-
Notifications
You must be signed in to change notification settings - Fork 60
/
aux_functions.py
609 lines (494 loc) · 22.6 KB
/
aux_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
# Author: Aqeel Anwar(ICSRL)
# Created: 10/14/2019, 12:50 PM
# Email: aqeel.anwar@gatech.edu
import numpy as np
import nvidia_smi
import os, subprocess, psutil
import math
import random
import time
import airsim
import pygame
from configs.read_cfg import read_cfg
import matplotlib.pyplot as plt
from PIL import Image
import cv2
from skimage.util import random_noise
def close_env(env_process):
process = psutil.Process(env_process.pid)
for proc in process.children(recursive=True):
proc.kill()
process.kill()
def save_network_path(cfg, algorithm_cfg):
# Save the network to the directory network_path
weights_type = 'Imagenet'
if algorithm_cfg.custom_load == True:
algorithm_cfg.network_path = 'models/trained/' + cfg.env_type + '/' + cfg.env_name + '/' + 'CustomLoad/' + algorithm_cfg.train_type + '/'
else:
algorithm_cfg.network_path = 'models/trained/' + cfg.env_type + '/' + cfg.env_name + '/' + weights_type + '/' + algorithm_cfg.train_type + '/'
if not os.path.exists(algorithm_cfg.network_path):
os.makedirs(algorithm_cfg.network_path)
return cfg, algorithm_cfg
def communicate_across_agents(agent, name_agent_list, algorithm_cfg):
name_agent = name_agent_list[0]
update_done = False
if 'GlobalLearningGlobalUpdate' in algorithm_cfg.distributed_algo:
# No need to do anything
update_done = True
elif algorithm_cfg.distributed_algo == 'LocalLearningGlobalUpdate':
agent_on_same_network = name_agent_list
agent[name_agent].network_model.initialize_graphs_with_average(agent, agent_on_same_network)
elif algorithm_cfg.distributed_algo == 'LocalLearningLocalUpdate':
agent_connectivity_graph = []
for j in range(int(np.floor(len(name_agent_list) / algorithm_cfg.average_connectivity))):
div1 = random.sample(name_agent_list, algorithm_cfg.average_connectivity)
# print(div1)
agent_connectivity_graph.append(div1)
name_agent_list = list(set(name_agent_list) - set(div1))
if name_agent_list:
agent_connectivity_graph.append(name_agent_list)
for agent_network in agent_connectivity_graph:
agent_on_same_network = agent_network
agent[name_agent].network_model.initialize_graphs_with_average(agent, agent_on_same_network)
return update_done
def start_environment(env_name):
print_orderly('Environment', 80)
env_folder = os.path.dirname(os.path.abspath(__file__)) + "/unreal_envs/" + env_name + "/"
path = env_folder + env_name + ".exe"
# env_process = []
env_process = subprocess.Popen(path)
time.sleep(5)
print("Successfully loaded environment: " + env_name)
return env_process, env_folder
def initialize_infer(env_cfg, client, env_folder):
if not os.path.exists(env_folder + 'results'):
os.makedirs(env_folder + 'results')
# Mapping floor to 0 height
f_z = env_cfg.floor_z / 100
c_z = (env_cfg.ceiling_z - env_cfg.floor_z) / 100
p_z = (env_cfg.player_start_z - env_cfg.floor_z) / 100
plt.ion()
fig_z = plt.figure()
ax_z = fig_z.add_subplot(111)
line_z, = ax_z.plot(0, 0)
ax_z.set_ylim(0, c_z)
plt.title("Altitude variation")
# start_posit = client.simGetVehiclePose()
fig_nav = plt.figure()
ax_nav = fig_nav.add_subplot(111)
img = plt.imread(env_folder + env_cfg.floorplan)
ax_nav.imshow(img)
plt.axis('off')
plt.title("Navigational map")
plt.plot(env_cfg.o_x, env_cfg.o_y, 'b*', linewidth=20)
nav, = ax_nav.plot(env_cfg.o_x, env_cfg.o_y)
return p_z, f_z, fig_z, ax_z, line_z, fig_nav, ax_nav, nav
def translate_action(action, num_actions):
# action_word = ['Forward', 'Right', 'Left', 'Sharp Right', 'Sharp Left']
sqrt_num_actions = np.sqrt(num_actions)
