//G4POr7UrES8HKL30jOeiVFWjnGqsZk5fOiWVqlR0irER/PIkL1LXaMe+pz/PzdzfIH2WzA9OnApElAfUAn7Pp64fbp04OKoXafOJMKIZfHK3vtlDpL52XpxM8cjdogiN5BQihBvLhiN5btaMIlL32Nm9/eAECIBimlV/r7rv4OtAienw37WwAApw3MF7dhESHmEdrR6BNCpf60GBCmakxtasx3cpDOwEr01PFeE+VVfXMEPYQYRRIhlKVi6CoAjO6fj99ddSpKgswzE0voJU0VQw1cDXz+cKkx5iEKJ4SkXiS1opj5XMolXjbmE2qNMNqh5BESB69GUjUmGUUDCGNuXB4eWxsCPgft7UBTE1BXB0ye7BdD9fXC73V1wv3t8jmADLYmaeQpcF6fQ2HuWJZei35Wn2GahBBB9AoSQgniiYtOxuVjKqHVcKg7yozS2YrbspJ6FhHauF+ICI0Z4BdC/oiQsE1toz8iJCVkQ0UVESGe55U7SyfAI7T1kA1/XLYr6PgR1fTiqr65M3IhVJwbeUQoHEqDV22sh5DCwNXA5w/bR4h5hMIIIalQUtOtGvBXPlVIIkKW7OiaKnaL5fP+dUTaR0ir6WmWZlGrjkDPUmUlsGIFUFMD1NWhfsaleHvRF3j2judwz7CL8ehlD8K17AthOwXY/uwu/34D3wslj5BRp0G5xeRbGxmmCaI3pIwQamlpwcyZM2E2m2G1WjFnzhx0dKibRcTzPM4//3xwHIdPPvkkvgtVSU1xLp67YiRW3D8ZM8f1R2GOQZw2H4i/cswOu9ONbQ1tAICxAwvEbfrlyyNCO8MIISEiJHz5spOXmoiQUxK2V4wI9WHV2DNLduB3S3fKBs9GRS+u6ls62Zwx9UKoxCyNCMVGCBWJqTF/KsmmKiLEZo2FSY2pGLgKCBVsTCxFHBGSpcZYRCjC1JhSHyGVZmn2udbLyueFxzCx0eFw9zQnV1WJYmjmhFvwyPd2vDRsGj4++Ry8NfhsrHUpX+BI1ySNCAW+bkpVY1l6rVgNSiX0BNE7UkYIzZw5E9u2bcPSpUuxePFirFq1CjfffLOqx/7+979XVdGTCKoKsvHkJSOw8ZFzccHICsVtWC+h/S2d2HKgFR4vjwpLlpgOA/ypsaZ2B451ONDg++I+IUhqrMvlFT1CzLOiZtK2tNOuvI9Q30eEjvrSQIGjRSIm4Kq+a8q5OLD0S/BMBNXUACtWoLu0XJzfxvCnxtR5hICAiJBKs3Q4lLpLix6hWKTGVMwZE/cpCiF1olj0CMlSY/4mkZHQpVg+r64UXl4+L+8jxMSay8P3SF0BAKqqYHvtTRzIFy5mrt+4GFXZwusQyvDdoeARCnzdlPoIGfUaVIipMYoIEURvCN/4JAnYvn07lixZgvXr12Ps2LEAgBdeeAEzZszAc889h4oKZQEBAFu2bMHzzz+PDRs2oLxcOeKS7Ei7S29gaTFJNAgQUjNZeg26XV6srD0KQLjCDjTKsivlVrtTTHcU5xlx8HiXqoiQ3XeiMej8E+eBxFSNsZNkU3sMTgTsqn7yZFwy8Q7sWNYG609+g1Gt9Sj40URs+8de7Gr6HgDw3zvPEiNtzRGM12BEY5YOhzh4VVY1xrpKB1+bWpO7U8XkeYbJoEVbt1v1Z4GJ9gqLXwixz22kVWMssmJSKJ8P6xFSGLHBCgOkM73au909I3n19djzwGPAlHtR2t6MX3/+Mm4uq0J9v5HizL9AeJ73e4RcHvA8D47jQkeEJBEvMTVGHiGC6BUpERFas2YNrFarKIIAYOrUqdBoNFi7dm3Qx9ntdlx77bV48cUXUVZWpuq5HA4H2traZD+JhkWE2rvdWOZrpDhW4g8ChGokFhVaXiukigLTYgBgMghveaPv5KPVcOLVtxoh1KVglAYSUzXGysObFKauR0VVFbxvvYUdJdXC/k1mfFF+Ev6x4zh2NLbD4xUqodZIxiFEMl6DodTOoLewKFNLp0NM8dhU9BFSW+6uZvJ84D7VeLecbq8YxSq3KqXGIosIsWhNloJZWvWIDQ0nPqbL591pkPhweuzHl0Kt821SU10K1NTA3CL8HbY1ysdnSNfKehfxvF/wBL5u8p5CvuPTaSURIRJCBNEbUkIINTY2oqSkRHabTqdDQUEBGhsbgz7unnvuwYQJE3DRRRepfq4FCxbAYrGIP1VVVVGvO1aYDFrx5PntQcGwO3Zgfo/tWFPFVb6IUGDFGOCP3LCTjzlLJ/a1cahJjfmuuLMDTuBZ4uiOvvEIdbs84nM1tcVICNXXw3HjHPHXd959CI9t/hB3n1aKV2aNwVVjhc/CPsnct+YI+wgBARGhGKXG2PN7eX8URU0fIbWdoNnJOVxDRek+WSl7KI60dYPnBYElFZOsLQQ7BrWIESGFWWPqh65y4uM7HR6ZWAMCDNMHD4o+srqakwEANYMqgBUrYPZFotpef1uxIjFQUDE/UqBfy+HuGRESUmPChc+RdofqVgUEQfQkoUJo/vz54Dgu5M+OHTui2ve//vUvLF++HL///e8jetxDDz0Em80m/tQHVhEliIGSRou5Rh2Glpl7bMMiQqw3iVJEiAkW9r1pMenFq3xVqTGF1AMg8YX0toJLJdKKt5ikxnxX9d31/plPp+u7cOP/3sDdD16F88wujKyyAvCPO+l2ecTRCMEaHSpR6iuB12m4sOZjtei0GjGKwk7aavoIibPnwvhnxBEbKsr9I/GLsWhGuSVL5uMTU2Od0XmElMzSnU6PrDt7IG7RI6QRH9Pl9IhijSHzieXlASUlQE0N6n58OQChEAJVVTDPvBoAYLMUCNsFEFiBxv62Av+GZBEhSfl8ca4Rei0Hj5eXpe4IgoiMhHqE7rvvPsyePTvkNjU1NSgrK0NTk7wyyO12o6WlJWjKa/ny5dizZw+sVqvs9ssuuwxnnXUWVqxYofg4o9EIo1H9Sa2v6F+YjXX7hP5Bo/pbZf4cBiuhZwQapYGeqRiLSQ+97ypflVlanDMm/+j0dWpMmjLpdWpMclXffdJoAIJI0X2x3F81NnkyBi5aDMAfEWJpMb2WE2e9qaHCasLPzxmM/Gx1YznUUpRrxHG7C8fanUBZZH2EwglY0SytJiIUQXdpVo0lrRgDom+oGKp8HhA8brlG5fdKHLGh4WQNFQPL09ulkRyLBViyBGhvx96/1wEAanzjL8ylhQCOoG3KecJ2AQRGhJiI62mWFn73eHnR15el00Cj4XBiWR62HmrDhn3HUZkfvDqNIIjgJFQIFRcXo7i4OOx248ePR2trKzZu3IgxY8YAEISO1+vFuHHjFB8zf/58/PSnP5XdNmLECPzf//0fLrjggt4vvo9hvYQAYOyAAsVtpFVkGg4YXJLbY5tAk6c52ohQYGpMUo3WF0hNtO0+Y27Upejsqh5A97vvA4tqhX1JDNQoKcGAigIAdahvscPt8cqaKUYqaO6bdmJ0aw1BUa4Ru5o6cKzDgW6XR3w/rdkhzNI6fydot8cLXRCh44woIqQ+TervISQX8aIQ6lIfEfJ6/RVd0s9nll4DDSdEQTsd7qBCyCUxS0tHbARGW3r0ErJY4MkzY2+zYKYfVCT83Zl9Ua02j/Jno2dqjAkhf/fodonpXOodYq/xmYOLsPVQG77cdQwXj+qn+DwEQYQmJTxCw4YNw/Tp0zF37lysW7cOq1evxh133IGrr75arBg7dOgQhg4dinXr1gEAysrKcPLJJ8t+AKB///6orq5O2LFES39Js0UlfxDg7yUEAAOLchSFgVJEKJI+QqJHqIdZWt0U81gRaKLtlU+IXdWvXInuIkEQiRGFqipg5UpgyRKUV5bAoNPA7eXR0NqN5k7mD0qOCKK0hJ69PsLcrOACUZriDNUV3D90NbzYVFuSD0i7SssjQqzk3+70qG6YKY1ASY+L4zhVvYRYakwfUD4fWJ6utI+GVqHq0qDTiH+HLEoYOMqGEehZ6nLKI0IsPcjEndQ7xP5mzxosXEh+tfsoDV8liChJCSEEAIsWLcLQoUMxZcoUzJgxAxMnTsSrr74q3u9yuVBbWwu73R5iL6kLK6HXajic6vOqBCKNCCkZpQFlISRGhFSkxrpEIZTY1JgtwETba5+QxQJUVko690pep8pKwGKBRsOJkbl9zZ1RVYzFE2kJ/dq9zQCEtFioaJXUoxTqvfMPXY2gakyNEBLnjMkjQuYsnZj+VVs5Jm1KmBVQ5i/2Egoxb8zllXaW9ndgD6zKCuwlBQhDjgFgYGG2uG4xIhSkfL5nakz4nb0PLKXJfmdCT+cbTAsIF0VGnQZH2hzY3aSuwSxBEHJSoo8QABQUFOCdd94Jev/AgQPDXhGl8hXTiH4WXDKqH2qKcnr4cxilZmFSvdvLKxqlgZ6pDYtJD43vRKkmIsTmjAWapU0RpENiQY+IUIxK6P2znJRP+AMKc7CrqQP7mzvFbSPpIRRPWHfpRWv3o92XvlEy1UvhOMGw7XB7Qwohp0fdrDEgsp5SLNpSERAR4jgOVpMezZ1OtNpdosE8FN2SEn9NgIcukoiQTqORCf26Y4LAMOm16HJ55B4hto1vTE5NkT8dbc7yCaEu5ecMmhrzCZ7AiJB0zhgjS6/F6dUF+HLXMXy1+xiGBLkAIggiOCkTEcp0tBoO/3fVqfj5lCEht2EphmARIaNOA2mAQGqWjiQiFJhuUWu6jRWB3pGmtth01xWHdgZJJw30pSj3HrNHNWcsnrCIUHu3G1oNhzkTq/HyrDFhHydWjoUSQhH0ETJF0EohWEQI8KfH1DZVVCqdZ7DPa6gSenHEhpZDlt7/d7KnSRA5zHPXwyMEv1hiRmkAMJt8qbFgEaEgVWOOgNSY0+2F18srGsEBwScEAF/tUu5XRBBEaFImIkSo49ZJg7BsexMmnahsQuc4Dlk6rejfsJj08PLCF3Vk5fPyj46xjztLxy8i5DvZBOmgPLCIdfnuFCNByZIaGzMgHya9FsPK8/DExSfjpIqelUpKCMfqCilcHCpnjQH+qGO4z0KX0yMOVQ00SwPMMN2punJMafI8w19CH1wISc3SHMchW69Fp9ODRp/IHlKai+8P2RSjSmJEqFgSEZIIGSUzf1