-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
882 lines (860 loc) · 117 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# Code for
#
# Guarantees on the structure of experimental quantum networks
# npj Quantum Inf. 10, 117 (2024)
# arXiv:2403.02376
#
# Authors: Alejandro Pozas-Kerstjens
#
# Requires: numpy for array operations
# pandas for dataset manipulation
# sympy, symengine for symbolic operations
# qutip for quantum states
# csv, itertools, numbers
#
# Last modified: Mar, 2024
import csv
import numpy as np
import pandas as pd
import qutip as qt
from itertools import product
from numbers import Real
from sympy import degree_list
from symengine import symbols
###############################################################################
# Functions for import and export of certificates
###############################################################################
def export_inequality(certificate, filename):
if not len(certificate.as_coefficients_dict()) == 1:
num_lines = max([sum(degree_list(mon))
for mon in certificate.as_coefficients_dict().keys()
if mon != 1])
# Map from the symbols that represent inputs to a normalized notation
input_map = {"-1": -1}
input_idx = 0
ineq_lines = []
for mon, coeff in certificate.as_coefficients_dict().items():
mon_lines = -np.ones((num_lines, 13), dtype=object)
mon_lines[0, 0] = float(coeff)
for idx in range(1, num_lines):
mon_lines[idx, 0] = None
if mon == 1:
mon_lines[0, 0] = float(coeff)
else:
counter = 0
for component in mon.as_ordered_factors():
parties = np.array([ord(p) - 65
for p in str(component).split("(")[0][1:]])
ins = []
for ii in str(component).split("|")[1].split(")")[0]:
try:
ins.append(input_map[ii])
except KeyError:
input_map[ii] = input_idx
input_idx += 1
ins.append(input_map[ii])
if len(str(component).split("**")) == 1:
line = -np.ones(12, dtype=object)
line[parties] = 0
line[6+parties] = ins
mon_lines[counter, 1:] = line
counter += 1
else:
num_copies = int(str(component).split("**")[-1])
for _ in range(num_copies):
mon_lines[counter, 1+parties] = 0
mon_lines[counter, 1+6+parties] = ins
counter += 1
ineq_lines += mon_lines.tolist()
f = open(filename, "w")
for line in ineq_lines:
f.write(
str(list(line))[1:-1].replace(" ", "").replace("None", ""))
f.write("\n")
f.close()
def import_ineq(ineq_path):
with open(ineq_path) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
lines = []
for row in csv_reader:
lines.append(row)
ineq_orig = np.array(lines)
return ineq_orig
def eval_ineq(ineq, distribution):
terms = []
factors = []
coeff = 0
for line in ineq:
if line[0] != "":
terms.append([coeff, factors])
coeff = float(line[0])
factors = [process_line(line[1:], distribution)]
else:
factors.append(process_line(line[1:], distribution))
# The very last line
terms.append([coeff, factors])
ineq_val = 0
for term in terms:
ineq_val += term[0] * np.prod(term[1])
return ineq_val
def process_line(outs_ins, distribution):
playing_parties = np.where(outs_ins[:6] == "0")[0]
non_playing_parties = list(set(range(6)) - set(playing_parties.tolist()))
ins = outs_ins[6:].astype(int)
ins[non_playing_parties] = 0
marginal = np.sum(
distribution[...,ins[0],ins[1],ins[2],ins[3],ins[4],ins[5]],
axis=tuple(non_playing_parties))
if isinstance(marginal, float):
return marginal
else:
return marginal.flatten()[0] # Hack to get the p(0...0) element
###############################################################################
# Quantum states and distributions
###############################################################################
def rho_ghz_list():
visqubed = [[1/16,-(1/16),0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,1/16,-(1/16),-(1/16),1/16,0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,-(1/16),1/16],
[-(1/16),-(1/16),0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[1/16,-(1/16),0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,1/16,-(1/16),-(1/16),1/16,0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,-(1/16),1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),1/16,0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,1/16,-(1/16),-(1/16),1/16,0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,1/16,-(1/16)],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,1/16,0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,1/16,1/16],
[-(1/16),1/16,0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,1/16,-(1/16),-(1/16),1/16,0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,1/16,-(1/16)],
[-(1/16),1/16,0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,1/16,-(1/16),-(1/16),1/16,0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,1/16,-(1/16)],
[1/16,1/16,0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,1/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[-(1/16),1/16,0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,1/16,-(1/16),-(1/16),1/16,0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,1/16,-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,-(1/16),0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,1/16,-(1/16),-(1/16),1/16,0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,-(1/16),1/16],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,-(1/16),-(1/16)],
[1/16,-(1/16),0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,1/16,-(1/16),-(1/16),1/16,0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,-(1/16),1/16]]
visquared = [[3/16,-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(3/16),0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,-(3/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),3/16],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(3/16),-(3/16),-(3/16),-(3/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),3/16,0,0,0,0,-(3/16),1/16,1/16,-(3/16),0,0,0,0,3/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,-(3/16),0,0,0,0,3/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),3/16,0,0,0,0,-(3/16),1/16,1/16,-(3/16),0,0,0,0,3/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),3/16,0,0,0,0,-(3/16),1/16],
[-(3/16),-(3/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(3/16),-(3/16),-(3/16),-(3/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(3/16),-(3/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,-(1/16),-(1/16)],