# ind = np.arange(sqrt_num_actions)
if sqrt_num_actions % 2 == 0:
v_string = list('U' * int((sqrt_num_actions - 1) / 2) + 'D' * int((sqrt_num_actions - 1) / 2))
h_string = list('L' * int((sqrt_num_actions - 1) / 2) + 'R' * int((sqrt_num_actions - 1) / 2))
else:
v_string = list('U' * int(sqrt_num_actions / 2) + 'F' + 'D' * int(sqrt_num_actions / 2))
h_string = list('L' * int(sqrt_num_actions / 2) + 'F' + 'R' * int(sqrt_num_actions / 2))
v_ind = int(action[0] / sqrt_num_actions)
h_ind = int(action[0] % sqrt_num_actions)
action_word = v_string[v_ind] + str(int(np.ceil(abs((sqrt_num_actions - 1) / 2 - v_ind)))) + '-' + h_string[
h_ind] + str(int(np.ceil(abs((sqrt_num_actions - 1) / 2 - h_ind))))
return action_word
def get_errors(data_tuple, choose, ReplayMemory, input_size, agent, target_agent, gamma, Q_clip):
_, Q_target, _, err, _ = minibatch_double(data_tuple, len(data_tuple), choose, ReplayMemory, input_size, agent,
target_agent, gamma, Q_clip)
return err
def train_REINFORCE(data_tuple, batch_size, agent, lr, input_size, gamma, epi_num):
episode_len = len(data_tuple)
curr_states = np.zeros(shape=(episode_len, input_size, input_size, 3))
actions = np.zeros(shape=(episode_len), dtype=int)
crashes = np.zeros(shape=(episode_len))
rewards = np.zeros(shape=episode_len)
for ii, m in enumerate(data_tuple):
curr_state_m, action_m, reward_m, crash_m = m
curr_states[ii, :, :, :] = curr_state_m[...]
actions[ii] = action_m
rewards[ii] = reward_m
crashes[ii] = crash_m
Gs = np.zeros(episode_len)
r = 0
for episode_step in range(episode_len - 1, -1, -1):
r = rewards[episode_step] + r * gamma
Gs[episode_step] = r
# Normalize the reward to reduce variance in training
Gs -= np.mean(Gs)
Gs /= (np.std(Gs) + 1e-8)
num_batches = int(np.ceil(episode_len / batch_size))
for i in range(num_batches):
if i != num_batches - 1:
x = curr_states[i * batch_size:(i + 1) * batch_size, :, :, :]
G = Gs[i * batch_size:(i + 1) * batch_size]
action = actions[i * batch_size:(i + 1) * batch_size]
else:
x = curr_states[i * batch_size:, :, :, :]
G = Gs[i * batch_size:]
action = actions[i * batch_size:]
G = np.array([G])
G = G.T
# Restructure array
action = np.array([action])
action = action.T
# Get the baseline value
B = agent.network_model.get_baseline(x)
# Train the baseline network
B_ = agent.network_model.train_baseline(x, G, action, lr, epi_num)
# Train policy network
agent.network_model.train_policy(x, action, B, G, lr, epi_num)
def train_PPO(data_tuple_total, algorithm_cfg, agent, lr, input_size, gamma, epi_num):
batch_size = algorithm_cfg.batch_size
train_epoch_per_batch = algorithm_cfg.train_epoch_per_batch
lmbda = algorithm_cfg.lmbda
# # Divide the data tuple in PPO_steps
# ppo_steps = 3
# for i in range(int(np.ceil(len(data_tuple) / float(ppo_steps)))):
# print(i)
# start_ind = i * ppo_steps
# end_ind = np.min((len(data_tuple), (i + 1) * ppo_steps))
# data_sub = data_tuple[start_ind: end_ind]
#
#
episode_len_total = len(data_tuple_total)
num_batches = int(np.ceil(episode_len_total / float(batch_size)))
for i in range(num_batches):
start_ind = i * batch_size
end_ind = np.min((len(data_tuple_total), (i + 1) * batch_size))
data_tuple = data_tuple_total[start_ind: end_ind]
episode_len = len(data_tuple)
curr_states = np.zeros(shape=(episode_len, input_size, input_size, 3))
next_states = np.zeros(shape=(episode_len, input_size, input_size, 3))
actions = np.zeros(shape=(episode_len, 1), dtype=int)
crashes = np.zeros(shape=(episode_len, 1))
rewards = np.zeros(shape=(episode_len, 1))
p_a = np.zeros(shape=(episode_len,1))
for ii, m in enumerate(data_tuple):
curr_state_m, action_m, next_state_m, reward_m, p_a_m, crash_m = m
curr_states[ii, :, :, :] = curr_state_m[...]
