-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
62 lines (46 loc) · 1.74 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tensorflow as tf
from utils import load_image
import os
import numpy as np
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def predict(img_path, class_names):
"""
输入分类名和一张图片,返回预测结果
"""
net = tf.keras.models.load_model("model/model.h5")
img = load_image(img_path)
input = np.expand_dims(img, axis=0)
output = net.predict(input)[0]
res = np.argmax(output)
print(output)
print("result: {}, probility: {}".format(class_names[res], output[res]))
def predict_tflite(img_path):
"""
预测tflite模型
"""
model = tf.lite.Interpreter(model_path='model/model.tflite')
model.allocate_tensors()
input_details = model.get_input_details()[0]
output_details = model.get_output_details()[0]
tf.print(output_details)
img = load_image(img_path)
if input_details["dtype"] == np.uint8:
input_scale, input_zero_point = input_details["quantization"]
img = img / input_scale + input_zero_point
input = np.expand_dims(img, axis=0).astype(input_details["dtype"])
model.set_tensor(input_details['index'], input)
model.invoke()
output_data = model.get_tensor(output_details['index'])[0]
# print(output_data)
if output_details["dtype"] == np.uint8:
output_scale, output_zero_point = output_details["quantization"]
output_data = (output_data - output_zero_point) * output_scale
print(output_data)
if __name__ == '__main__':
data_root = '/home/taozhi/datasets/ds' # 训练数据根目录
class_names = os.listdir(data_root)
test_image = '/home/taozhi/datasets/ds/room/img_1.jpeg'
# 测试h5模型
predict(test_image, class_names)
# 测试tflite模型
# predict_tflite(test_image)