[-(1/16),-(1/16),0,0,0,0,-(3/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(3/16),0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,-(3/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(3/16),0,0,0,0,-(1/16),-(1/16)],
[-(1/16),-(1/16),0,0,0,0,-(3/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(3/16),0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,-(3/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(3/16),0,0,0,0,-(1/16),-(1/16)],
[-(1/16),-(1/16),0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(3/16),-(3/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(3/16),-(3/16),-(3/16),-(3/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(3/16),-(3/16)],
[1/16,-(3/16),0,0,0,0,3/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),3/16,0,0,0,0,-(3/16),1/16,1/16,-(3/16),0,0,0,0,3/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),3/16,0,0,0,0,-(3/16),1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),3/16,0,0,0,0,-(3/16),1/16,1/16,-(3/16),0,0,0,0,3/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(3/16),-(3/16),-(3/16),-(3/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[3/16,-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(3/16),0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,-(3/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),3/16]]
singlevis = [[3/16,1/16,0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,3/16,0,0,0,0,-(1/16),1/16,1/16,-(1/16),0,0,0,0,3/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,1/16,3/16],
[1/16,1/16,0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,1/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,3/16,3/16,3/16,3/16,0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[-(1/16),1/16,0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(3/16),0,0,0,0,3/16,1/16,1/16,3/16,0,0,0,0,-(3/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,1/16,-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,3/16,0,0,0,0,-(3/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(3/16),0,0,0,0,3/16,1/16,1/16,3/16,0,0,0,0,-(3/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(3/16),0,0,0,0,3/16,1/16],
[3/16,3/16,0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,3/16,3/16,3/16,3/16,0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,3/16,3/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(1/16),-(1/16)],
[1/16,-(1/16),0,0,0,0,3/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,3/16,0,0,0,0,-(1/16),1/16,1/16,-(1/16),0,0,0,0,3/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,3/16,0,0,0,0,-(1/16),1/16],
[1/16,-(1/16),0,0,0,0,3/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,3/16,0,0,0,0,-(1/16),1/16,1/16,-(1/16),0,0,0,0,3/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,3/16,0,0,0,0,-(1/16),1/16],
[-(1/16),-(1/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[3/16,3/16,0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,3/16,3/16,3/16,3/16,0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,3/16,3/16],
[1/16,3/16,0,0,0,0,-(3/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(3/16),0,0,0,0,3/16,1/16,1/16,3/16,0,0,0,0,-(3/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(3/16),0,0,0,0,3/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),1/16,0,0,0,0,-(1/16),1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(3/16),0,0,0,0,3/16,1/16,1/16,3/16,0,0,0,0,-(3/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,-(1/16),0,0,0,0,1/16,-(1/16)],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(3/16),-(3/16),0,0,0,0,3/16,3/16,3/16,3/16,0,0,0,0,-(3/16),-(3/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,1/16,0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/16,3/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,3/16,3/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,1/16,1/16],
[3/16,1/16,0,0,0,0,1/16,-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,3/16,0,0,0,0,-(1/16),1/16,1/16,-(1/16),0,0,0,0,3/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),1/16,0,0,0,0,1/16,3/16]]
novis = [[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16),-(1/16),-(1/16),0,0,0,0,1/16,1/16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/16,1/16,0,0,0,0,-(1/16),-(1/16)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16],
[1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16,1/16,1/16,0,0,0,0,-(1/16),-(1/16),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/16),-(1/16),0,0,0,0,1/16,1/16]]
return [qt.Qobj(state, dims=[[2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2]])
for state in [visqubed, visquared, singlevis, novis]]
def rho_trident_list():
visquart = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
visqubed = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
visquared = [[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,-(1/64),0,1/64,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,1/64,0,-(1/64)],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,-(1/64),0,-(1/64),0,-(1/64),0,-(1/64),0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,1/64,0,-(1/64),0,-(1/64),0,1/64],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,1/64,0,1/64,0,-(1/64),0,-(1/64),0,1/64,0,1/64,0,1/64,0,1/64,0]]
singlevis = [[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0]]
novis = [[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,1/64,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,-(1/64),0,-(1/64),0,0,0,0,0,1/64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,-(1/64),0,-(1/64),0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64),0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-(1/64),0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,-(1/64)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,-(1/64),0,0,0,0,0,1/64,0,1/64,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/64,0,0,0,0,0,-(1/64),0,1/64,0,0,0,0,0,1/64]]
return [qt.Qobj(state, dims=[[2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2]]) for state in [visquart, visqubed, visquared, singlevis, novis]]
def rho(name, vis=1):
if name.lower() == "ghz":
states = rho_ghz_list()
elif name.lower() == "trident":
states = rho_trident_list()
else:
raise ValueError(f"Unknown state name: {name}. "
+ "It should be 'ghz' or 'trident'.")