next_states[ii, :, :, :] = next_state_m[...]
actions[ii] = action_m
rewards[ii] = reward_m
p_a[ii] = p_a_m
crashes[ii] = ~crash_m
for i in range(train_epoch_per_batch):
V_s = agent.network_model.get_state_value(curr_states)
V_s_ = agent.network_model.get_state_value(next_states)
TD_target = rewards + gamma*V_s_* crashes
delta = TD_target - V_s
GAE_array = []
GAE=0
for delta_t in delta[::-1]:
GAE = gamma*lmbda* GAE + delta_t
GAE_array.append(GAE)
GAE_array.reverse()
GAE = np.array(GAE_array)
# Normalize the reward to reduce variance in training
GAE -= np.mean(GAE)
GAE /= (np.std(GAE) + 1e-8)
# TODO: zero mean unit std GAE
agent.network_model.train_policy(curr_states, actions, TD_target, p_a, GAE, lr, epi_num)
def minibatch_double(data_tuple, batch_size, choose, ReplayMemory, input_size, agent, target_agent, gamma, Q_clip):
# Needs NOT to be in DeepAgent
# NO TD error term, and using huber loss instead
# Bellman Optimality equation update, with less computation, updated
if batch_size == 1:
train_batch = data_tuple
idx = None
else:
batch = ReplayMemory.sample(batch_size)
train_batch = np.array([b[1][0] for b in batch])
idx = [b[0] for b in batch]
actions = np.zeros(shape=(batch_size), dtype=int)
crashes = np.zeros(shape=(batch_size))
rewards = np.zeros(shape=batch_size)
curr_states = np.zeros(shape=(batch_size, input_size, input_size, 3))
new_states = np.zeros(shape=(batch_size, input_size, input_size, 3))
for ii, m in enumerate(train_batch):
curr_state_m, action_m, new_state_m, reward_m, crash_m = m
curr_states[ii, :, :, :] = curr_state_m[...]
