forked from brendenlake/BPL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit_motorprograms.m
120 lines (110 loc) · 3.2 KB
/
fit_motorprograms.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
%
% Find a set of motor programs for an image
%
% Input
% I: binary image, where true is "black" pixel
% K: number
% verbose: (true/false) report progress and visualize results?
% include_mcmc: (true/false) estimate local variance at type-level?
% (this is needed for exemplar generation and classification)
% fast_mode: (true/false)
%
% Output
% G: structure to store output
function G = fit_motorprograms(I,K,verbose,include_mcmc,fast_mode)
ps = defaultps;
if ~exist('K','var') || isempty(K)
K = ps.K;
end
if ~exist('verbose','var')
verbose = false;
end
if ~exist('include_mcmc','var')
include_mcmc = true;
end
if ~exist('fast_mode','var')
fast_mode = false;
end
load(ps.libname,'lib');
lib.ncpt;
% generate parses
initMP = generate_random_parses(I,lib,K,verbose);
nl = numel(initMP);
init_scores = zeros(nl,1);
for i=1:nl
init_scores(i) = scoreMP_NoRel(initMP{i},lib);
end
% visualize initial parses
if verbose
sz = [500 500]; % figure size
h = figure;
pos = get(h,'Position');
pos(3:4) = sz;
set(h,'Position',pos);
nrow = ceil(sqrt(nl));
for i=1:nl
subplot(nrow,nrow,i);
vizMP(initMP{i},'motor');
lb = num2str(init_scores(i),4);
if i==1, lb = ['initial score: ' lb]; end
title(lb);
end
pause(0.1);
drawnow
end
% run search for each candidate
finalMP = cell(nl,1);
for i=1:nl
fprintf(1,'\nOptimizing parse %d of %d\n',i,nl);
finalMP{i} = SearchForParse(initMP{i},lib,verbose,fast_mode);
end
final_scores = zeros(nl,1);
for i=1:nl
final_scores(i) = scoreMP(finalMP{i},lib);
end
% sort programs from best to worst
[~,score_indx] = sort(final_scores,1,'descend');
finalMP = finalMP(score_indx);
final_scores = final_scores(score_indx);
% visualize the final parses
if verbose
sz = [500 500]; % figure size
h = figure;
pos = get(h,'Position');
pos(3:4) = sz;
set(h,'Position',pos);
nrow = ceil(sqrt(nl));
for i=1:nl
subplot(nrow,nrow,i);
vizMP(finalMP{i},'motor');
lb = num2str(final_scores(i),4);
if i==1, lb = ['final score: ' lb]; end
title(lb);
end
pause(0.1);
drawnow
end
% MCMC to estimate local variance at the type level
samples_type = [];
if include_mcmc
fprintf(1,'\nEstimating local type-level variance for parse...\n',i,nl);
for j=1:nl
fprintf(1,'%d,',j);
samplesM = RunMCMCType(finalMP{j},lib);
nsamp = numel(samplesM);
for i=1:nsamp
samplesM{i}.lightweight; % reduce memory size
end
samples_type{j} = samplesM;
end
fprintf(1,'done.\n');
samples_type = samples_type(:);
end
% return structure
G = struct;
G.models = finalMP;
G.scores = final_scores;
G.samples_type = samples_type;
G.img = I;
G.PM = ps;
end