return sum(vis**(len(states)-k-1) * state for k, state in enumerate(states))
meas = [[0.5*(qt.qeye(2)+qt.sigmax()), 0.5*(qt.qeye(2)-qt.sigmax())],
[0.5*(qt.qeye(2)+qt.sigmay()), 0.5*(qt.qeye(2)-qt.sigmay())],
[0.5*(qt.qeye(2)+qt.sigmaz()), 0.5*(qt.qeye(2)-qt.sigmaz())]]
def prob_noin(vis, state, measurements):
prob_array = np.zeros((2,2,2,2,2,2,1,1,1,1,1,1))
meas_choices = [ord(inp) - 88 for inp in measurements]
x, y, z, t, u, v = meas_choices
if isinstance(vis, Real):
st = rho(state, vis)
for a,b,c,d,e,f in np.ndindex((2,2,2,2,2,2)):
prob_array[a,b,c,d,e,f,0,0,0,0,0,0] \
= qt.expect(st, qt.tensor(meas[x][a], meas[y][b],
meas[z][c], meas[t][d],
meas[u][e], meas[v][f]))
else:
states = rho_trident_list() if state == "trident" else rho_ghz_list()
prob_array = np.asarray(prob_array, dtype=object)
for a,b,c,d,e,f in np.ndindex((2,2,2,2,2,2)):
operator = qt.tensor(meas[x][a], meas[y][b], meas[z][c],
meas[t][d], meas[u][e], meas[v][f])
prob_array[a,b,c,d,e,f,0,0,0,0,0,0] = \
sum(vis**(len(states)-k-1) * qt.expect(st, operator)
for k, st in enumerate(states))
return prob_array
def prob_2in(vis, state, bases):
prob_array = np.zeros((2,2,2,2,2,2,2,2,2,2,2,2))
bases = [ord(lett) - 88 for lett in bases]
msmnts = [meas[bases[0]], meas[bases[1]]]
st = rho(state, vis)
for a,b,c,d,e,f,x,y,z,t,u,v in np.ndindex((2,2,2,2,2,2,2,2,2,2,2,2)):
prob_array[a,b,c,d,e,f,x,y,z,t,u,v] = \
qt.expect(st, qt.tensor(msmnts[x][a], msmnts[y][b], msmnts[z][c],
msmnts[t][d], msmnts[u][e], msmnts[v][f]))
return prob_array
###############################################################################
# Functions for certificate evaluation
###############################################################################
def read_ineq(path, num_inputs=1):
inequality_data = np.loadtxt(path, delimiter=",", dtype=str)
ineq = 0.
parties = np.array(list("ABCDEF"))
skip = np.where(inequality_data[:,0] != "")[0]
skip = skip[1]- skip[0]
for ii in range(0, len(inequality_data), skip):
block = inequality_data[ii:ii+skip,:]
term = 1.
for line in block:
if line[1:].tolist() == ["-1"] * 12:
term *= 1.