actions[ii] = action_m
new_states[ii, :, :, :] = new_state_m
rewards[ii] = reward_m
crashes[ii] = crash_m
#
# oldQval = np.zeros(shape = [batch_size, num_actions])
if choose:
oldQval_A = target_agent.network_model.Q_val(curr_states)
newQval_A = target_agent.network_model.Q_val(new_states)
newQval_B = agent.network_model.Q_val(new_states)
else:
oldQval_A = agent.network_model.Q_val(curr_states)
newQval_A = agent.network_model.Q_val(new_states)
newQval_B = target_agent.network_model.Q_val(new_states)
TD = np.zeros(shape=[batch_size])
err = np.zeros(shape=[batch_size])
Q_target = np.zeros(shape=[batch_size])
term_ind = np.where(rewards == -1)[0]
nonterm_ind = np.where(rewards != -1)[0]
TD[nonterm_ind] = rewards[nonterm_ind] + gamma * newQval_B[nonterm_ind, np.argmax(newQval_A[nonterm_ind], axis=1)] - \
oldQval_A[nonterm_ind, actions[nonterm_ind].astype(int)]
TD[term_ind] = rewards[term_ind]
if Q_clip:
TD_clip = np.clip(TD, -1, 1)
else:
TD_clip = TD
Q_target[nonterm_ind] = oldQval_A[nonterm_ind, actions[nonterm_ind].astype(int)] + TD_clip[nonterm_ind]
Q_target[term_ind] = TD_clip[term_ind]
err = abs(TD) # or abs(TD_clip)
return curr_states, Q_target, actions, err, idx
def policy_REINFORCE(curr_state, agent):
action = agent.network_model.action_selection(curr_state)
action_type = 'Prob'
return action[0], action_type
def policy_PPO(curr_state, agent):
action, p_a = agent.network_model.action_selection_with_prob(curr_state)
action_type = 'Prob'
return action[0], p_a, action_type
def policy(epsilon, curr_state, iter, b, epsilon_model, wait_before_train, num_actions, agent):
qvals = []
epsilon_ceil = 0.95
if epsilon_model == 'linear':
epsilon = epsilon_ceil * (iter - wait_before_train) / (b - wait_before_train)
if epsilon > epsilon_ceil:
epsilon = epsilon_ceil
elif epsilon_model == 'exponential':
epsilon = 1 - math.exp(-2 / (b - wait_before_train) * (iter - wait_before_train))
if epsilon > epsilon_ceil:
epsilon = epsilon_ceil
if random.random() > epsilon:
sss = curr_state.shape
action = np.random.randint(0, num_actions, size=sss[0], dtype=np.int32)
action_type = 'Rand'
else:
# Use NN to predict action
action = agent.network_model.action_selection(curr_state)
action_type = 'Pred'
# print(action_array/(np.mean(action_array)))
return action, action_type, epsilon, qvals
def reset_to_initial(level, reset_array, client, vehicle_name):
reset_pos = reset_array[vehicle_name][level]
client.simSetVehiclePose(reset_pos, ignore_collison=True, vehicle_name=vehicle_name)
time.sleep(0.1)
def print_orderly(str, n):
print('')
hyphens = '-' * int((n - len(str)) / 2)
print(hyphens + ' ' + str + ' ' + hyphens)
def connect_drone(ip_address='127.0.0.0', phase='infer', num_agents=1, client=[]):
if client != []:
client.reset()
print_orderly('Drone', 80)
client = airsim.MultirotorClient(ip=ip_address, timeout_value=10)
client.confirmConnection()
time.sleep(1)
old_posit = {}
for agents in range(num_agents):
name_agent = "drone" + str(agents)
client.enableApiControl(True, name_agent)
client.armDisarm(True, name_agent)
# time.sleep(1)
client.takeoffAsync(vehicle_name=name_agent)
time.sleep(1)
old_posit[name_agent] = client.simGetVehiclePose(vehicle_name=name_agent)
initZ = old_posit[name_agent].position.z_val
# client.enableApiControl(True)
# client.armDisarm(True)
# client.takeoffAsync().join()
return client, old_posit, initZ
def get_SystemStats(process, NVIDIA_GPU):
if NVIDIA_GPU:
deviceCount = nvidia_smi.nvmlDeviceGetCount()
gpu_memory = []
gpu_utilization = []
for i in range(0, deviceCount):
handle = nvidia_smi.nvmlDeviceGetHandleByIndex(i)
gpu_stat = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)
gpu_memory.append(gpu_stat.memory)