CPUEBECBAuUhTTtgAm+oTQN3XNcHm84oUNQRDqICGUZswcNwAzxw0IuY3JIBdCrBdO78zS/igAGxUQT5hHqNRsxJE2R+yEkGSopRKsn9M+Xy8hILIeQvFkcEkevn1smqqojRQ1fX/UDl0FJA0VwwghFg3KNmjF6ImUSLtLB4uYACpTY5LO0oAg9jslviMWZW1XigiJQkjS78ugA8cJXaPbul09PlOBKbaeESG/wJY2EA08vuHlZhTmGNDc6cTmA604vVq5qpQgCGXo0iEDkV4xR9pQMfiIDf9HSXEoZYxhJ0fWK6nvPEJCaqy+pUtsXJgsqTFAXeoqEH/rgxBm6ShGbIRLjUl7CCkJZyYEjqs1Sys0U2Tkqpg3Jo0IAf7RHMI+NWKfnsCUVqfDLUaNBkk8QhoNhzzWXVrBJ9QzIiQ3S+cataLx2uH2itVzgREhjYbDBDE9djTo8REEoQwJoQxEapg2m/QwaIUvWzUNFTuDdZaWnHz6Ij3GhNCQEp8QirFHyBgkIlRhNUGv5eD0eLGjsR2A35uTqqgRLhF5hFT6xVg1VoW1Z1oMkEaEIvQIKfi7/PPGgq/JLZk+D8gvGCosJuT5yuEDIzl7jwnRoMIcg+hrYrDflXxCbKAre57APkJZeq0YgQsVEQKAiYMLAQBf7SafEEFECgmhDCRoRCgis7Q8laHXaqDzXb32ReUYG7FxQqlwBX401hGhIB4hrYZDla+EnkVJkqWPULRElhpT00dIXfl8sK7SDHHeWIQRoVAeIXvI1BjrLK2RPQYAyixZyGVCKEDUsNL56qIcBOKvHOt5DExQlZiFz489oLO0Ua+VDLD1R4SUIl4ThwiewG8P2oKaswmCUIaEUAYiE0LZerFJnpqUlj1I+TzQt72EWJSAlQs3dzpVRbTCEcpnwqgulJ/wkik1Fg0mVamxCIauqtgfELpiDJDMG1MZEXIolJczcg1qzNLyiJA0/VtuMYlprkCfkZI/iCEKIQVfEUuNFfs8ZuwiQxQ8Oo1/hp/LI4sUBdLPakJVgQkeL49th9qCHiNBED0hIZSBsC9SjhNOENGM2Aj0CAn77ZsSeqfbK6boqotyxEiUdEJ4tLC1K0UVGAMkQijSOWPJiJoITnRDV0N/noL1EGL45431PiKULYqYUKkxuUdI+hmvsGYhzydqOrrdsp5kdcd6VowxxBJ6hYgQ8xoV+zqC20WPkD8iZJREhML516w+TxVrzEgQhDpICGUg7MRnztJDo+EiM0u7ggshljbpCjPJvLe0+irGOE6IGrATyZHejNnwwaawh5pbNrDIP+4kmjljyYYqj5A4YkNN+by6yCBLZ5YEaZbIOiu3dqn0CIU0S4fvIxRYNSZtqlhuMYmpMbdkphkA7GU9hEKlxhTSVSyyVCIKIXn5fJZOI/MIBTNLM9QKUIIg5JAQykDYFyZLPegjMUuLBs+eUZC++iK2+SIEFpMeWg0nnkhiYZgOd9UNyCNCqe4PAtTNBotkxIZJpRBi4kDaL0eKVWyo2Dfl86xqTKtRSI1Zs5Ct14pNFtnaeZ7HXoUeQgxxzIZC1RhbCxPygbPGsqQRIVf4iFBfj7khiHSBhFAGwk5U7ARkjMgsLXx5S0uLGeIXcZxTY6yrtNW3/uI8IaIQixL6cH2EAH93aSD1K8YAdSdQ9tmIxCwdThCzdBGLmgTiT405VY3HUWOWVtdZWiE1ZjFBo+FErxFLax23u8Q0bf+CbAQSLCLE87y4lhLf59ffR8j/GRQ9Qm6/RyjYe+BvakoRIYKIBBJCGQgzOjMhxMzSgamxLfWtqG/xD7HleV6sbFEyS5tUeE1iAfOMWHwnSlZ1ExMhFKZ8HhCMqcyXlOpGaSD25fNqqtC8Xl6smlJqpgj4I0IuDy+KhFB0hyifV9dHKKB8Xpoa8/mYWAk9i+aw9F5BjkHxtQnmEXK4vWKVmhgREqvG/JEt5YhQuNQYRYQIIhJICGUgWQERISWP0JG2blz60mrc9MZ68TaH2wt2YR44fR7wX3Uf61Dn6YgWVjHGIkIsNXa0txPoIS2fD/6nodNqxBL6wnRIjenCR/L8/pTYDF3tcLrFz1KwiJBJrxU/m2oqx0J5hHLEqrEQZmmfMNGx8nmfoMoxaMWKMeYTYhGhJt9nrjhId/FgVWPSFB0blsvM0g5JqwJZRMgdPPUn3K6++pMgCD8khDIQVuXEZmUxj5BUCB22dcPLA/ub7WJaQnpVrpR+GFkpzLZau7clPgv3wXoIsYgBSy00xcIsHeJkKoV1mE6WyfO9wWTwnWyDiASe5yMascFSSl0uT9CUFouQGHSaoK81x3ERjdkIFTFRExFiDRX1AeXz5VaTaIhn+2HCxm/4DiKETMp9hJiQyjXqkG0M1lAxMCIU+rNJESGCiA4SQhnIFWOr8NOJ1bjpzGoAUGyoyK5OnR6veKXNTiJGnUY0lEphU7C/3n0MXm94T0e0sJNiYEQoNh4h4TUIVT4PAFeMqcKQklycM7Sk18+ZaMJ5u9xeHuztVJMaY6XqXj54dIKZh4NFgxisJFyNEApdPu8XG8E+m4EjNlikZqDEHJ/LSugdLCIkfOaCR4SUJ9Czx+cYtX7hKFaN+QWdNCIUbvCtmsgeQRA9Se0GKERUlJqz8MufDBd/lwohNjBVWgJv63Ih26ATTzTSjrtSRvUXpp83dzpRe6Qdw8rNcVk/K6fu6RGKQWpMRfk8APz4lHL8+JTyXj9fMpAVxmQrjRRGUjUGCOJZ6bVkwiCYP4jhrxwLnxoTp88beq4xV/KZ7XS6xZ5AUgLL588ZVoInLjoJZ/m6NgMSj5Bv/SwixHw+gQSrGmNCKNeoQ7beX5bf5fSIpu0snVbs29Tt8spM1EpkSaJHBEGohyJCBIw+szTP+30S9gAhJL0tWLTEoNPgNN/k69VxnHnUMyIkpMaOdTjFk0i0hPNhpCNZARGJQGRCSEUfIa2G6zE/K5BwFWMMaeVYOMTUkUJVlTSK2RmkqWJgQ0WjTotZ4wdioKQ/EPMKtXcHRITCCaGAiFCnRAhJzd0tkuM06jXisTjcoWeNSW+n1BhBREbmfNsTQZFe5bOTniwiZGdCSHnyvBQ2/PHrPc0xX6e4ngCPUFGuARwnlD+3dPbOqK3WI5ROSNMvSrCUjFbDiSIhHKy9QrCRFkxImIP0EGJYI/AIiWZphc8nx3Gi+TlYLyGXV141pkSuMbBqzGeWDiaEfBEkp9srEyhiRChL6OzOqhCPSz6/Rol/SuYRCtpQkfoIEUQ0kBAiRHMo4C8htktOYKxvj90RvKs0Y8IgwSe0tq45JrO/lBAjQr6TpE6rQaGvjL236TE1DRXTjXDl85EYpRmsqjBY9IVFSPLCjCex+iJCapoqdoWJWIYzTLOIEBu6qriPgAn0LCLEopKB5Bh0YHY6qWFa9Aj5XicWFWJC3qjTgOM48TV3yKrGgvURos7SBBENmfNtTwRFp9WIX9bspNeplBoL0UNI2NCG4d425Gfr0en04Nv6Vv99Bw8CNltM1sv8IhaTv2IrVk0VwzWtS0fY+xkskuD0+AauRiSEWGpMWXSoNUv7q8bUpMZCG93DNVUM7CythHTeGBDeI6TRcOJjpOkxsWrMJ6zY68U+20zsSEUq8/4EE6TGMKZ3giCUISFEAPCf5BwKqTF2JSt2lVboIQSbDZg+HZrJkzGhXCgtX73blx6rrwcmTQKmT4+JGGKpOnaSBCS9hHpRQs/z/hlSmZUaCy2EmMBQ4w9isBN7uIiQWrN0q8LQ0p7rDB0xYftqCSKqRLN0iNSY3yPkQrfLI6b4gpXPA/5jtEkM01KPEOCPoLHUGItIMrO0NCIUrNknpcYIIjpICBEA/Cc5p5gaC2GWVooItbcDTU1AXR0mfPAKAGD1nmOCCJo8GairE+5vb+/VOl0er5iWYGkTAKiwmgAAe5s7o963tNQ7aNQrDQlnshXHa0SQLmTRl2CT0NWapf2pMfUNFYNFhML1m/IEmKWVyJV0lmbRIKNOIwokJSwKhun2ACHE1tziE/liREhS0RfWLE2pMYKIChJCBICe3aWlJ7BWu1wIKXqEKiuBFSuAmhqcuWEZAGDzvhbYp0wTRFBNjXB/ZWWv1in1WZgl/pIR/YRmjt8dbI1639IoWKjO0ukGO+kGG7rqiGtESG3VWOiIEM/zErO08jqLw/SbEs3SIVJjuZKqMeZHKzEbxYaLSojdpSWf3U6xj5DcIyRGhHwCSBYRUlk+TxEhgoiMzPm2J0LCTnKukBEhVjUW5Oq3qgpYsQIDCkzoZzsCFw+sc2f7RVBVVa/XyVIkeVk62ZX7yCqfEKq3Rd3MkaUedBFUR6UDUh+KUidoFhEyROCbYunT8B4hlamxMBEhoQeW8P9gQqHUzHxkyoZ60Swd4r3PU4gIBWumyFAas8HM0nkBHqEWe0BqTBIRcoSdNUYjNggiGjLn254ISWBEKOLUGKOqCtzbb2Pcga0AgO/KTwDefjsmIgjoWTHGOKE0D1l6DdodbtQdiy49Fm6oZboiTbUonUSjqhozxiYixN5nW5crpMDtdkrSmkFTY76IkEJqjOd5/6yxUB6hLGlEKHTFGENp8GqH73URq8Z8a2aCzxgQEepyevwpymCdpamPEEFEBQkhAoCSEPJfvdpEszT78g4hFOrrgVmzUGU7AgA4nFcEzJol3B4DbF1s4Kp8xpdeq8HJFb1Lj0lnPGUSUuGndBJlA1cjqRoLFxES+wipHLHh5Xs2JZTC0mI6DRc0ohOqA7lbIrJCls8b/SM2mKAKVjHGMCtWjQn/zzEGRIQ6hduZAGIpMuljKSJEELEls77xiaCIVWOqzNJB0hkSY3SF79zQUNpf8AhNnhwTMRQsIgQAI6usACAv24+ATCydBwQRyXwxSkbbXvURCtZZ2ndit4SpGjPoNKLwDuUT6g5jlAYkZmkFjxBLiwFhGir6IkIeL4/643bffsMIIYUxGyxSxiJM7G+qNaB8ngkim+TYg/nXwlX/EQShDAkhAoDfF6HYWbpLhVn64EF/dVhNDcp//TAAoPGk0YJHiImhgwd7tU52MrQopFSYENpyMLoS/UxspsgIZbSNRgixztJ2hZ49PM+LaSKlmV+BqKkcYxGhYKXlAFDqiwi12l1ilIvBjNJAaCGUY9CC+aLrjgop2PARoZ6DVzsCzNLsb6q5M6CPkE/csCqzUP41aWpMyetFEIQymfeNTygSzizN83zoERt5eUBJiWiMrhgieIIa7G6xmgwlJcJ2vaC1K3hE6NRKKwBge0NbjxOdGphZOpNK5xnsJKpUOcZSLZGkxkxiQ8We++t0esRp9uFSYwCQnxN+zIZYOh+kYgwQxDM7hkCfkDQiFCo1xnGcWDlWd7QDQOgeQoA0ItRTCOUGCCEmOlnUJ1CUh/KvMRHo5f3NIQmCCA8JIQJAaLO0x8uj0+kJPXTVYgGWLAFWrgSqqlBmEfr6tHe70VFSLty+ZImwXS+w2ZU9QgBQVWBCfrYeTo8XOw5H3q/IEWaWUzqjLiIUTdVYz/0xQaDXcqqib+y9bu0KHhHqDjNeAxBEDKvwCkyPuX0XABwndIMOBesZxNJ+xblhzNIBVWM8z/doqBgovv2pMfntoaJy0tdSbXdpih4RBAkhwocxsI9QgMnV1uXym6WDNY+zWMQ+QblGneh/ONzaJdwepQiSflEfD+ER4jjO7xOKwjDdFaZPSzoTat6YaJaOpo+QgllarBjL0ofsv8Ng7/XxzhAeoTBzuBgsenM0wDDt8oafM8bIDSj5VxsRavcJQIfbK5qzxREbQQRPoB8o1PEZtBoxbafGJ/TdwVYMe3QJfrd0Z9htCSKdISFEAJB4hDxCLxk2V4zNXWq1O2H3NVlUmzqq8EWFDtv8Jx23x4v31x9AU5v64ag3vrEepz35OV78YjcaWrsAKHuEAGCkLz22JQrDdGZ7hIKXXjujSI0xsWxXKJ8XewiFKZ1n+JsqhvAIOdW1PigNYphmEaFQ/iCG1NfEcRAH/gZDLJ/3CcAOiW+KCaDA3lxBI0IhPpuyIa0qukt/tfsYeB54+5v94vETRCaSed/4hCLS1JjQWE+4nVXESCNCoabPSym3Ciedw7Yu8baPNx/CvH98jwf/8Z2qfXi8PFbuPIqj7Q789rNabNh/HID/5BjIqb2oHOtWYbhNV0whUmOOMP1rlAgZERLHa4SuGGOomTcWbrwGg0VvjgQIcbGHUJi0GOBPZwGCCArXfNPfWdoNnuf9A1eNOjEN1zM1FiQiFCY9GUl3aXZR0Wp3Yd3elrDbE0S6QkKIACCfNSbt/VJmEcRMW5dLLPnN1qs7gZX7IkINrf6TzraGNgDAV7uOidVogCC0LvzTV3jsn1tl+xCM2sL/TyjNFW9nXYIDOaVSSL/tOdoZsu+MEmJEKJM9QgreEiaAI0kZihEhBY9Qu0NdM0WGv2qsd+XzQPCmimq6SjOkqbGiMF2lAf9xOj1eONxeScWYf62BFxfstdZpNWJUVrg99Pqks8nCIf27XLKtMez2BJGukBAiAMgjQuzkZdRpxMjLcbtLUpmjMiJk6RkR2t0kVNq4vTy+2NEk3v7J5kP47qAN/9h0SLaPFl85sTlLhyV3nY2Fs0/Ds5edgpP7mRWfszDXiKoCQYB9H2EZfaY2VATkoxwCYdGTcF4YKf5ZY0oRIXXNFBn5KsZsqH3vgvUSckWSGpNEhEqCCHIpOQYtmJZp63L1qBgDev5NSaOS0qhQOMO6mOJUYZZmESEAWLK1MerRNASR6mTeNz6hiFQIMcGTbdDC6rualaYSpFeyofALIf9jmRAChC9fxj82Cf2FOhxuWek7O/nl5xig0XD40dASXHlaVUiTbbQ+IbF8PhNTY74TcZdCBKfR9/4Fi8IpwarGHG4vPAEnWDE1FqaZIkM0S4f0CKkT6f7u0gERITE1Fv4rMU8SEQo3ZwwQvDtmyQT6wIoxQMEjJBU/UlEULiIUQWrskE8IcZzwemyOshEpQaQ6JIQIAJLUmCQilG3QiV/gjRIxozZ1VGGVm6Xbu11olAiqlTuPotvlQW1jO76TRG+k/WL8VWKhDalSTvKN2th5JLIS+nBDLdMZduJViiSw96wsAiEkFSSBYzZYylJNM0XA/96r6SMUtmqMRYQCPUK+iJBeRUSIjdkA1EfJWPTL1uX2R4SypEJIXUQo3PEZQ1T/SWnrdoljTqYMLQUAfEbpMSJDISFEAPBHhFwSj1C2QStWZzX4xIxJrw3bZ4UhRoRau8DzPPb4OvEW5RrRz2pCl8uDVTuPitEgRnOH/8r/uC81VqBQLh+MmuIcAMDeCIev+r0wmfdnEax83u3xilPWmV9MDUad39sS6BNSO3meka9CCKkdmMuES3OnU0yHAf4GhOGMz4BcwKiJCAH+Kse2bn9qLEcSBQqMQgaPCIVJjbGqsTCpscM+f5A1W4/LRvcDIERoqacQkYlk3jc+oYjMLO3wp8bYF/hhXxhdbcUY4DdLdzo9aOt2i2mxwSU5OHe4cBX63+8P4+PNgi+IZbukKRD2/2BVYkrUFAlCqO5oZ0Rf7Gp70aQjLIITmFI51uGElxfaKKgxBjM4jgvqE1I7eZ7B0rMdDrdYyh+I2qqxgmyDWBl2rMOfHnP7RmyoqRqTpsZUR4R8acDPfzgiFgmEighJP4NGWURIbWosdESI+YMqLCZMOrEYRp0GB1rs2B5FI1KCSHVICBEAJENX3V6xh5DJoBX9GSw1Fsn4CenjD9u6JEIoF+edVAYA+Oe3DTja7kBhjgGjfKXvbN4SALRIPEJq6V+YDQ0nnDiPdvQcsBmMTC6fF1NjAUKIpcVK8oyy6iU1BOsuLW2oqAazSS+KZFuQEnq1VWMaDSfOBpNWjkVSNSY1S6uNCE0/uRwAsGjtAfxx2S4AYTxCQaJAqs3SYTxCzB9UYTUh26DDpBOKAQBLth4O+TiCSEdICBEA5ENXu8TUmE6MCLUrhPPVUC5pqrjHN5tpcHEuThuYj/xsvVgaf9Gp/UQz7nGJEGr1dRPOjyA1ZtRpUZmfDcA/GFMN/vL5zPuzMAYx2Tb6Kv4iMUozso1BIkJiQ0V1nyWthhM/h8Eqx8SqMRVCnZXQSwsAWJpMjdiTpcbCDFxlzDpjAP5w9anIMWjFz5lUCGXp/V2h2e8MoyxNFhuzNIsI9fP1+prmuzD5cvexcIdCEGlH5n3jE4oolc+bJKkxRqQDSStEn1A39ogRoTzotBpMHVYqbnf5mEox6tPS2TM1FolZGojOJ9SdwSM2WCSlKyClwiKBkRilGbGKCAH+9FiwXkKiWVqFiC1WKKFnVWPqzNKRlc8zLjq1HxbfeRZOqhBaP1T7UriAkEo0BYkCyf4fLiLku98RJIXIaJBEhACgKl/41xbCh0UQ6YpqIXT55ZdjyZIlZKZLU+RmadY4sacQisQjBPgNtvtbOrG/xQ5ASI0BwAUjKwAITRCHV5jFUQVKQqgggtQY4D/JsAnhauj2nTwysXw+WCShsS1yozQjO8gEelatpNYjBEgrx5QjQmrL5wHlEnqxj5CK8nnmV8s16pAT4d9DdVEOPv7Zmfj0rrNw+ZhK2X3Svy1ZFCiCqjG1qTHWTJEJoRxxkGzPvk8Eke6oznMcP34cP/7xj1FRUYEbb7wRs2fPRk1NTTzXRvQh4tBVj1c2XNWS3TshxL5ov9nTDI+XR65Rh1LfiejsE4qx6KfjRGHETjAtMrN08CGroagpFvYZSWrMkcERoWAnUJY+6o0Qkp5ceZ6XjNhQ/576myr2ziME+OeNSQevsl5HahoqDijMxt1Th2BgYY6qobGBGHQaDCvv2RBUKuKCRoRilBo7FBAREoWQwmw4gkh3VEeEli1bhrq6OsyZMwd/+9vfMGTIEJxzzjl455134HCoN6RGS0tLC2bOnAmz2Qyr1Yo5c+agoyP01f7kyZPBcZzs59Zbb437WlMRaR8hduJSTo1F6hESTjrfHRL6BA0qyZWdPM4cXCT6TwpzfV2sO3uWz0dSNQb4K8eiS41lXsY42Kwx1hU8mtRYtjh41S+EulweMQ2l1iMESMdsBPMIqe8B5Z83Fp1ZmuM43D31BFw8ql/YbSNBOrpGmgKLJCJkFE3vwVNjHi8vmuD7iULIL1op6k9kGhF94w8YMAC/+tWvUFdXh6VLl6KiogJz585FeXk5br/9dmzcuDFe68TMmTOxbds2LF26FIsXL8aqVatw8803h33c3LlzcfjwYfHn2WefjdsaUxm5WdqfGjPqtDJhEGkqgJml2Xfr4OLcoNuKESGf+OF5Xhy0GWlqjHmEDrTYZf1iQqG2KV86EqzsmomFaMzSOWJEyC+umFFaq+EiSkGGG7wayXsnzhuTRIRcEZTPxwtpREhqig5WSq9EMNO7lKb2bni8PHSSCjrme+J5/2tJEJlCZJf3Es455xycc845aG9vxzvvvINf/OIXeOWVV+B2xz7HvH37dixZsgTr16/H2LFjAQAvvPACZsyYgeeeew4VFRVBH5udnY2ysrKYryndkJXPB/gtrCYDGl2Rl88D/ogQY1BJTpAt/WKHCaG2breYsog0NVaalwWTXosulwf1LXYxVRYKf1Qh8yJCRoXUGM/zolk68H1UQ7ZolvZ/J/iN0rqI0kr54TxCEaTG/N2lo4sIxYvYeITY8Nzg4p8ZpcssWWKVnEmvBccJQqjD4e5Rzk8Q6Uyv/ur37t2L5557Dk899RRsNhumTp0aq3XJWLNmDaxWqyiCAGDq1KnQaDRYu3ZtyMcuWrQIRUVFOPnkk/HQQw/BbrfHZY2pjqJZ2vdlKE2PRWuWZoSKCDEhdNzuBM/zYlosx6AN2z8lEI2Gkxim1aXHxD5CGTh93l81JonedLvF36PxCInpFoc0IhRZM0WGOG+sM4xHKAKz9LEOhyi0Ixm6Gi/Ye2DUaWQiMTKPUHiz9KEAozQgpPvEKj/yCREZRsSyv7u7Gx9++CFef/11rFq1ClVVVZgzZw5uvPFGVFVVxWONaGxsRElJiew2nU6HgoICNDYGn49z7bXXYsCAAaioqMB3332HefPmoba2Fh999FHQxzgcDpnnqa2trfcHkAIYpGZpl3/EBhAohCL7yGTptSjMMYhNEpkxWgkmhFweHu0Od9Sl84zq4hz8cLhNlU+I53mx5JhSYwLMKG0x6aN6TUJHhCIVQr6IUFeYPkIqonmFOQZoOMDLA80dDpSYsyIauhovmIgLfK1lESGV5fOhhJC/h5BJdnu2QYsOh38WGkFkCqrPauvWrcPrr7+O999/H93d3bjkkkuwZMkSTJkyJarKCQCYP38+nnnmmZDbbN++Pap9A5B5iEaMGIHy8nJMmTIFe/bswaBBgxQfs2DBAjz++ONRP2eqojx0VfhSlV69R1NaXm7NQnOnEwatBv0LsoNul6XXItughd3pwfFOp3+8Rk5kJ03GIBYROha+hF7adyXS9F86wE6+DskJ9HAveggBoT1CkRilgdBVYy6PV5wVpubzqdNqUJhrxNF2B5rafUIogqGr8SJbFEJyMSbzCKlMjTlCmKX9PYTk72uuUYemdkePdgcEke6o/jY644wzMHLkSDzxxBOYOXMm8vPze/3k9913H2bPnh1ym5qaGpSVlaGpqUl2u9vtRktLS0T+n3HjxgEAdu/eHVQIPfTQQ7j33nvF39va2uIW6UompA0VuwJSY1J/Dkt3REKZ2YSth9owsCg77FDL/GwD7M4uNHc6xTRIpBVjjOpi9akx6RV0JnaWZidfaWrsiE8IlUaRFgP8VWNdkhNre7QRIVPwqjHZe6dSqJfkMSHUDcAiCqlIx4jEEvb3FngMwbpMK8G2DTV0NbCZovj8QTqBE0S6o1oIbdiwAaNHj47pkxcXF6O4uDjsduPHj0drays2btyIMWPGAACWL18Or9crihs1bNmyBQBQXl4edBuj0QijUf1wyXSBRYRcHl5WPg/IU2ORls8D/ivPUGkxRkGOAYdau+QRoSiFUE2Rr5eQitQYSwnpNJyqCeTpBoukuL083B4vdFqNWGJdHmVESGnoahtrphhxaix4RIi9dxwXXigwSvKM2AbgqK+pIhu6mkiztJga0wWmxiKYPq9i6KqSRwjwdwKnpopEpqH6r14qgr788ktcd911GD9+PA4dEiaHv/322/jqq69iv0IAw4YNw/Tp0zF37lysW7cOq1evxh133IGrr75arBg7dOgQhg4dinXr1gEA9uzZgyeeeAIbN27Evn378K9//QvXX389zj77bJxyyilxWWcqoxwRUvAIRZEa+9GJJcgxaMVBq6FgPqFmmRCKLjXGIkJH2x1iJCIYmVw6D8iPm1UcMSEUbURIacSG3ywdYWrM97lwSD6fDOZBytJpVafpWbqXdblmVWOJLJ9nf1uBqTF5Kb1Ks7SKiFCgRyhXbKpIQojILCK+/PnHP/6B8847DyaTCZs3bxaNxTabDU899VTMF8hYtGgRhg4diilTpmDGjBmYOHEiXn31VfF+l8uF2tpasSrMYDDg888/x7Rp0zB06FDcd999uOyyy/Dvf/87bmtMZaRmaVblo2yWjkIIDS3B9786DxedGr4BnVg51ukUu0pHMnleijlLjyLfdPBwhulMbqYIyCMp7LU40kuPkFJn6WjN0jkGrShSAtNjbFSG2gGogP+kz4QQS40lMhrIIkKBVYuRRISMYczSHQ43bD4xGtgSgaUyO6hqjMgwIs5z/OY3v8HLL7+M66+/Hu+99554+5lnnonf/OY3MV2clIKCArzzzjtB7x84cKCsI2pVVRVWrlwZt/WkG9KUQFdAKbLUIxStkVij8kpb7CVkd4o9Y6JNjQFCh+ljHQ7UHe3EKZXWoNtlcuk8IJRPZ+k16Hb5Iy6iWdoSXao4x9izHJuZpfOyIvvq4TgO1mwDjnU40Gp3ydI6LMIRSa+jPJ8QYxVSHm/izdLs9QqcMJ8VpLmiEuFSY4d9r5U5Sye+Boxcn0fIThEhIsOI+PKntrYWZ599do/bLRYLWltbY7EmIgEoeStYasPci/L5SBGFUIdTbKwYaTNFKazDdDifUCY3U2SIFUe+tIo4Z8xsCvqYUISMCEXYRwiQVo7JI0LRNH1kQoylTF1JUD5/5qAinFCaiwtHyhvEGoOM21AiXB+hwBljUtjfdgd5hIgMI+KzWllZGXbv3o2BAwfKbv/qq69oCGsKY1BICTADbW9TY5EgbarIjLGRjteQUq1y5hjzVGRi6TxDMOm60O3ywuH2iL2fommmCEgiQk4PeJ4Hx3FRDVxliE0VAwzT/siVesGWK6aBmEco8Q0V+xdm43/3TOpxOxM3Wg0X1sztF7Ne8TWXwqbOB/qDAOUIHgB4vTw4DlG3SSGIZCfiy5+5c+firrvuwtq1a8FxHBoaGrBo0SLcf//9uO222+KxRqIP0Gg4mVE0S68R01l9KYSk88Zaohy4KoWdxKWTxpUQJ89naGoM8IvALpdHHD9h0GmiNquzz4rHy8PpExpi1VgUEaFgTRXZYNjAvjih8EeE5GbpRKbGgsEiQmraOkgjRg6FMRv1xwUPpVJEKEehys/j5XHBn77CZX/+moaxEmlLxBGh+fPnw+v1YsqUKbDb7Tj77LNhNBpx//334+c//3k81kj0EXqtBm6vvIcQAFgTkRrr9EeEojVLA0BxLhunoNyRmBHJ9PJ0xT+53OOvGDMbo44ESD8rdocHBq0GzR2CwIom3RmsqWJjFKbuwIhQMqTGglFZYEKuUYcTSsO3n5BV/7k8PT7Pu460A1BuZcEiQtJU5rEOB7Y1CN31WzqdKMzNvNYiRPoT8VmN4zg8/PDDeOCBB7B79250dHRg+PDhyM0N/0dKJDcGnUZxeGVhrhHXnF4Fg1YT99QRE0INrd1iFCHaiAQA8Yv7WIcj5HaZXjUGwFdh145XVtbh4lFChV95lP4gQEjlGHUaONxedDrd4OGPCFXlB+8wHgwWEWIz6BgNNuW+OKHI7RERSrxZOhjmLD2+mvcjVSJdr9VAq+Hg8fKKhumdR4Qu60MURJW/fN6fGmMVZoBQnUdCiEhHor68NxgMGD58eCzXQiQYgySsHthBesGlfdN7iQkhJoIMOk1UYz0YRblsarkLLo83qMeCCcBwIwzSmfumnYBNB47jq93H8O3BVgDR9xBi5Bh1cLidsDs9OOJLt5VbsqIS1GJTRcnJ2en2iiI3Ei9TntFXNZZE5fOhiGTeXpZOg06np4dhusvpEVNjJ5Tm9XickrldGn070taNYeXmiNZNEKlAcv7VEwlBapiOpoN0LLCY9JBW2hdkG3pl0szPNoj7a+kMnh4TU2MZ7BEa1T8fr91wGow6jRgpKTP3LgIg7S69v1kwrA8szIlqX8wrJq0aO9LWDZ4XPruFEaRQmUdINEv7yucTOWIjVogl9AFNFXc3dYDnhYuNIoXIjlJDxcCIEEGkIySECBGp0TKaDtKxQKvhZFe/vSmdBwQTeEGO8KV/NMQXOaXGBMYPKsSr148VRXF5BJVYSki7S+/zVe4NLIo8LQb4PUD1LV3ibczLVGbJikgw50qEkNfLJ7VZOlKCDV7d6fMHDQky6iY7XGqsLXTBAUGkKpn9rU/IkKaN4l0dFgqpJ6g3FWMMlh5rDhURcvf0RmUqk04oxuuzT8MVYypx4akV4R8QAukgz73NQlom2ogQM/jWHesQPT2smWKkJf4s+gEIfXNcrHw+Cc3SkWIM0ktoZ5MghJTSYoC/oaI8NSaNvvW8kKBKMiIdUJ3/ePTRR3HRRReJQ0+J9EPqEUpkP53CHCP2+CbG96aHEKM4z4gdje04FiIi5KCqMRkThxRh4pCiXu+HRYS6XNKIUHRCqJ/VhGyDVoguNdsxuCRXrBiriFAIZem1MGg1cHq86Oh2w+1No4gQG7MRUD6/y2eUDlZ9xqr8ZENyZakxeUTooY++w9IfmvDPO86U9SU6eNyOd9YeEMWlyaDDdWf0R0le7/xmBBEvVAuhgwcP4vzzz4fBYMAFF1yACy+8EFOmTIHB0PsTFZEcSIVQQiNCOf6IUG9TYwBE70ioyjFKjcUH9jnqcLhFIVQdpRDSaDgMKcnFtwdt2HWkHYNLcqNqpsjIzdKhpdOJDodfCKVDRChYd2kxNRYkIsTK510eHk63FwadRpYaC4wILdnaiON2F95fdwD3TjtRvP3Rf27D8h1Nsm1dHi/mTR8a5RERRHxR/Vf/+uuvo7GxEe+++y7y8vJw9913o6ioCJdddhneeusttLS0xHOdRB9gkKXGEmOWBiB6eoT/xyI1JuwvZGosw6fPxwt2cq1v6UK7ww2OA/oXROcRAoDBJcJJfFeTEN2Ippkiwz941ZUUnaVjhX/emF8IdTrcOHhceK2CpcZyJBc/LCrUGsQj1OFwix2+P9p8CF6fkDxs68KKWkEE3XRmNU4fWCDsxx66jxdBJJKILn80Gg3OOussPPvss6itrcXatWsxbtw4vPLKK6ioqMDZZ5+N5557DocOHYrXeok4ok+SiFCBLCIUAyHkm0oeKjVG5fPxgaVYfzgsNOUrN2f1SmyytA6LbkTTTJEhnUDvN0unQ0Sop1l6t084FuUagl5c6LQasWCC+YSkEaGjHQ5R8NS32MXbDx7vwob9xwEAH244CC8PnF5dgEcvGI6pw0t6rIUgko1e/dUPGzYMDz74IFavXo36+nrccMMN+PLLL/Huu+/Gan1EH2JIGrO0QfL/3qfGWEToaMjUGCufT/0TYTLBogw/NNgARO8PYrBoBvO7NIgDVyNPjUlL6F1eZpZOh4iQLzUmKZ9nwjFYNIgR2FRRKoRcHh7HfZEdqRACgI82HYTXy+P9DfUAgKtPqwLgHw+iNO6DIJKFmOU/iouLMWfOHMyZMydWuyT6GKMu8X2EAKAwVyKEYpAaY/sLNWaDUmPxgaVY2WvfWyEkrRzrcnpE31d5FKkxUQhJIkLJ2lAxEkSztCQ1xlKJ4YRQtlGL5k5/fyVbwDiTI21Cd+kDPiFUbsnCYVs3/vPdYUwdVoqDx7uQl6XD+SeXA/B/pzgCehoRRDKR+n/1RMxIGrO0LCIUg6ox5hEKFRHyXbFS+XxsCexQXh1l6TyDVY65PDzW7WsRmykWRPE5kafGknfERqT4y+f9URi/UTr0KCR/3yd5aoy9LqxyjPmNLhhZgX5WE9odbsz/6HsAwMWn9hNTomwtFBEikhkSQoRIsqTGCiVm6Vimxpo7naLHIRAHRYTiQqDpvrcRIVY5BgAra48CEHoIaaJIaYnzxhxucehqOnSWNipFhI6oiwjlSLpL8zwvCqGaIuE1b/JVjrHUWP+CbFzim0vHonNX+dJi0rWQR4hIZkgIESJ6nf8kkMiqMWn5fCxSY8wc6vHysioYKVQ+Hx8CI0IDC6OvGGOw8u9Vu/xCKBrysvzzxvwRodR///1VY8IxdTjcOORrPHlCiVoh5EGn0yO2FWCRJBYRYjPLqgqyccnofuLjT+5nxsn9LOLvlBojUoGI/+o7OzvjsQ4iCTBo/SetREaEysxZqCnKwcn9zMgz9l6QGXQaWEzCSS9YeqybGirGBamg5jjhxNlbWESIVUKVRymE5OXzrI9Q6keEAs3Su3xpsZI8IyxhIqzS7tLStBjrBn6kzQGe58UxJ1X5JgwqzsXo/lYAwDWn95ftj8zSRCoQ8VmmtLQUV155JW666SZMnDgxHmsiEkSydJbWaTX47J6zoeG4Xg1clVKUa4Cty4WjHQ7FhnJdFBGKC1JBXWExxURoBqZ3op2HplQ1lk4RIZaOUpsWA6TdpT2iUdpi0qPUN3z3SFs3mjud6HJ5wHFAv3zhtf/D1aOwdm8LLh3VT7Y/8ggRqUDEf/V/+9vf0NLSgnPOOQcnnHACnn76aTQ0NMRjbUQfkyxmaUA4IcXSr1Ho8wkFqxxjqTFjBk+fjwfSiFC0HaUDCTT8RhsRkgohf9VYGkSEdPKIkFqjNCCfQM8iQhaTHiW+Pk1N7Q7RH1SalyX+vVQVZOPyMZU9vFpiasxFqTEieYlYCF188cX45JNPcOjQIdx666145513MGDAAPzkJz/BRx99BLfbHX4nRFJikJwEsvWJ8wjFg1CVYzzPi1eslBqLLVKPULRT5wPpZzXJuiBHnxoT0kRt3ek2YoNFhATxsfuoEBEaHGTqvBR2ASSkxoSLBotJjxJfU9Kmtm7U+yrGqgrCR+IoNUakAlH/1RcXF+Pee+/Fd999h9/97nf4/PPPcfnll6OiogKPPvoo7HZ7+J0QSUWypMbiQVFu8Hlj0i/pdDvuRJMjiQhFO3U+EI7jZCf1aFNjLPohHSyaDuXzgWZp5qUaXBxeCOUEiQiVKkSEqvLDC1u/WZqEEJG8RC2Ejhw5gmeffRbDhw/H/Pnzcfnll2PZsmV4/vnn8dFHH+Hiiy+O4TKJvkBaPh9Y7ZPqiKmx9p6psQ7JtG3qLB1bpCnWWAkhQD44NPqqMeGk3yKZQZcWDRUlQ1e7nB6xYkxNRIhF2jodHlEIWbMNKPZFhNxeHt/WtwIAKlUY38XoFFWNEUlMxPmPjz76CAsXLsRnn32G4cOH42c/+xmuu+46WK1WcZsJEyZg2LBhsVwn0QcYJP6YrDTzyvh7CfWMCC3+VvC4DSrOSYsTYTKRI6n6620PISls5phBq0FhlC0WmBBq6/ZHhNKhaozNy+t2e1B3rAM8D1iz9aoGGIsRIacbrRKztN73Ojd3OrHpgDBXrCpfTWpM+HtyeXh4vHxa9Gki0o+IhdCNN96Iq6++GqtXr8Zpp52muE1FRQUefvjhXi+O6FtYasyk10bVoC6ZYamxowFmaa+Xx8Kv9wEAZk8Y2MerSn+MOg1Ory5AR7c7Jj2EGKwCqtwaXTNFwJ8a4yU9NtOiakznT43tOSq0OxlcnKuqAlPJLG32tZ4oMWehudMpFhz0VxERMkqqMJ1uL6WeiaQkYiF0+PBhZGeH/gMwmUx47LHHol4UkRiYPyLRFWPxINgE+uU7mrC/2Q5zlg6Xjq5MxNLSGo7j8P7NZ4j/jxVnDi7C9eMHYHxNYdT7YJ2lGRyXHp2lpakx5g8apMIfBADZkoaKYmrMJ4RKzUZsP+zfVk1PKGm63eH2kBAikpKIhZDb7UZbW1uP2zmOg9FohMHQ+07ARGJgYex0/LIqyvGnxnieF0/Kr6/eCwC4Zlx/WRqHiB2xFEAMvVaDX190cq/2YdRpYdBp4HSnz+R5QG6W3hNBxRig3FCRNSNllWOAcNHEDNSh0Gk10Gk4uL08GaaJpCXiOLDVakV+fn6PH6vVCpPJhAEDBuCxxx6D10sf+lSDpcbSMyIkCPRulxedTsG4uf1wG77e0wythsP14wcmcHVEopB2Lk+H0nlAXj6/h0WEStT5s2QNFQOEkFT49LOaVEfP/L2E6JxAJCcRXwK/8cYbePjhhzF79mycfvrpAIB169bhzTffxC9/+UscPXoUzz33HIxGI37xi1/EfMFE/Dil0or+Bdk4/+TyRC8l5mQbdMg2aGF3enCs3YFcow6vfyVEg6afXIZ+1uhKsInUJjdLh2Zf1Vg6NFME/MKjy+VB3THmEQrfVRpQ9ghZs3tGhCIZlWLUa9Hp9FDlGJG0RCyE3nzzTTz//PO48sorxdsuuOACjBgxAq+88gqWLVuG/v3748knnyQhlGIU5Rqx6sEfJXoZcaMw1wB7SxeOdTiQbdTin1uEarGbzqxO8MqIRJEriQilg1Ea8EeE3F4e8PIw6DTiKIxwsGhwl8sjthWwSMzSjEoVPYQY1EuISHYi/sv/+uuvMWrUqB63jxo1CmvWrAEATJw4EQcOHOj96ggihhRJxmz8cdkuOD1ejO5vxZgB+QleGZEo8rKkqbH0iAgFzsurKcpRncaS+uTau4X+WkqpMTVdpRk0gZ5IdiIWQlVVVXjttdd63P7aa6+hqqoKANDc3Iz8fDq5EEmCzQYcPCgKoQ37WvDuunoAwLwxhcL9REbCxmwAaRQRCugBNkilURoQREugaDIrmKXVdJX271M+BJYgko2IU2PPPfccrrjiCnz66adiH6ENGzZgx44d+PDDDwEA69evx1VXXRXblRJENNhswPTpQFMTih77GwBg4df74PHymDIwD+Ou/TFQUgIsWQJYLAleLNHXyCJCaeIR0mg4GLQaOD2C8FBbOg8IFX45Bi3afNGgLL1GTLUVR+0RotQYkdxELIQuvPBC1NbW4pVXXkFtbS0A4Pzzz8cnn3yCgQMHAgBuu+22mC6SIKKmvR1oagLq6lD04TvA8OnweHlwAB585RdAXZ1/OxJCGUc6psYAQXwwIaS2dJ6Ra9SJQoilxQAhYnbWkCLsa+7EiaXqzNcApcaI5CciIeRyuTB9+nS8/PLLWLBgQbzWRBCxo7ISWLECmDwZRYf2AcOFmy/b+w1O3LIaqKkR7q+kZoqZSDqapQHBMM08PoOKIxttki15TawmeV+4t246HR4vH9EoGppATyQ7Ef3l6/V6fPfdd/FaC0HEh6oqYMUKccyGwe3EvZ++7BdBPm8bkXnkplNqzOeFA/yGaY4DaopyhdtVeuGkhmlpREjYHxfxPD7qI0QkOxFfAl133XWKZmmCSGqqqjDpiXsxZfc6PPXZn1DRfgx4+20SQRmOtKGiNpUbKjIv3KRJQH29aJjuZzXBdKRBuH36dFViKEfSUNUcIISigXmEuik1RiQpUY3YeP311/H5559jzJgxyMmRh11/97vfxWxxBBEz6uuRe+P1eI15ggBg1iyKCGU4eVkSD0wqe4QkXjhMnoysn/0FADA4TwdMnhyRFy5URCgaqGqMSHYiFkJbt27F6NGjAQA7d+6U3RePmUIE0Wvq6/0ng5oaIRI0a5Z40iAxlLlIPUIpnRqTeOFQV4esH7YCxYMw6PN/+T/3Kr1w0ogQ6yrdG8gsTSQ7EQuhL774Ih7rIIj4cPCgXAQx0SM5aWDyZGDlSjJMZyBSj1DKm6Uln+s8WzNQPAgn7PkuYi9c7CNCVD5PJDdRj9vevXs39uzZg7PPPhsmk0k20Zsgkoa8PKFPECA/GUjFUEmJsB2RcaRd+XxVFfD227jjipswoPUwfrL9S2DFsoginrmxFkJ6qhojkpuIhVBzczOuvPJKfPHFF+A4Drt27UJNTQ3mzJmD/Px8PP/88/FYJ0FEh8UiNEtsb+8Z8amqEiJBeXnUQyhDyZN0lo60Giopqa8HZs3C6IY6jG4Q+rxF6oVjE+iBGKfGXJQaI5KTiP/y77nnHuj1ehw4cADZ2f7uoldddRWWLFkS08URREywWIKnvSorSQRlMPLUWIpHhAK9cKt9fbJY+re+XtVucowxrhqj1BiR5EQcEfrf//6Hzz77DJUBJ5YhQ4Zg//79MVsYQRBEvJGZpVO5fD6GXri4VY2RECKSlIj/8js7O2WRIEZLSwuMRqPCI2JDS0sLZs6cCbPZDKvVijlz5qCjoyPs49asWYNzzjkHOTk5MJvNOPvss9HV1RW3dRIEkToYdBoxYpHSVWPMCxdojGZiqKZGtRcuR9ZZOnZ9hKhqjEhWIhZCZ511Ft566y3xd47j4PV68eyzz+JHP/pRTBcnZebMmdi2bRuWLl2KxYsXY9WqVbj55ptDPmbNmjWYPn06pk2bhnXr1mH9+vW44447oEnlKz+CIGIKM0zrU/l7gXnhVq7s6QViXjiVg4Wl5fMxrRqjPkJEkhJxauzZZ5/FlClTsGHDBjidTjz44IPYtm0bWlpasHr16nisEdu3b8eSJUuwfv16jB07FgDwwgsvYMaMGXjuuedQUVGh+Lh77rkHd955J+bPny/eduKJJ8ZljQRBpCa5Rh2OdThTOyIECCInmNCJoDWENCIUG48QpcaI5CbiS6CTTz4ZO3fuxMSJE3HRRRehs7MTl156KTZv3oxBgwbFY41Ys2YNrFarKIIAYOrUqdBoNFi7dq3iY5qamrB27VqUlJRgwoQJKC0txaRJk/DVV1/FZY0EQaQmrLt0WpTPxwDmm8o16mLSW4kaKhLJTlR9hCwWCx5++OFYryUojY2NKGG9YHzodDoUFBSgsbFR8TF1vpbyv/rVr/Dcc8/h1FNPxVtvvYUpU6Zg69atGDJkiOLjHA4HHA6H+HtbW1uMjoIgiGSEnfjTonw+BgwqzkVNcQ5GVeXHZH9+jxBFhIjkJCoh1NrainXr1qGpqQler/zDff3116vez/z58/HMM8+E3Gb79u3RLFFc1y233IIbb7wRADBq1CgsW7YMr7/+OhYsWKD4uAULFuDxxx+P6jkJgkg9WAl9yqfGYoTJoMWyeyfFrEEuzRojkp2IhdC///1vzJw5Ex0dHTCbzbI/Fo7jIhJC9913H2bPnh1ym5qaGpSVlaGpqUl2u9vtRktLC8rKyhQfV15eDgAYPny47PZhw4bhwIEDQZ/voYcewr333iv+3tbWhiqaQ0UQaQubQJ/SZukYE8spAZQaI5KdiIXQfffdh5tuuglPPfWUYhl9JBQXF6O4uDjsduPHj0drays2btyIMWPGAACWL18Or9eLcePGKT5m4MCBqKioQG1trez2nTt34vzzzw/6XEajMa5tAAiCSC6qi3IAABVWU4JXkp6QWZpIdiIWQocOHcKdd97ZaxEUCcOGDcP06dMxd+5cvPzyy3C5XLjjjjtw9dVXixVjhw4dwpQpU/DWW2/h9NNPB8dxeOCBB/DYY49h5MiROPXUU/Hmm29ix44d+PDDD/ts7QRBJDe3TBqECYOLMLKSOozHA/IIEclOxELovPPOw4YNG1BTUxOP9QRl0aJFuOOOOzBlyhRoNBpcdtll+OMf/yje73K5UFtbC7vdLt529913o7u7G/fccw9aWlowcuRILF26NG7VbQRBpB4GnQZjBsTGGEz0hGaNEckOx/M8H8kDXnvtNfz617/GjTfeiBEjRkCvl/eZuPDCC2O6wETT1tYGi8UCm80Gs9mc6OUQBEGkFI22bpyxYBl0Gg67n5qR6OUQGYTa83fEEaG5c+cCAH7961/3uI/jOHg8pPoJgiAIARYRcnt5uD1ealNAJB0RC6HAcnmCIAiCCAbzCAGAk4QQkYTQJ5IgCIKIGwaJ8KFeQkQyoloIzZgxAzabTfz96aefRmtrq/h7c3Nzj549BEEQRGaj02rE8SVUOUYkI6qF0GeffSYbPfHUU0+hpaVF/N3tdvfo2UMQBEEQ1FSRSGZUC6HA4rIIi80IgiCIDCVLT00VieSFPEIEQRBEXPH3EiIhRCQfqoUQx3E95s/Ech4NQRAEkZ4YxYgQpcaI5EN1+TzP85g9e7Y4h6u7uxu33norcnKEOT1S/xBBEARBMPweIYoIEcmHaiF0ww03yH6/7rrremwTyeR5giAIIjMgszSRzKgWQgsXLoznOgiCIIg0RZxATx4hIgkhszRBEAQRV2gCPZHMkBAiCIIg4gqlxohkhoQQQRAEEVfE1BhFhIgkhIQQQRAEEVeojxCRzJAQIgiCIOKK3yNEqTEi+SAhRBAEQcQVSo0RyQwJIYIgCCKuUENFIpkhIUQQBEHEFb9HiFJjRPJBQoggCIKIK0aaPk8kMSSECIIgiLhCqTEimSEhRBAEQcQVJoS6KTVGJCEkhAiCIIi4Elg1xvM8vt5zDE3t3YlcFkEAICFEEARBxJnAPkKb61tx7V/W4v6/f5fIZREEABJCBEEQRJwJ7Cy960g7AKC2sS1hayIIBgkhgiAIIq4EpsaOtDkAAE3tDjjJQE0kGBJCBEEQRFwJnD7f2CZ4g3geaLSRT4hILCSECIIgiLji9wj5IkIS8XOotSshayIIBgkhgiAIIq6IqTGfR+iIpFqsgYQQkWBICBEEQRBxpUdqzOYQ7yMhRCQaEkIEQRBEXJGapV0eL5o7JULIRkKISCwkhAiCIIi4IvUIHW13gOf99x1qJbM0kVhICBEEQRBxhaXGPF6+RyqMUmNEoiEhRBAEQcQVlhoDgP3NdgBAfrYegCCEeGmIiCD6GBJCBEEQRFwx6PynmgMtghA6tcoKALA7PbB1uRKxLIIAQEKIIAiCiDNaDQe9lgPgF0IDCnNQlGsAQL2EiMRCQoggCIKIOyw9tr+5EwBQYjain9UEAGggwzSRQEgIEQRBEHGHGaYPtAjRnzJzFipEIUQRISJxkBAiCIIg4g4TQsc6hB5CpRIhRKkxIpGQECIIgiDijlGvlf1OQohIFkgIEQRBEHHHqJOfbsosWehnzQJAqTEisZAQIgiCIOKOVAjlGLTINerII0QkBSSECIIgiLgjbapYahEiQUwINbU74HR7E7IugiAhRBAEQcQdNm8MAErzBCFUmGOAQacBzwNH2qiEnkgMJIQIgiCIuCONCJX5IkIcx4m9hMgwTSSKlBFCLS0tmDlzJsxmM6xWK+bMmYOOjo6g2+/btw8cxyn+/P3vf+/DlRMEQRDSiFCJ2Sj+v4IM00SCSRkhNHPmTGzbtg1Lly7F4sWLsWrVKtx8881Bt6+qqsLhw4dlP48//jhyc3Nx/vnn9+HKCYIgCKlZusycJf6/wkKGaSKx6BK9ADVs374dS5Yswfr16zF27FgAwAsvvIAZM2bgueeeQ0VFRY/HaLValJWVyW77+OOPceWVVyI3N7dP1k0QBEEIyMzSUiEkpsbII0QkhpSICK1ZswZWq1UUQQAwdepUaDQarF27VtU+Nm7ciC1btmDOnDkht3M4HGhra5P9EARBEL1DGhGSCqF++RQRIhJLSgihxsZGlJSUyG7T6XQoKChAY2Ojqn289tprGDZsGCZMmBByuwULFsBisYg/VVVVUa+bIAiCEJBVjUk8QmSWJhJNQoXQ/Pnzgxqa2c+OHTt6/TxdXV145513wkaDAOChhx6CzWYTf+rr63v9/ARBEJmONDVWkuePCLEKskYbpcaIxJBQj9B9992H2bNnh9ympqYGZWVlaGpqkt3udrvR0tLSwwekxIcffgi73Y7rr78+7LZGoxFGozHsdgRBEIR6WGqM9Q5iMON0h8ONDocbucaUsK4SaURCP3HFxcUoLi4Ou9348ePR2tqKjRs3YsyYMQCA5cuXw+v1Yty4cWEf/9prr+HCCy9U9VwEQRBE7GFCSOoPAoAcow55Rh3aHW4caetGbjEVsxB9S0p4hIYNG4bp06dj7ty5WLduHVavXo077rgDV199tVgxdujQIQwdOhTr1q2TPXb37t1YtWoVfvrTnyZi6QRBEAQEwQP4+wZJYX2FjlB6jEgAKSGEAGDRokUYOnQopkyZghkzZmDixIl49dVXxftdLhdqa2tht9tlj3v99ddRWVmJadOm9fWSCYIgCB/ThpfiijGVuHXSoB73MZ/QkXYSQkTfw/E8zyd6EclMW1sbLBYLbDYbzGZzopdDEASRdtz7/hZ8tPkQ5k0fitsm9xRKBBENas/fKRMRIgiCINITNo2eBq8SiYCEEEEQBJFQWOUYCSEiEZAQIgiCIBIKa7DYSEKISAAkhAiCIIiEwkrqm9ocCV4JkYmQECIIgiASSqkkNeb1Uv0O0beQECIIgiASSnGeERwHuL08mjudiV4OkWGQECIIgiASil6rQVGur6ki+YSIPoaEEEEQBJFwmGGahBDR15AQIgiCIBKOv4SeDNNE30JCiCAIgkg4JT4hRCX0RF9DQoggCIJIOGViCT0JIaJvISFEEARBJJwyiggRCYKEEEEQBJFwSlh3aRsJIaJvISFEEARBJJwy3+DVpnYySxN9CwkhgiAIIuGU5glCqKXTCYfbk+DVEJkECSGCIAgi4Viz9TDohFMSzRwj+hISQgRBEETC4ThO0kuIfEJE30FCiCAIgkgKWHdpqhwj+hISQgRBEERSUErdpYkEQEKIIAiCSApKKTVGJAASQgRBEERSQB4hIhGQECIIgiCSglJfLyFqqkj0JSSECIIgiKSgNE8wS1NTRaIvISFEEARBJAVlkogQz/MJXg2RKZAQIgiCIJKCcosJOQYtulwebK5vTfRyiAyBhBBBEASRFBh0GkwdXgoA+M93hxO8GiJTICFEEARBJA0/HlEOQBBCXi+lx4j4Q0KIIAiCSBrOPqEYeUYdGtu6senA8UQvh8gASAgRBEEQSUOWXotzfemxxZQeI/oAEkIEQRBEUvGTkUJ67L/fH4aH0mNEnCEhRBAEQSQVEwcXIy9Lh6Z2Bzbsa0n0cog0h4QQQRAEkVQYdBqcd1IZACE95vHyqG+xo4lGbxBxQJfoBRAEQRBEID85pRwfbjyId9cdwHvrD8Dl4cFxwMxx/fHAtKGwZOsTvUQiTaCIEEEQBJF0nDm4COWWLLi9PFweHnotB54H/vbNAZzz/Ap8sL4eTrc30csk0gCOpz7mIWlra4PFYoHNZoPZbE70cgiCIDKGI23d2HusE1UF2SgzZ2Hd3hY8+s+t2NXUAQDIz9bjwpEVuHxMFUZUWhK8WiLZUHv+JiEUBhJCBEEQyYPT7cUbX+/FX7/cKxvOOnVYCX754+EYWJSTwNURyQQJoRhBQoggCCL5cHu8WL2nGf/YeBD//f4w3F4eBq0Gc86qxm2TB8GcRR6iTIeEUIwgIUQQBJHc7G5qx68Xb8eqnUcBAHlGHa4bPwA3njkQJXlZCV4dkShICMUIEkIEQRDJD8/z+Hx7E55dskP0EBl0Gtw2aRB+fs5g6LRUG5RpkBCKESSECIIgUgevl8eyHU14acVubD7QCgAYOyAfv7/6VFTmZyd2cUSfovb8TRKZIAiCSBs0Gg7nDi/FR7dNwB+uPhV5Rh027D+O8//wJRZ/15Do5RFJCAkhgiAIIu3gOA4XndoP/73rLIzqb0V7txt3vLMZD374LexOd6KXRyQRJIQIgiCItKWqIBsf3DIePz9nMDgO+GDDQfzkj19h84HjiV4akSSQECIIgiDSGr1Wg/umnYh3556BcksW6o514pKXvsaNC9dh434SRJkOCSGCIAgiIzijphCf3nUWLhtdCQ0HfFF7FJf9+Wv89M31aLU7E708IkGkjBBqaWnBzJkzYTabYbVaMWfOHHR0dIR8TGNjI2bNmoWysjLk5ORg9OjR+Mc//tFHKyYIgiCSDWu2Ac9fORLL75uMq8ZWQafh8Pn2Jlz4p9XY0diW6OURCSBlhNDMmTOxbds2LF26FIsXL8aqVatw8803h3zM9ddfj9raWvzrX//C999/j0svvRRXXnklNm/e3EerJgiCIJKRgUU5eObyU/Dvn09EVYEJB1rsuPSlr/Hf7w8nemlEH5MSfYS2b9+O4cOHY/369Rg7diwAYMmSJZgxYwYOHjyIiooKxcfl5ubiz3/+M2bNmiXeVlhYiGeeeQY//elPVT039REiCIJIb453OnHHu5uwenczAODXF52E68cPTOyiiF6TVn2E1qxZA6vVKoogAJg6dSo0Gg3Wrl0b9HETJkzA+++/j5aWFni9Xrz33nvo7u7G5MmTgz7G4XCgra1N9kMQBEGkL/k5Brx54+m4YfwAAMCj/9yGF7/YjRSIExAxICWEUGNjI0pKSmS36XQ6FBQUoLGxMejjPvjgA7hcLhQWFsJoNOKWW27Bxx9/jMGDBwd9zIIFC2CxWMSfqqqqmB0HQRAEkZzotBr86sKTcOeUIQCA335Wi6c/3UFiKANIqBCaP38+OI4L+bNjx46o9//II4+gtbUVn3/+OTZs2IB7770XV155Jb7//vugj3nooYdgs9nEn/r6+qifnyAIgkgdOI7DveeegF/+eBgA4JVVdXjz632JXRQRd3SJfPL77rsPs2fPDrlNTU0NysrK0NTUJLvd7XajpaUFZWVlio/bs2cP/vSnP2Hr1q046aSTAAAjR47El19+iRdffBEvv/yy4uOMRiOMRmPkB0MQBEGkBT89qwY8Dzz53+34zX+2Y0SlFWMG5Cd6WUScSKgQKi4uRnFxcdjtxo8fj9bWVmzcuBFjxowBACxfvhxerxfjxo1TfIzdbgcAaDTyoJdWq4XX6+3lygmCIIh05qdnVWPLwVb857vDuH3RJiy+cyKKcukiOR1JCY/QsGHDMH36dMydOxfr1q3D6tWrcccdd+Dqq68WK8YOHTqEoUOHYt26dQCAoUOHYvDgwbjllluwbt067NmzB88//zyWLl2Kiy++OIFHQxAEQSQ7HMfhmctOwaDiHDS2dePOdzfD7aGL6HQkJYQQACxatAhDhw7FlClTMGPGDEycOBGvvvqqeL/L5UJtba0YCdLr9fjvf/+L4uJiXHDBBTjllFPw1ltv4c0338SMGTMSdRgEQRBEipBr1OHl68Yg26DF13ua8evFP5B5Og1JiT5CiYT6CBEEQWQ2n35/GLct2gQA+OWPh+GnZ9UkeEWEGtKqjxBBEARBJIrzR5TjFzOGAhAM1Eu2UvfpdIKEEEEQBEGEYe5ZNbjujP7geeCu97Zg3d6WRC+JiBEkhAiCIAgiDBzH4VcXnIRzhpbA4fbihtfX4evdxxK9LCIGkBAiCIIgCBXotBq8NHM0zj6hGF0uD258Yz1W7jya6GURvYSEEEEQBEGoJEuvxauzxmDqMCEyNPfNDSSGUhwSQgRBEAQRAVl6LV6aOQbnn1wGp8eLn/1tI7YfpgHdqQoJIYIgCIKIEINOgz9cPQrjawrR6fRgzhvr0dTWnehlEVFAQoggCIIgosCg0+Dl68agpjgHDbZuzHlzA+xOd6KXRUQICSGCIAiCiBJLth4LZ5+GghwDvj9kw30ffEvdp1MMEkIEQRAE0QsGFObg1VljoNdy+HRrI15asSfRSyIigIQQQRAEQfSSsQML8PiFJwMAnvtfLVbUNiV4RYRaSAgRBEEQRAy4dlx/XHO60H36znc3Y9+xzkQviVABCSGCIAiCiBG/unA4RvW3oq3bjdkL1+EIVZIlPSSECIIgCCJGGHVavHzdGFTmm7Cv2Y5rXv2GyuqTHBJCBEEQBBFDSs1ZeHfuGehnNaHuWCeu/etaHG13JHpZRBBICBEEQRBEjKkqyMa7c89AuSULu5s6cMlLq/FNXXOil0UoQEKIIAiCIOJA/0JBDFXmm3DweBeu+cs3+PW/f0C3y5PopRESSAgRBEEQRJwYWJSDT+86C9ecXgWeB15fvRfn/X4VPv/hCDVeTBJICBEEQRBEHMnL0mPBpadg4Y2nodRsxP5mO3761gbcsHA9fmhoI0GUYDie3oGQtLW1wWKxwGazwWw2J3o5BEEQRArT3u3Cn77Yjde/2guXRzj9FucZMa66ANVFOWhqc6CxrRscB1w6uhLnn1wGvZZiFtGg9vxNQigMJIQIgiCIWLP3WCee+XQHltc2wen2Bt2uwpKF68YPwPiaQgwrNyNLr0WX04PtjW3Y2diO5k4nWu1OdDjcGFWVjwtPrUCWXtuHR5K8kBCKESSECIIgiHjR7fLg2/pWfFPXgqb2bpSas1BmzsKh1i4sWrsfxzqc4rYaDii3mHDY1gVvkDN3YY4BM8f1x4TBRcg16pBt0MLt5WHrcqHV7oJJr8XJ/cywZhsAAE1t3VhT14wupwcXjKxAjlEXu4Oz2YD2dqCysud9Bw8CeXmAxRK75wuAhFCMICFEEARBJIJulwf/2tKA/3x/GNsabDJRVJRrwLByM8rMWcjPMUCr4fCvLQ041Nqlat+V+SYYtBrUScaAlFuy8NgFw3HeSWXgOA5OtxcNrV3Qajhk6bXINmjVCyWbDZg+HWhqAlasAKqq/PfV1wOTJwMlJcCSJXETQySEYgQJIYIgCCLR8DyPpnYH9jfbMbAwGyXmrB7buD1e/O+HI3h33QEcau2C3eFBp8MNnZaDxaSHxaRHa5cL+5vt4mM4Dhhebkar3SWKqFOrrLA73ag72gl3QOipn9WEUyotGFllxfiaQozoZ4FGw/Vc8MGDwKRJQF0dUFPjF0NMBLHbV66Et6IfeABapf30AhJCMYKEEEEQBJFO2Lpc2NZgg8Plxej++bBk69Hl9OClFbvxyso6OD1+z1KWXgOeBxxBfExFuQZMOqEE+dl6tNidaOl04ninE82dTrS0O5DV2Ybhh3dhuKMFg6+6AMUvPI/iPTvgquqP9Y88h3XHPVi/7zhevHY0Jg4piulxkhCKESSECIIgiExh37FOfLX7GPrlm3BiaR7KLVngOA5eL492hxs/NLTh24Ot2Lj/ONbsaUaHwx2T571ryhDcc+4JMdkXg4RQjCAhRBAEQRA9cbq92LCvBV/uPgaPl0d+tgGFOQYU5BhQkGtAQbYB7d1u/PDlJmx7/QPsyy/HsRwrjvUfDK9ej1Or8jGuugCnVxdgeIU55m0CSAjFCBJCBEEQBBElUk8QQ+oZiiNqz9/UpYkgCIIgiNgTaIxevVr4t65OuL2+PtErBEBCiCAIgiCIWHPwoFwErVgBTJgg/CsVQwcPJnadAGLYOYkgCIIgCAJCs8SSEuH/0jRYVZXwO+sjlJeXoAX6ISFEEARBEERssViEZolKnaWrqoCVK+PeWVotJIQIgiAIgog9FktwoaM0diNBkEeIIAiCIIiMhYQQQRAEQRAZCwkhgiAIgiAyFhJCBEEQBEFkLCSECIIgCILIWEgIEQRBEASRsZAQIgiCIAgiYyEhRBAEQRBExkJCiCAIgiCIjIU6S4eB53kAQFtbW4JXQhAEQRCEWth5m53Hg0FCKAzt7e0AgCo2MI4gCIIgiJShvb0dlhAzzTg+nFTKcLxeLxoaGpCXlweO42K237a2NlRVVaG+vh5mszlm+00FMvXY6bjpuDOBTD1uIHOPPVmPm+d5tLe3o6KiAhpNcCcQRYTCoNFoUBnH4XBmszmpPjh9SaYeOx13ZkHHnXlk6rEn43GHigQxyCxNEARBEETGQkKIIAiCIIiMhYRQgjAajXjsscdgNBoTvZQ+J1OPnY6bjjsTyNTjBjL32FP9uMksTRAEQRBExkIRIYIgCIIgMhYSQgRBEARBZCwkhAiCIAiCyFhICCWIF198EQMHDkRWVhbGjRuHdevWJXpJMWXBggU47bTTkJeXh5KSElx88cWora2VbdPd3Y3bb78dhYWFyM3NxWWXXYYjR44kaMXx4emnnwbHcbj77rvF29L1uA8dOoTrrrsOhYWFMJlMGDFiBDZs2CDez/M8Hn30UZSXl8NkMmHq1KnYtWtXAlfcezweDx555BFUV1fDZDJh0KBBeOKJJ2Qt/dPluFetWoULLrgAFRUV4DgOn3zyiex+NcfZ0tKCmTNnwmw2w2q1Ys6cOejo6OjDo4icUMftcrkwb948jBgxAjk5OaioqMD111+PhoYG2T7S7bgDufXWW8FxHH7/+9/Lbk+V4yYhlADef/993HvvvXjsscewadMmjBw5Eueddx6ampoSvbSYsXLlStx+++345ptvsHTpUrhcLkybNg2dnZ3iNvfccw/+/e9/4+9//ztWrlyJhoYGXHrppQlcdWxZv349XnnlFZxyyimy29PxuI8fP44zzzwTer0en376KX744Qc8//zzyM/PF7d59tln8cc//hEvv/wy1q5di5ycHJx33nno7u5O4Mp7xzPPPIM///nP+NOf/oTt27fjmWeewbPPPosXXnhB3CZdjruzsxMjR47Eiy++qHi/muOcOXMmtm3bhqVLl2Lx4sVYtWoVbr755r46hKgIddx2ux2bNm3CI488gk2bNuGjjz5CbW0tLrzwQtl26XbcUj7++GN88803qKio6HFfyhw3T/Q5p59+On/77beLv3s8Hr6iooJfsGBBAlcVX5qamngA/MqVK3me5/nW1lZer9fzf//738Vttm/fzgPg16xZk6hlxoz29nZ+yJAh/NKlS/lJkybxd911F8/z6Xvc8+bN4ydOnBj0fq/Xy5eVlfG//e1vxdtaW1t5o9HIv/vuu32xxLjw4x//mL/ppptkt1166aX8zJkzeZ5P3+MGwH/88cfi72qO84cffuAB8OvXrxe3+fTTT3mO4/hDhw712dp7Q+BxK7Fu3ToeAL9//36e59P7uA8ePMj369eP37p1Kz9gwAD+//7v/8T7Uum4KSLUxzidTmzcuBFTp04Vb9NoNJg6dSrWrFmTwJXFF5vNBgAoKCgAAGzcuBEul0v2OgwdOhT9+/dPi9fh9ttvx49//GPZ8QHpe9z/+te/MHbsWFxxxRUoKSnBqFGj8Je//EW8f+/evWhsbJQdt8Viwbhx41L6uCdMmIBly5Zh586dAIBvv/0WX331Fc4//3wA6Xvcgag5zjVr1sBqtWLs2LHiNlOnToVGo8HatWv7fM3xwmazgeM4WK1WAOl73F6vF7NmzcIDDzyAk046qcf9qXTcNGusjzl27Bg8Hg9KS0tlt5eWlmLHjh0JWlV88Xq9uPvuu3HmmWfi5JNPBgA0NjbCYDCIXxaM0tJSNDY2JmCVseO9997Dpk2bsH79+h73petx19XV4c9//jPuvfde/OIXv8D69etx5513wmAw4IYbbhCPTelzn8rHPX/+fLS1tWHo0KHQarXweDx48sknMXPmTABI2+MORM1xNjY2oqSkRHa/TqdDQUFB2rwW3d3dmDdvHq655hpx5la6HvczzzwDnU6HO++8U/H+VDpuEkJE3Ln99tuxdetWfPXVV4leStypr6/HXXfdhaVLlyIrKyvRy+kzvF4vxo4di6eeegoAMGrUKGzduhUvv/wybrjhhgSvLn588MEHWLRoEd555x2cdNJJ2LJlC+6++25UVFSk9XETPXG5XLjyyivB8zz+/Oc/J3o5cWXjxo34wx/+gE2bNoHjuEQvp9dQaqyPKSoqglar7VEldOTIEZSVlSVoVfHjjjvuwOLFi/HFF1+gsrJSvL2srAxOpxOtra2y7VP9ddi4cSOampowevRo6HQ66HQ6rFy5En/84x+h0+lQWlqalsddXl6O4cOHy24bNmwYDhw4AADisaXb5/6BBx7A/PnzcfXVV2PEiBGYNWsW7rnnHixYsABA+h53IGqOs6ysrEdBiNvtRktLS8q/FkwE7d+/H0uXLpVNYE/H4/7yyy/R1NSE/v37i99z+/fvx3333YeBAwcCSK3jJiHUxxgMBowZMwbLli0Tb/N6vVi2bBnGjx+fwJXFFp7ncccdd+Djjz/G8uXLUV1dLbt/zJgx0Ov1stehtrYWBw4cSOnXYcqUKfj++++xZcsW8Wfs2LGYOXOm+P90PO4zzzyzR3uEnTt3YsCAAQCA6upqlJWVyY67ra0Na9euTenjttvt0GjkX6NarRZerxdA+h53IGqOc/z48WhtbcXGjRvFbZYvXw6v14tx48b1+ZpjBRNBu3btwueff47CwkLZ/el43LNmzcJ3330n+56rqKjAAw88gM8++wxAih13ot3amch7773HG41G/o033uB/+OEH/uabb+atVivf2NiY6KXFjNtuu423WCz8ihUr+MOHD4s/drtd3ObWW2/l+/fvzy9fvpzfsGEDP378eH78+PEJXHV8kFaN8Xx6Hve6det4nU7HP/nkk/yuXbv4RYsW8dnZ2fzf/vY3cZunn36at1qt/D//+U/+u+++4y+66CK+urqa7+rqSuDKe8cNN9zA9+vXj1+8eDG/d+9e/qOPPuKLior4Bx98UNwmXY67vb2d37x5M79582YeAP+73/2O37x5s1gdpeY4p0+fzo8aNYpfu3Yt/9VXX/FDhgzhr7nmmkQdkipCHbfT6eQvvPBCvrKykt+yZYvsu87hcIj7SLfjViKwaoznU+e4SQgliBdeeIHv378/bzAY+NNPP53/5ptvEr2kmAJA8WfhwoXiNl1dXfzPfvYzPj8/n8/OzuYvueQS/vDhw4lbdJwIFELpetz//ve/+ZNPPpk3Go380KFD+VdffVV2v9fr5R955BG+tLSUNxqN/JQpU/ja2toErTY2tLW18XfddRffv39/Pisri6+pqeEffvhh2UkwXY77iy++UPybvuGGG3ieV3eczc3N/DXXXMPn5ubyZrOZv/HGG/n29vYEHI16Qh333r17g37XffHFF+I+0u24lVASQqly3DR9niAIgiCIjIU8QgRBEARBZCwkhAiCIAiCyFhICBEEQRAEkbGQECIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgkgpZs+ejYsvvjjRyyAIIk0gIUQQBEEQRMZCQoggiJRl8uTJ+PnPf467774b+fn5KC0txV/+8hd0dnbixhtvRF5eHgYPHoxPP/1UfIzH48GcOXNQXV0Nk8mEE088EX/4wx9k+3W73bjzzjthtVpRWFiIefPm4YYbbpBForxeLxYsWCDuZ+TIkfjwww/76tAJgogRJIQIgkhp3nzzTRQVFWHdunX4+c9/jttuuw1XXHEFJkyYgE2bNmHatGmYNWsW7HY7AEHAVFZW4u9//zt++OEHPProo/jFL36BDz74QNznM888g0WLFmHhwoVYvXo12tra8Mknn8ied8GCBXjrrbfw8ssvY9u2bbjnnntw3XXXYeXKlX15+ARB9BKaPk8QREoxe/ZstLa24pNPPsHkyZPh8Xjw5ZdfAhCiPRaLBZdeeineeustAEBjYyPKy8uxZs0anHHGGYr7vOOOO9DY2ChGdMrKynD//ffj/vvvF/dbU1ODUaNG4ZNPPoHD4UBBQQE+//xzjB8/XtzPT3/6U9jtdrzzzjvxfAkIgoghukQvgCAIojeccsop4v+1Wi0KCwsxYsQI8bbS0lIAQFNTk3jbiy++iNdffx0HDhxAV1cXnE4nTj31VACAzWbDkSNHcPrpp8v2O2bMGHi9XgDA7t27Ybfbce6558rW4nQ6MWrUqJgfI0EQ8YOEEEEQKY1er5f9znGc7DaO4wBAFDHvvfce7r//fjz//PMYP3488vLy8Nvf/hZr165V/ZwdHR0AgP/85z/o16+f7D6j0RjVcRAEkRhICBEEkVGsXr0aEyZMwM9+9jPxtj179oj/t1gsKC0txfr163H22WcDEFJjmzZtEqNGw4cPh9FoxIEDBzBp0qQ+XT9BELGFhBBBEBnFkCFD8NZbb+Gzzz5DdXU13n77baxfvx7V1dXiNj//+c+xYMECDB48GEOHDsULL7yA48ePi9GlvLw83H///bjnnnvg9XoxceJE2Gw2rF69GmazGTfccEOiDo8giAghIUQQREZxyy23YPPmzbjqqqvAcRyuueYa/OxnP5OV2M+bNw+NjY24/vrrodVqcfPNN+O8886DVqsVt3niiSdQXFyMBQsWoK6uDlarFaNHj8YvfvGLRBwWQRBRQlVjBEEQYfB6vRg2bBiuvPJKPPHEE4leDkEQMYQiQgRBEAHs378f//vf/zBp0iQ4HA786U9/wt69e3HttdcmemkEQcQYaqhIEAQRgEajwRtvvIHTTjsNZ555Jr7//nt8/vnnGDZsWKKXRhBEjKHUGEEQBEEQGQtFhAiCIAiCyFhICBEEQRAEkbGQECIIgiAIImMhIUQQBEEQRMZCQoggCIIgiIyFhBBBEARBEBkLCSGCIAiCIDIWEkIEQRAEQWQsJIQIgiAIgshY/h+6rpmmxGqdlQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -454,7 +403,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ From e0ffcc23ae2824e930aeebac67d3df334ca80b30 Mon Sep 17 00:00:00 2001 From: Tetracarbonylnickel Date: Fri, 22 Nov 2024 13:27:33 +0000 Subject: [PATCH 16/17] test update --- tests/regression_tests/test_apax_training.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/tests/regression_tests/test_apax_training.py b/tests/regression_tests/test_apax_training.py index 52365e43..0c39492f 100644 --- a/tests/regression_tests/test_apax_training.py +++ b/tests/regression_tests/test_apax_training.py @@ -39,10 +39,10 @@ def test_regression_model_training(get_md22_stachyose, get_tmp_path): current_metrics = load_csv(working_dir / "test/log.csv") comparison_metrics = { - "val_energy_mae": 0.07457, - "val_forces_mae": 0.04777, - "val_forces_mse": 0.00423, - "val_loss": 0.05094, + "val_energy_mae": 0.075, + "val_forces_mae": 0.045, + "val_forces_mse": 0.004, + "val_loss": 0.045, } for key in comparison_metrics.keys(): @@ -50,5 +50,5 @@ def test_regression_model_training(get_md22_stachyose, get_tmp_path): for key in comparison_metrics.keys(): assert ( - abs(np.array(current_metrics[key])[-1] - comparison_metrics[key]) < 0.015 + abs((np.array(current_metrics[key])[-1] - comparison_metrics[key])) < 0.01 ) From a6504728919be38975b5c778589b2e5164354464 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri, 22 Nov 2024 13:30:46 +0000 Subject: [PATCH 17/17] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- tests/regression_tests/test_apax_training.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/tests/regression_tests/test_apax_training.py b/tests/regression_tests/test_apax_training.py index c3b2cf02..895eda9e 100644 --- a/tests/regression_tests/test_apax_training.py +++ b/tests/regression_tests/test_apax_training.py @@ -49,6 +49,4 @@ def test_regression_model_training(get_md22_stachyose, get_tmp_path): print((np.array(current_metrics[key])[-1])) for key in comparison_metrics.keys(): - assert ( - abs((np.array(current_metrics[key])[-1] - comparison_metrics[key])) < 0.01 - ) + assert abs((np.array(current_metrics[key])[-1] - comparison_metrics[key])) < 0.01