else:
outputs = np.array(line[1:7])
inputs = np.array(line[7:])
relevant = np.where(outputs == "0")[0]
prob_name = "p_{" + "".join(parties[relevant]) + "}"
if num_inputs == 2:
prob_name += "(" + "".join(inputs[relevant]) + ")"
prob = symbols(prob_name)
term *= prob
ineq += float(block[0, 0])*term
return ineq
def expand_ineq(ineq):
subs = {}
for symb in ineq.free_symbols:
parties = list(symb.name.split("{")[-1].split("}")[0])
summationterms = np.array(list(product([0, 1],
repeat=6-len(parties)))
).astype(str)
parties_pos = [ord(party) - 65 for party in parties]
# Hack so that np.insert works well.
# It seems to do things sequentially, so for the second insertion we
# have to take into account that the first one was done
parties_ord = []
for ii, party in enumerate(parties_pos):
parties_ord.append(party-ii)
summationterms = np.insert(summationterms, parties_ord, "0", 1)
subs.update({symb: np.sum([symbols(
("p_{" + "".join(outs)).replace("0","T").replace("1","R") + "}"
) for outs in summationterms])})
return ineq.subs(subs)
def error_expr(ineq):
errorsquared = 0
for symb in ineq.free_symbols:
errorsquared += (ineq.diff(symb, 1)
* symbols(f"\Delta_{symb.name[2:]}"))**2
return errorsquared
def get_distr_from_data(path, experiment_source, frac=1):
"""Obtain the empirical distributions"""
if experiment_source.lower() == "ghz":
names = ["".join(letters) for letters in product(["T","R"], repeat=6)]
dataset = pd.read_csv(path, header=0).dropna(axis=1)[names]
n_counts = dataset.values.sum()
prob = dataset.sample(frac=frac).to_numpy().sum(axis=0)
elif experiment_source.lower() == "trident":
dataset = np.genfromtxt(path, delimiter=",")
prob = dataset[17:]
n_counts = np.sum(prob)
return prob / np.sum(prob), n_counts
def expand_ineq_2in(ineq, available_bases, eval_bases="XZ"):
subs = {}
for symb in ineq.free_symbols:
parties = list(symb.name.split("{")[-1].split("}")[0])
inputs = list(symb.name.split("(")[-1].split(")")[0])
try:
inputs = [eval_bases[int(i)] for i in inputs]
except ValueError:
continue
summationterms = np.array(list(product([0, 1],
repeat=6-len(parties)))
).astype(str)
parties_pos = [ord(party) - 65 for party in parties]
summationbases = [bases for bases in available_bases
if all([bases[party] == inpt
for party, inpt in zip(parties_pos, inputs)])]
# Hack so that np.insert works well.
# It seems to do things sequentially, so for the second insertion we
# have to take into account that the first one was done
parties_ord = []
for ii, party in enumerate(parties_pos):
parties_ord.append(party-ii)
summationterms = np.insert(summationterms, parties_ord, "0", 1)
subs.update({symb: 1/len(summationbases) * np.sum([symbols(
("p_{" + "".join(outs)).replace("0", "T").replace("1", "R")
+ "}(" + "".join(ins) + ")")
for outs, ins in product(summationterms, summationbases)])})
return ineq.subs(subs)
def get_means_stds(ineq, available_bases, eval_bases, exp_probs):
"""Obtain the average distribution and 1-sigma confidence intervals for
the trident data"""
means = {}
stds = {}
for symb in ineq.free_symbols:
parties = list(symb.name.split("{")[-1].split("}")[0])
inputs = list(symb.name.split("(")[-1].split(")")[0])
summationterms = np.array(list(product([0, 1],
repeat=6-len(parties)))
).astype(str)
parties_pos = [ord(party) - 65 for party in parties]
inputs = [eval_bases[int(i)] for i in inputs]
summationbases = [bases for bases in available_bases
if all([bases[party] == inpt
for party, inpt in zip(parties_pos, inputs)])]
# Hack so that np.insert works well.
# It seems to do things sequentially, so for the second insertion we
# have to take into account that the first one was done
parties_ord = []
for ii, party in enumerate(parties_pos):
parties_ord.append(party-ii)
summationterms = np.insert(summationterms, parties_ord, "0", 1)
eval_per_base = []
for base in summationbases:
probs = exp_probs["".join(base)][1.0][0]
eval_per_base.append(sum(probs[int("".join(outs), 2)]
for outs in summationterms))
means.update({symb: np.mean(eval_per_base)})
stds.update({symbols(f"\Delta{symb.name[1:]}"): np.std(eval_per_base)})
return means, stds