gpu_utilization.append(gpu_stat.gpu)
else:
gpu_memory = []
gpu_utilization = []
sys_memory = process.memory_info()[0] / 2. ** 30
return gpu_memory, gpu_utilization, sys_memory
def get_MonocularImageRGB(client, vehicle_name):
responses1 = client.simGetImages([
airsim.ImageRequest('front_center', airsim.ImageType.Scene, False,
False)], vehicle_name=vehicle_name) # scene vision image in uncompressed RGBA array
response = responses1[0]
img1d = np.fromstring(response.image_data_uint8, dtype=np.uint8) # get numpy array
img_rgba = img1d.reshape(response.height, response.width, 3)
img = Image.fromarray(img_rgba)
img_rgb = img.convert('RGB')
camera_image_rgb = np.asarray(img_rgb)
camera_image = camera_image_rgb
return camera_image
def get_StereoImageRGB(client, vehicle_name):
camera_image = []
responses = client.simGetImages(
[
airsim.ImageRequest('front_left', airsim.ImageType.Scene, False, False),
airsim.ImageRequest('front_right', airsim.ImageType.Scene, False, False)
], vehicle_name=vehicle_name)
for i in range(2):
response = responses[i]
img1d = np.fromstring(response.image_data_uint8, dtype=np.uint8) # get numpy array
img_rgba = img1d.reshape(response.height, response.width, 3)
img = Image.fromarray(img_rgba)
img_rgb = img.convert('RGB')
camera_image_rgb = np.asarray(img_rgb)
camera_image.append(camera_image_rgb)
return camera_image
def get_CustomImage(client, vehicle_name, camera_name):
responses1 = client.simGetImages([
airsim.ImageRequest(camera_name, airsim.ImageType.Scene, False,
False)], vehicle_name=vehicle_name) # scene vision image in uncompressed RGBA array
response = responses1[0]
img1d = np.fromstring(response.image_data_uint8, dtype=np.uint8) # get numpy array
img_rgba = img1d.reshape(response.height, response.width, 3)
img = Image.fromarray(img_rgba)
img_rgb = img.convert('RGB')
camera_image_rgb = np.asarray(img_rgb)
camera_image = camera_image_rgb
return camera_image
# def get_image(client, vehicle_name, camera_type, first_frame, last_frame):
# responses1 = client.simGetImages([ # depth visualization image
# airsim.ImageRequest("1", airsim.ImageType.Scene, False,
# False)], vehicle_name=vehicle_name) # scene vision image in uncompressed RGBA array
#
# response = responses1[0]
# img1d = np.fromstring(response.image_data_uint8, dtype=np.uint8) # get numpy array
# img_rgba = img1d.reshape(response.height, response.width, 3)
# img = Image.fromarray(img_rgba)
# img_rgb = img.convert('RGB')
# camera_image_rgb = np.asarray(img_rgb)
#
# if camera_type == 'optical':
# camera_image = camera_image_rgb
#
# if camera_type == 'DVS':
# # camera_image = cv2.normalize(camera_image_rgb, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
# frame1 = cv2.cvtColor(camera_image_rgb, cv2.COLOR_BGR2GRAY)
# # frame23 = cv2.normalize(frame1, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
# frame = np.uint8(np.log1p(frame1))
# frame = cv2.normalize(frame, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
#
# if first_frame:
# camera_image = frame
# first_frame = False
# else:
# camera_image = frame - last_frame
# # ret, thresh1 = cv2.threshold(display_frame, 0.2, 0.8, cv2.THRESH_BINARY)
# # display_frame1 = cv2.bitwise_and(display_frame, thresh1)
# last_frame = frame
#
# camera_image = random_noise(camera_image, mode='s&p', amount=0.005)
# camera_image = cv2.cvtColor(camera_image, cv2.COLOR_GRAY2BGR)
#
# cv2.imshow('rgb', camera_image_rgb)
# cv2.imshow('dvs', camera_image)
# cc=1
# return camera_image, first_frame, last_frame
def blit_text(surface, text, pos, font, color=pygame.Color('black')):
words = [word.split(' ') for word in text.splitlines()] # 2D array where each row is a list of words.
space = font.size(' ')[0] # The width of a space.
max_width, max_height = surface.get_size()
x, y = pos
for line in words:
for word in line:
word_surface = font.render(word, 0, color)
word_width, word_height = word_surface.get_size()
if x + word_width >= max_width:
x = pos[0] # Reset the x.
y += word_height # Start on new row.
surface.blit(word_surface, (x, y))
x += word_width + space
x = pos[0] # Reset the x.
y += word_height # Start on new row.
def pygame_connect(phase):
pygame.init()
if phase == 'train':
img_path = 'images/train_keys.png'
elif phase == 'infer':
img_path = 'images/infer_keys.png'
img = pygame.image.load(img_path)
screen = pygame.display.set_mode(img.get_rect().size)
screen.blit(img, (0, 0))
pygame.display.set_caption('DLwithTL')
# screen.fill((21, 116, 163))
# text = 'Supported Keys:\n'
# font = pygame.font.SysFont('arial', 32)
# blit_text(screen, text, (20, 20), font, color = (214, 169, 19))
# pygame.display.update()
#
# font = pygame.font.SysFont('arial', 24)
# text = 'R - Reconnect unreal\nbackspace - Pause/play\nL - Update configurations\nEnter - Save Network'
# blit_text(screen, text, (20, 70), font, color=(214, 169, 19))
pygame.display.update()
return screen
def check_user_input(active, automate, agent, client, old_posit, initZ, fig_z, fig_nav, env_folder, cfg, algorithm_cfg):
# algorithm_cfg.learning_rate, algorithm_cfg.epsilon,algorithm_cfg.network_path,cfg.mode,
for event in pygame.event.get():
if event.type == pygame.QUIT:
active = False
pygame.quit()
# Training keys control
if event.type == pygame.KEYDOWN and cfg.mode == 'train':
if event.key == pygame.K_l:
# Load the parameters - epsilon
path = 'configs/' + cfg.algorithm + '.cfg'
algorithm_cfg = read_cfg(config_filename=path, verbose=False)
cfg, algorithm_cfg = save_network_path(cfg=cfg, algorithm_cfg=algorithm_cfg)
print('Updated Parameters')
if event.key == pygame.K_RETURN:
# take_action(-1)
automate = False
print('Saving Model')
# agent.save_network(iter, save_path, ' ')
agent.network_model.save_network(algorithm_cfg.network_path, episode='user')
# agent.save_data(iter, data_tuple, tuple_path)
if event.key == pygame.K_BACKSPACE:
automate = automate ^ True
if event.key == pygame.K_r:
client, old_posit, initZ = connect_drone(ip_address=cfg.ip_address, phase=cfg.mode,
num_agents=cfg.num_agents)
agent.client = client
# Set the routine for manual control if not automate
if not automate:
# print('manual')
# action=[-1]
if event.key == pygame.K_UP:
action = 0
elif event.key == pygame.K_RIGHT:
action = 1
elif event.key == pygame.K_LEFT:
action = 2
elif event.key == pygame.K_d:
action = 3
elif event.key == pygame.K_a:
action = 4
elif event.key == pygame.K_DOWN:
action = -2
elif event.key == pygame.K_y:
pos = client.getPosition()
client.moveToPosition(pos.x_val, pos.y_val, 3 * initZ, 1)
time.sleep(0.5)
elif event.key == pygame.K_h:
client.reset()
# agent.take_action(action)
elif event.type == pygame.KEYDOWN and cfg.mode == 'infer':
if event.key == pygame.K_s:
# Save the figures
file_path = env_folder + 'results/'
fig_z.savefig(file_path + 'altitude_variation.png', dpi=1000)
fig_nav.savefig(file_path + 'navigation.png', dpi=1000)
print('Figures saved')
if event.key == pygame.K_BACKSPACE:
client.moveByVelocityAsync(vx=0, vy=0, vz=0, duration=0.1)
automate = automate ^ True
return active, automate, algorithm_cfg, client